Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Translocation of vesicles from squid axoplasm on flagellar microtubules

Abstract

Directed intracellular particle movement is a fundamental process characteristic of all cells. During fast axonal transport, membranous organelles move at rapid rates, from 1 to 5 µm s−1, in either the orthograde or retrograde direction along the neurone and can traverse distances as long as 1 m (for reviews, see refs 1–3). Recent studies indicate that this extreme example of intracellular motility can occur along single microtubules4, but the molecules generating the motile force have not been identified or localized. It is not known whether the force-transducing ‘motor’ is associated with the moving particle or with the microtubule lattice. To distinguish between these hypotheses and to characterize the membrane–cytoskeletal interactions that occur during vesicle translocations, we have developed a reconstituted model for microtubule-based motility. We isolated axoplasmic vesicles from the giant axon of the squid Loligo pealei as described previously5. The vesicles (35–475 nm in diameter) were then added to axonemes of Arbacia punctulata spermatozoa that served as a source of microtubules. Axonemes were used because the tubulin subunit lattice of the A-subfibre of a given outer doublet is the same as the subunit lattice of neuronal microtubules along which motility occurs6,7. Moreover, all the microtubules of a single axoneme show the same structural polarity8–10, indicating that the axoneme represents an oriented microtubule substrate. Here we demonstrate that vesicle motility is ATP-dependent, that it is not mediated by the flagellar force-transducing molecule dynein and that the direction of movement is not specified by microtubule polarity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brady, S. T. & Lasek, R. J. Meth. Cell Biol. 25, 365–398 (1982).

    Article  CAS  Google Scholar 

  2. Grafstein, B. & Forman, D. S. Physiol. Rev. 60, 1167–1283 (1980).

    Article  CAS  Google Scholar 

  3. Weiss, D. G. (ed.) Axoplasmic Transport (Springer, New York, 1982).

  4. Schnapp, B. J., Vale, R. D., Sheetz, M. P. & Reese, T. S. Cell 40, 455–462 (1985).

    Article  CAS  Google Scholar 

  5. Gilbert, S. P. & Sloboda, R. D. J. Cell Biol. 99, 445–452 (1984).

    Article  CAS  Google Scholar 

  6. Amos, L. A. & Klug, A. J. Cell Sci. 14, 523–559 (1974).

    CAS  PubMed  Google Scholar 

  7. Erickson, H. P. J. Cell Biol. 60, 153–167 (1974).

    Article  CAS  Google Scholar 

  8. Allen, C. & Borisy, G. G. J. molec. Biol. 90, 381–402 (1974).

    Article  CAS  Google Scholar 

  9. Binder, L. I., Dentler, W. L. & Rosenbaum, J. L. Proc. natn. Acad. Sci. U.S.A. 72, 1122–1126 (1975).

    Article  ADS  CAS  Google Scholar 

  10. Haimo, L. T., Telzer, B. R. & Rosenbaum, J. L. Proc. natn. Acad. Sci. U.S.A. 76, 5759–5763 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Gibbons, I. R. Archs Biol., Liege 76, 317–352 (1965).

    CAS  Google Scholar 

  12. Warner, F. D. & Satir, P. J. Cell Biol. 63, 35–63 (1974).

    Article  CAS  Google Scholar 

  13. Gibbons, B. H. & Gibbons, I. R. J. Cell Sci. 13, 337–357 (1973).

    CAS  PubMed  Google Scholar 

  14. Summers, K. E. & Gibbons, I. R. Proc. natn. Acad. Sci. U.S.A. 68, 3092–3096 (1971).

    Article  ADS  CAS  Google Scholar 

  15. Summers, K. E. & Gibbons, I. R. J. Cell Biol. 58, 618–629 (1973).

    Article  CAS  Google Scholar 

  16. Bloodgood, R. A. J. Cell Biol. 75, 983–989 (1977).

    Article  CAS  Google Scholar 

  17. Bloodgood, R. A., Leffler, E. M. & Bojczuk, A. T. J. Cell Biol. 82, 664–674 (1979).

    Article  CAS  Google Scholar 

  18. Allen, R. D. & Allen, N. S. J. Microsc. 129, 3–17 (1983).

    Article  CAS  Google Scholar 

  19. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  20. Reynolds, E. S. J. Cell Biol. 17, 208–211 (1963).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbert, S., Allen, R. & Sloboda, R. Translocation of vesicles from squid axoplasm on flagellar microtubules. Nature 315, 245–248 (1985). https://doi.org/10.1038/315245a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/315245a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing