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Abstract 

New, highly efficient techniques for the numerical simulation and parameter 
identification of large chemical reaction systems are surveyed. The survey 
particularly addresses to chemists, which are understood to be potential 
users of the distributed software packages. These packages are written 
in the form of interactive dialogue systems - thus enabling chemists to 
concentrate on the chemistry of their problem. Large scale examples from 
chemical research environments are included. 
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1. Introduction 
In recent years, the numerical simulation and identification of chemical 
reaction systems has played an increasing role in physical chemistry and 
already in chemical engineering - with the aim of optimization and optimal 
control of more and more complex chemical processes. Originally, the nu­
merical work in this context has been done by chemists themselves, putting 
together known pieces software and adding user-oriented interfaces. As it 
turned out, however, the increasing complexity of the problems often led 
to limitations both from the accessible hardware and from the performance 
of the thus produced software. 

At this point, numerical analysts got interested in the subject - as a sci­
entific subject of its own. Of course, substantial progress in this direction 
could only be expected (and made) in reasonable cooperation with the even­
tual chemical users. The present article surveys certain efforts that have 
been made by the author and his research group towards the development 
of efficient, mathematically sound software for simulation and identifica­
tion of large reaction networks. As the paper addresses to chemists mainly, 
the underlying mathematics will be widely suppressed. The reader should 
realize, however, that most of the progress to be reported has been made 
on the very basis of rather sophisticated mathematical thinking. 

The authors are well aware of the fact that the whole scientific en­
deavor of realistic modeling of chemical reaction systems heavily relies on 
the quality of experimental measurements and the insight into possible 
chemical mechanisms. In this situation, the chemist is expected to need 
not just mathematical basis software but expert systems in order to be able 
to concentrate on the chemistry under consideration. The expert systems 
to be described have been written as interactive dialogue systems, which 
do not even require the knowledge of a high level programming language 
from the side of the chemical user. At the same time, the mathematical 
state-of-the-art is implemented in the core routines. 

Mathematically speaking, a chemical reaction network is modeled by an 
initial value problem (IVP) for n ordinary differential equations (ODE's), 
say 

v' = f{y,p), y(o) = y0, ( i . i ) 

where the vector y represents chemical concentrations and the vector p rep­
resents reaction rate coefficients. If p is given, then the task is to integrate 
(1.1) numerically - which is the so-called simulation to be treated in sec­
tion 2. If some of the parameters are unknown, then the task is to estimate 
these parameters from a comparison with experimental data - which is the 
so-called identification to be treated in section 3. 
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2. Large Scale Simulation 
In this section, the software system LARKIN is described (mnemotech-
nically for LARge chemical KINetics). This package has been especially 
designed for large chemical networks - a situation that will arise as soon 
as the models get more and more realistic. The first two versions of 
LARKIN have been developed by the authors together with Bader - see 
[12,3]. These versions cover the case of constant temperature, pressure, and 
volume. A rather recent extension, which has been developed by Nowak 
and Walkowiak, also includes the thermodynamics see [26,30]. LARKIN 
consists of about 8.000 cards in version 2 and 11.000 cards in version 3 
(with about 1/3 comment cards). 

The main success of LARKIN depends upon a special chemical compiler, 
new stiff integrators, and a well-tuned sparse solver - parts that will be 
discussed now. 

Chemical compiler. The input to be required from a chemical user will 
naturally just be a (possibly rather complex) system of chemical reactions 
together with given rate coefficients. For an illustration, see Figure 2.1, 
where each reaction line is followed by (InA, AE). 

*c 
*C HYDR0GEH ABSTRACTI0I 

*C 
H + CH4 => H2 + CH3 (11.1, 12600) 

H + C2K6 => H2 + C2B5 (11.1, 9700) 

H + C3H8 => H2 + 1-C3H7 (11.1, 9700) 

B + C3H8 => H2 + 2-C3H7 (11.0, 8300) 

H + C4H10 => H2 + 1-C4H9 (11.1, 9700) 

H + C4H10 => H2 + 2-C4H9 (11.0, 8400) 

H + C6H14 => H2 + 1-C6H13 (11.0, 9700) 

H + C6H14 => H2 + 2-C6H13 (10.7, 8400) 

H + C6H14 => H2 + 3-C6H13 (10.4, 8400) 

H + C2H4 => H2 + C2H3 ( 8.5, 4500) 

H + C3H6 => H2 + C3HS ( 8.5, 4500) 

H + 1-C4H8 => H2 + 1-M-AL ( 8.5, 4500) 

H + 1-C4H8 => H2 + 3-BEI ( 9.1, 11600) 

H + 1-C5H10 => H2 + 1-E-AL ( 7.7, 4500) 

H + 1-C5H10 => H2 + 1-H-BEB ( 8.5, 11000) 

H + 1-CSH10 => H2 + 4-PEH ( 9.0, 11600) 

CH3 + H2 => CH4 + H ( 9.5, 10200) 

CH3 + CH4 => CH4 + CH3 ( 8.6, 14000) 

CH3 + C2H6 => CH4 + C2H5 ( 9.0, 10600) 

CH3 + C3H8 => CH4 + 1-C3H7 ( 9.0, 10100) 

CH3 + C3H8 => CH4 + 2-C2H7 ( 8.9, 10100) 

CH3 + C4H10 »> CH4 + 1-C4H9 ( 9.1, 11600) 

Figure 2.1: Reaction system input from [22] - 22 reactions out of 240. 
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From such an input, the chemical compiler automatically generates the 
right-hand side / in 1.1, the Jacobian (n, n)-matrix fy and its associated 
sparse pattern. The routines for evaluating / , fy are realized by setting 
pointers in formal subroutines - a technique, which permits treatment up 
to very large systems. In order to give a rough idea, a small part of an 
ODE system associated with Figure 2.1 is presented in Figure 2.2 

R( 1)=C( 1)*Y( 30) 
R( 2)=C( 2)»Y( 31) 
R( 3)=C( 3)*Y( 31) 
R( 4)=C( 4)*Y( 34) 

DY( 1) = +R( 1)+R( 2)+R( 4)+R( 11)+R( 12)+R( 15)-R( 23)-R( 24) 
8 -R( 2S)-R( 26)-R( 27)-R( 28)-R( 29)-R( 30)-R( 31)-R( 32)-R( 33) 
« -R( 34)-R( 35)-R( 36)-R( 37)-R( 38)+R( 39)+R( 56)+R( 73)+R( 83) 
C +R( 98)-R(114)-R(115)-R(116)-R(117)-R(118)-R(119)-R(120)-R(121) 
« +R(151)+R(152)+R(154)+R(155)+R(1S8)+R(160)+R(176)+R(178)-R(186) 
C -R(186)-R(187)-R(188) 

DY( 2) = +R( 1)+R< 3)+R( 3)+R( 5)+R( 6)+R( 8)+R( 13)+R( 14) 
C +R( 17)+R( 23)-R( 39)-R( 41)-R( 42)-R( 43)-R( 44)-R( 45)-R( 46) 
« -R( 47)-R( 48)-R( 49)-R( 50)-R( Sl)-R( 52)-R( 53)-R( 54)-R( 55) 
C +R( 57)+R( 74)+R( 84)+R( 99)-R(122)-R(123)-R(124)-R(125)-RCl26) 
• -R(127)-R(128)-R(129)+R(153)+R(157)+R(159)+R(161)+R(164)+R(165) 
« +R(170)+R(177)+R(181)+R(185)-R(189)-R(189)-R(190)-R(191)-R(192) 

DY( 2) - DY( 2)-R(193)-R(194)-R(210)-R(211)-R(212)-R(213) 
DY( 3) « +R( 11)+R< 13)+R( 19)+R( 20)+R( 20)+R( 21)+R( 32)+R( 49) 
C +R< 66)+R< 81)-R( 83)-R( 84)-R( 85)-R( 86)-R( 87)-R( 88)-R( 89) 
« -R( 90)-R( 91)-R( 92)-R( 93)-R( 94)-R( 95)-R( 96)-R( 97)+R(108) 
8 +R(121)-R(140)-R(141)-R(142)-R(176)+R(179)+R(180)+R(182)-R(187) 
C -R(191)-R(196)-R(201)-R(201)-R(202)-R(203)-R(211)-R(215)-R(216) 
« -R(221)-R(221)-R(222)-R(223) 

Figure 2.2: Part of ODE system automatically generated from the reaction sys­
tem of Figure 2.1 (written in explicit form just for presentation purposes). 

This chemical compiler allows one to include several checks for the con­
sistency of the input - thus helping to avoid input errors by the user up to 
some level. 

Stiff integrator. ODE systems arising from chemical kinetics typically 
are known to be "stiff". In order to convey a rough idea of what "stiff 
integration" means, consider the trivial scalar ODE (cf. Dahlquist [5]): 

y' = -40y, y(0) = l (2.1) 

Its analytical solution is well-known to be 

y(t) = exp(-40t). 

Important is that y is "rapidly decaying". 
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Numerical treatment of (2.1) will produce a discretized system, with 
stepsize h — At say, replacing the continuous solution y(t) by a discrete 
solution v(tk) over a grid with tk — k • h, k = 0 ,1 , . . . . There are a variety 
of discretization methods to be applied. For illustration purposes, the so-
called explicit and implicit Euler method are exemplified - with vk = v(tk). 
Explicit Euler method applied to (2.1) yields 

Vk+i =vk + h(-40vk) (2.2) 

whereas implicit Euler method yields 

Vk+i = vk + h(-A0vk+1) (2.3) 

Typical results of (2.2) and (2.3) with h = l / 2 0 are graphically represented 
in Figure 2.3. together with y. 

Figure 2.3: Explicit Euler method applied to (2.1) with h=l/20 yields oscilla­
tions, whereas implicit Euler method yields qualitatively correct behavior com­
pared with the solution. 

The oscillations arising in the explicit case (2.2) can only be avoided 
by serious stepsize reduction - which means a significant and unnecessary 
increase of computational work. On the other hand, the implicit case in 
line (2.3), which yields qualitative agreement with the analytic solution, 
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represents an algebraic equation, which needs to be solved. This shows the 
main feature: systems of "stiff" ODE's require the solution of systems of 
linear equations inside the discretization method. Even though this involves 
an increased amount of computing time per discretization step, the number 
of steps is significantly decreased (as compared to the explicit methods) -
thus leading to an overall gain in computing time. 

The special discretization methods used in LARKIN are of extrapolation 
type. The idea of extrapolation, which dates back at least) to Richardson 
in 1911 [28], may be explained as follows. Suppose the solution y(0) = y0 

is given, and y(H) is wanted, where H is usually called the basic stepsize. 
Assume that a discretization method is applied repeatedly - first with a 
stepsize hi = H/2, second with h2 — H/6, etc. Then both v2 = v(H; hi), 
v6 = v(H; h2) etc. are approximations of the solution. Now, recalling that 
with 

y(H) = limv(H;h) 

it is possible to construct an interpolating polynomial through (hi, v(H; hi)), 
(h2,v(H; h2)) etc. and evaluate it at h = 0 which means extrapolating it 
to h = 0. For illustration, see Figure 2.4. 

0 hi hi H 
I " 1 v2 = v(H; hi), hi = H/2 

h2 h2 

I 1 1 1 1 1 1 v6 = v(H; h2), h2 = H/6 

v 

C)  

0 h3 h2 hi 

Figure 2.4: Extrapolation from hi, h2, hz, to h — 0 

The extrapolation technique thus is an easy way of producing discretiza­
tion methods of higher order. In addition whenever the discretization is for­
mally invariant under the transformation h —• —h, then an ^-extrapolation 
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can be applied. In LARKIN, the following discretization methods are im­
plemented: 

(a) the semi-implicit mid-point rule due to [2] together with h2- extrapo­
lation, 

(b) the semi-implicit Euler discretization from [7] together with h- extrap­
olation. 

Both methods are combined with an automatic control of the (order 
and the) basic stepsize JET, which is crucial for efficiency in chemical ki­
netics applications - see [6]. The choice of the integrators (a) or (b) is 
left to the user. Comparisons with the widely used BDF-type methods of 
Gear [20] and Hindmarsh [21] justify the implementation of the more recent 
extrapolation integrators - see [12,3,2,7]. 

Sparse solver. As already mentioned, the numerical integration of "stiff" 
ODE systems involves the solution of systems of linear equations. The 
arising matrices have the typical structure 

M:=I-jHfy 

for some scalar factor 7 > 0. In most complex reaction networks the matrix 
fy contains comparitively few non-zero entries — M is then said to be 
"sparse". Examples of sparse patterns of such matrices are given in Figure 
2.5. 

In actual computation, computing time can be significantly saved, if 
the sparseness is exploited. In [14] one of the most efficient general linear 
sparse solvers has been adapted to the special needs of the stiff extrapolation 
integrators. The gain in efficiency is indicated below Figure 2.5: it is the 
more significant, the larger and sparser the arising matrices are. Finally, 
note that sparseness exploitation helps to save storage. If one included 
the typical thermodynamic ODE's in the way chemists are used to do it 
(compare [19]), then the sparse matrices would fill up. An alternative 
sparseness preserving treatment has been suggested in [30], which leads to 
so-called implicit ODE systems of the form 

B(y)y' = f(y) (2.4) 

where B is another sparse matrix. This type of ODE's can be solved by 
special variants of the known stiff integrators - see [27] for the BDF method 
and [10,7] for extrapolation methods. The application to chemical kinetics 
including thermodynamics in LARKIN will be published in [26] together 
with further extensions. 
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Figure 2.5: Examples of sparse patterns of reaction network matrices from [14]. 
Gain in linear equation solving time for sparse solver versus full mode solver: 
left 0.7:3.8, right 2.2:59.6 (sec. CPU on IBM 3081 D) 

Quasi-stationary state approximation (QSSA). A rather popular 
technique in both mathematical analysis and physical chemistry is the so-
called singular perturbation treatment, also called QSSA in the chemical 
literature. This technique involves active time rescaling for different reac­
tion ODE's - leading to systems of the kind 

y' = f(y,z) (2.5) 

for some "sufficiently small" parameter e. Then QSSA means putting e := 0 
deliberately, thus obtaining a differential algebraic system 

y' = / (y ,*) 
0 = g(y,z) 

(2.6) 

Suppose, for the time being, that (2.6) can be solved uniquely. Then the 
following strategies are typical: 
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Table 2.1: [31]. Comparison of two QSSA approaches for the small n-hexane 
model in terms of CPU-times. 

25 ODE's 0.48 sec. 
13 ODE's, 12 AE's no solution obtained 
18 ODE's, 7 AE's 0.49 sec. 

(I) Whenever the algebraic part can be solved analytically, yielding some 
z = z(y), say, then a smaller ODE system can be obtained 

y' = /(y,*(v)) = F(v) "(2.6') 

If this system is "non-stiff", then explicit discretization methods can 
be used, which may mean a gain in computing time. 

( I I ) In most cases the above treatment is not possible. Then (2.6) must 
be solved directly by means of an integrator for differential-algebraic 
systems. 

The main difficulty, however, in such a treatment is that (2.6) need not 
generally have a unique solution. Then both (I) and (II) will fail, (assuming 
that (II) uses a mathematically sound integrator). In order to illustrate the 
situation, an example is presented. 

Example for QSSA [31]. Consider the small n-hexane model described 
in [31], which consists of 47 chemical reactions and 25 ODE's. Among 
the 25 chemical species, 13 species are stable, while 12 are free radicals. 
Hence, in a first QSSA treatment, one would come up with 13 ODE's and 
12 algebraic equations (AE's). For the special example only strategy (II) 
is possible. As it turns out in this example, treating the 12 radicals by 
QSSA leads to strict non-uniqueness. Moreover, after all that analytical 
pre-processing, the computing time in the successful QSSA run was about 
the one of the standard ODE approach. 

Generally speaking implicit (or semi-implicit) discretization intrinsi­
cally perform some internal rescaling. Indeed a successful e-choice may 
be a rather difficult job already in mildly realistic examples - compare [23]. 
Therefore, LARKIN realizes the above mentioned discretization methods 
in a scaling invariant manner - see section 2.3 in [12]. For the performance, 
this feature is crucial. Last not least, QSSA may anyway yield a poor 
approximation for the true solution - compare [17]. 
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Table 2.2: Typical computing times with LARKIN (FORTRAN double precision 
on IBM 3081 D) for various chemical reaction models. 

example number species 
(=ODE's) 

number 
reactions 

array 
storage 

CPU-time 
[sec] 

n-hexane [22] 59 240 20K 2.3 
RNA [29] 352 770 120K 27.6 
n-octane [30] 41 181 50K 11.3 
C2H2 - 02 [18] 138 959 150K 17.3 

Summary. In order to give an idea, several typical examples that have 
been computed with LARKIN are listed in Table 2.2. 

This may mean to chemists that now rather realistic complex reaction 
systems are open to a successful numerical simulation. 



3. Large Scale Identification 
This section deals with details of the software package PARKIN developed 
by the authors [24,25] (mnemotechnically for PARameter identification in 
chemical KINetics). The mathematical problem of identification (the so-
called inverse problem) is much more complicated than that of simulation 
(the so-called direct problem, which is just an IVP for ODE's). Let y(t,p) 
denote a smooth solution of (1.1) for a given parameter vector (of length q) 

p = p(T) = (p1,...,pq) 

depending on the temperature T. Assume there is a set of experimental 
data 

V ^ l ) ^ 1 )•> ••••> l ' m i Z-m) 

associated with corresponding measurement tolerances dzj, where Zj,dzj, 
are vectors of length n. Then the typical approach is defined via the special 
minimization problem 

I ( p ) : = E » ( < i , P ) ) J = ™ n (3-1) 
j=i i= l 

where 
dyi(tj,p) : = (yi(tj,p) - Zji)/dzji 

represents some relative deviation of model and data at point tj. 

R e m a r k 1. Note that the underlying statistical reasoning (maximum 
likelihood) only applies, if the dzj are given by the user together with the 
Zj an important feature, which is often overlooked by users. Only if all the 
dzj are the same, then they can be dropped. Typically, relative accuracy 
of measurements is achieved, which implies that 

dzji = ezZji (3.2) 

for some estimated ez (mostly 10 - 1 to 10 - 3 in experiments). 

R e m a r k 2. In typical application, only par t of the species are open to 
measurements: in that case, the corresponding dyi just vanish formally. 

Nonlinear least squares solution. The above problem (3.1) is highly 
nonlinear with respect to p, even though p enters just linearly into the right-
hand side / of (1.1). Because of this feature, the Gauss-Newton method in 

11 
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then the Gauss -Newton iteration reads 
a) „0 

P 
pk+i 

: given starting guess 
:= pk + \kApk,0<\k<l 

b) Apk := -F'(pkyF(pk) 

the form suggested by the author [8] is applied - a method, which is well-
known to be able to cope with highly nonlinear problems (from other areas 
of applications, e.g. space technology). If one writes (3.1) in the form 

I(p) = F(pfF(p) = min 
F(p) : m — vector, m < mn (3-1 J 

(3.3) 

herein F'(p) denotes the Jacobian (m, g)-matrix and the superscript t marks 
the Moore-Penrose pseudoinverse (which permits a formal representation 
for the solution of a linear least squares problem). The damping factors 
Afc are chosen according to a special strategy given in [8] and especially 
extended to the problem class in [25]. Moreover, in order to observe the 
positivity constraints p > 0, the authors of PARKIN took inspiration from 
the chemical Arrhenius law and used the (then so-called) Arrhenius trans­
formation 

p = exp(u) (3-4) 

This means that the iteration is realized in terms of uk rather than pk -
which may induce a considerable improvement of performance as shown in 
[25]. This way of handling the inequalities is certainly rather natural in 
terms of chemistry. A further advantage of this transformation comes up 
when looking into details of the structure of the Jacobian matrix. In fact, 
F'(u) has the form 

" Vu(ti) 
F'(u) = : 

where yu denotes the sensitivity (n,#)-matrix, which is a solution of the 
so-called variational equation. 

y'u = fy(y,u)yu + fu(y,u), yu(o) = o (3.5) 
Herein, as a consequence of the linear appearance of p in / , the matrix 

dv 
fu(y,u) = fp{y)-^ = fP(y)p 

consists only of terms already appearing in / - which permits clear savings 
of computing time and storage. Of course, the variational equations (3.5) 
can be solved numerically by means of the same techniques as described 
in section 2 (chemical compiler, stiff integrators, sparse techniques). Once 
more, significant savings of CPU time and storage are possible by taking 
the special structure of the problem class into account. 
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Identifiability. It is clear to every careful scientist that not each com­
bination of model and data will permit an actual identification of the pa­
rameters p. This structure of the problem shows up in the performance of 
the algorithm. Even more, the selected algorithm in PARKIN permits 3 
effective and cheap checks of identifiability: 

a) The numerical solution of the linear least squares problems (3.3.b) 
yields an estimate of the Jacobian condition number, the so-called 
sub-condition number sc(-) - see [11]. Under the hypothesis (3.2), a 
reasonable solution of the problem (3.1) must satisfy 

ezsc(F'(u)) < 1 

b) The convergence of the Gauss-Newton iteration (with K = 1) is guar­
anteed only, if some so-called incompatibility factor K satisfies 

K < 1 

Note that K — 0, if model and data are fully compatible (i.e. F = 0 
at the solution). 

c) After convergence of the iteration, PARKIN applies an a-posteriori 
perturbation analysis. However, if the linear analysis yields parameter 
perturbations dp from measurement perturbations, then the nonlinear 
analogon yields 

dp/(l - K) 

This insight is due to Bock [4]. Whenever all three checks are passed 
satisfactorily, then the result of PARKIN can be safely interpreted 
by the chemist - but only in this situation. An illustrative example 
where these checks were not passed, can be found in [25]. 

A final word of warning: there are optimization routines around, which 
supply a solution by all means; however, if a chemist wants to rely on 
his results in terms of the underlying chemistry, then there is essentially 
no way round the above checks. On the other hand, just for this strict 
scientific requirement, PARKIN appears to be less popular than LARKIN. 
(Future developments of PARKIN will give special further information to 
the chemist, about where information is missing.) 

S u m m a r y . The present form of PARKIN makes it certainly a important 
tool in a research environment of physical chemistry. As the treated inverse 
problem is much more complicated that the direct problem, the handling 
of PARKIN requires more skill than that of LARKIN. 

Acknowledgment. This work was supported by the DFG under SFB 
123 (University of Heidelberg). 



References 
[1] R. C. Aiken (ed.): Stiff Computation. Oxford Univ. Press (19S5). 

[2] G. Bader, P. Deuflhard: A semi-implicit mid-point rule for stiff sys­
tems of ordinary differential equations. Numer. Math. 41, pp. 373-398 
(1983). 

[3] G. Bader, U. Nowak, P. Deuflhard: An advanced simulation package 
for large chemical reaction systems. Section 5.5 in [1], pp. 255-264 
(1985). 

[4] H. G. Bock: Numerical Treatment of Inverse Problems in Chemical 
Reaction Kinetics. In [15], pp. 102-125 (1981). 

[5] G. Dahlquist: A special stability problem for linear multistep methods. 
BIT 3, pp. 27-43 (1963). 

[6] P. Deuflhard: Order and Stepsize Control in Extrapolation Methods. 
Numer. Math. 41, pp. 399-422 (1983). 

[7] P. Deuflhard: Recent Progress in Extrapolation Methods for Ordinary 
Differential Equations. SIAM Rev. 27, pp. 505-535 (1985). 

[8] P. Deuflhard, V. Apostolescu: A Study of the Gauss-Newton Method 
for the Solution of Nonlinear Least Squares Problems. In: Frehse, Pal-
laschke, Trottenberg (ed): Special Topics of Applied Mathematics. 
North-Holland, pp. 129-150 (1980) 

[9] P. Deuflhard, E. Hairer (ed.): Numerical Treatment of Inverse Prob­
lems in Differential and Integral Equations. Birkhäuser, Progr. Sei. 
Comp. 2 (1983). 

[10] P. Deuflhard, U. Nowak: Extrapolation integrators for quasilinear im,-
plicit ODE's. Univ. Heidelberg, SFB 123: Tech. Rep. Nr. 332 (1985). 

[11] P. Deuflhard, W. Sautter: On Rank-Deficient Pseudoinverses. Lin. 
Alg. Appl. 29, pp. 91-111 (1980) 

[12] P. Deuflhard, G. Bader, U. Nowak: LARKIN - A Software Package 
for the Numerical Simulation of LARge Systems Arising in Chemical 
Reaction KINetics. In [15], pp. 38-55 (1981). 

[13] P. Deuflhard, E. Hairer, J. Zugck: One-Step and Extrapolation Method* 
for Differential-Algebraic Systems. Univ. Heidelberg, SFB 123: Tech. 
Rep. Nr. 318 (1985). 

14 



References 15 

14] I. S. Duff, U. Nowak: On Sparse Solvers in a Stiff Integrator of Ex­
trapolation Type. Harwell, Tech. Rep. CSS 144 (1985). 

15] K. H. Ebert, P. Deuflhard, W. Jaeger (ed.): Modeling of Chemical 
Reaction Systems. Springer Ser. Chem. Phys. 18 (1981) 

16] C. Esser, U. Maas, J. Warnatz: Chemistry of the auto-ignition in 
hydrocarbon-air- mixtures up to octane and its relation to engine knock. 
International Symposium on Diagnostics and Modeling of Combustion 
in Reciprocating Engines, Tokyo, (1985) 

[17] L. A. Farrow, D. Edelson: The steady-state approximation: fact or 
fiction? Int. J. Chem. Kin. 6, pp. 787-800 (1974) 

[18] M. Frenklach et al.: Mechanism of soot formation in acetylene-oxygene 
mixtures. In: Combust. Sei. Technol., in press, (1986) 

[19] W. C. Gardiner, B. F. Walker, C. B. Wakefield: Mathematical methods 
for modeling chemical reactions in shock waves. In: A. Lifshitz (ed.): 
Shock Waves in Chemistry (1981). 

[20] C. W. Gear: Numerical Initial Value Problems in Ordinary Differential 
Equations. Prentice-Hall, NJ. (1971). 

[21] A. C. Hindmarsh: GEAR-ordinary differential equation system solver. 
Lawrence Livermore Nat. Lab. Tech. Rep. UCID-30001, Rev. 3 (1974). 

[22] G. Isbarn, H. J. Ederer, K. H. Ebert: The Thermal Decomposition of 
n-Hexane: Kinetics, Mechanism, and Simulation. In [15], pp. 235-248 
(1981). 

[23] Mao Zhu-fan: SCALE - A Fortran Program for a Scaling Procedure. 
Roy. Inst. Technol. Stockholm, Dep. Numer. Anal. Comp. Sei.: Tech. 
Rep. TRITA-NA-S314 (1983). 

[24] U. Nowak, P. Deuflhard: Towards Parameter Identification for Large 
Chemical Reaction Systems. In [6], pp. 13-26 (1983). 

[25] U. Nowak, P. Deuflhard: Numerical Identification of Selected Rate 
Constants in Large Chemical Reaction Systems. Appl. Num. Math. 1, 
pp. 59-75 (1985) 

[26] U. Nowak, D. Walkowiak: Extension of LARKIN - Rev. 3.1. In prepa­
ration. 

[27] L. Petzold: A Description ofDASSL: A Differential/ Algebraic System 
Solver. Proc. IMACS World Congress 1982. 



16 P. Deußhard, U. Nowak 

[28] C. Richardson: The approximate arithmetical solution by finite dif­
ferences of physical problems involving differential equations, with an 
application to the stresses in a masonry dam. Phil. Trans. Roy. Soc. 
London, A 210, 307-357 (1911). 

[29] F. W. Schneider, M. Heinrichs, T. Poll: Private communication. 
(1980). 

[30] D. Walkowiak: Numerische Behandlung grosser adiabater chemischer 
Reaktionssysteme. Univ. Heidelberg, Inst. Angew. Math.: Diplomar­
beit (1986). 

[31] J. Zugck: Numerische Behandlung linear-impliziter Differentialglei­
chungen mit Extrapolationsmethoden. Univ. Heidelberg, Inst. Angw. 
Math.: Diplomarbeit (1984). 




