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In this paper we consider the multiple knapsack problem which is defined as
follows: given a set N of items with weights fi, i ∈ N , a set M of knapsacks with
capacities Fk, k ∈ M , and a profit function cik, i ∈ N, k ∈ M ; find an assignment
of a subset of the set of items to the set of knapsacks that yields maximum
profit (or minimum cost). With every instance of this problem we associate
a polyhedron whose vertices are in one to one correspondence to the feasible
solutions of the instance. This polytope is the subject of our investigations. In
particular, we present several new classes of inequalities and work out necessary
and sufficient conditions under which the corresponding inequality defines a facet.
Some of these conditions involve only properties of certain knapsack constraints,
and hence, apply to the generalized assignment polytope as well. The results
presented here serve as the theoretical basis for solving practical problems. The
algorithmic side of our study, i.e., separation algorithms, implementation details
and computational experience with a branch and cut algorithm are discussed in
the companion paper [?].

∗ On leave from University of São Paulo, Brazil.

� Introduction and Notation

In this paper we investigate the multiple knapsack polytope, i.e., the polytope
associated with the multiple knapsack problem. The multiple knapsack problem is
defined as follows: Given a set N of items with weights fi > 0, i ∈ N , a set M of
knapsacks with capacities Fk > 0, k ∈ M , and a profit function cik, i ∈ N, k ∈ M .
Find an assignment of a subset of the set of items to the set of knapsacks that
yields maximum profit (or minimum cost). Without loss of generality we assume
throughout the paper that N = {1, . . . , n}, n ≥ 1 and M = {1, . . . , m}, m ≥ 1.
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The multiple knapsack problem is known to be NP-complete, since, in case
m = 1, it coincides with the 0/1 single knapsack problem, which is NP-complete
(cf. [?]). From an algorithmical point of view the multiple knapsack problem was
extensively studied (see, for example, the excellent survey of Martello and Toth in
[?]). Unfortunately, the strategies that provide an exact solution for the problem
have a prohibitive running time for instances of large scale. Our objective is to
develop a cutting plane algorithm for the multiple knapsack problem and study
its performance, when applied to real world large scale instances.

The instances we have in mind arise in two different applications, namely in
the layout of electronic circuits and in the design of processors for main frame
computers.

One major problem arising in the layout of electronic circuits is the placement
problem. Roughly speaking, this problem consists of assigning a given set of so-
called cells to locations on a given rectangle, usually called a master. Physically,
every cell represents a logic function. For our purposes, a cell can be viewed as
a rectangle whose size is known in advance. A common approach to attack this
problem is via decomposition techniques. Working in this scheme, a first step is
to assign the cells to subareas of the master, subdivide every subarea and continue
until every subarea contains at most one cell. In knapsack terminology, the cells
correspond to the items. The weight of an item is represented by the area of the
corresponding cell, whereas a knapsack corresponds to a subarea of the master
and its capacity is given by the size of the subarea. The task is to assign cells
to subareas such that a certain cost function is minimized. Thus, algorithms for
the solution of the multiple knapsack problem are used as subroutines for the
solution of the placement problem in chip design.

Similarly, in the design of main frame computers, a given set of “components”
has to be assigned to a given number of “modules”. The capacity of a module
as well as the weight of a component is defined by the corresponding area. The
coefficients cik, i ∈ N, k ∈ M , of the profit function reflect the production cost
of installing component i on module k.

In reality both applications are much more complicated than indicated here. For
instance, in the main frame computer design application, subsets of the compo-
nents must be connected by wires and, hence, space has to be reserved for doing
this. Moreover, each module has an additional capacity limiting the number of
wires that may leave the module. For modelling the placement problem of elec-
tronic circuits, the wireability of the nets, the length of the resulting wires, and
the resulting communication cost must be considered. We refrain from explaining
all these technical details here and refer the reader to [?], [?], [?] and [?] where it
is shown how the multiple knapsack problem comes up and is used in the solution
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process.

This paper is devoted to the theoretical underpinning of our cutting plane ap-
proach to the multiple knapsack problem and is organized as follows. In section
2 the multiple knapsack, the single knapsack and the generalized assignment
polytope are defined. Here, we give a brief review of the state of the art concern-
ing these polytopes and present the basic concepts that are of importance for a
study of the multiple knapsack polytope. In sections 3 and 4 our polyhedral in-
vestigations are presented. In section 3 we deal with the so-called heterogeneous
two-cover inequality and the multiple cover inequality. In particular, necessary
and sufficient conditions such that the corresponding inequalities are valid (facet-
defining) will be given. A procedure for extending facet-defining inequalities will
enable us to generalize several existing classes of inequalities. This is done in sec-
tion 4. The discussions will end with some conclusions. Our experiences with a
cutting plane algorithm and computational results are presented in the follow-up
paper [?].

We introduce some notation that will be used throughout the paper. Let ei ∈ IRn

be the unit vector with a value of one in the i-th component and zero otherwise.
We denote by eik the unit vector in the vector space IRnm.

For x ∈ IRn and I ⊆ N we set x(I) :=
∑

i∈I xi. For I ⊆ N , we denote by χI the
incidence vector of I in IRn, i.e., χI

i = 1, if i ∈ I ,and χI
i = 0, otherwise.

Given an item i ∈ N , let us define the set Ii := {j ∈ N | fj = fi}. For a vector
x′ ∈ {0, 1}nm and some knapsack k ∈ M , we define Bk(x

′) := {i ∈ N | x′
ik = 1}.

If aTx ≤ α is a valid inequality for some polytope P , we set EQ(P, aTx ≤ α) :=
{x′ ∈ P | aTx′ = α}. In order to simplify notation, we frequently abbreviate
EQ(P, aTx ≤ α) by EQ(aTx ≤ α), if there is no way of confusion.

We abbreviate an instance of the multiple knapsack problem by the quadruple
(N,M, f, F ) where N denotes the set of items, M the set of knapsacks, the i-th
component of the vector f ∈ RN denotes the weight of item i in N and the k-th
component of the vector F ∈ RM denotes the capacity of knapsack k ∈ M . Of
course, by (N,M, f, F ) an instance of the multiple knapsack problem is specified
up to the cost function cik, i ∈ N, k ∈ M . We neglect this function here, because,
for our polyhedral investigations, the cost function is of no interest. If it will be
(especially in our compagnion paper) we speak of the weighted multiple knapsack
problem and abbreviate an instance by the quintuple (N,M, f, F, c). A 0/1 vector
x ∈ {0, 1}nm satisfying

∑
k∈M xik ≤ 1 for all i ∈ N will be called an assignment. If

in addition for every k ∈ M , the inequality
∑

i∈N fixik ≤ Fk holds, the assignment
will be called valid.
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Given a set V . We call nonempty subsets V1, . . . , Vp of V a partition of V , if⋃p
i=1 Vi = V and Vi ∩ Vj = ∅ for all i, j ∈ {1, . . . , p}, i �= j.

Let be given some k ∈ M . A set S ⊆ N is a cover with respect to knapsack k if∑
i∈S fi > Fk. The cover is minimal with respect to k, if

∑
i∈S\{s} fi ≤ Fk for all

s ∈ S. Let N ′ ⊆ N be some nonempty subset of the set of items and z ∈ N \N ′.
The set N ′ ∪ {z} is called (1,d)-configuration with respect to knapsack k, if

1.
∑

j∈N ′ fj ≤ Fk;

2. K ∪ {z} is a minimal cover with respect to k, for all K ⊂ N ′ with |K| = d.

For N ′ ⊆ N , we use the symbol f(N ′) to denote the value
∑

i∈N ′ fi. Accordingly,
we use the notation F (M ′) :=

∑
k∈M ′ Fk for a subset M ′ ⊆ M .

Finally, for the exposition of the proofs that will be given in sections 3 and 4 we
need some graphtheoretic notation. Let G = (V,E) denote a graph with node set
V and edge set E. A path in G from u ∈ V to v ∈ V is an edge set {e1, . . . , er}
such that ei = {ui, ui+1} i = 1, . . . r − 1, u1 = u, ur = v and ui �= uj for all
i, j ∈ {1, . . . , r}, i �= j. A graph is connected, if for every pair of distinct nodes u
and v there exists a path from u to v in G. A spanning tree in G is an edge set
T such that the graph (V, T ) is connected and |T | = |V | − 1.

� The Multiple Knapsack and Related Polyto�

pes� a Brief Overview

Let be given an instance (N,M, f, F ) of the multiple knapsack problem. It will
turn out that we often refer to subinstances of the problem where certain items
are not feasible for certain knapsacks. Thus, we define the polyhedron in a more
general frame. Suppose Ai ⊆ N and Bi ⊆ M for i = 1, . . . , t are given, and let
T :=

⋃t
i=1 Ai × Bi. Define the multiple knapsack polytope by

MK(T, f, F ) := conv{x ∈ IRT | ∑
i:(i,k)∈T fixik ≤ Fk, k ∈ ⋃t

l=1Bl,∑
k:(i,k)∈T xik ≤ 1, i ∈ ⋃t

j=1Aj,
xik ∈ {0, 1}, (i, k) ∈ T}.

The first type of inequalities,
∑

i:(i,k)∈T fixik ≤ Fk, are called knapsack constraints.
Using this notation, the polytope corresponding to the multiple knapsack prob-
lem defined at the beginning coincides with MK(N ×M, f, F ), which we often
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abbreviate by MK. It is easy to see that MK is full dimensional if and only
if fi ≤ Fk for all i ∈ N and k ∈ M . Similarly, the dimension of the polytope
MK(T, f, F ) equals |T | = ∑t

i=1 |Ai||Bi| if and only if fi ≤ Fk for all (i, k) ∈ T .
in the following we assume that fi ≤ Fk for all (i, k) ∈ T .

Obviously, the multiple knapsack problem, as stated in section 1, is a canonical
generalization of the single 0/1 knapsack problem, where |M | = 1. In analogy to
the definition of MK let

SK(N, f, F ) := conv{x ∈ IRN | ∑
i∈N

fixi ≤ F, xi ∈ {0, 1}, i ∈ N}

denote the single knapsack polytope.

Although a lot of emphasis has been put on studying the facial structure of
SK(N, f, F ) (see, for example, [?],[?],[?],[?],[?], [?]), MK and generalizations
of it have not yet been studied to the same extent. In a few papers we find
investigations in this direction. Crowder, Johnson and Padberg [?] consider
general 0/1 linear programs with no apparent structure: Let be given a matrix
A ∈ IQm×n, aki ≥ 0 for all i = 1, . . . , n, k = 1, . . . , m, a vector b ∈ IQm and define
IP := conv{x ∈ {0, 1}n | Ax ≤ b}. With each constraint k the authors associate
the single knapsack polytope SKk := SK({1, . . . , n}, (ak1, . . . , akn)T , bk). Clearly,
IP ⊆ ⋂m

k=1 SKk. In [?] large scale 0/1 linear programs are solved by using
single knapsack inequalities for the polytopes SKk in order to chop off fractional
solutions that are obtained during the run of a cutting plane algorithm.

Gottlieb and Rao ([?], [?]) study the generalized assignment problem, a gen-
eralization of the multiple knapsack problem, where every item i may have “a
particular weight fik” for each knapsack k. By setting

GAP (N ×M, f, F ) := conv{x ∈ IRN×M | ∑
i∈N fikxik ≤ Fk, k ∈ M,∑
k∈M xik ≤ 1, i ∈ N,

xik ∈ {0, 1}, i ∈ N, k ∈ M}
we obtain the straightforward definition of a polytope associated with the gener-
alized assignment problem (abbreviated by GAP ).

In [?] and [?] a study of this polytope is addressed. One of the results
due to Gottlieb and Rao is that every facet of some single knapsack polytope
SK(N, (fik)i∈N , Fk), k ∈ M is a facet of GAP . In these papers several valid
inequalities for GAP are presented. Also, some necessary conditions that a valid
inequality must satisfy in order to define a facet of the generalized assignment
polytope are given.

In the remainder of this section we sketch some results that are of interest for a
polyhedral study of the multiple knapsack polytope.
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Lemma 2.1 The trivial inequality

xik ≥ 0

defines a facet of MK for all i ∈ N, k ∈ M .

If m ≥ 2, the trivial inequality ∑
k∈M

xik ≤ 1

defines a facet of MK for all i ∈ N .

The following lemma states that all nontrivial facets associated with a single
knapsack polytope are inherited by MK. This result (in a more general version)
is due to Gottlieb and Rao [?].

Lemma 2.2 Let be given V ⊆ N and k ∈ M . Suppose aTx ≤ α is a nontriv-
ial facet-defining inequality of SK(V, f, Fk). Then, aTx ≤ α defines a facet of
MK(V ×M, f, F ), where a ∈ IRV×M and

ail :=

{
ai, if l = k, i ∈ V,
0, otherwise.

Let (N,M, f, F ) be an instance of the multiple knapsack problem. Suppose, S is
a minimal cover with respect to some k ∈ M . Then, the minimal cover inequality∑

i∈S
xik ≤ |S| − 1

defines a facet for the polytope SK(S, f, Fk) ([?], [?], [W75]). By applying Lemma
2.2 we can conclude that this minimal cover inequality defines a facet forMK(S×
M, f, F ). Similarly, let N ′ ∪ {z}, N ′ ⊆ N, |N ′| = n′ and z ∈ N \ N ′ be a (1, d)
configuration with respect to some knapsack k. The (1, d)-configuration inequality

(n′ − d+ 1)xzk +
∑
i∈N ′

xik ≤ n′

defines a facet for the polytope SK(N ′∪{z}, f, Fk) (cf. [?]). Again, from Lemma
2.2 we can conclude that this inequality defines a facet for MK((N ′ ∪ {z}) ×
M, f, F ).

The subsequent lemma elucidates two easy, yet important features of facet-
defining inequalities for MK. This result is also true for the GAP -polytope
and is due to Gottlieb and Rao.
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Lemma 2.3 Let be given an instance (N,M, f, F ) of the multiple knapsack prob-
lem. Moreover, let aTx ≤ α be a nontrivial facet-defining inequality for some
polytope MK(V ×M, f, F ), where V ⊆ N .

• The coefficients aik, i ∈ V, k ∈ M are all non-negative.

• There exists some k ∈ M such that Ak := {i ∈ V | aik > 0} defines a cover
with respect to k.

Finally, let us give some remarks on the sequential lifting of inequalities. The
concept of lifting is due to Padberg ([?]) and consists of the following idea.
Given a polytope P ⊆ [0, 1]N with 0/1 vertices and let N denote the index set
of variables. Let i be an element of N and suppose, aTx ≤ α is a facet-defining
inequality for P ∩ {x ∈ IRN | xi = 0}. Set γi := max{aTx | x ∈ P, xi = 1}.
Then, the inequality (a + (α − γi)ei)

Tx ≤ α defines a facet for the polytope
P . In the particular case of minimal cover inequalities and (1, d)-configuration
inequalities, the coefficients γi can be computed in polynomial time. This result is
due to Zemel ([?]) and is obtained by dualizing the maximization problem above,
slightly modifying it and solving this modified program by applying dynamic
programming techniques. Due to the particular structure of the optimization
problem the running time of the dynamic program is bounded by a polynomial
in the size of the input data.

In the following two chapters we present our investigations for the multiple knap-
sack polytope.

� Joint Inequalities for the MK Polytope�

From the previous section we conclude that valid (facet-defining) inequalities for
the single knapsack polytope can be lifted to valid (facet-defining) inequalities
for proper instances of the multiple knapsack problem. However, there exist
instances of the multiple knapsack problem where inequalities that combine the
coefficients of more than one knapsack define facets. Inequalities of this type will
be called joint inequalities.

In the following two subsections particular classes of joint inequalities are dis-
cussed. Here, the overall organization of the two subsections is as follows. First,
we characterize conditions such that the class of inequalities under consideration
is valid for MK. For illustration a small example will be given. Finally, necessary
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and sufficient conditions are given such that the corresponding inequalities define
facets for the multiple knapsack polytope of proper instances.

��� The Heterogeneous Two�Cover Inequality

In this subsection we present an inequality that involves two covers and two
knapsacks. The coefficients of the inequality are not all equal zero or one.

Theorem 3.1.1 Let be given an instance (N,M, f, F ) of the multiple knapsack
problem. We choose two indices k, l ∈ M, k �= l and assume:

• S ⊆ N is a cover with respect to k;

• G ⊆ N \ S is some subset of items.

Under these assumptions, the inequality

∑
i∈S

xik +
∑

i∈S∪G
(|S| − 1)xil ≤ |S|(|S| − 1)

is called heterogeneous two-cover inequality. It is valid for MK((S∪G)×M, f, F )
if and only if for all G̃ ⊆ G and S̃ ⊆ S with |G̃| = |S̃| ≥ 1 the set S \ S̃ ∪ G̃ is a
cover with respect to knapsack l.

Proof. Suppose, for all G̃ ⊆ G and S̃ ⊆ S, |G̃| = |S̃| ≥ 1, the set S \ S̃ ∪ G̃
is a cover with respect to knapsack l. Let x′ ∈ MK((S ∪ G) × M, f, F ) be an
assignment and set S̃k := {i ∈ S | x′

ik = 1}, G̃ := {i ∈ G | x′
il = 1} and

S̃l := {i ∈ S | x′
il = 1}. If |S̃k| ≥ 1, the condition implies that |G̃ ∪ S̃l| ≤ |S| − 1.

Since S is a cover, it follows that |S̃k| ≤ |S| − 1. Thus,
∑

i∈S x
′
ik +

∑
i∈S∪G(|S| −

1)x′
il = |S̃k|+ (|S| − 1)(|S̃l|+ |G̃|) ≤ |S| − 1 + (|S| − 1)(|S| − 1) = |S|(|S| − 1).

In case |S̃k| = ∅, either S̃l = S or |S̃l ∪ G̃| ≤ |S| − 1 due to the condition. Thus,
the inequality is also valid in this case.

Conversely, suppose the inequality is valid, but the condition is violated, i.e.,
there exist G̃ ⊆ G and S̃ ⊆ S with |G̃| = |S̃| ≥ 1 such that the set S \ S̃ ∪ G̃ is
not a cover with respect to knapsack l.
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Then, the vector x′ defined via

x′
iv :=

⎧⎪⎨
⎪⎩

1, i ∈ S̃, v = k,

1, i ∈ G̃ ∪ S \ S̃, v = l,
0, otherwise,

is an element of MK((S∪G)×M, f, F ) satisfying
∑

i∈S x′
ik+

∑
i∈S∪G(|S|−1)x′

il =
|S̃|+(|S|−1)(|S \ S̃|+ |G̃|) = |S̃|+(|S|−1)|S| ≥ 1+(|S|−1)|S|. This contradicts
the assumption that the inequality is valid.

Before studying the problem instances for which the heterogeneous two-cover
inequality defines a facet, let us introduce an additional definition.

Definition. Let be given an instance (N,M, f, F ) of the multiple knapsack
problem and let d ≥ 1 be some integer. We say that a subset of items S ⊆ N
is a d-cover with respect to some knapsack k ∈ M , if every subset D ⊆ S with
|D| = |S| − d satisfies f(D) ≤ Fk and f(D ∪ {s}) > Fk for all s ∈ S \D.

Using this notation, a minimal cover is a 1-cover.

Theorem 3.1.2 Let be given an instance (N,M, f, F ) of the multiple knapsack
problem. We choose two indices k, l ∈ M, k �= l and assume:

• S ⊆ N is a minimal cover with respect to k and satisfies f(S) ≤ Fl;

• G ⊆ N \ S, |G| ≥ |S| is a (|G| − |S|+ 1)-cover with respect to l.

Under these assumptions, the heterogeneous two-cover inequality∑
i∈S

xik +
∑

i∈S∪G
(|S| − 1)xil ≤ |S|(|S| − 1)

defines a facet of the polytope MK((S ∪ G) ×M, f, F ) if and only if it is valid
for MK((S ∪ G) ×M, f, F ) and, for every s ∈ S, there exists a subset G̃ ⊆ G
with |G̃| = |S| − 2 such that

∑
i∈G̃ fi + fs ≤ Fl.

Proof. For ease of exposition let us abbreviate the heterogeneous two-cover
inequality by aTx ≤ α. First, we prove that the conditions given in the theorem
are necessary.

Obviously, aTx ≤ α is a valid inequality. Now assume that there exists an item
s ∈ S such that for all subsets G̃ ⊆ G, |G̃| = |S| − 2, the relation f(G̃) + fs > Fl
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holds. Under this assumption we show that every element x of EQ(aTx ≤ α)
satisfies the equation

∑
i∈G xil+

∑
i∈S\{s} xil = |S|−1. If this is true, EQ(aTx ≤ α)

does not define a facet, a contradiction. Hence, the conditions are necessary,
indeed.

Now let us prove that every element x ∈ EQ(aTx ≤ α) also satisfies
∑

i∈G xil +∑
i∈S\{s} xil = |S| − 1, if s ∈ S is an item such that for all subsets G̃ ⊆ G, |G̃| =

|S| − 2, the relation f(G̃) + fs > Fl holds. Let be given some x ∈ EQ(aTx ≤ α).
First, we show that

∑
i∈G xil+

∑
i∈S\{s} xil ≤ |S|−1. Suppose this is not the case.

Then we define x′ via:

x′
iv :=

⎧⎪⎨
⎪⎩

xil, i ∈ G ∪ S \ {s}, v = l,
1, i = s, v = k,
0, otherwise.

By construction, aTx′ ≥ 1 + (|S| − 1)|S| = α+ 1, a contradiction. Now suppose,
x satisfies

∑
i∈G xil +

∑
i∈S\{s} xil < |S| − 1. Here, we distinguish the following

two cases:

• Case 1. xsl = 0.
Since

∑
i∈G xil +

∑
i∈S\{s} xil < |S| − 1 holds, we obtain

∑
i∈S xik +

∑
i∈S∪G

(|S| − 1)xil < |S| − 1 + (|S| − 1)(|S| − 1) = |S|(|S| − 1), which contradicts
that x ∈ EQ(aTx ≤ α).

• Case 2. xsl = 1.
Since

∑
i∈G̃ fi + fs > Fl holds for all subsets G̃ ⊆ G, |G̃| = |S| − 2, we

can conclude that |{i ∈ G | xil = 1}| < |S| − 2. In case {i ∈ S \ {s} |
xil = 1} = ∅, we obtain aTx = |{i ∈ S | xik = 1}| + (|S| − 1)(|{i ∈ G |
xil = 1}| + 1) < |S| − 1 + (|S| − 1)(|S| − 2 + 1) = α, a contradiction.
Otherwise, {i ∈ S \ {s} | xil = 1} �= ∅. Since xsl = 1, we know that
|{i ∈ S | xik = 1}| < |S|−1. Together with

∑
i∈G xil+

∑
i∈S\{s} xil < |S|−1,

we obtain aTx < |S| − 1+ (|S| − 1)(|S| − 2+1) = α. Thus, x cannot be an
element of EQ(aTx ≤ α), which, again, is a contradiction.

This completes the proof that the conditions are necessary.

In order to prove the converse direction, we assume that EQ(aTx ≤ α) ⊆
EQ(bTx ≤ β), where bTx ≤ β is a facet-defining inequality of MK((S ∪ G) ×
M, f, F ).
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Let G̃ ⊆ G with |G̃| = |S|−1. For every s ∈ S, we define the vector xs as follows:

xs
iv :=

⎧⎪⎨
⎪⎩

1, i ∈ S \ {s}, v = k,

1, i ∈ G̃, v = l,
0, otherwise.

Of course, xs is an element of EQ(aTx ≤ α) and for every s′ ∈ S \{s}, the vector
xs− es′k+ esk is also contained in EQ(aTx ≤ α). Thus, bTxs = bT (xs− es′k + esk)
and, hence, bs′k = bsk for all s′ ∈ S. Moreover, xs + esj ∈ EQ(aTx ≤ α) for
all j ∈ M \ {k, l} which implies bTxs = bT (xs + esj). This yields bsj = 0 for all
j ∈ M \ {k, l}. Since the same argument applies to all s ∈ S, we obtain that
bsj = 0 for all s ∈ S, j ∈ M \ {k, l}.

Now, choose g ∈ G̃ and h ∈ G \ G̃ (the node h exists, since |G̃| < |G|) and notice
that xs − egl + ehl ∈ EQ(aTx ≤ α), since G is a (|G| − |S| + 1)-cover. Thus,
bTxs = bT (xs − egl + ehl), and therefore, bgl = bhl. Using the same argument for
different choices of g and h we conclude that bgl = bhl for all g, h ∈ G.

The conditions of the Theorem ?? guarantee that, for every s ∈ S, there exists
some G′ ⊆ G, |G′| = |S| − 2 such that

∑
i∈G′ fi + fs ≤ Fl. We define the vector

x1 = (x1
ij) as follows:

x1
ij :=

⎧⎪⎨
⎪⎩

1, i ∈ S \ {s}, j = k,
1, i ∈ G′ ∪ {s}, j = l,
0, otherwise.

Clearly, x1 is an element of EQ(aTx ≤ α). Since G is a (|G| − |S| + 1)-cover,
the vector x1 − esl + egl belongs to EQ(aTx ≤ α), for all g ∈ G \ G′. Thus,
bTx1 = bT (x1 − esl + egl) and, hence, bsl = bgl for all g ∈ G. Since the same
construction applies to all s ∈ S, we conclude that bsl = bgl for all s ∈ S, g ∈ G.

Now, we define the vector x2 by setting:

x2
ij :=

{
1, i ∈ S, j = l,
0, otherwise.

Obviously, x2 ∈ EQ(aTx ≤ α). Hence, bTxs = bTx2 which yields, (|S| − 1)bsk +
(|S| − 1)bgl = |S|bsl. Since bgl = bsl for all s ∈ S, g ∈ G, we get bsl = (|S| − 1)bsk.

Finally, the vector x2 + egj is an element of EQ(aTx ≤ α) for all g ∈ G and
j ∈ M \ {l}. Thus, bTx2 = bT (x2 + egj), which implies that bgj = 0 for all g ∈ G,
j ∈ M \ {l}.

This shows that the inequalities aTx ≤ α and bTx ≤ β are equal up to multipli-
cation with a scalar, which completes the proof.
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Example 3.1.3 Let be given an instance of the multiple knapsack problem
where N = {1, 2, 3, 4, 5, 6, 7}, M = {1, 2}, f = (4, 5, 7, 8, 8, 8, 8), F = (16, 14)
and consider the corresponding knapsack constraints:

4x1,1 + 5x2,1 + 7x3,1 + 8x4,1 + 8x5,1 + 8x6,1 + 8x7,1 ≤ 16,
4x1,2 + 5x2,2 + 7x3,2 + 8x4,2 + 8x5,2 + 8x6,2 + 8x7,2 ≤ 14.

It is easy to check that the set S = {1, 2, 3} is a minimal cover for knapsack
2, and G = {4, 5, 6, 7} meets the requirements of Theorems ?? and ??. Thus,
the heterogeneous two-cover inequality x1,2 + x2,2 + x3,2 + 2x1,1 + 2x2,1 + 2x3,1 +
2x4,1 + 2x5,1 + 2x6,1 + 2x7,1 ≤ 6 defines a facet for the corresponding polytope.
If we change the weight of item 3 to 9 (f3 := 9), this inequality is still valid,
yet not facet-defining, since f3 + fi > Fl = 16 for all i ∈ G (see Theorem ??).
If we change the weight of item 4 to 7 (f4 := 7), this heterogeneous two-cover
inequality is not even valid any more, since the set {1, 2, 4} (choose S̃ = {3} and
G̃ = {4} in Theorem ??) is not a cover with respect to knapsack 1.

This example demonstrates that the properties of a heterogeneous two-cover in-
equality to be facet-defining or valid are extremely sensitive according to (minor)
changes of the input data. A slight modification of the weight of some item may
cause that a facet-defining inequality is not even valid any more.

Remark 3.1.4 Theorems ?? and ?? can be slightly modified in order to apply
to the generalized assignment polytope. This is due to the fact that the (neces-
sary and sufficient) conditions in these theorems only involve properties of the
weights of the items with respect to one particular knapsack. For instance, the
corresponding counterpart of Theorem ?? can be formulated as follows:

Let be given an instance (N,M, f, F ) of the generalized assignment problem. We
choose two indices k, l ∈ M, k �= l and assume:

S ⊆ N is a cover with respect to k and G ⊆ N \ S is some subset of items.

The inequality ∑
i∈S

xik +
∑

i∈S∪G
(|S| − 1)xil ≤ |S|(|S| − 1)

is valid for GAP ((S ∪G)×M, f, F ) if and only if for all G̃ ⊆ G and S̃ ⊆ S with
|G̃| = |S̃| ≥ 1 the set S \ S̃ ∪ G̃ is a cover with respect to knapsack l.

Theorem ?? can be formulated appropriately, in order to apply to the generalized
assignment problem.

12



��� The Multiple Cover Inequality

In [?], it was observed that, given a set S ⊆ N and J ⊆ M with f(S) > F (J),
the inequality ∑

j∈J

∑
i∈S

xij ≤ |S| − 1

is valid for the polytope MK. If |J | ≥ 2 a set of items S with the property
f(S) > F (J) is called a multiple cover with respect to J and the corresponding
inequality multiple cover inequality. A set of items S is called a minimal multiple
cover with respect to J , if f(S) > F (J) and, for all s ∈ S, there exists a valid
assignment of all items in S \ {s} to the knapsacks in J . However, the multiple
cover inequality does not always define a facet of MK as the following example
shows.

Example 3.2.1 Let be given an instance of the multiple knapsack problem
where N = {1, 2, 3, 4, 5}, M = {1, 2}, f = (3, 4, 5, 5, 7), F = (8, 7) and con-
sider the corresponding knapsack constraints:

3x1,1 + 4x2,1 + 5x3,1 + 5x4,1 + 7x5,1 ≤ 8,
3x1,2 + 4x2,2 + 5x3,2 + 5x4,2 + 7x5,2 ≤ 7.

The set S = {2, 4, 5} is a minimal multiple cover for J = {1, 2}. The multiple
cover inequality x2,1 + x2,2 + x4,1 + x4,2 + x5,1 + x5,2 ≤ 2 is clearly valid for the
corresponding polytope, but does not define a facet, since it is the sum of the
two valid inequalities x2,1 + x4,1 + x5,1 ≤ 1 and x2,2 + x4,2 + x5,2 ≤ 1.

In the remainder of this subsection we focus on necessary and sufficient condi-
tions such that the multiple cover inequality is facet-defining. Before treating
the general case we elucidate the conditions for the special case of the multiple
knapsack problem where the knapsack capacity values are all equal. More for-
mally, let MUKP (multiple uniform knapsack problem) denote all instances of
the multiple knapsack problem such that Fk = Fl for all k, l ∈ M . Given A ⊆ N
and B ⊆ M , we define MUK(A× B, f, F ) as the corresponding polytope.

Theorem 3.2.2 Let (N,M, f, F ) be an instance of the multiple uniform knap-
sack problem. Let S ⊆ N be a minimal multiple cover for some J ⊆ M . Then,
the multiple cover inequality

∑
i∈S

∑
j∈J

xij ≤ |S| − 1

13



defines a facet of MUK(S × J, f, F ) if and only if there exists an item i ∈ S
and a valid assignment x′ of the items in S \ {i} to the knapsacks in J such that
|Bk(x

′)| �= |Bl(x
′)| for some k, l ∈ J, k �= l.

Proof. We first prove that the condition is sufficient. Set a =
∑

i∈S
∑

j∈J eij
and α = |S| − 1. The inequality aTx ≤ α is clearly valid. Let us prove that it
defines a facet of MUK(S × J, f, F ). Suppose that bTx ≤ β defines a facet of
MUK(S × J, f, F ) such that EQ(aTx ≤ α) ⊆ EQ(bTx ≤ β). Let i0 be an index
such that fi0 = min{fi | i ∈ S} and let x1 denote a valid assignment of the items
in S \ {i0} to the knapsacks in J . Obviously, x1 is in EQ(aTx ≤ α). Also, notice
that for all k ∈ J and i ∈ Bk(x

1), the vector x1 − eik + ei0k is an element of
EQ(aTx ≤ α). Thus, bTx1 = bT (x1 − eik + ei0k), yielding bik = bi0k. Moreover,
since the capacities of the knapsacks are all equal, we can exchange the items of
every pair of knapsacks and repeat the same arguments as above. Summing up,
we conclude that, for every k ∈ J , there exists a constant ck such that bik = ck
for all i ∈ S.

In order to prove that ck = cl for k �= l, k, l ∈ J , let i ∈ S be an item and let x′

denote a valid assignment of the items in S \ {i} to the knapsacks in J such that
|Bk(x

′)| �= |Bl(x
′)| for some k, l ∈ J, k �= l as required in the condition. Since all

knapsacks have the same capacity, we can construct a valid assignment x′′ = (x′′
ij)

via:

x′′
ij :=

⎧⎪⎨
⎪⎩

x′
il, for all i ∈ S, j = k,

x′
ik, for all i ∈ S, j = l,

x′
ij, otherwise.

Clearly, x′ and x′′ belong to the face EQ(aTx ≤ α). Thus, bTx′ = bTx′′, yielding

|Bk(x
′)|ck + |Bl(x

′)|cl = |Bk(x
′)|cl + |Bl(x

′)|ck.
This implies ck = cl. Due to the uniform knapsack capacities, we can apply this
construction for all other knapsacks and, finally obtain that bTx ≤ β and aTx ≤ α
are equal up to multiplication with a scalar, which completes the first part of the
proof.

It remains to be shown that the condition is necessary. Suppose it is not satisfied,
i.e., for all x ∈ EQ(aTx ≤ α) and k, l ∈ J, k �= l, |Bk(x)| = |Bl(x)| holds. In this

case, all x ∈ EQ(aTx ≤ α) satisfy the equation
∑

i∈S xik = |S|−1
|J| , for all k ∈ J .

Thus, the inequality cannot be facet-defining.

In the remaining part of this subsection we will treat the general case where ar-
bitrary knapsack capacities are given. Unfortunately, it turns out that necessary
and sufficient conditions for the multiple cover inequality to define a facet are
rather complicated and involve many (probably) unavoidable technicalities.

14



Suppose, we are given a minimal multiple cover S for the knapsacks in J ⊆ M .
Let us assume that for every i ∈ S and k ∈ J there exists a valid assignment x ∈
EQ(

∑
i∈S

∑
j∈J xij ≤ |S| − 1) such that xik = 1. Otherwise, EQ(

∑
i∈S

∑
j∈J xij ≤

|S| − 1) is a subset of {x ∈ IRS×J | xik = 0}, which implies that
∑

i∈S
∑

j∈J xij ≤
|S| − 1 cannot define a facet.

For the exposition of the next lemma let us further assume that the items are
ordered such that f1 ≤ . . . ≤ f|S|. For a valid assignment x′ ∈ MK(S × J, f, F )
we define

j(x′, k) := max{j | j ∈ Bk(x
′)}.

For a given i ∈ S, we set jki := max{j(x′, k) | x′ is a valid assignment of S \ {i}
to the knapsacks in J}. Let be given a set X of vectors. We define

diff(X) := {x− y | x, y ∈ X}
to be the difference set of X and

lin(X) := {
v∑

i=1

λixi | x1, . . . , xv ∈ X, λ1, . . . , λv ∈ IR, v ∈ IN}

to be the linearity space of X.

Let S ⊆ N be a minimal multiple cover with respect to J ⊆ M . We define the
exchange-graph G = (V,E) in the following way. The node set V corresponds
to the set S × J and two nodes (i1, k1) and (i2, k2), i1 < i2, are adjacent in the
exchange-graph if k1 = k2 and jk1i1 ≥ i2. Let d denote the number of connected
components of G (note that d ≥ |J |) and (Vl, El), l = 1, . . . , d the corresponding
components.

Example 3.2.3 Let be given an instance of the multiple knapsack problem
where N = {1, 2, 3, 4, 5}, M = {1, 2}, f = (5, 5, 5, 8, 9), F = (10, 17) and consider
the corresponding knapsack constraints:

5x1,1 + 5x2,1 + 5x3,1 + 8x4,1 + 9x5,1 ≤ 10,
5x1,2 + 5x2,2 + 5x3,2 + 8x4,2 + 9x5,2 ≤ 17.

The set S = {1, 2, 3, 4, 5} is a minimal multiple cover with respect to J = {1, 2}.
The corresponding exchange-graph has three components and is shown below.

i 1 2 3 4 5
j1i 3 3 2 5 4
j2i 5 5 5 5 4
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Lemma 3.2.4 For every component l in the exchange graph G, there exist |Vl|−
1 linearly independent vectors belonging to lin(diff(EQ(

∑
i∈S

∑
j∈J xij ≤ |S| −

1))). Moreover, every nonzero component of any of these vectors is a nonzero
component of χVl.

Proof. Let l ∈ {1, . . . , d} and Tl be a spanning tree in Gl = (Vl, El). Let
{(i1, k), (i2, k)} be an edge in the tree Tl. W. l. o. g. we assume that i1 < i2.
Thus, jki1 ≥ i2. Let x′ be a valid assignment of S \ {i1} to the knapsacks in J
such that

∑
i∈S

∑
j∈J x′

ij = |S| − 1 and xjki1
k = 1 (there exists some by definition

of jki1). We distinguish the following two cases.

Case 1: i2 ∈ Bk(x
′). Since fi1 ≤ fi2, the vector x′′ := x′ − ei2k + ei1k also

satisfies
∑

i∈S
∑

j∈J x
′′
ij = |S| − 1. Thus, x′′ − x′ = ei1k − ei2k is an element of

lin(diff(EQ(
∑

i∈S
∑

j∈J xij ≤ |S| − 1))).

Case 2: i2 �∈ Bk(x
′). Suppose i2 is assigned to knapsack v. Since fi1 ≤ fi2 ≤ fjki1

we obtain that x2 = x′ − ejki1k
+ ei1k, x

3 = x′ − ei2v + ei2k + ei1v − ejki1k
and x4 =

x′−ei2v+ei1v are valid assignments with x2, x3, x4 ∈ EQ(
∑

i∈S
∑

j∈J xij ≤ |S|−1).
Thus, the vector (x2 − x′)− ((x3 − x′)− (x4 − x′)) = −ejki1k

+ ei1k + ei2v − ei2k −
ei1v + ejki1k

− ei2v + ei1v = ei1k − ei2k is an element of lin(diff(EQ(
∑

i∈S
∑

j∈J xij ≤
|S| − 1))).

This implies that, for every edge {(i1, k), (i2, k)} of the tree, the vector ei1k − ei2k
is contained in lin(diff(EQ(

∑
i∈S

∑
j∈J xij ≤ |S| − 1))). Obviously, the nonzero

components of these vectors are nonzero components of χVl. Since Tl is a tree, it
is not difficult to see that this set of vectors is linearly independent.

Consider any of the components Gl = (Vl, El), l ∈ {1, . . . , d} and let Tl be
the spanning tree in Gl used in the proof of Lemma ??. Furthermore, let t l be
some node of Vl and set T :=

⋃d
l=1{tl}. In the following, T is called the set

of special nodes. From the proof of Lemma ?? we know that for every edge
e = uv of the tree the vector eu−ev is an element of lin(diff(EQ(

∑
i∈S

∑
j∈J xij ≤

|S| − 1))). For a node w ∈ Vl denote by P (w) the unique path from tl to w.
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For w ∈ Vl \ {tl}, set μw :=
∑

uv∈P (w) σ(uv) (eu − ev) where σ(uv) = 1, if
|P (u)| < |P (v)|, and σ(uv) = −1, otherwise. Obviously, μw is an element of
lin(diff(EQ(

∑
i∈S

∑
j∈J xij ≤ |S| − 1))) and (μw)ik = 1, if (i, k) = tl, (μw)ik = −1,

if (i, k) = w, and (μw)ik = 0, otherwise. Set D := {μw | w ∈ Vl \ {tl} for some
l ∈ {1, . . . , d} }. It is clear that D is a set of linearly independent vectors, and
|D| = ∑d

l=1(|Vl| − 1) = |S||J | − d.

For a vector x ∈ IRS×J we introduce the symbol (x)l ∈ IRVl to denote the subvector
of x corresponding to the variables (i, k) ∈ Vl.

For an assignment x′ we define the cardinality vector g(x′) ∈ INd by setting

gl(x
′) := |{(i, k) ∈ Vl | x′

ik = 1}|, for l = 1, . . . , d.

Let {x1, . . . , xc} be a maximal set of valid assignments such that xi ∈ EQ(
∑

i∈S∑
j∈J xij ≤ |S| − 1) for i = 1, . . . , c and {g(xi) | i = 1, . . . , c} is linearly inde-

pendent. Set D′ = D ∪ {xi − x1 | i = 2, . . . , c}. For every i ∈ {2, . . . , c} and
z = x− y ∈ D, the vectors xi − x1 and z are linearly independent, since x and y
have identical cardinality vectors. Thus, D′ is a set of |S||J | − d+ c− 1 linearly
independent vectors. In the next theorem we show that the set D′ is a basis of
lin(diff(EQ(

∑
i∈S

∑
j∈J xij ≤ |S|−1))). As a corollary we obtain that the multiple

cover inequality defines a facet if and only if c = d.

Theorem 3.2.5 D′ is a basis of lin(diff(EQ(
∑

i∈S
∑

j∈J xij ≤ |S| − 1))).

Proof. Let be given x, y ∈ EQ(
∑

i∈S
∑

j∈J xij ≤ |S| − 1) and denote by
T = {ti | i = 1, . . . , l} the set of special nodes. Set

zi = xi − x1 − ∑
{v∈V \T |(xi−x1)v=−1}

μv +
∑

{v∈V \T |(xi−x1)v=1}
μv.

for i = 2, . . . , c. It is easy to see that each of the vectors zi = (zi)l, l = 1, . . . , d,
is of the form

(zi)lw =

{
gl(x

i)− gl(x
1), if w = tl,

0, otherwise.

In the same way we obtain a vector τ ∈ IRS×J by setting

τ = x− y − ∑
{v∈V \T |(x−y)v=−1}

μv +
∑

{v∈V \T |(x−y)v=1}
μv

where τ = (τ )l for all l = 1, . . . , d is of the form

(τ )lw =

{
gl(x)− gl(y), if w = tl,
0, otherwise.
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Due to the choice of x1, . . . , xc there exists λ2, . . . , λc such that

τ =
c∑

i=2

λiz
i.

This implies that D′ is a basis of lin(diff(EQ(
∑

i∈S
∑

j∈J xij ≤ |S| − 1))).

Corollary 3.2.6 Let (N,M, f, F ) be an instance of the multiple knapsack prob-
lem. The inequality ∑

i∈S

∑
j∈J

xij ≤ |S| − 1

defines a facet of MK(S × J, f, F ) if and only if there exist valid assignments
x1, . . . , xd such that xi ∈ EQ(

∑
j∈J xij ≤ |S| − 1), i = 1, . . . , d and {g(xi) | i =

1, . . . , d} is a linearly independent set.

Let us now comment this and the previous results. Lemma ?? states that the
dimension of EQ(

∑
i∈S

∑
j∈J xij) is greater or equal than |S||J | − d. Theorem

?? guarantees that, if we find b valid assignments of EQ(
∑

i∈S
∑

j∈J xij) whose
cardinality vectors are linearly independent, the dimension of the face is at least
|S||J | − d+ b. Hence, in order to prove that a multiple cover inequality defines a
facet, we must find d assignments that are elements of the face and whose cardi-
nality vectors are linearly independent. This task is still nontrivial, yet simplifies
the original task, since, instead of looking for |S||J |+1 affinely independent vec-
tors on the face, it suffices to find d ones, whose cardinality vectors are linearly
independent. In the remainder of this section we present some applications of
Corollary ??.

Example 3.2.7 For the multiple cover introduced in Example ?? one can check
that there do not exist d = 3 linearly independent cardinality vectors. For every
valid assignment x that satisfies

∑5
i=1 xi1+xi2 = 4, the cardinality vector is either

(2, 0, 2)T or (0, 1, 3)T . By applying Corollary ??, the corresponding multiple cover
inequality does not define a facet in this case.

Example 3.2.8 Let be given an instance of the multiple knapsack problem
where N = {1, 2, 3, 4, 5}, M = {1, 2}, f = (1, 2, 2, 2, 3), F = (4, 5) and con-
sider the corresponding knapsack constraints:

x1,1 + 2x2,1 + 2x3,1 + 2x4,1 + 3x5,1 ≤ 4,
x1,2 + 2x2,2 + 2x3,2 + 2x4,2 + 3x5,2 ≤ 5.

18



The set S = {1, 2, 3, 4, 5} is a minimal multiple cover with respect to J = {1, 2}.
The exchange graph is shown below.

i 1 2 3 4 5
j1i 4 5 5 5 4
j2i 5 5 5 5 4
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In this example, there exist valid assignments x and y where x1,1 = x2,1 = 1,
x3,2 = x4,2 = 1, x5,1 = x5,2 = 0 and y1,2 = y2,2 = y3,2 = 1, y4,1 = 1, y5,1 = y5,2 = 0.
The cardinality vectors g(x) = (2, 2)T and g(y) = (1, 3)T are linearly independent.
By applying Corollary ?? we can conclude that the inequality

∑5
i=1

∑2
j=1 xij ≤ 4

defines a facet of the corresponding polytope.

The following example deals with a special case of minimal multiple cover in-
equalities. Here, it is easy to see that the conditions in Corollary ?? are satisfied.

Example 3.2.9 Given an instance (N,M, f, F ) of the multiple knapsack prob-
lem. Let S be a subset of items and let J denote a set of knapsacks with
the property that f(S) > F (J). For the ease of notation we assume that
S = {1, . . . , s}, J = {1, . . . , j} and that f1 ≤ f2 ≤ . . . ≤ fs. Suppose there
exists a valid assignment z of the items in S \ {1, s} to the knapsacks in J such
that

∑
{i∈S|zik=1} fi + f1 ≤ Fk for all k ∈ J . Moreover, we assume that, for every

k ∈ J , there exists a valid assignment x of the items in S \ {1} to the knapsacks
in J such that xsk = 1. Under these assumptions, the multiple cover inequality
defines a facet of the polytope MK(S × J, f, F ).

Proof. For every k ∈ J there exists a valid assignment of the items in S \ {1}
to the knapsacks in J such that xsk = 1. Since f1 = min{fi | i ∈ S} the

exchange graph consists of |J | components, the lth component being a complete
graph induced by Vl = {(i, l) | i = 1, . . . , s} for all l = 1, . . . , |J |. Now, let x
be the valid assignment of the items in S \ {1, s} to the knapsacks in J such
that

∑
{i∈S|zik=1} fi + f1 ≤ Fk for all k ∈ J . Clearly, xk := x+ e1k is an element

of EQ(
∑

k∈J
∑

i∈S xik ≤ |S| − 1) for all k ∈ J . Thus, the set of cardinality
vectors {g(x1), . . . , g(x|J|)} is a linearly independent set of dimension |J | which,
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by Corollary ??, implies that the multiple cover inequality defines a facet in this
case.

� Extension of Facet�de�ning Inequalities for

MK

In the previous section we dealt with two particular classes of inequalities for
MK and focused on conditions for the inequalities to be valid or facet-defining.
Let us now present a general procedure that allows the extension of particular
classes of inequalities. In this section we first state the theorems in full generality.
For illustration the corresponding theorem is subsequently applied to particular
examples.

The first two theorems deal with the “extension” of particular facet-defining
inequalities. Let be given an instance (N,M, f, F ) of the multiple knapsack
problem, sets Au ⊆ N,Bu ⊆ M for u = 1, . . . , t, and suppose, aTx ≤ α is a facet-
defining inequality for MK(

⋃t
u=1 Au × Bu, f, F ). We now choose sets T1, . . . , Tr

of mutually disjoint items of N \⋃t
u=1 Au and k1, . . . , kr pairwise disjoint elements

of M \ ⋃t
u=1 Bu. Provided, the inequality aTx ≤ α has a certain property, we

can extend this inequality and prove that it is valid (facet-defining) for a proper
subpolytope of MK if and only if some conditions are satisfied.

Theorem 4.1 Let be given an instance (N,M, f, F ) of the multiple knapsack
problem, sets Au ⊆ N , Bu ⊆ M for u = 1, . . . , t (we set A :=

⋃t
u=1 Au ⊆

N , B :=
⋃t

u=1 Bu ⊆ M) and an inequality aTy ≤ α that is facet-defining for
MK(

⋃t
u=1 Au ×Bu, f, F ) and that satisfies the following additional requirement:

(	) For all Ã ⊆ A with |Ã| ≥ 2 the following holds: every assignment y ∈
MK((

⋃t
u=1 Au × Bu, f, F ) with yik = 0 for all i ∈ Ã, k ∈ {l ∈ B | (i, l) ∈

∪t
u=1Au × Bu}, satisfies aTy ≤ α− |Ã|+ 1.

We choose a positive integer r ≤ min{|N \A|, |M \B|}, nonempty sets T1, . . . , Tr

that are mutually disjoint subsets of N \ A, and a subset {k1, . . . , kr} of M \B.

Let us further define βv := max{|G| | G ⊆ Tv, f(G) ≤ Fkv}, v = 1, . . . , r. Under
these assumptions, the inequality
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(??) aTx+
r∑

v=1

∑
i∈A∪Tv

xikv ≤ α+
r∑

v=1

βv

is valid for the polytope MK((
⋃t

u=1 Au×Bu)∪ (
⋃r

v=1(Tv∪A)×{kv}), f, F ) if and
only if T̃v ∪ {i} is a cover with respect to kv for all i ∈ A, T̃v ⊆ Tv, |T̃v| = βv and
v = 1, . . . , r.

Proof. For the ease of notation let us refer to inequality (??) by bTx ≤ β and
set Q :=

⋃t
i=1 Ai × Bi. Without loss of generality we assume that B = Bi = Bj

for all i, j ∈ {1, . . . , t}.

Let us first prove that the condition is necessary. Suppose, there exists an index
v ∈ {1, . . . , r}, an item i0 ∈ A and a set T̃v ⊆ Tv, |T̃v| = βv such that T̃v ∪ {i0}
is not a cover with respect to kv. Let T̃w ⊆ Tw, w ∈ {1, . . . , r} \ {v}, |T̃w| = βw,
f(T̃w) ≤ Fkw .

Since aTy ≤ α defines a facet, there exists an assignment y ′ ∈ EQ(MK(Q, f, F ),
aTy ≤ α) with y′i0k = 0 for all k ∈ B. Set x′ = (x′

ik) via:

x′
ik :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y′ik, for all (i, k) ∈ Q,

1, for all i ∈ T̃w, k = kw, w ∈ {1, . . . , r} \ {v},
1, for all i ∈ T̃v, k = kv,
0, otherwise.

Since T̃v ∪ {i0} does not define a cover with respect to knapsack kv, x
′ + ei0kv is

a valid assignment yielding bT (x′ + ei0kv) = aTy′ +
∑

w∈{1,...,r}\{v} βw + βv + 1 >
α+

∑r
v=1 βv. This implies that the condition is necessary, indeed.

In order to prove the converse direction, let us assume that the inequality is not
valid for the polytope MK(Q ∪ ⋃r

v=1(Tv ∪ A) × {kv}, f, F ), i.e., there exists
an assignment x ∈ MK(Q ∪ ⋃r

v=1((Tv ∪ A) × {kv}), f, F ) with bTx > β. Set
T̃v := {i ∈ Tv | xikv = 1} and Av := {i ∈ A | xikv = 1}, v = 1, . . . , r. Since
the inequality aTy ≤ α holds for all y ∈ MK(Q, f, F ), there exists some v ∈
{1, . . . , r} satisfying |Av ∪ T̃v| > βv. Let V ⊆ {1, . . . , r} denote the subset of
knapsacks with |Av ∪ T̃v| > βv for all v ∈ V . Due to the condition, every subset
of Tv of cardinality βv and one element from A defines a cover with respect to
kv (v ∈ V ). This implies, that |T̃v| ≤ βv − 1, thus forcing Av to be greater
or equal than two, which holds for all v ∈ V . Moreover, Av ∩ Aw = ∅ for all
v, w ∈ V, v �= w. Summing up, due to requirement (	) we obtain
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bTx ≤ α− ∑
v∈V

|Av|+ 1 +
∑

v∈{1,...,r}\V
βv +

∑
v∈V

(|T̃v|+ |Av|)

≤ α− ∑
v∈V

|Av|+ 1 +
∑

v∈{1,...,r}\V
βv +

∑
v∈V

(βv + |Av|)− |V |

= β + 1 − |V | ≤ β.

This contradicts the assumption that x is a point violating the inequality. Thus,
the inequality is valid, which completes the proof.

In the subsequent theorem, necessary and sufficient conditions are given such
that the extended inequality defines a facet.

Theorem 4.2 Let be given an instance (N,M, f, F ) of the multiple knapsack
problem, sets Au ⊆ N , Bu ⊆ M for u = 1, . . . , t (we set A :=

⋃t
u=1 Au ⊆

N , B :=
⋃t

u=1 Bu ⊆ M) and an inequality aT y ≤ α that defines a facet of
MK(

⋃t
u=1 Au × Bu, f, F ) and satisfies the following additional requirement:

(	) For all Ã ⊆ A with |Ã| ≥ 2 the following holds: every assignment y ∈
MK((

⋃t
u=1 Au × Bu, f, F ) with yik = 0 for all i ∈ Ã, k ∈ {l ∈ B | (i, l) ∈⋃t

u=1Au ×Bu}, satisfies aTy ≤ α − |Ã|+ 1.

We choose a positive integer r ≤ min{|N \A|, |M \B|}, nonempty sets T1, . . . , Tr

that are mutually disjoint subsets of N \ A and a subset {k1, . . . , kr} of M \ B.
We require that Tv ∪ {i} is a minimal cover with respect to knapsack kv for all
i ∈ A and v = 1, . . . , r.

Under these assumptions, the inequality

(??) aTx+
r∑

v=1

∑
i∈A∪Tv

xikv ≤ α +
r∑

v=1

|Tv|

defines a facet for MK(
⋃t

i=1Ai × Bi ∪ ⋃r
v=1(Tv ∪ A) × {kv}, f, F ) if and only if

the following conditions are satisfied:

for every v ∈ {1, . . . , r} there exist

• Ã ⊆ A, |Ã| ≥ 2,

• an item tv ∈ Tv,
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• an assignment y ∈ MK(
⋃t

u=1 Au × Bu, f, F ) such that

aTy = α − |Ã|+ 1, yik = 0 for all i ∈ Ã, k ∈ {l ∈ B | (i, l) ∈ ⋃t
u=1 Au × Bu} and

f(Tv \ {tv}) + f(Ã) ≤ Fkv.

Proof. Again, for ease of notation let us refer to inequality (??) by bTx ≤ β, set
Q :=

⋃t
i=1 Ai ×Bi and Q̃ := Q∪⋃r

v=1(Tv ∪A)×{kv}. Without loss of generality
we assume that B = Bi = Bj for all i, j ∈ {1, . . . , t}, i �= j. Due to Theorem ??,
the inequality is valid if and only if Tv∪{i} defines a cover with respect to kv, for
all i ∈ A, v = 1, . . . , r. Clearly, this requirement is satisfied and we can conclude
that bTx ≤ β is valid. In the following we show, that the inequality defines a
facet for MK(Q̃, f, F ) if and only if the above conditions are satisfied.

We start by proving that the conditions are sufficient. Suppose, there exists a
facet-defining inequality cTx ≤ γ such that EQ(bTx ≤ β) ⊆ EQ(cTx ≤ γ).

Let y′ ∈ EQ(MK(Q, f, F ), aTy ≤ α) be an assignment. Obviously, the vector
x′ = (x′

ik) defined via:

x′
ik :=

⎧⎪⎨
⎪⎩

y′ik, for all (i, k) ∈ Q,
1, for all i ∈ Tw, k = kw, w ∈ {1, . . . , r},
0, otherwise,

is an element of EQ(MK(Q̃, f, F ), bTx ≤ β). Since the inequality aTy ≤ α
defines a facet for the polytope MK(Q, f, F ), we conclude that λcik = bik for all
(i, k) ∈ Q for some λ > 0.

Next, let i0 ∈ A and y′′ ∈ EQ(MK(Q, f, F ), aTy ≤ α) be an assignment such
that yi0k = 0 for all k ∈ B (such an assignment must exist, since, otherwise,
EQ(MK(Q, f, F ), aTy ≤ α) ⊆ {y ∈ IRQ | ∑

k∈B yi0k = 1}). Let be given v ∈
{1, . . . , r}. Since Tv∪{i0} is a minimal cover for knapsack kv, the vector x

′′ = (x′′
ik)

defined via:

x′′
ik :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y′′ik, for all (i, k) ∈ Q,
1, for all i ∈ Tw, k = kw, w ∈ {1, . . . , r} \ {v},
1, for all i ∈ Tv \ {t} ∪ {i0}, k = kv,
0, otherwise,

is an element of EQ(MK(Q̃, f, F ), bTx ≤ β) for all t ∈ Tv. Moreover, x′′−ei0kv +
etkv is an assignment that is also in EQ(bTx ≤ β). Thus, cTx′′ = cT (x′′ − ei0kv +
etkv) for all t ∈ Tv. Since the same argument can be repeated for all i0 ∈ A and
all v ∈ {1, . . . , r}, we conclude that, for all v = 1, . . . , r, there exists a constant
cv such that cukv = cv for all u ∈ A ∪ Tv.
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Finally, consider some v ∈ {1, . . . , r}. We know that there exist Ã ⊆ A, |Ã| ≥ 2,
an item tv ∈ Tv and a valid assignment y ∈ MK(Q, f, F ) such that f(Tv \
{tv}) + f(Ã) ≤ Fkv , y ∈ MK(Q, f, F ), with yik = 0 for all i ∈ Ã, k ∈ B, and
aTy = α − |Ã|+ 1. We now define the vector x as follows.

xik :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yik, for all (i, k) ∈ Q,
1, for all i ∈ Tw, k = kw, w ∈ {1, . . . , r} \ {v},
1, for all i ∈ Tv \ {tv} ∪ Ã, k = kv,
0, otherwise.

Obviously, bTx = aTy +
∑

w∈{1,...,r}\{v} |Tw| + |Tv| − 1 + |Ã| = β, i.e., x is

in EQ(MK(Q̃, f, F ), bTx ≤ β). Consider x′ as defined above. Since x′ ∈
EQ(MK(Q̃, f, F ), bTx ≤ β), we obtain

0 = cTx− cTx′ = λα− λ|Ã|+ λ +
∑

w∈{1,...,r}\{v} cw|Tw|+ (Tv − 1 + |Ã|)cv−
λα−∑r

w=1 cw|Tw|
= (cv − λ)(|Ã| − 1).

Since |Ã| ≥ 2, cv = λ follows. Thus, the inequalities bTx ≤ β and cTx ≤ γ are
equal up to multiplication with a scalar.

It remains to be shown that the conditions are necessary, too.

Assume that the conditions are violated, i.e., there exists some v ∈ {1, . . . , r}
such that, for all Ã ⊆ A, |Ã| ≥ 2, the following holds: every tv ∈ Tv satisfies
f(Tv \ {tv}) + f(Ã) > Fkv , or, every assignment y ∈ MK(Q, f, F ) with yik = 0
for all i ∈ Ã, k ∈ B satisfies aTx < α − |Ã| + 1. In this case, we claim that

EQ(MK(Q̃, f, F ), bTx ≤ β) ⊆ {x ∈ IRQ̃ | ∑
i∈Tv∪A xikv = |Tv|}, yielding that

EQ(MK(Q̃, f, F ), bTx ≤ β) is not a maximal face of MK(Q̃, f, F ), a contradic-
tion.

Now, let us prove that EQ(MK(Q̃, f, F ), bTx ≤ β) ⊆ {x ∈ IRQ̃ | ∑i∈Tv∪A xikv =
|Tv|}. First, suppose there exists some assignment x ∈ EQ(MK(Q̃, f, F ), bTx ≤
β) with

∑
i∈Tv∪A xikv < |Tv|. Let W := {w ∈ {1, . . . , r} \ {v} | |{i ∈ Tw ∪

A | xikw = 1}| > |Tw|} and W ′ := {1, . . . , r} \ W . Obviously, W �= ∅, since∑
i∈Tv∪A xikv < |Tv|. Set T̃w := {i ∈ Tw | xikw = 1} and Ãw := {i ∈ A | xikw = 1}

for all w ∈ W . Since Tw ∪ {i} is a cover for all i ∈ A, we conclude that |Ãw| ≥ 2
and |T̃w| ≤ |Tw| − 1. Thus, we obtain that

bTx < α− |⋃w∈W Ãw|+ 1 +
∑

w∈W (|Ãw|+ |T̃w|) +∑
w′∈W ′\{v} |Tw′|+ |Tv|

≤ α+
∑r

t=1 |Tt|+ 1− |W | ≤ β.

This is a contradiction to x ∈ EQ(MK(Q̃, f, F ), bTx ≤ β). Thus, we conclude
that

∑
i∈Tv∪A xikv ≥ |Tv|.
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Now, suppose there exists an assignment x ∈ EQ(MK(Q̃, f, F ), bTx ≤ β) with∑
i∈Tv∪A xikv > |Tv|. Again, define W := {w ∈ {1, . . . , r} | |{i ∈ Tw ∪ A | xikw =

1}| > |Tw|}, T̃w := {i ∈ Tw | xikw = 1} and Ãw := {i ∈ A | xikw = 1} for all
w ∈ W . Clearly, v ∈ W holds, yielding |W | ≥ 1. If |W | ≥ 2, we obtain

bTx ≤ α − | ∪w∈W Ãw|+ 1 +
∑

w∈W (|Ãw|+ |T̃w|) +∑
w′∈{1,...,r}\W |Tw′|

≤ α +
∑r

w=1 |Tw| − |W |+ 1 < β.

It remains the case W = {v}. Since Tv ∪ {i} is a cover for knapsack kv for all
i ∈ A, we have |Ãv| ≥ 2 and |T̃v| ≤ |Tv| − 1. Define y ∈ MK(Q, f, F ) by setting
yik = xik for all (i, k) ∈ Q. Due to our assumption we have that aTy < α−|Ãv|+1,
or f(Tv \ {tv}) + f(Ãv) > Fkv for all tv ∈ Tv. In the first case, we obtain

bTx < α− |Ãv|+ 1 + |Ãv|+ |T̃v|+∑
w∈{1,...,r}\{v} |Tw|

≤ β.

This contradicts the assumption that x ∈ EQ(MK(Q̃, f, F ), bTx ≤ β). In the
second case, f(Tv \ {tv})+ f(Ãv) > Fkv for all tv ∈ Tv, we conclude that |Ãv| ≥ 3
and |T̃v| ≤ |Tv| − 2. Then,

bTx ≤ α− |Ãv|+ 1 + |Ãv|+ |T̃v|+∑
w∈{1,...,r}\{v} |Tw|

≤ α+
∑

w∈{1,...,r}\{v} |Tw|+ |Tv| − 2 + 1
< β.

This is also a contradiction.

In the following we will show some examples where Theorems ?? and ?? can be
applied to yield “new” inequalities.

Example 4.3 Given an instance (N,M, f, F ) of the multiple knapsack problem.
Let S ⊆ N be a minimal cover with respect to some knapsack k ∈ M and let
M ′ ⊆ M be a subset of knapsacks with k ∈ M ′. Then, the inequality∑

i∈S
xik ≤ |S| − 1

defines a facet for the polytope MK(S × M ′, f, F ). Define a :=
∑

i∈S eik and
α := |S|−1. Obviously, the inequality aTx ≤ αmeets requirement (	) of Theorem
??. Let us choose a positive integer r ≤ min{|N \ S|, |M \M ′|}, nonempty sets
T1, . . . , Tr that are mutually disjoint subsets of N \ S and a subset {k1, . . . , kr}
of M \M ′. Moreover, we require that Tv ∪ {i} is a minimal cover with respect to
knapsack kv for all i ∈ S. By applying Theorem ??, the following inequality

(??)
∑
i∈S

xik +
r∑

v=1

∑
i∈S∪Tv

xikv ≤ |S| − 1 +
r∑

v=1

|Tv|
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defines a facet of the polytope MK((S ×M ′ ∪ (
⋃r

v=1((S ∪ Tv) × {kv})), f, F ) if
and only if for every v ∈ {1, . . . , r} there exists some Ã ⊆ S, |Ã| = 2, and an
item tv ∈ Tv such that f(Tv \ {tv}) + f(Ã) ≤ Fkv . We call this inequality (??)
extended minimal cover inequality.

It can easily be checked that the extended minimal cover inequality still satisfies
requirement (	) of Theorem ??. Thus, a repeated extension in the “spirit” of
Theorem ?? is possible. Moreover, one can convince oneself that, for example,
the r-fold repetition of this “extension procedure” (i.e., at each time we extend
the original inequality by one set of items Tv and one knapsack kv) leads to an
inequality which is different from the one obtained, if the simultaneous extension
by the sets T1, . . . , Tr and knapsacks k1, . . . , kr is applied to the original inequality.

Example 4.4 Given an instance (N,M, f, F ) of the multiple knapsack problem.
Let S ⊆ N be a minimal multiple cover with respect to a given set J ⊆ M and
suppose, the inequality ∑

i∈S

∑
j∈J

xij ≤ |S| − 1

defines a facet for the polytope MK(S × J, f, F ) (see subsection 3.2). Define
a :=

∑
i∈S

∑
j∈J eij and α := |S| − 1. For every Ã ⊆ S, |Ã| ≥ 2, there exists a

valid assignment y such that yik = 0 for all k ∈ J, i ∈ Ã and aTy = |S| − |Ã|+ 1.
Thus, requirement (	) of Theorem ?? is satisfied. Let us choose a positive integer
r ≤ min{|N \ S|, |M \ J |}, sets T1, . . . , Tr that are mutually disjoint subsets of
N \ S and a subset {k1, . . . , kr} of M \ J . Moreover, we require that Tv ∪ {i} is
a minimal cover with respect to knapsack kv for all i ∈ S. By applying Theorem
??, we can conclude that the so-called extended minimal multiple cover inequality

(??)
∑
i∈S

∑
j∈J

xij +
r∑

v=1

∑
i∈S∪Tv

xikv ≤ |S| − 1 +
r∑

v=1

|Tv|

defines a facet of the polytope MK((S × J ∪ (
⋃r

v=1((S ∪ Tv) × {kv})), f, F ) if
and only if for every v ∈ {1, . . . , r} there exists some Ã ⊆ S, |Ã| = 2 and some
tv ∈ Tv such that f(Tv \ {tv}) + f(Ã) ≤ Fkv .

Interestingly, the extended minimal multiple cover inequality still satisfies the
requirement (	) of Theorem ??. Thus, the repeated extension of the minimal
multiple cover inequality yields an inequality that still allows for a further exten-
sion.

In order to apply the previous theorems we must require that the inequality
aTx ≤ α meets certain properties. We also notice that the minimal cover in-
equality, the minimal multiple cover inequality and extended versions of both of
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them fulfill these properties. However, there are several inequalities such as the
(1, d)-configuration inequality that do not fit into this scheme. In order to de-
velop a “generalization procedure” for inequalities of this type we run into some
troubles, since – as one might expect – necessary and sufficient conditions for
an extended inequality to be valid or facet-defining, respectively, become more
complex, if we do not require in advance, that the inequality to be extended has
a particular structure. In the remainder we will present a generalization proce-
dure for extending an arbitrary valid inequality by one additional knapsack and
one additional subset of items. The simultaneous extension by arbitrary many
knapsacks and (mutually) disjoint subsets of items does no longer lead to handy
conditions, so that we decided to omit this. Similarly, a result about the exten-
sion of arbitrary facet-defining inequalities in the fashion of Theorem ?? would
involve such clumsy conditions that we decided to omit this either. Rather, we
present some new classes of facet-defining joint inequalities that cannot be ob-
tained by applying Theorem ??. However, in order not to be beyond the scope
of this paper we skip the proofs and just state the results. For more details we
refer the reader to [F93].

Theorem 4.5 Let be given an instance (N,M, f, F ) of the multiple knapsack
problem, sets Au ⊆ N , Bu ⊆ M for u = 1, . . . , t (we set A :=

⋃t
u=1 Au ⊆ N ,

B :=
⋃t

u=1 Bu ⊆ M , Q = ∪t
u=1Au × Bu) and an inequality aTx ≤ α that is valid

for MK(Q, f, F ).

We choose a set T ⊆ N\A of items and a knapsack v ∈ M\B. For a subset Ã ⊆ A
we define μ(Ã) := max{aTx | x ∈ MK(Q, f, F ) is an assignment and xik =
0 for all i ∈ Ã, k ∈ {l ∈ B | (i, l) ∈ Q} } − (α − |Ã| + 1). Moreover, we set
β := max{|G| | G ⊆ T, f(G) ≤ Fv}.

Under these assumptions, the inequality

(??) aTx+
∑

i∈A∪T
xiv ≤ α+ β

is valid for MK(Q∪((T ∪A)× {v}), f, F ) if and only if for every Ã ⊆ A, |Ã| ≥ 1
the following holds: for every T̃ ⊆ T of cardinality |T̃ | = β−μ(Ã), the set T̃ ∪ Ã
defines a cover with respect to v.

Example 4.6 Let be given an instance (N,M, f, F ) of the multiple knapsack
problem. We choose indices k1, k2 ∈ M, k1 �= k2 and assume, S1 ⊆ N is a
minimal cover with respect to k1 and S2 ⊆ N is a minimal cover with respect to
k2 where S1 ∩ S2 �= ∅. Clearly, the inequality∑

i∈S1

xik1 +
∑
i∈S2

xik2 ≤ |S1|+ |S2| − 2,
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is valid for the polytope MK(N ×M, f, F ), yet not facet-defining. We choose a
set T ⊆ N \ (S1 ∪ S2) and a knapsack k3 ∈ M \ {k1, k2}. Then, the inequality

∑
i∈S1

xik1 +
∑
i∈S2

xik2 +
∑

i∈S1∪S2∪T
xik3 ≤ |S1|+ |S2|+ |T | − 2,

called combined cover inequality, is valid for the polytope MK(N ×M, f, F ) if
and only if T ∪ {i} is a cover with respect to k3 for all i ∈ S1 ∪ S2.

We now require that S1 ∩ S2 = {s} and that T ∪ {i} is a minimal cover with
respect to k3 for every i ∈ S1∪S2. Then, the combined cover inequality defines a
facet for MK((S1×M\{k2})∪(S2×M\{k1})∪(T×M\{k1, k2}), f, F ) if and only
if there exists some R ⊆ S1∪S2∪T with |R| = |T |+ |R∩S1|+ |(R\{s})∩S2|−1,∑

i∈R fi ≤ Fk3 , R has nonempty intersection with both S1 and S2 and R ∩ S1 �=
{s} �= R ∩ S2.

Example 4.7 Let be given an instance (N,M, f, F ) of the multiple knapsack
problem and suppose, Q ∪ {s} ⊆ N is some (1, d)-configuration with respect to
the knapsack l ∈ M . The inequality

∑
i∈Q

xil + (|Q| − d+ 1)xsl ≤ |Q|

defines a facet for the polytope MK((Q∪{s})×{l}, f, F ). We choose a knapsack
k ∈ M \ {l} and a subset T ⊆ N \ (Q ∪ {s}) of items that satisfies f(T ) ≤ Fk.
In order to extend this (1, d)-configuration inequality, the conditions of Theorem
?? can be simplified. It is easy to see that the inequality

∑
i∈Q

xil + (|Q| − d + 1)xsl +
∑

j∈T∪(Q∪{s})
xjk ≤ |Q|+ |T |

is valid for the polytope MK((Q ∪ {s})× {l} ∪ (T ∪Q∪ {s})×{k}, f, F ) if and
only if

• for all Q̃ ⊆ Q with |Q̃| = d− t, t ≥ 1 and for every subset Q̂ ⊆ (Q \ Q̃)∪ T
such that |Q̂| = |T |+ t, Q̂ is a cover with respect to knapsack k;

• T ∪ {s} is a cover with respect to k.

Now, let Q ∪ {s} ⊆ N be a (1, d)-configuration with respect to some knapsack
l ∈ M and suppose, T ⊆ N \ (Q∪ {s}) satisfies f(T ) ≤ Fk for some k ∈ M \ {l}.
Moreover, we assume that T ∪{s} is a minimal cover with respect to k and for all

28



Q′ ⊆ Q, with |Q′| ≤ |Q| − d+ 1, T ∪ Q′ is a |Q′|-cover with respect to k. Under
these assumptions, the inequality

∑
i∈Q

xil + (|Q| − d + 1)xsl +
∑

j∈T∪(Q∪{s})
xjk ≤ |Q|+ |T |

defines a facet for the polytope MK((Q∪ {s})×{l}∪ (T ∪Q∪ {s})×{k}, f, F )
if and only if the inequality is valid and (at least) one of the following conditions
is satisfied:

i. for some Ql ⊆ Q, |Ql| = d− t, t > 1, there exists some set R ⊆ T ∪ (Q\Ql)
such that |R| = |T |+ t− 1 and f(R) ≤ Fk;

ii. there exists some i ∈ Q and t ∈ T such that f(T \ {t} ∪ {s, i}) ≤ Fk.

Remark 4.8 Theorems ??, ?? and ?? can be slightly modified in order to apply
to the generalized assignment polytope. This is due to the fact that the assump-
tions for any of these theorems as well as the conditions for the corresponding
inequalities to be valid or facet-defining, respectively, only depend on properties
of the item weights with respect to one particular knapsack. For example, in
Theorem ?? the condition for the extended inequality to be valid is: “for every
T̃v ⊆ Tv, |T̃v| = βv and for all i ∈ A, the set T̃v ∪ {i} defines a cover with respect
to kv”. Yet, the property T̃v∪{i} defines a cover with respect to kv only depends
on the item weights of the set T̃v ∪ {i} with respect to the particular knapsack
kv. The corresponding counterpart of Theorem ?? can be formulated as follows:

Let (N,M, f, F ) be an instance of the generalized assignment problem and assume
that the inequality aTy ≤ α is facet-defining for the polytope GAP (

⋃t
u=1 Au ×

Bu, f, F ) (Au ⊆ N,Bu ⊆ M,u = 1, . . . , t) and satisfies the requirement (	) in
Theroem ??. We set A :=

⋃t
u=1 Au, B :=

⋃t
u=1 Bu and choose a positive integer

r ≤ min{|N \ A|, |M \ B|}, nonempty sets T1, . . . , Tr that are mutually disjoint
subsets of N \ A and a subset {k1, . . . , kr} of M \B.

We define βv := max{|G| | G ⊆ Tv,
∑

i∈G fikv ≤ Fkv}, v = 1, . . . , r. Then, the
inequality

aTx+
r∑

v=1

∑
i∈A∪Tv

xikv ≤ α+
r∑

v=1

βv
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is valid for the polytope GAP ((
⋃t

u=1 Au × Bu) ∪ (
⋃r

v=1(Tv ∪ A) × {kv}), f, F ) if
and only if T̃v ∪ {i} is a cover with respect to kv for all i ∈ A, T̃v ⊆ Tv, |T̃v| = βv

and v = 1, . . . , r.

Theorems ?? and ?? can be formulated appropriately, in order to apply to the
generalized assignment problem.

	 Conclusions

In this paper we studied the multiple knapsack problem from a polyhedral point
of view. We presented several classes of valid and facet-defining inequalities.
Some of these classes were obtained by applying the theorems of section 4 which,
in addition, allow for an iterative generalization of minimal cover or minimal mul-
tiple cover inequalities. The inequalities discussed in this paper are the starting
point for the development of a cutting plane algorithm which is discussed in our
compagnion paper (see [?]).
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