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1. Introduction

Ever since the advent of computers, the behavior of microscopic systems of parti-
cles has been a primary subject to be studied in computer simulations. The basic
methodology for such simulations, most notably Monte Carlo methods [42, 43, 44]
and molecular dynamics [36], had already been developed by the 1950s. Computer
simulations are hoped to give an understanding of structural or dynamic proper-
ties of molecular systems which cannot be observed directly. Of special interest
are biochemical molecular systems, where large molecules or clusters of molecules,
primarily proteins, act like molecular machines which perform a multitude of differ-
ent functions in metabolism, transport processes, coordinated movement, immune
defense, and signal transduction [38]. With the computational power available in
massively parallel computer systems today, it has become possible to explore struc-
ture, function and dynamics of ever larger and more complex biochemical systems in
a mathematically rigorous way, which has led to the emergence of the discipline of
computational drug design, the aim of which is to identify novel drug molecules which
bind to a given receptor molecule, thus providing new impulses for pharmaceutical
research.

The biochemical function of a molecule is basically determined by its 3-dimensional
structure. The interaction between two biomolecules, e.g. of a small molecule called
a ligand with a protein, its target, is only possible when the ligand sterically “fits”
into the target’s binding site. Typical ligands are highly flexible biomolecules that
can switch between several metastable conformations, each of which has a different
3-dimensional shape. In order to predict in silico whether a ligand binds to a target
or not, the ligand’s main conformations have to be known. So-called “3D structure
generators” such as CONCORD [50] and CORINA [24] use different heuristics on
databases of known structures in order to quickly generate representatives of molec-
ular conformations. However, there is no way to estimate the error of such methods,
and they return no information at all about the statistical distribution of the gen-
erated representatives. Information about the statistical weights of the different
conformations, steric variance within a conformation, and transition probabilities
between conformations allow the prediction of the dynamics of the intermolecular
interaction that is being studied and can only be obtained from thermodynamic
simulations. A transition from one conformation to the other can be brought about
by (possibly simultaneous and correlated) rotations around single bonds within the
molecule. Additionally, the interaction between two biomolecules, which is a dy-
namic process, induces conformational changes in each of the reactants. This allows
them to recruit further interaction partners, which can lead to cascades of interac-
tions, as they are found in the signalling pathways of all eukaryote organisms [3]. In
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1. Introduction

this thesis, however, the focus will be on exploring the static thermodynamic distri-
bution of biomolecules, and transition processes will be of minor concern.

While biomolecules can be very flexible, they do not assume any state in con-
formational space with equal probability. The probability of a transition from one
molecule configuration to another one is determined by the difference in total energy
between the two configurations. Thus, the energy landscape associated with the
conformational space defines a statistical distribution which favors low-energy states
while disallowing physically forbidden states (e.g. two atoms can neither overlap nor
move too far away from each other while connected by a chemical bond).

In order to determine the metastable conformations of a biomolecule, a cluster
analysis is performed on a large sample of molecule configurations which is gener-
ated in a sampling phase according to the thermodynamically correct distribution
at the desired temperature.

The goal of this work is to compare three methods for exploring a molecule’s sta-
tistical distribution in conformational space with respect to the following questions.

• How fast does a method converge against the “true” distribution?

• How sensitive is it to the choice of initial configurations?

• How closely does a method approximate the “true” distribution in a given
time?

• What is the computational cost of each method?

The three methods under consideration are all based on the hybrid Monte Carlo
method but use a variety of approaches to accelerate convergence compared to a
simple hybrid Monte Carlo approach.
ZIBgridfree uses a meshless partitioning of the conformational space. It was origi-
nally implemented as “HuMFree” by Holger Meyer from April 2004 to February 2005
in the course of his master’s thesis [45]. The method was developed by Marcus Weber
in his doctoral thesis [73]. The Replica Exchange method was added by Alexander
Riemer from August to November 2005. It uses independent sampling runs at dif-
ferent temperatures which are allowed to exchange positions at certain intervals.
The sampling strategy “ConfJump” [71] uses known minima of the potential energy
surface to accelerate sampling by randomly introducing jumps from the proximity
of one minimum to the proximity of another one, thus effectively escaping “trap-
ping” within the basin of attraction of one local minimum. It has been developed
by Lionel Walter and Marcus Weber and was implemented by Lionel Walter from
October 2005 to June 2006. The three techniques have been implemented within a
common framework that allows them to be combined easily [47].

This thesis aims at more than just a comparison of different sampling methods.
Methods for monitoring convergence of a Markov chain Monte Carlo sampling and for
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1.1. Outline

comparing the quality of different sampling runs needed to be developed in the first
place. Almost as a byproduct of this thesis, a graph-theoretic recursive algorithm
has been developed to find all rotationally symmetric functional groups in arbitrary
biomolecules.
A metric is proposed for measuring the difference between two sampling results
(cf. 4.2) in order to be able to compare sampling methods. Further, a variant of this
metric is used to define a new semi-empirical convergence indicator based on molecule
symmetries (cf. 4.3). The performance of each of the three sampling techniques
under consideration is assessed in a series of numerical experiments conducted on
three increasingly complex biomolecules (see chapter 5).

1.1. Outline

The following chapter gives an overview of the basics of statistical mechanics and
conformation analysis. Both molecular dynamics and Markov chain Monte Carlo
methods are presented in chapter 2 along with the hybrid Monte Carlo approach
which combines the two.

The three sampling techniques under consideration, ZIBgridfree, Replica Exchange,
and ConfJump, will be presented in chapter 3. Theoretical considerations concerning
the efficiency of each method compared to pure hybrid Monte Carlo will be given as
well.

Chapter 4 deals with the issue of convergence diagnostics, i.e. algorithms for esti-
mating whether the thermodynamic distribution sampled by a molecular simulation
is sufficiently close to the molecule’s “true” distribution. In addition to that, methods
for comparing the different sampling strategies are developed in the same chapter:
In section 4.2, a metric for measuring the difference between two sampling results is
developed, which is based on histograms over 1-dimensional sampled distributions.
A semi empirical convergence criterion that employs knowledge about rotational
symmetries in the molecule under consideration is developed based on this metric in
section 4.3. In connection with this symmetry criterion, a graph-theoretic algorithm
for automatic detection of molecule symmetries is developed in section 4.3.2.

The numerical simulations that were performed for assessing the performance of
the different sampling methods are described in chapter 5. A measure for the per-
formance of a sampling technique is developed in section 5.1 based on the metric
developed in section 4.2.

Chapter 6 presents the results of the numerical experiments.
Finally, a conclusion is given in chapter 7 along with an outlook, especially re-

garding the future goal of simulating large molecular systems.
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2. Basics

The goal of a conformation analysis is to divide a molecule’s conformational space
into metastable regions, i.e. to find a partition of the conformation space with
the following property: For a given period of time, the transition probability from
one region to itself is high, while transition probabilities between any two different
metastable regions are minimal. Transition here means physically feasible transitions
within that period of time according to the system’s dynamics as usually simulated
by molecular dynamics (cf. 2.3).

A conformation analysis that divides conformations based on differences in free
energy consists of two phases, sampling and clustering. During the sampling phase,
molecule configurations are generated according to the correct thermodynamic dis-
tribution of the molecule at a given sampling temperature. Afterwards, these con-
figurations are clustered into metastable regions.

The molecule to be analyzed is given by its N atoms and the bonds between them
as well as atom and bond types. A specific 3-dimensional molecule configuration is
described as a position state q of the system which is a 3N -dimensional vector of
atom coordinates q ∈ IR3N = Ω. Let p ∈ IR3N analogously to q be the collective
momentum vector andM, a 3N × 3N -matrix with

Mij =

{

m⌊(i−1)/3⌋+1, i = j

0, else
, (2.1)

the mass matrix of the molecule, where mk is the mass of atom k.

In classical mechanics, the total energy of a microstate (q, p) of the system is
described by a separable Hamiltonian

H(q, p) = V (q) +K(p)

= V (q) +
1

2
p⊤Mp, (2.2)

which is the sum of the potential energy V and the kinetic energy K. K depends
only on the momenta p, while V can be calculated from the positions q alone. While
the kinetic energy can be calculated directly from atom masses and momenta, the
potential V is approximated by a molecular force field which describes V as the
sum of energy terms for binding and non-binding interactions between atoms. All
methods discussed in this thesis have been implemented using the Merck molecular
force field (MMFF) [31].
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2. Basics

2.1. Canonical Ensemble

Rather than simulating the behavior of an individual molecule over time, molecules
are simulated within a statistical ensemble, which assigns a probability measure to
any point (q, p) in the molecule’s phase space Γ = Ω×IR3N . It can be thought of as a
large (possibly infinite) number of realizations of a random experiment – in this case
observing the microstate of the molecule at an arbitrary point in time [21]. Sampling
then consists in generating the ensemble according to the underlying probability
distribution, i.e. drawing samples from that distribution. In conformation dynamics,
we are interested in ensembles that are in thermodynamic equilibrium, i.e. stationary
ensembles, in which the underlying probability density function is time-independent.

The quantities of interest are the expected values of observables over the statistical
ensemble. An observable is any function A : Γ → IR that assigns a real number to
every point (q, p) in phase space. Examples for observables are total energy H ,
potential energy V , kinetic energy K, geometric properties such as the value of a
particular torsion angle in the molecule (cf. 2.5), but also the degree of membership
for a certain metastable conformation (see section 3.2.1).

In the canonical or NVT ensemble, a molecule is considered a subsystem of fixed
volume V that is embedded in an infinitely large thermal bath with a constant
temperature T , with which it continuosly exchanges energy, while its mean kinetic
energy remains constant in the limit. Since chemical reactions are not allowed in the
simulation, the number of particles in the system N is also constant [23].

Phase space microstates (q, p), which describe the system’s positions q and mo-
menta p, are distributed according to a Boltzmann distribution:

π(q, p) =
1

Q
exp(−βH(q, p)), (2.3)

where

Q =

∫

Γ

exp(−βH(q, p)) dq dp (2.4)

is a normalization factor used to make π a probability distribution. Since it is an
integral over all possible states of a 6N -dimensional system, this partition function
can only be calculated analytically for the most simple systems.
The temperature enters the equation in the form of β = 1/kBT , the inverse temper-
ature. kB = 1.38065 · 10−23J/K is Boltzmann’s constant.

Since in the canonical ensemble, the system is in constant thermal contact with
the environment, there is no limitation on the total energy of an actual state of the
system. Thus, any microstate (q, p) is in principle reachable, and every open subset
of Γ has a non-zero probability.

Substituting equation 2.2 in equation 2.3 yields

π(q, p) =
1

Qq ·Qp
exp(−βV (q)) exp(−βK(p))

= ρ(q) · η(p). (2.5)
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2.2. Markov Chain Monte Carlo

The thermodynamic distribution can be split into independent distributions ρ of
positions and η of momenta. In fact, in a conformation analysis, one is only in-
terested in observables in q. Therefore, it is sufficient to sample from the position
distribution ρ. The expected value of an observable A : Ω→ IR is the integral

〈A〉ρ =

∫

Ω

A(q)ρ(q) dq

=
1

Qq

∫

Ω

A(q) exp(−βV (q)) dq (2.6)

over the whole position space Ω.
Let (q1, . . . , qn) be an independent sequence of molecule configurations distributed
according to ρ. Then it follows from the law of large numbers that the sample means

Ā =
1

n

n
∑

i=1

A(qi) (2.7)

converges to the expected value 〈A〉ρ for n→∞ [55]. In addition to that, it follows
from the central limit theorem that with increasing n the sampling error, i.e. the dif-
ference between the sampled distribution and ρ, decreases asymptotically in O(

√
n)

almost surely.

However, as the partition function Qq is unknown and hard to compute, it is not
possible to directly draw samples from ρ. The Markov chain Monte Carlo approach
(MCMC) generates samples from a probability distribution ρ by constructing an
ergodic Markov chain that has ρ as its unique stationary distribution.

2.2. Markov Chain Monte Carlo

The MCMC method was developed in the late 1940s and early 1950s by Metropolis,
Ulam, Fermi, von Neumann, Teller et al. for studying the diffusion of neutrons in
fissible material and also already for molecular simulations. This work led to the
Metropolis algorithm which was published in 1953 [43]. As stated above, the idea
is to generate a dependent sequence

(

q(n)
)

of random vectors q(n) ∈ Ω that are
distributed according to ρ for n→∞.

This Markov chain must be ergodic and meet the criterion of detailed balance,

ρ(q)P (q → q̃) = ρ(q̃)P (q̃ → q), (2.8)

in order for its unique stationary distribution to be the thermodynamically correct
equilibrium distribution ρ. The convergence rate is O(

√
n) just as for independent

random vectors [21]. Detailed balance is a restatement of the constraint of ther-
modynamic equilibrium, i.e. in the limit there is no net flow between any two open
subsets A and B of the position space Ω. It is also called microscopic reversibility.
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2. Basics

Substituting ρ from equation 2.5 into equation 2.8 yields

P (q → q̃)

P (q̃ → q)
=

exp(−βV (q̃))

exp(−βV (q))

= exp(−β∆V ). (2.9)

The ratio of the probabilities of a transition and its reversal depends only on the
potential at the positions q and q̃ and is thus directly computable with only two
evaluations of the force field (which, in the case of MMFF and many other force field
models, has a computational cost of O(N2)).

The Metropolis algorithm is one of the most popular MCMC strategies in use
today. It splits the transition from a state q to a state q̃ into two steps: A trial step
and an acceptance step, in which the new state q̃ is accepted with a probability of
Pacc and rejected in favor of resting in q with 1− Pacc:

P (q → q̃) = Pgen(q → q̃) · Pacc(q → q̃). (2.10)

The trial step must ensure that every state q ∈ Ω is in principle reachable, i.e. any
open subset of Ω must have a non-zero probability. If, in addition to that, the trial
step is chosen symmetrically, i.e. Pgen(q → q̃) = Pgen(q̃ → q), equation 2.9 becomes

Pacc(q → q̃)

Pacc(q̃ → q)
= exp(−β∆V ). (2.11)

By choosing

Pacc(q → q̃) = min

{

1,
ρ(q̃)

ρ(q)

}

= min {1, exp(−β∆V )} (2.12)

this equation is easily satisfied. This choice of acceptance probability is called the
Metropolis criterion.

The resulting Markov chain is irreducible because in the trial generation algorithm,
any position state is in principle reachable from any other, so that every open subset
of Ω has a non-zero probability, i.e. all the states communicate. Due to the possibility
of rejecting a trial, the Markov chain is also aperiodic. A Markov chain that is both
irreducible and aperiodic is ergodic [2]. Therefore, the unique stationary distribution
exists. Detailed balance, the algorithm used for generating trials, and the acceptance
criterion ensure that it is the Boltzmann distribution at the sampling temperature T .

Constructing an ergodic Markov chain whose transitions are split into trial and
acceptance steps with the additional constraint of a symmetric trial step and the
Metropolis acceptance criterion allows generating random variables distributed ac-
cording to ρ without knowledge of the partition function Qq.
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2.3. Molecular Dynamics

The Metropolis Algorithm

Starting from an initial configuration q(0), repeat the following:

1. From the current state q(i) = q, generate a trial q̃ by a perturbation technique
that satisfies detailed balance and has a symmetric proposal probability.

2. Calculate the acceptance probability

Pacc(q → q̃) = min {1, exp(−β∆V )} .

3. Generate a uniformly distributed random number ζ ∈ [0, 1).

4. Set the new configuration

q(i+1) :=

{

q̃, ζ < Pacc

q, else
. (2.13)

This is done either for a fixed number of times n or until some error measure indi-
cates convergence. See chapter 4 for a discussion of convergence monitors.

The main problem of this algorithm is that in order to be efficient, it has to
propose a new configuration q̃ that is substantially different from q but also has a
high probability of being accepted, i.e. q̃ must be of similar or lower potential energy
than q but must be as far away from q as possible so that the algorithm will cover a
large amount of space in a short time. The efficiency of any sampling strategy that
is based on the Metropolis algorithm or its generalization, the Metropolis-Hastings
algorithm [33], is dependent on two quantities:

• the computational cost of the trial step and

• the average acceptance probability or alternatively the

acceptance ratio =
# accepted steps

n
. (2.14)

The hybrid Monte Carlo approach employs molecular dynamics to generate trials
with a high acceptance ratio at an acceptable computational cost.

2.3. Molecular Dynamics

Molecular dynamics (MD) [21, 23, 37, 55] simulates the behavior of a molecular
system over time as a many-body system in terms of classical mechanics, i.e. it
solves the Newtonian or Hamiltonian equations of motion, respectively, for the given
system by numerical integration. Quantum effects such as induced changes in the
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2. Basics

electronic density of a molecule are ignored. In contrast to Monte Carlo approaches,
molecular dynamics is a deterministic method.

MD simulates the motion of the system under the influence of a specified force
field (the potential energy function V ). Given an ideal integrator, MD reproduces the
correct physical behavior of the system over time, within the limitations of classical
mechanics and the force field used to describe interactions between atoms.

For a system of N atoms the equations of motion can be written as a set of two
differential equations:

v(t) = q̇(t),

F (q) = Mv̇(t) = −∇V (q(t)) . (2.15)

The velocity v of a particle, the product of its mass m and momentum p, is the
derivative of that particle’s position with respect to time. The force F acting on
a particle is the negative gradient of the potential at the particle’s position. Addi-
tional terms are sometimes added to the force F to simulate interactions with the
environment.

Since analytic solutions for this system of differential equations are known only for
very simple systems, it is necessary to employ numerical integrators. A very popular
integrator used in molecular dynamics is the velocity Verlet integrator [23, 65]. Like
the Euler integrator and other Verlet-type integrators it is derived from a Taylor
expansion of the trajectory q(t). Verlet integrators are based on a second-order
Taylor approximation in which the third-order terms cancel thus leaving a local
error in position of O(τ 4), where τ is the length of the integration step [69]. The
velocity Verlet integrator updates position q and velocity q̇ = v according to the
following equations:

q(t+ τ) = q(t) + τ q̇(t) +
τ 2

2
M−1F (t),

q̇(t+ τ) = q̇(t) +
τ

2
M−1 (F (t) + F (t+ τ)) . (2.16)

The time step length τ is typically on the order of 1fs = 10−15s so as to be able
to correctly simulate high-frequency processes such as bond vibrations or bond-
angle oscillations. By repeatedly applying equations 2.16, starting from some initial
configuration (q(0), q̇(0)), a trajectory is generated which describes the change of the
dynamic variables with time.

In contrast to the MCMC approach, which samples the canonical ensemble, a
molecular dynamics trajectory samples a part of the microcanonical or NV E-
ensemble, in which number of particles N , volume V and total energy E = H is
constant. Since states of constant energy are not necessarily connected, an MD
trajectory is not an ergodic Markov chain. Moreover, an integrator that exactly
conserves energy is theoretically impossible [21]. However, symplectic integrators
such as varieties of the Verlet integrator conserve the total energy of the system on
average. A variety of approaches exists for molecular dynamics in different ensembles
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2.4. Hybrid Monte Carlo

such as the NVT ensemble, e.g. by rescaling momenta or adding correcting terms to
the force F in equation 2.16 [23, 55].

The average of an observable A : Ω → IR on an MD trajectory of n time steps
starting at time t0 = 0 is calculated as the time average over the trajectory:

Ā =
1

n

n−1
∑

i=0

A (q(iτ)) . (2.17)

The ergodic hypothesis [21, 49, 55], which is one of the fundamental axioms of statis-
tical mechanics, posits that a molecular system will assume all possible microstates
(q, p) within some ergodic component Ω̂ ⊆ Ω (which contains all points that are
compatible with the constraint of conservation of energy (or conservation of energy
on average)) for t→∞ (n→∞). Therefore, the unique time average of an observ-
able A exists in Ω̂. The ergodic hypothesis states further that Ā, as calculated by
equation 2.17, converges towards the expected value of A over the microcanonical
ensemble,

Ā∞ = 〈A〉ρNV E
. (2.18)

In practice, the ergodic hypothesis can usually not be proven and may even be false
for special cases.

While molecular dynamics has a number of advantages, such as simulating “true”
dynamics, which allows estimating kinetic properties of the system, it also has severe
disadvantages, especially when applied to conformation dynamics:

• It has a high error amplification due to numerical errors, effectively disallowing
simulations over a long period of time,

• a very low time step length τ , because of which an MD trajectory can only
cover a small region of phase space in a given period of time, and

• since MD simulations model the system’s true dynamics, they tend to get
trapped within basins of attraction of local minima (metastabilities) for long
times.

2.4. Hybrid Monte Carlo

The hybrid Monte Carlo strategy (HMC) [7, 12, 19, 21] combines Markov chain
Monte Carlo and molecular dynamics in order to efficiently generate samples from
the canonical ensemble of the molecule at the given temperature T . HMC is a Markov
chain Monte Carlo method which is based on the Metropolis-Hastings algorithm [33],
which, in contrast to the Metropolis algorithm, does not require a symmetric trial
step. The Metropolis-Hastings algorithm satisfies equation 2.9 and thus detailed
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2. Basics

balance by choosing the following acceptance criterion:

Pacc(q → q̃) = min

{

1,
ρ(q̃)Pgen(q̃ → q)

ρ(q)Pgen(q → q̃)

}

= min

{

1, exp(−β∆V )
Pgen(q̃ → q)

Pgen(q → q̃)

}

. (2.19)

In hybrid Monte Carlo, the trial step consists in a short MD trajectory. Trial gen-
eration in this way has a moderate computational effort but also a high probability
of being accepted in the subsequent acceptance step since MD on average conserves
the system’s total energy thus only generating physically meaningful configurations.
The method requires that MD simulations be performed with an integrator that is
both time-reversible and preserves phase space volume [21]. The symplectic velocity
Verlet integrator (given in equations 2.16) has both properties.

For every step in the Markov chain, a short MD trajectory is computed, starting
from the current position state q and a randomly generated momentum state p,
which is distributed according to the Boltzmann distribution η (see equation 2.5).
Since molecular dynamics is deterministic, the outcome (q̃, p̃) of the MD simulation
depends only on the initial state (q, p). As the initial position state q is given,
the trial probability in equation 2.19 depends only on the distribution of the initial
momenta p:

Pgen(q → q̃) = η(p) =
1

Qp
exp(−βK(p)). (2.20)

The integrator used in the MD simulation is reversible, i.e. if the state (q̃, p̃) is
generated from (q, p) in l iterations, then l integration steps starting from (q̃,−p̃)
will generate the state (q,−p). Therefore, the probability of generating q from q̃
depends only on the distribution of the start momenta −p̃:

Pgen(q̃ → q) = η(−p̃) =
1

Qp
exp(−βK(−p̃)). (2.21)

The kinetic energy K is a quadratic function in the momenta p (see equation 2.2).
Therefore, K(−p̃) = K(p̃). Thus, equation 2.19 becomes

Pacc(q → q̃) = min

{

1, exp(−β∆V )
exp(−βK(p̃))

exp(−βK(p))

}

= min {1, exp(−β∆H)} . (2.22)

The acceptance probability of a hybrid Monte Carlo step depends on the total en-
ergyH . However, the trial momentum p̃ is discarded (as is the whole MD trajectory),
and only the next position (q or q̃) needs to be stored. It is worth noting that if the
system’s total energy H is exactly conserved in the trajectory, the trial is accepted
with probability 1.
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2.5. Conformational space

The HMC Algorithm

Starting from an initial configuration q(0), repeat the following:

1. Draw a random collective momentum vector p from the Boltzmann distribution
η for the simulation temperature T .

2. Let q = q(i) denote the current position state. Run a short MD simulation of
a fixed length l starting from (q, p). Let (q̃, p̃) denote the microstate after l
iterations.

3. Calculate the acceptance probability

Pacc(q → q̃) = min {1, exp(−β∆H)} .

4. Generate a uniformly distributed random number ζ ∈ [0, 1).

5. Set the new configuration

q(i+1) :=

{

q̃, ζ < Pacc

q, else
. (2.23)

Again, this is done either for a fixed number of times n or until convergence is
detected.

2.5. Conformational space

After generating a sufficient number of samples from the canonical ensemble of a
molecule, the metastabilities in the molecule’s position space have to be identified.
Generally, metastabilities are almost invariant subsets of the state space, i.e. non-
equilibrium states which are stable for longer periods of time. When considering
the dynamics of the system under consideration for some given period of time, the
transition probability from any metastable region to itself is high while transitions
between two different metastable regions occur with low probability; for a formal
definition of almost invariant subsets see [57]. In order to facilitate the metastability
analysis, the conformation space has to be defined in a meaningful way.

A molecular system of 3N particles has 3N − 6 degrees of freedom. However, a
molecule’s metastabilities can usually be described in terms of very few degrees of
freedom. Since in metastability analysis, one is interested in slow transition pro-
cesses, bond-angle and bond-length oscillations can be neglected due to the fact that
their frequencies are very high. Thus, it is sufficient to define a molecule’s confor-
mational space in terms of a selection of its dihedral angles, i.e. in terms of rotations
around chemical bonds.

Let a1, a2, a3, and a4 be four atoms in the molecule under consideration which are
connected by the chemical bonds (a1, a2), (a2, a3) and (a3, a4) (and possibly others).
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The dihedral angle defined by the dihedral (a1, a2, a3, a4) is the angle between the
planes spanned by the triangles (a1, a2, a3) and (a2, a3, a4) (see fig. 2.1). Rotations
around the bond (a2, a3) lead to different values for the dihedral angle. It is also
called a torsion angle.

Dihedral coordinates are invariant to rotation and translation of the whole system,
which is good for conformation analysis, since absolute atom positions are irrelevant.
The conformational space can be further reduced by omitting those dihedral angles
that have no potential to define metastabilities, i.e. dihedrals that are either com-
pletely rigid or extremely flexible. Consequently, a dihedral (a1, a2, a3, a4) is excluded
if

• a1 or a4 is hydrogen (such a dihedral’s flexibility is almost unrestricted), or

• the bond (a2, a3) is not a single bond (only single bonds are rotatable).

In addition to that, no two dihedrals are used for defining the conformational space
that describe the same single bond. The set of dihedrals obtained by removing the
ultra-flexible and inflexible dihedrals restricted to one dihedral per single bond will
be called the set of important or “heavy” dihedrals throughout this thesis. Figure 2.1
illustrates the concept on the butane molecule.

Figure 2.1.: The only “heavy” dihedral angle in the butane molecule. Note that the
dihedral angle is defined as the angle between the planes spanned by
atoms 1,2,3 and atoms 2,3,4, respectively.

Since torsion angles are a cyclic measure, the Euclidian distance is not a metric in
torsion angle space [45]. Let ϕ, ψ ∈ [0, 2π)d be two configurations given as points in
the conformational space defined by the molecule’s d heavy dihedrals. The Euclidian
distance on the torus between ϕ and ψ is

δ(ϕ, ψ) =

√

√

√

√

d
∑

i=1

(ϕi ⊖ ψi)
2, (2.24)
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with

ϕi ⊖ ψi =











2π − (ϕi − ψi), ϕi − ψi > π

2π + (ϕi − ψi), ϕi − ψi < −π
ϕi − ψi, else

. (2.25)

With this intuitive metric, two angles can differ by no more than π (180◦). Conse-
quently, the difference between two points in conformational space can be no greater
than

√
π2d.
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3.1. Overview

The potential energy surface V of a biomolecule is usually very rough, i.e. regions
with a low potential energy are separated by high energy barriers. In a Markov
chain Monte Carlo sampling of the canonical ensemble at physiologically relevant
temperatures (around 300K) this hinders transitions between different low-energy
regions due to the fact that the acceptance criterion for an MCMC step depends
on the potential energy V (or the total energy H = V + K in the case of HMC).
Metastabilities in configuration space, the very phenomenon that is examined by
conformation dynamics, make the sampling process slow by causing a “trapping”
effect, where the sampling generates configurations from within the basin of attrac-
tion of one local minimum for a long time, while the interesting transitions between
different local minima, which correspond to conformational changes, are observed
very rarely. This effect is known as “broken ergodicity” and can lead to a very slow
convergence of the hybrid Monte Carlo method.

In order to overcome an energy barrier between two adjacent metastable regions,
the HMC algorithm must by chance generate a vector of initial momenta p which
both

• “points towards” an energy barrier that is not too far away for a short MD
trajectory to pass and

• infuses the system with enough energy so as to allow the MD trajectory to
actually pass through the region of high potential energy rather than being
diverted.

Finally, the end point of the MD trajectory has to be accepted.
Generating random momenta that carry the system in one HMC step (or very

few steps with some accepted high-energy states on the path) from the basin of
attraction of one local minimum of the potential energy surface to that of another
becomes more and more unlikely with increasing size and complexity of the molecule.
In fact, a molecule’s complexity (in terms of containing certain “complex” structures)
is far more important than its size as is illustrated by cyclohexane, which has only
18 atoms and whose configurations can be described in terms of only three torsion
angles (disregarding high-frequency oscillations as well as translation and rotation of
the whole molecule). However, cyclohexane’s metastabilities are separated by very
high energy barriers, and it is extremely difficult to accurately sample its Boltzmann
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distribution at 300K. Figure 3.1 shows the major conformations of the molecule and
their thermodynamic distribution in conformational space.

Figure 3.1.: Thermodynamic distribution of cyclohexane in its conformational space
at 300K. Also shown are four conformations (left-most and right-most:
’chair’ conformations, center: two ’twist’ conformations) correspond-
ing to different metastable regions in conformational space. The two
chair conformations have a combined thermodynamic weight of more
than 99%.

Of course, a sampling should need as few simulation steps as possible, i.e. generate
a minimum amount of redundant data. On the other hand, all major local minima
of the potential energy surface (metastabilities) have to be found and assigned ther-
modynamically correct weights.

In order to accelerate the sampling, different so-called umbrella strategies [66, 67,
68] can be employed to systematically modify the probability distribution to be sam-
pled (e.g. by lowering energy barriers) so as to make the Markov chains “mix” faster.
These modifications are designed in such a way that their effect can be eliminated
from the resulting trajectories by reweighting, which allows estimating the original,
unmodified probability distribution.
Replica Exchange and ConfJump use different systematic potential modifications
that facilitate sampling by “flattening” or “smoothing” the thermodynamic distri-
bution, while ZIBgridfree uses a soft meshless partitioning of the conformation space,
where ideally each subset of the conformation space does not assign a high weight
to more than one major local minimum. Using a soft partitioning, i.e. restricting
the sampling to certain subsets of the conformational space by erecting artificial
energy barriers, allows estimating transition probabilities between the partitions of
conformational space, which, in turn, allow correct reweighting of the different sub-
samplings to form a combined estimate of the Boltzmann distribution at the sampling
temperature.
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3.2. ZIBgridfree

3.2. ZIBgridfree

In large molecular systems with high-dimensional conformational spaces, the poten-
tial energy surface is very rough. It is desirable to be able to discretize space in a
way that does not entail an exponential computational cost and sample the ther-
modynamic density on each partition, separately. ZIBgridfree [45, 73, 75] uses a
meshless discretization of the conformational space. By sampling different subsets
of the conformational space separately, less metastabilities occur within each subset,
and thus, the HMC sampling converges fast. Instead of a crisp partitioning of the
conformational space (as e.g. a Voronoi tessellation), ZIBgridfree employs a parti-
tioning that is function-based (“fuzzy”) rather than set-based. This is achieved by
adding softly limiting functions to the potential energy V . These potential modifi-
cations do not have the effect of smoothing the potential, but rather, they (softly)
restrict the sampling to certain regions in conformational space so that it is easier
to sample all physically relevant regions of the conformational space, i.e. all regions
with a high statistical weight. The potential modifications are defined adaptively
with respect to covering a large amount of the physically relevant regions, which are
identified by a presampling.

Rather than using one Markov chain to sample the unmodified potential, ZIB-
gridfree subdivides the conformational space by defining a potential modification
for each partition and then launches one Markov chain for each modified potential
energy function. ZIBgridfree pursues an uncoupling-coupling strategy [22]. In an
uncoupling step the conformational space is partitioned, and subsequently, for each
partition of the space a distribution is sampled that has a lower variance than the
original distribution because it contains fewer local minima. Due to the lowered
variance, each sampling converges fast. Afterwards, the samplings of the different
partitions of the conformational space are reweighted and combined in the coupling
step so that the resulting linear combination of the sampled partial densities is an
approximation of the target distribution.

3.2.1. Soft-characteristic molecular conformations

ZIBgridfree is based on the concept of conformation dynamics as described by
Deuflh̄ard, Schütte et al. [16, 17, 59]. Conformations are defined in terms of almost-
characteristic membership functions rather than classical sets in conformational
space. The goal then is to identify a set of C conformations defined by membership
functions χ1, . . . , χC : Ω → [0, 1] (see [18]). The functions χi are non-negative, i.e.
for all q ∈ Ω:

χi(q) ≥ 0, i = 1, . . . , C, (3.1)

and form a partition of unity,

∀q ∈ Ω :
C
∑

i=1

χi(q) = 1. (3.2)
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Conformations defined on the basis of membership functions χi have overlapping
partial density functions ρ̃i associated with them:

ρ̃i(q) =
χi(q)ρ(q)

w̃i
, (3.3)

where the partition functions w̃i =
∫

Ω
χi(q)ρ(q) dq are the thermodynamic weights,

and ρ is the spatial Boltzmann distribution (see equation 2.5). Note that the mem-
bership functions χi are by their definition observables over the canonical ensemble
under consideration, as each function χi assigns a real number to every point q ∈ Ω.
The thermodynamic weight w̃i is then the expected value of χi under the distribu-
tion ρ (see equation 2.6). While the integral

Zi =

∫

Ω

χi(q) dq (3.4)

is the fraction of the conformational space “covered” by conformation i, w̃i is the
fraction of the thermodynamic density over Ω that conformation i accounts for. Note
that in the case of a set-based approach with conformations S1, . . . , SC ⊂ Ω with
characteristic functions

ξi(q) =

{

1, q ∈ Si

0, else
(3.5)

replacing the membership functions χi, the “coverage” integral Zi is equal to the
volume of Si, and w̃i is the same as the integral of ρ over Si. Figure 3.2 illustrates
the difference between a crisp and a soft discretization of conformation space on a
1-dimensional example. Figure 3.3 shows the decomposition of a Boltzmann dis-
tribution over Ω into partial density functions ρ̃i by the soft partitioning functions
shown in figure 3.2.

Ω

χ

Figure 3.2.: Partitioning of a set Ω into three “subsets” either via soft-characteristic
functions (lines) or a crisp partitioning into classical sets (boxes).

The expected value of a spatial observable A : Ω → IR can be calculated sepa-
rately for each function-based conformation χi under the partial density ρ̃i of that
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Ω

ρ

Figure 3.3.: A Boltzmann distribution (dashed black line) over Ω and the partial
density functions derived from it via the three soft partitioning functions
from figure 3.2.

conformation (see equation 3.3):

〈A〉ρ,χi
=

1

w̃i
〈Aχi〉ρ

=
1

w̃i

∫

Ω

A(q)χi(q)ρ(q) dq. (3.6)

The soft-characteristic conformations χi can be interpreted as macrostates in con-
figuration space that are fully described by modified potential energy functions Ṽi

with

Ṽi(q) = V (q)− 1

β
ln (χi(q)) . (3.7)

This follows from an interpretation of the partial density functions substituting ρ
from equation 2.5 in equation 3.3 (see also [73]):

1

w̃i
χi(q)ρ(q) =

1

w̃iQq
χi(q) exp (−βV (q))

=
1

w̃iQq
exp

(

−β(V (q)− 1

β
ln (χi(q)))

)

. (3.8)

3.2.2. Partitioning by membership basis functions

A central concept in ZIBgridfree is the approximation of the unknown conformation
membership functions χi from a function basis φ1, . . . , φs : Ω → [0, 1]. If this func-
tion basis has the same properties as the membership functions χ1, . . . , χC , namely
non-negativity (equation 3.1) and partition of unity (equation 3.2), then each con-
formation χl is a convex combination of the basis functions φi (see [73]).

χl =
s
∑

i=1

χdisc(i, l)φi, i = 1, . . . , C, (3.9)
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where χdisc is the matrix of linear combination factors which is row-stoachastic, i.e.

s
∑

l=1

χdisc(i, l) = 1, i = 1, . . . , C. (3.10)

The number of basis functions s is chosen sufficiently greater than the anticipated
number of conformations C.

The basis functions form a soft partitioning of Ω as well but are not necessarily
metastable. Consequently, the concepts of thermodynamic weights (defined analo-
gously to equation 3.3) and potential modifications as defined in equation 3.7 apply
to the basis functions as well. From here onward, Vi will denote the modified poten-
tial corresponding to the basis function φi, and wi will denote the thermodynamic
weight of φi. ρi will denote the partial density function corresponding to φi.

The goal of cluster analysis will be to identify both the correct number of clus-
ters C and the matrix χdisc of linear combination factors from samplings of the
partial densities ρi associated with the basis functions φi so as to obtain the set of
membership functions χl by applying equation 3.9. The membership basis functions
are also referred to as shape functions in meshless methods.

ZIBgridfree defines the membership basis functions φi by means of a set of defin-
ing nodes {k1, . . . , ks} ⊂ Ω. Nodes are placed equidistantly in the relevant part of
configuration space which is identified beforehand in a presampling at a high tem-
perature (cf. 3.2.4). As most of configuration space is physically “forbidden” due
to extremely high potential energy in regions where atoms either overlap or are too
far away from each other to maintain chemical bonds, the amount of “relevant” (i.e.
physically allowed) space that has to be covered is hoped not to grow exponentially
with the number of atoms N [45, 73]. The definition of basis functions as

φi :=
Wi

∑s
j=1Wj

, i = 1, . . . , C, (3.11)

follows the partition of unity method of Shepard [62]. With radial basis functions Wi

with

Wi(q) = exp
(

−α δ2(q, ki)
)

, i = 1, . . . , C, (3.12)

the basis functions φi are unimodal, non-negative, and continuously differentiable
and form a partition of unity [73]. δ2(q, ki) is the squared distance of the projections
of q and ki into the space of heavy dihedrals as defined in section 2.5. The shape
parameter α is chosen in dependence on the number of nodes s and the given node
distance θ. The meshfree discretization using soft-characteristic basis functions φi

is a generalized Voronoi tessellation which converges towards a Voronoi tessellation
for α→∞. The basis functions φi have their maximum at the defining node ki and
decrease exponentially with growing distance from ki. Consequently, the modified
potential Vi is identical to V at position ki while the difference between V and Vi

increases exponentially in the distance from ki.
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ZIBgridfree samples the Boltzmann distributions corresponding to the modified
potentials Vi separately, which can even be done parallelly as each Vi can be evalu-
ated at every position q ∈ Ω independently of all Vj with j 6= i. The current imple-
mentation of ZIBgridfree [47] supports both serial and (massively) parallel sampling.
The algorithm is described in more detail in the following sections.

3.2.3. The algorithm (outline)

1. Perform a (relatively short) presampling at a high temperature on the original
potential V (cf. section 3.2.4). LetQ denote the set of generated configurations.

2. Place nodes k1, . . . , ks ∈ Q approximately equidistantly within relevant regions
of Ω only (cf. 3.2.5).

3. Define a meshless soft discretization by constructing basis functions φ1, . . . φs :
Ω→ [0, 1] from k1, . . . , ks as described in section 3.2.2.

4. Perform HMC sampling of each partial density ρi which is induced by the
modified potential Vi corresponding to the basis function φi (cf. 3.2.6).

5. Accumulate the transition matrix P̄ and the overlap matrix S̄ from the trajec-
tories generated in step 4.

6. Calculate thermodynamic weights of the partial densities ρi (cf. 3.2.7).

7. Determine the number of conformations C and the matrix of linear combination
factors χdisc by Robust Perron Cluster Analysis in order to obtain conformation
membership functions χ1, . . . , χC from the membership basis φ1, . . . , φs (see
3.2.8.

3.2.4. Presampling

In the first step of the algorithm, a presampling at a high temperature is performed
on the unmodified potential. The sampled distribution, which differs from the Boltz-
mann distribution at temperature T only in the parameter β (see section 2.1), shares
all important minima and maxima with the target distribution while being generally
more variable. Therefore, the Markov chains exploring this distribution in HMC
sampling are expected to mix better. The increased variability stems from the in-
creased temperature which causes the random initial momenta for the HMC steps
to be higher on average than when sampling at temperature T . The presampling
effectively yields a rough overview of the potential energy landscape which allows
identification of the low-energy regions. Convergence of the presampling is moni-
tored by a Gelman-Rubin criterion (see section 4.1) which is more tolerant than for
the regular sampling. After all, the goal is not estimation of the high-temperature
distribution but merely finding all relevant regions in conformation space.
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3.2.5. Choice of nodes

In order to reflect only physically relevant parts of the conformational space, nodes
are chosen from the presampling trajectory. As energetically forbidden and very un-
likely states are not assumed during presampling, nodes are only generated within
the relevant regions of conformational space. This results in a problem-adaptive
discretization of the conformational space as the modified potentials Vi defined by
the nodes ki will assign very high values to all regions that have never been vis-
ited during presampling. Therefore, it is crucial that the presampling discovers all
low-energy regions. Meyer [45] proposed an iterative strategy for finding the op-
timal presampling temperature. In practice, it suffices to choose the presampling
temperature high enough, as no error results from the inclusion of regions that have
a low statistical weight at temperature T but are assumed easily at the presam-
pling temperature. The computational overhead from sampling a few low-weight
partial densities is probably not very great overall, especially when compared to the
overhead resulting from multiple presamplings at different temperatures. The node
selection algorithm of ZIBgridfree (see [45, 73]) chooses nodes from the presampling
trajectory that are spaced approximately equidistantly and no closer to each other
than the given minimum node distance θ:
Let Q denote the set of molecule configurations generated in presampling and Q∗

the list of nodes which is initially empty. Further, let L be another list of molecule
configurations which is also initially empty.

1. Pick an arbitrary configuration k1 ∈ Q and add k1 to Q∗.

2. Calculate the distances of all geometries q ∈ Q to k1 (in heavy dihedral space;
cf. section 2.5).

3. Add all configurations q ∈ Q to L, sorted by their distance from k1.

4. Repeat:

a) Let k denote the configuration that was added to Q∗ most recently.
Remove from L all geometries q with δ(q, k) < θ.

b) If L is not empty, add the first element of L to Q∗ and remove it from L.

until L is empty.

Note that step 4a does not require testing all elements of L for their distance to
the node k that was added in the previous step of the algorithm. The reason for this
is as follows:
Let a = δ(k, k1) be the distance of the node k that was added to Q∗ in the previous
step to the initial node k1. For all molecule configuration q ∈ Q with δ(q, k1) > θ+a,
it follows that δ(q, k) > θ, because δ is a metric and the triangle inequality

δ(k1, k) + δ(k, q) = a+ δ(k, q) > δ(k1, q) (3.13)
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holds for all k, k1, q ∈ Ω. Consequently, in step 4a, the search in the list L can be
stopped when the first element with δ(q, k1) > a is encountered. Therefore, the total
computational cost of node selection is the sum of O(|Q| log |Q|) for sorting all |Q|
configurations and O(|Q|) for the loop in step 4 which per iteration removes at least
one element from L and examines each element at most twice. This yields a total
computational cost of O(|Q| log |Q|) for node generation.

This moderately low computational cost (as the presampling is kept fairly short)
allows controlling the overall computational cost of the sampling phase by limiting
the number of nodes from the outset. This is done by repeating the node selection
algorithm for a different values of θ which are generated by a binary search until the
target number of nodes is (approximately) reached. Compared to the sampling or
even the presampling, the cost of node selection is negligible.

3.2.6. Sampling of partial densities

ZMFree uses different kinds of sampling in order to obtain information about

a) the overlap between two basis functions φi and φj,

S̄(i, j) = φi(q)φj(q)ρ(q) dq, (3.14)

and

b) the transition probabilities

P (i, j) =

∫

Ω
φi(q)P

τφj(q) dq
∫

Ω
φi(q)ρ(q) dq

, (3.15)

where P τ is the Markov operator that describes the propagation of the system
in the canonical ensemble in time span τ ; see [58]. As the partition membership
functions φi are soft-characteristic functions, equation 3.15 describes a “fuzzy”
concept of transition probabilities as well.

Both the overlap and the transition matrix can be used for reweighting the partial
densities (cf. 3.2.8).

Figure 3.4 shows the sampling scheme used by ZIBgridfree for each partial den-
sity ρi. A regular HMC sampling is performed to generate a sequence of configu-
rations q1, . . . , qn, and from every state qj , a short MD trajectory is launched on
the original, unmodified potential to obtain a new position state q′j. The sequence
(q1, . . . , qn) is a realization of a Markov chain, as it is generated by HMC sampling.
The sequence (q′1, . . . , q

′
n), however, is also a realization of a Markov chain because

molecular dynamics is deterministic. Thus, the transition from q′j to q′j+1 is deter-
mined solely by the transition from qj to qj+1 (and the random initial momenta
drawn in steps j and j + 1), as it can be realized by (deterministically) moving
from q′j to qj, then from qj to qj+1, which is the HMC step, and finally from qj+1 to
q′j+1, deterministically once more. The “horizontal” chain (states qj) can be used to

29



3. Sampling strategies

q1 q2 q3

q1 q2 q3

...
HMC HMC HMC

MD MD MD

’ ’ ’

Figure 3.4.: The sampling process employed by ZIBgridfree for every modified dis-
tribution. Configurations q1, . . . , qn are generated by HMC sampling of
a modified potential. The sequence (q′j) is generated from the first se-
quence “on the fly” by drawing random momenta p̃ distributed according
to the Boltzmann distribution η for every state qj and launching a short
MD trajectory from (qj , p̃). These MD simulations are performed on the
unmodified potential.

calculate the overlap between partial densities, while the “vertical chain” (states q′j)
is used to estimate the Markov operator P τ and accumulate transition probabilities
between partial densities. This sampling approach is presented in more detail in [73]
and [45].

3.2.7. Computation of thermodynamic weights

The first step in conformation analysis based on trajectories generated by the sam-
pling approach outlined in section 3.2.6 is the computation of a matrix M which
contains information about the degree of membership of configurations sampled from
the partial density ρi in all partitions φj of the conformational space:

Mij =
1

ni

ni
∑

k=1

φj

(

q
(i)
k

)

. (3.16)

If the basis functions φi are interpreted as abstract states in a Markov chain, then
the stochastic matrix M is an estimate of the transition matrix of that Markov chain,
i.e. Mij is the probability of moving from the fuzzy set φi to the fuzzy set φj,

Mij = 〈φj〉ρi
. (3.17)

Alternatively, the degrees of membership of q
′(i)
k in φj can be used in equation 3.17.

This Markov chain is ergodic (see [45]), as detailed balance holds in the canonical
ensemble. Therefore, the unique stationary distribution π of M exists. Because of
detailed balance, the basis functions φi must be waited against each other in such a
way that the net flow between them is zero:

πiMij = πjMji. (3.18)

Therefore, the components of the stationary distribution πi are, in fact, the thermo-
dynamic weights wi (see theorem 4.11 in [73]) and can be computed by eigenvalue
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iteration, as

w = π = lim
n→∞

Mnα (3.19)

with an arbitrary initial distribution α.
The weights wi are the linear combination factors that are used to reconstruct the

Boltzmann distribution ρ on Ω from the the partial densities ρi:

ρ =

s
∑

i=1

wiρi. (3.20)

Note that weights are computed by evaluating the degree of membership of every
sampling point from the sampling of each partial density ρi in every soft partition φi.
This means that if the sampling of one partial density ρi does not converge, all
weights will be flawed. ZIBgridfree must sample accurately the distribution over
every soft partition φi, even those whose thermodynamic weights are intrinsically
low due to a generally high level of potential energy.

3.2.8. Transition and overlap matrix and conformation analysis

Afterwards, the estimated thermodynamical weights wi are used to compute the
overlap integral matrix S̄ and the transition matrix P (see equations 3.14 and 3.15).
S̄ is constructed as

S̄(i, k) = 〈φi, φk〉ρ =
s
∑

j=1

wj〈φi, φk〉ρj
=

s
∑

j=1

wjS̄j(i, k), (3.21)

approximated from individual summands

S̄j(i, k) ≈
1

nj

nj
∑

l=1

φi(q
(j)
l )φk(q

(j)
l ), (3.22)

each of which is built from a trajectory
(

q
(j)
1 , . . . , q

(j)
nj

)

that is a sampling of the

partial density ρj .
Analogously, the matrix P̄ is constructed as

P̄ (i, k) = 〈φi, P
τφk〉ρ =

s
∑

j=1

wj〈φi, P
τφk〉ρj

=
s
∑

j=1

wjP̄j(i, k), (3.23)

where the individual summands for each trajectory
(

q
(j)
1 , . . . q

(j)
nj

)

are

P̄j(i, k) ≈
1

nj

nj
∑

l=1

φi(q
(j)
l )φk(q

′(j)
l ), (3.24)
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where q
′(j)
l are the configurations generated by ‘vertical’ sampling (cf. 3.2.6). P is

then obtained by making P̄ stochastic. For more details, see [45, 73].
If metastable conformations exist, the overlap integral matrix S̄ is almost block-

structured (see figure 3.5) after a suitable permutation. The same holds true for the
transition matrix P . Robust Perron Cluster Analysis [18, 72] is used to find this
permutation and thus the matrix of linear combination factors χdisc that transforms
the vector of basis functions (φ1, . . . , φs) into a vector of conformation membership
functions (χ1, . . . , χC).

≈ 0

≈ 0

Figure 3.5.: After suitable permutation, the overlap matrix S̄ or the transition ma-
trix P of a metastable system has a block structure, where basis func-
tions within each block communicate, while transitions to (or overlap
with) basis functions outside a block are seldom (or weak).

3.2.9. Convergence criterion

ZMFree allows more than any other sampling technique to control the sampling
error, by directly estimating that error. Theoretically, only with an infinite number
of points n one could be sure that the transition matrix M has been estimated
correctly. Weber, Kube et al. [74] pick up the idea of Weber [73] to estimate the
sampling error ||E||∞ = ||M −Mtr||, the difference between the true matrix M and
the estimation Mtr obtained from generating finitely many sampling points. The
case that ||E||∞ ≤ ǫ is equivalent to the statement that the || · ||1-norms of row
vectors of E are small,

||E(i, :)||1 ≤ ǫ, i = 1, . . . , s. (3.25)

The rows i of E correspond to different subsamplings
(

q
(j)
1 , . . . q

(j)
nj

)

. The normE

convergence indicator computes the ith row of Mtr for each subsampling according
to equation 3.17. The difference between these rows in vector-||·||1-norm is measured,
and the maximum distance is compared to a given ǫ.
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3.2.10. Efficiency of ZIBgridfree

The ZIBgridfree approach has to produce O(ns) sampling points by the HMC
method, which is only better than pure hybrid Monte Carlo if the sampling of each
partial density ρi converges s times as fast as that of HMC on the unmodified poten-
tial. However, there is no theoretical limit to the mean time that a molecular system
spends in one metastable conformation – consider diamond, which is very hard to
change experimentally into graphite despite the latter conformation’s lower potential
energy [30]. It is expected that from some threshold for the size or complexity of the
molecule onward, no sampling strategy can hope to sample the unmodified Boltz-
mann density in a reasonable time, and ZIBgridfree becomes more efficient and also
more reliable than other strategies. O(ns) is also the computational cost of ZIBgrid-
free sampling in terms of memory usage, as every point in every subsampling has to
be stored. By making use of parallelization, at least the time cost can be lowered
considerably. It is also worth noting that the computational cost of sampling anal-
ysis is on the order of O(ns3) if S̄ and P are calculated from summands Sj and Pj

as given by equations 3.21–3.24, respectively.

3.3. Replica Exchange

Ideally, the sampling would consist in a random walk in energy space rather than
in position space. This would allow a fast discovery of all local minima of the
potential energy surface. Unfortunately, there is no direct way to construct a random
walk in energy space so that usually it cannot be done efficiently. The Replica
Exchange method is a generalized-ensemble approach that consists in a random walk
in temperature space which in turn induces a random walk in energy space [64] thus
allowing the simulation to jump out of local minima more easily. Replica Exchange
simulations have successfully been applied to macromolecules [10, 39, 51, 54].

T
1

T
2

T
3

T
4

T
5

Figure 3.6.: Replica Exchange method for 5 replicas. Non-interacting copies of the
system at different temperatures Ti are allowed to exchange positions
(or temperatures) at regular intervals.

The principle of the Replica Exchange method is shown in figure 3.6. The basic
idea is to consider M independent copies or replicas of the system to be simulated
on which non-interacting simulations at M different temperatures are performed. At
periodic intervals positions q are exchanged between replicas according to a Monte
Carlo acceptance criterion. At high simulation temperatures it is easier to pass
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energy barriers since, due to higher momenta, the effectively sampled probability
density function is generally flatter, including the barriers. However, sampling at a
higher temperature means generating samples from a different thermodynamic dis-
tribution. While the sampling points created in this way can be reweighted to the
Boltzmann distribution at temperature T , this is only a heuristic and in no way
equivalent to drawing samples from the target distribution in a mathematically rig-
orous way. For this reason, a single simulation at a high temperature is not sufficient.
In a Replica Exchange simulation the replicas at high temperatures provide new start
positions for the HMC chain at the relevant (low) sampling temperature T , which
allows jumps out of the basin of attraction of a local minimum. This is illustrated
for a 1-dimensional potential energy function and two HMC chains at different tem-
peratures in figure 3.7. The subsequent conformation analysis is done based only on
the chain at T , all sampling data at higher temperatures are discarded.

V

V

Conformation space

A

B

Figure 3.7.: Replica exchange. The potential energy surface is sampled by a high-
temperature (red) and a low-temperature (blue) HMC chain.
(A) before and (B) after a replica exchange step. Replica exchange
avoids trapping of the low-temperature chain in local minima.

In practice, M non-interacting hybrid Monte Carlo chains are started at M dif-
ferent temperatures where for every time step i there exists a one-to-one mapping
between chains and temperatures. All chains are propagated simultaneously using
hybrid Monte Carlo sampling as described in section 2.4. A replica exchange step
is performed after every tRE simulation steps. The replica exchange is realized tech-
nically as an exchange of temperatures rather than positions between two chains.
This reduces the amount of data that has to actually be moved in memory, which is
especially useful when chains are to be propagated truly parallelly on different CPUs.
Let prior to an exchange step HMC chain i be at temperature m and replica j be at
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3.3. Replica Exchange

temperature n. The exchange step then corresponds to the state transition

x = (. . . , q[i]
m , . . . , q

[j]
n , . . .)→ x′ = (. . . , q[i]

n , . . . , q
[j]
m , . . .). (3.26)

For transitions between states in this generalized ensemble [32], detailed balance is
assumed as well, which means

πGE(x)Pxchg(x→ x′) = πGE(x′)Pxchg(x
′ → x) with (3.27)

πGE(x) =
1

QGE
exp

(

−
M
∑

i=1

βm(i)V (q[i])

)

, (3.28)

where m(i) is the index of the temperature of chain i and QGE is again a normal-
ization factor that is used to obtain a probability distribution. The assumption of
detailed balance is necessary for the Boltzmann distribution at each temperature
to be an invariant measure of the Markov operator associated with the generalized
ensemble [32].

Substituting equation 3.28 into equation 3.27 yields

Pxchg(x→ x′)

Pxchg(x′ → x)
=

πGE(x′)

πGE(x)

= exp
[

−βmV (q[j])− βnV (q[i]) + βmV (q[i]) + βnV (q[j])
]

= exp
[

(βn − βm)
(

V (q[j])− V (q[i])
)]

=: exp(−∆). (3.29)

The detailed balance constraint can thus easily be met by choosing the acceptance
criterion as

Pxchg(x→ x′) = min {1, exp(−∆)} . (3.30)

3.3.1. Efficiency of the Replica Exchange method

The resulting acceptance ratio decreases exponentially as the distance |βn − βm|
of inverse temperatures increases. Therefore, replica exchange is only attempted
between chains at adjacent temperatures. In [64] Sugita and Okamoto formulate the
following criteria for evaluating the efficiency of the Replica Exchange method:

(a) The simulation temperatures should be chosen from the interval [T, Tmax] in
such a way that the acceptance ratios are approximately equal for all pairs of
temperatures under consideration.

(b) The number of temperatures (and chains) M should be chosen so that the ac-
ceptance ratios for all pairs of temperatures under consideration are higher than
10%.

(c) The maximum simulation temperature Tmax should be chosen high enough to
avoid trapping in local minima, i.e. all major local minima have to be found
within an acceptable period of time.
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3. Sampling strategies

The first two criteria are easy to test, and criterion (b) can be ensured simply by
starting short test runs with different numbers of chains and measuring the accep-
tance ratios. Different algorithms exist to calculate optimal choices for the simulation
temperatures with respect to obtaining equal acceptance ratios for all pairs of tem-
peratures. For small to medium-sized molecules, however, choosing temperatures
with exponentially increasing distance already yields very good results in terms of
criterion (a). In this approximation the sampling temperatures are closer to one
another near the relevant temperature T than in the high-temperature region. A set
of temperatures with this property is generated by

Ti = T · ai with a =

(

Tmax

T

)
1

M−1

, i = 0, . . . ,M − 1. (3.31)

In contrast to the first two efficiency indicators, criterion (c) can only be evaluated
empirically or estimated indirectly. The former requires knowledge of the “true”
conformations. As usually experimental data on the molecule’s conformations are
not available, statistical methods have to be employed. In fact, the question whether
the maximum temperature in Replica Exchange has been chosen high enough is
related to the question whether an MCMC simulation has been run long enough.
It must also be noted that for systems that are stabilized primarily by hydrogen
bonds or van der Waals forces, it is not allowable to use arbitrarily high simulation
temperatures, as that would destabilize the system under consideration.

The computational overhead associated with the Replica Exchange compared to
pure hybrid Monte Carlo is thus O(Mn). In order to be efficient, a Replica Exchange
sampling has to be M times as fast as an HMC sampling at temperature T only.

3.4. ConfJump

The ConfJump strategy [71] employs a priori knowledge of the shape of the potential
energy surface and thus of the Boltzmann distribution to be sampled. It facilitates
transitions between different low-energy regions by introducing artificial jumps from
one low-energy region to another into the sampling process. Thus, while still using
HMC sampling to obtain physically correct transition probabilities, the average time
the simulation spends within the basin of attraction of one local minimum of the po-
tential energy is considerably shortened by occasional “jump steps” so that trapping
is actively avoided. The combined Markov process which uses two different transi-
tion operators is ergodic and satisfies detailed balance (cf. 2.2), thus sampling the
thermodynamically correct distribution. The ConfJump method is closely related to
Smart Darting Monte Carlo [1] and the Jump Between Wells approach [60, 61].

ConfJump needs a preprocessing step in which a minimization algorithm is used to
generate representatives of all important low-energy regions of the potential energy
surface. Let M = {m1, . . . , mC} denote the set of these representatives. In the
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current implementation this is done using the ConFlow algorithm by Holger Meyer,
which is based on the RPROP algorithm [52]. This method is very fast and has
been found empirically to be able to identify all important conformations of a wide
variety of small to medium-sized biomolecules [46].

The information about low-energy regions can then be used in a standard Metropo-
lis Monte Carlo approach as described in section 2.2 to propose jumps from the
proximity of one local minimum of the potential energy to a point in the proximity
of another. More precisely, ConfJump determines the configuration mj ∈M that is
closest to the current position state q ∈ Ω and then randomly chooses another con-
figuration mk ∈ M and proposes a new configuration q̃ ∈ Ω whose relative position
to mk is determined by the relative position of q to mj. Throughout this work the
following intuitive algorithm is used to obtain q̃ from q, mj , and mk:
Let x be the Z-matrix representation of q. Then x̃ is obtained from x by adding
the difference vector (mk −mj) to x. Transforming x̃ back to Cartesian coordinates
yields q̃. Z-matrix coordinates are a very popular form of internal coordinates which
are invariant to translation and rotation of the molecule and otherwise describe a
molecule’s position state accurately [37].

Trials generated in this way are subsequently accepted with a probability of
Pacc(q → q̃) = min {1, exp(−β∆V )}. This is the usual Metropolis acceptance crite-
rion which requires a symmetric trial step, i.e. the jump from a point q ∈ Ω in the
proximity of a low-energy configuration mj to a point q̃ whose nearest neighbor from
M is a configuration mk must be proposed with the same probability as the reverse
jump. Due to the constraint of symmetric trial steps, the trial q̃ must also be rejected
if its nearest neighbor in M is not mk. As the Metropolis acceptance criterion de-
pends on the difference in potential energy between q and q̃, it can be expected that
the acceptance probability improves if the probability to propose mk given a point
q whose nearest neighbor from M is mj is based on the potential energy difference
between mj and mk instead of proposing all low-energy configurations mk ∈M with
the same probability.

3.4.1. Jump Proposition Matrix

Therefore, in a second preprocessing step a jump proposition matrix A is calculated
whose entries Ajk are the probabilities to propose a configuration mk from a point
whose nearest neighbor from M is mj. Consequently, A must be a stochastic matrix,
i.e.

C
∑

k=1

Ajk = 1, j = 1, . . . , C. (3.32)

In order for the Metropolis algorithm to be applicable, the detailed balance condition
given by equation 2.8 must be satisfied. Choosing A symmetric, i.e.

Ajk = Akj, j, k = 1, . . . , C, (3.33)
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ensures detailed balance as the proposed new position q̃ depends only on the position
of mk and the relative position of q to mj .

Let Â be a C × C-matrix with

Âjk :=

{

exp (−β |V (mk)− V (mj)|) , j 6= k

0, j = k
. (3.34)

The doubly-stochastic symmetric matrix A is computed by scaling the symmetric
non-stochastic matrix Â using Ruiz’s algorithm [53]. Using the jump proposition
matrix A for trial generation is hoped to yield a high acceptance ratio as

• the acceptance probability depends on V (q̃)−V (q) and due to spatial proximity
q and q̃ are expected to be close in potential energy to mj and mk, respectively,
and

• it is hoped that regions of similar potential energy have similar shapes as well.

The second point is very important as a trial q̃ whose nearest neighbor in M is not
mk has to be rejected as well. Figure 3.8 illustrates on a 2-dimensional conformation
space how the acceptance ratio can decrease when the given low-energy regions have
different geometric shapes. As Ajk is proportional to exp (−β |V (mk)− V (mj)|) for
j 6= k, the transition from mj to mk and the reverse transition have an equally

high probability of being accepted. Setting Âjj = Ajj = 0 skips some unnecessary
computations since the effect of accepting mk = mj is the same as rejecting mj (and
staying in mj).
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Figure 3.8.: Jump steps proposed by ConfJump in three different scenarios. Coor-
dinate axes represent two different internal coordinates. The left panel
shows a jump step that is accepted. The low-energy regions represented
by mi and mj have a very similar shape. If mi and mj differ strongly
in their relative positions to the regions they represent as shown in the
central panel, the acceptance ratio is low. The same holds true if the
two regions have very different shapes as shown on the right.

3.4.2. ConfJump as a rigorous sampling method

A Metropolis Monte Carlo sampling using only the jump method would not be er-
godic as from a starting point q(0) only a small part of the configuration space Ω
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is reachable by a series of jump steps. However, the method can be combined with
a regular HMC approach which results in a Markov chain Monte Carlo method in
which the configuration q(i+1) is determined from the current configuration q(i) by
attempting a jump step with a fixed low probability Pjump and an HMC step with
probability 1−Pjump. While the jumping Metropolis Monte Carlo is not ergodic and
thus does not have a unique stationary distribution it satisfies detailed balance with
respect to the thermodynamically correct distribution by construction. Mathemati-
cally, the Boltzmann distribution at temperature T is one possible invariant measure
of the non-ergodic Markov operator of the jumping Metropolis Monte Carlo. In con-
trast to that, hybrid Monte Carlo is an ergodic Markov process, and the underlying
Markov operator has the target distribution as its unique invariant measure, i.e. it is
the unique stationary distribution [21]. If the two are combined by making a jump
step with probability Pjump and an HMC step with 1 − Pjump, an ergodic Markov
process results whose unique stationary distribution is the Boltzmann distribution
at temperature T .

3.4.3. The ConfJump Algorithm

Let M = {m1, . . . , mC} be a set of C low-energy configurations given in internal
coordinates (Z-matrix representation) obtained from some minimization algorithm
on the potential energy function V . Further, let Pjump denote the constant fixed
probability of making a jump step rather than an HMC step.

Preprocessing: Compute the jump proposition matrix A (cf. 3.4.1).

Starting from an initial configuration q(0) ∈ Ω, repeat the following:

1. Generate a uniformly distributed random number ζ ∈ [0, 1).

2. If ζ > Pjump, perform an HMC step (cf. 2.4).

3. Else, perform a jump step:

Let q = q(i) denote the current state, and let x be the Z-matrix representation
of q.

(a) Find the nearest low-energy configuration mj ∈ M to x. This is done
based on the cyclic Euclidian distance in the space of important dihedral
angles (cf. 2.5).

(b) Select a second low-energy configuration mk with probability Ajk.

(c) Compute x̃ = x + (mk − mj). Let q̃ be x̃ transformed into Cartesian
coordinates.

(d) Find the nearest low-energy configuration X ∈M to x̃.

(e) If X 6= mk, set q(i+1) := q.
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(f) Else, accept q̃ according to the Metropolis acceptance criterion (cf. 2.2),
i.e. generate a uniformly distributed random number ξ ∈ [0, 1) and set the
new configuration

q(i+1) :=

{

q̃, ξ < min {1, exp(−β∆V )}
q, else

. (3.35)

This is done either for a fixed number of times n or until convergence is detected.
Afterwards, conformations can be identified from the trajectory

(

q(i)
)

by successive
Perron Cluster Analysis as described by Cordes et al. in [13].

3.4.4. Efficiency of the ConfJump strategy

A point that is only briefly discussed in [71] is the efficiency of the ConfJump strategy.
In fact, only a “proof of concept” using numerical examples is provided. Some
considerations regarding the theoretical efficiency of ConfJump will be presented
here.

When compared to pure HMC, the ConfJump strategy has very little computa-
tional overhead as long as the acceptance ratio for jump steps is reasonably high.
Its use of a jump proposition matrix for trial generation is hoped to improve the
efficiency over the similar Jump Between Wells method [60, 61] and has a low com-
putational overhead of O(C) as Ruiz’s algorithm usually converges within a few
iterations.

However, ConfJump relies fundamentally on precomputed information about low-
energy regions of the potential energy V which is a very rough high-dimensional
function. A global search strategy has to be employed in order to find all minima of
the conformational space. Any such algorithm is necessarily affected by the “curse of
dimensionality”, i.e. even if only a projection of V into some lower-dimensional space
(e.g. the space of heavy dihedral angles) is explored, the search algorithm will still
have a computational cost that is exponential in the dimension of the search space.
In fact, the number of local minima tends to increase exponentially with increasing
size of the system under consideration [29]. Additionally, little a priori information
about V can be employed as it is a multimodal nonconvex function [5]. Therefore,
the only available option when searching for all local minima is a systematic search.
Furthermore, in [76] Wille and Vennik proved theoretically that searching for all
minima of the Lennard-Jones part of the potential1 alone is already an NP-hard
problem.

It must also be stressed that low-energy regions in high-dimensional very rough
potential energy landscapes can hardly be expected to be all of a similar shape as
required for a good acceptance rate of jump steps. Rather, we would expect the
shape of low-energy regions to become more and more irregular. This poses a strong

1The Lennard-Jones potential is the additive part of V that describes the non-covalent, non-
electrostatic interactions between pairs of atoms, i.e. repulsion between atoms whose electron
orbitals overlap and van-der-Waals attraction [23, 37, 55].
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problem for ConfJump as the direction of jumps is determined exclusively by the
relative positions of q, mj , and mk to each other (see step 3c of the algorithm).

For these reasons, the applicability of ConfJump is limited to small to medium-
sized molecules from the outset. In practice, the ConFlow algorithm is able to
identify the low-energy regions of a wide-variety of drug-sized molecules.
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4. Convergence diagnostics

When discussing Markov chain Monte Carlo algorithms in chapter 2, one very im-
portant question has been left open: For how many steps should the algorithm be
iterated until the sampled distribution is a reasonably good approximation of the
“true” distribution? Some criterion is needed to determine when improvements in
the quality of the approximation of the target distribution can no longer be expected
from continuing the simulation. A related question that is no less important is: How
do we differentiate between “good” and “bad” sampling runs? Given two or more
sampling results, which one approximates the physically correct distribution best?
This requires a distance measure, preferably a metric, on a suitably defined space of
sampling results.

While any rigorously conducted MCMC sampling converges towards the thermo-
dynamically correct distribution of the system under consideration in O(

√
n) [21]

with the number of simulation steps n going to infinity almost surely, this is only
statistical convergence, and it is very hard to tell in practice when a given upper
bound for the sampling error has been reached. Therefore, heuristics must be used
which, while not generally able to detect true convergence, can at least give a nec-
essary condition for convergence. All convergence criteria are necessarily unreliable
for slowly mixing Markov chains [15], i.e. for chains whose state space is divided into
subsets between which transitions are rare. This is an intrinsic property of MCMC
algorithms applied to molecular systems in some physically meaningful statistical
ensemble where the sampled high-dimensional probability density functions are very
rough [70]. No generally applicable convergence criterion for ergodic Markov pro-
cesses is able to reliably distinguish between true convergence and local convergence
within some metastable region in conformational space [9]. If a convergence monitor
signals convergence, it is always possible that yet undiscovered regions with high
statistical weight exist which are separated from the sampled subset by high energy
barriers [45]. Obviously, using more than one convergence diagnostic can give a
stricter criterion of (global) convergence and thus increase the probability to detect
local convergence.

A wide variety of approaches is in use for convergence diagnostics; for an overview
see [9] or [15]. Most methods are based on analyses of the properties of Markov
processes and applicable to a wide field of problems. The most commonly used of
these is presented in section 4.1.
In addition to that, knowledge of the properties of the systems under consideration
can (and should) be employed. In section 4.3 a semi-empirical convergence criterion
is developed which can give an independent necessary condition for convergence of
the MCMC method for molecules that contain rotational symmetries.
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Generalization of this criterion leads to a histogram-based method for comparing the
results of two different sampling runs which is presented in section 4.2.

4.1. The Gelman-Rubin Criterion

The Gelman-Rubin statistic [8, 26] is one of the most widely used convergence indi-
cators in practice. Gelman and Rubin’s algorithm has a low computational cost, it
is applicable to any type of ergodic Markov process and very easy to implement.
Gelman and Rubin’s approach requires multiple independent Markov chains which
are launched from different starting points from an overdispersed distribution. It
differentiates between true convergence and a trapping in some subset of the confor-
mational space on the basis of a comparison of the variance within each chain with
the variance between chains for some set of one-dimensional real-valued observables.

For m independent Markov chains with a length of n steps each the average of the
m within-chain variances for an observable θ is given by

W =
1

m(n− 1)

m
∑

j=1

n
∑

i=1

(θi
j − θ̄j)

2, (4.1)

where θi
j denotes the value of θ at step i in chain j. The variance between the m

chain means θ̄j is

1

n
B =

1

m− 1

m
∑

j=1

(θ̄j − θ̄)2. (4.2)

From W and B the total variance of the observable θ can be estimated:

σ̂2 =

(

1− 1

n

)

W +
1

n
B. (4.3)

If the MCMC simulation has converged, W and σ̂2 are almost equal since W and
B converge (statistically) to the same value. If, however, one chain gets trapped
within one local subset of the conformational space which it never leaves while other
chains generate a significant number of samples from other regions as well, then W
will be lower than B. σ̂2 is an overly strict estimate of the total variance. Taking
the sampling variance of both µ̂ = θ̄ and σ̂2 into account yields a pooled posterior
variance estimate

V̂ = σ̂2 +
B

mn
. (4.4)

The Gelman-Rubin statistic, also called potential scale reduction,

√

R̂ =

√

V̂

W
, (4.5)

the square root of the ratio between the pooled and within-chain variance estimate, is
then used as a measure for how much closer the sampled distribution might become
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to the stationary distribution if the simulation were run longer.
√

R̂ is always greater
than 1 and converges to 1 + 1

mn

n→∞−→ 1 almost surely. Gelman and Rubin suggest

running the simulation at least until
√

R̂ is less than 1.1 or 1.2 [25, 27].
In order to generate starting points from an “overdispersed” distribution, a short

disperse sampling is performed in which m independent Markov chains are launched
from the same arbitrary starting point at a high temperature Tdisperse. This leads to
a Boltzmann distribution that covers the distribution at temperature T in the sense
that it shares all important minima and maxima with it while being generally more
variable. A subsequent very short burn-in sampling at a temperature Tburn-in ≤ T
ensures that the points from which the m Markov chains used for the actual sam-
pling start lie within important regions under the distribution at temperature T , i.e.
usually near local minima of the potential energy surface.

For all experiments described in this thesis the implementation by Holger Meyer [47]
is used which monitors convergence in all d important dihedral angles (cf. 2.5) by
using both the sine and the cosine of each torsion angle ϕi as linearized observables
which results in 2d observables for each of which a potential scale reduction factor
is computed at regular intervals. Approximate convergence is assumed when the
maximum of these factors drops below a fixed threshold (usually 1.01).

Monitoring convergence by the Gelman-Rubin method has a low additional com-
putational cost since the samples generated in all m chains are equally used for the
subsequent cluster analysis. This is possible because due to ergodicity running mul-
tiple moderately long Markov chains is equivalent to running one very long chain
in the limit [28]. Only a small computational overhead of O(m) arises from the m
short disperse and burn-in samplings.

The Replica Exchange method (cf. 3.3) which inherently uses multiple indepen-
dent Markov chains is directly accessible to Gelman and Rubin’s method. With m
chains at different temperatures which are allowed to exchange temperatures in fre-
quent intervals the within-chain variance and between-chain variance as calculated
by equations 4.1 and 4.2 also converge to the same value. However, the combined
distribution sampled by these “switching” chains on a generalized ensemble (see fig-
ure 3.6) is different from the target distribution (which, in fact, is only sampled by
the Markov chain that is obtained by piecing together the segments at the sampling
temperature T ). Therefore, a greater total variance is expected from the combined
distribution, but the Gelman-Rubin convergence monitor is still applicable and no
less reliable than on m Markov chains sampling the Boltzmann distribution at tem-
perature T . This were not the case if the RE method were implemented using m
chains at different temperatures which exchange positions rather than temperatures
since in that setting each chain would sample a different distribution.

4.2. Comparing Sampling Results

The primary goal of this thesis, comparing the performance of the three HMC-based
sampling methods presented in chapter 3 on a certain set of molecules, requires com-
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parisons of different sampling runs. Different ideas were considered with the aim that
comparisons can be performed easily and independently of the generating sampling
technique while incorporating as much as possible of the information generated in
the sampling process. The idea to compare clustering results was quickly discarded
as there is no way to define an informed distance measure on sets of clusters in a
high-dimensional space. Further, it was felt that the sampling results should be
compared in a more direct way. Thus, a metric on approximated statistical distribu-
tions, which are directly computable from any sampling result, was developed, which
is presented in this section. A variant of this metric has been developed which is
able to monitor convergence during sampling. The resulting symmetry criterion is
presented in the following section.

The result of an HMC sampling run with a total length of n steps is a time
series (trajectory) of molecule configurations (q1, . . . , qn). Projected into the con-
formational space defined by “heavy” dihedrals (cf. 2.5), it becomes a time series
(Φ1, . . . ,Φn) whose data points are vectors of dihedral angles Φ = (ϕ1, . . . , ϕd),
where d is the number of dihedral angles used to define the conformational space.
This projection discards information from those degrees of freedom which do not
define metastabilities.

When comparing two sampling results it makes no sense to look at individual
molecule configurations. Rather, we want to compare the distributions sampled by
the two simulation runs. It should be noted that in doing so all information about
the order in which the sampling points where generated (and thus information about
transition probabilities) is discarded. Instead of trying to compare two d-dimensional
sampled probability density functions, comparisons are performed on the basis of the
projections of the sampled distribution into each of the d 1-dimensional subspaces of
the conformational space, i.e. we look at the sampled distributions in each dihedral
angle separately. A sampling result S is thus interpreted as a tuple of approximated
1-dimensional statistical distributions S = (ρ1, . . . , ρd) for each dihedral angle, each
defined on the interval [0, 2π). Being density functions, the functions ρi are non-
negative with

∫ 2π

0

ρi(ϕ) dϕ = 1.

These distributions can easily be discretely approximated as histograms for each
torsion angle by binning all configurations Φj according to their value of ϕi using z
bins of equal width.

1-dimensional projections are used instead of the original sampled distribution
because comparing two d-dimensional is simply not practicable. Comparing two
d-dimensional functions using a discretization of z bins in every dimension has a
computational cost of zd (and requires the same number of memory cells for storing
the resulting histogram) which can only be done in a reasonable time for very low
values of d. The determining factor for the cost of comparing sampling results should
be the number of sampling points n which has a linear influence on the computational
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4.2. Comparing Sampling Results

cost as every point has to be processed exactly once when accumulating a histogram
of the density of the sampling points. Comparing sets of d 1-dimensional histograms
instead has a cost of z ·d (both in time and memory) which is clearly preferable. The
same idea of looking at the d degrees of freedom separately rather than discretizing
the original d-dimensional space is used in [13] for cluster analysis.

If a metric defined on the space of d 1-dimensional projections of the d-dimensional
sampled distribution indicates a distance of zero between two sampling results, this is
only a necessary condition for the original two approximated d-dimensional distribu-
tions being identical. However, since both distributions are the results of samplings
of the same molecule exploring the same potential energy landscape, correlations
between dihedral angles are expected to have the same effect in both sampling re-
sults so that the difference in the original sampled distributions is not expected to
be significantly greater than the difference measured between the sets of their 1-
dimensional projections. Moreover, if that difference lies below some threshold so
that the sampling results would be considered “similar”, the distance between the
original d-dimensional distributions is expected to be “low” as well.

Let S1 = (ρ1, . . . , ρd) and S2 = (σ1, . . . , σd) be two sampling results given by the
approximated distributions ρi and σi, respectively, for each dihedral angle ϕi. An
informative measure for the difference between S1 and S2 within one torsion angle
ϕi is the L1-metric in function space:

δi(S1,S2) =
1

2

∫ 2π

0

|ρi(ϕ)− σi(ϕ)| dϕ. (4.6)

The factor 1
2

ensures that values of δi are always in the interval [0, 1]:

∫ 2π

0

|ρi(ϕ)− σi(ϕ)| dϕ ≤
∫ 2π

0

ρi(ϕ) + σi(ϕ) dϕ = 2. (4.7)

The value 2 is not only an upper bound for the difference integral, but the integral
can actually take on this value, namely if ρi(ϕ) = 0 for every point ϕ with σi(ϕ) > 0
and vice versa.

The metric defined in equation 4.6 can be extended to a metric over tuples of
dihedral distributions by simply averaging over all dihedrals:

δ(S1,S2) =
1

d

d
∑

i=1

δi(S1,S2)

=
1

2d

d
∑

i=1

(
∫ 2π

0

|ρi(ϕ)− σi(ϕ)| dϕ
)

. (4.8)

This metric is highly informative since it uses information from every point in every
histogram and is therefore well-suited for measuring distances between sampling
results.

47



4. Convergence diagnostics

Let W = (w1, . . . , wd) ∈ [0, 1]d be a weight vector with
∑d

i=1wi = 1. Then the
weighted average over the metric’s values for each dihedral,

δ̃(S1,S2) =
1

2

d
∑

i=1

wi ·
(
∫ 2π

0

|ρi(ϕ)− σi(ϕ)| dϕ
)

, (4.9)

is a metric as well. Note that δ is a special case of δ̃ for wi = 1/d, i = 1, . . . , d. δ̃
allows weighting the histograms for the different dihedral angles against each other,
which can be used to put more emphasis on major metastabilities separated from
the rest of conformational space by high potential energy barriers than on minor
metastabilities which correspond to shallower local minima in conformational space.
As an example, w = 1/λ2 can be used, where the second eigenvalues of each dihedral’s
transition matrix T discovered by successive Perron Cluster Analysis [13]. This
means weighting the dihedrals by their degree of metastability.

In practice the density functions ρi are approximated by histograms Hi each of
which consists of z bins H1

i , . . . , H
z
i of equal width which form a discretization of the

interval [0, 2π). The histograms are normalized, i.e. for all i = 1, . . . , d:

z
∑

j=1

Hj
i = 1.

The difference between two sampling results given as sets of histograms H and J is
then calculated as

δ(H, J) =
1

2d

d
∑

i=1

z
∑

j=1

∣

∣Hj
i − J j

i

∣

∣ (4.10)

which is the average bin-wise difference of all d pairs of histograms. Again, his-
tograms for different dihedrals can be weighted against each other in a way analogous
to equation 4.9.

The histogram-based metric thus defined is a very widely applicable method for
comparing different sampling results as it only depends on the sampling points them-
selves. Even the results of ZIBgridfree (cf. 3.2), which consist of a set of s sampling
results with different weights w1, . . . , ws ∈ [0, 1] each, can be compared to each other
and to sampling results from other techniques. The total histogram H for one ZIB-
gridfree sampling run is computed from the normalized histograms H̃1, . . . , H̃s of the
results from the samplings of the s partial densities (see 3.2.2) which are weighted
by the thermodynamic weights calculated in the sampling analysis:

H =

s
∑

i=1

wiH̃i. (4.11)

Similarly, the method can be applied to results of sampling techniques that assign in-
dividual weights to all sampling points. These point weights can easily be taken into
account when accumulating the histograms: When a sampling point with weight w
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4.3. Symmetry criterion for convergence

is determined to fall into a bin b, the counter for b is not increased by 1 but by w.

With this distance measure the quality of different sampling runs can be judged
by comparing the different sampling results to a reference. Unfortunately, there
exists no general method for assessing the quality of a sampling run, and thus it is
in general impossible to create a reliable reference run. However, one can at least
use a sampling run as reference in which one has great confidence, e.g. because of

• having run the simulation for a very long time,

• obtaining very similar results (as measured by the metric presented in this sec-
tion) from very long simulations with different sampling methods, e.g. Replica
Exchange and ConfJump, from different starting points, and/or

• finding many features of the sampling result in accordance with chemical in-
tuition and possibly expert knowledge.

As mentioned in section 3.4 the ConfJump approach has been found to be reli-
able for typical drug-like molecules of small to medium size for which the ConFlow
algorithm can reliably identify representatives of all important low-energy regions.
Therefore, for the numerical experiments conducted for this thesis reference runs
were created by running several long ConfJump simulations (5 HMC chains at 200000
steps each), verifying that all pair-wise distances were below a threshold of 0.03 and
taking the simulation result as reference that had the lowest distance to all others.
This reference was then verified by performing long simulations using the Replica
Exchange methods and comparing the results to the reference run.

4.3. Symmetry criterion for convergence

When assessing the convergence behavior of different HMC-based sampling methods,
it is clearly not advisable to rely on Gelman and Rubin’s statistic alone, as

• no convergence indicator is able to reliably discern true convergence on the
whole conformational space from local convergence within some metastable
region (see [9] and also page 43 in this thesis), and

• when dealing with very rough high-dimensional functions such as the Boltz-
mann distributions of biomolecules, it is quite probable that some region in
conformational space with a high statistical weight is never reached by any of
the Markov chains, a case in which the Gelman-Rubin statistic falsely indicates
convergence.

Therefore, it has been one of the goals of this thesis from the outset to develop
a new convergence criterion to be used in addition to Gelman and Rubin’s method
which would incorporate knowledge about the system to be simulated. The idea
for the criterion presented in this section stems from the observation that many
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biomolecules contain rotational symmetries which should, of course, be reproduced
in sampling. If e.g. the molecule under consideration contains a symmetric planar
ring that is connected to the rest of the molecule by one single bond1, the distribution
of the torsion angle corresponding to that single bond over all molecule configura-
tions generated should be periodic with a period of π (see fig. 4.1). A configuration
with the torsion angle at a value of ψ and the configuration that has the same torsion
angle set to π + ψ but is otherwise identical to the first one behave physically and
chemically in the same way and are therefore generated with equal probability in
sampling.
A measure for the sampling error in a rotationally symmetric dihedral is defined
on the basis of the metric for comparing histograms developed in section 4.2. This
criterion proposed here is only applicable to molecules containing rotational sym-
metries. However, a cursory look at the ligand structures stored in the Protein
Data Bank [4] reveals such symmetries, particularly symmetric planar ring struc-
tures to be an abundant feature of drug-like molecules. It is worth noting that the
symmetry criterion is applicable to a large fraction of the class of peptide ligands
(see e.g. [14, 20, 34]), as the amino acids phenylalanine and tyrosine each contain a
symmetric aromatic ring.
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HO HOOH OH

H H
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Figure 4.1.: Rotation of a symmetric planar ring and its effect on the potential en-
ergy.

In order to define a measure of sampling error based on this, a histogram is created
for each rotationally symmetric torsion angle of the molecule. This is done by binning
the configurations generated by sampling according to their value for the symmetric
torsion angle. Throughout this work a fixed bin width of 5◦( π

36
) was used. Then

the sections of the histogram that are expected to be identical due to molecule
symmetries are compared to each other. This is done by applying the error measure
for comparing histograms presented in section 4.2 to all pairs of symmetric histogram
sections (see fig. 4.2). The symmetry error measure is derived from equation 4.6. It
is defined as the mean bin-wise difference between all pairs of symmetric sections
of the (normalized) histogram H (as defined on page 48) for a symmetric torsion
angle ϕ.

1This connecting bond must lie on a symmetry axis of the ring.
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4.3. Symmetry criterion for convergence

For 180◦ rotational symmetry the symmetry error is calculated as

Esym(ϕ) =

z/2
∑

i=1

∣

∣Hi −H z
2
+i

∣

∣ . (4.12)

Using a bin width of π
36

yields a number of bins z = 72.
In the case of 120◦ rotational symmetry the average difference between three pairs
of histogram sections is used:

Esym(ϕ) =
1

2

z/3
∑

i=1

(

∣

∣Hi −H z
3
+i

∣

∣ +
∣

∣

∣
Hi −H 2z

3
+i

∣

∣

∣
+
∣

∣

∣
H z

3
+i −H 2z

3
+i

∣

∣

∣

)

. (4.13)

The factor 1
2

again ensures that the error is in the interval [0, 1] and is calculated
as 1

3
, for averaging between 3 pairs of histogram sections, divided by 2

3
which is the

maximum average difference between these pairs.

Figure 4.2.: The symmetry error for a single bond with 180◦ rotational symmetry is
measured as average bin-wise distance between periodic sections of the
corresponding histogram.

Thus, we obtain an informative measure for the sampling error which yields a
necessary condition for convergence: If the sampling error is still above some fixed
threshold, the MCMC sampling has not converged, yet. The convergence criterion
gets stricter with every rotationally symmetric single bond in the molecule as, like
with the Gelman-Rubin indicator, the maximum of all symmetry errors is used as
convergence monitor.

4.3.1. Applicability of the symmetry criterion

The symmetry criterion is applicable to all MCMC methods that sample a Boltzmann
distribution, such as ConfJump and Replica Exchange. When performing Replica
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Exchange, either the combined distribution of all chains (which is not a Boltzmann
distribution but preserves symmetric behavior) or a Markov chain that is composed
of all segments that are at the sampling temperature T can be used. The latter
approach was chosen for the simulations performed for this thesis as it was felt that
this would give a stricter criterion of convergence due to the fact that only the
low-temperature data are used in the cluster analysis.

ZIBgridfree samples a series of different distributions based on modified poten-
tial energy functions which do not necessarily assign the same energy value to two
symmetric configurations. Reconstructing the overall sampled distribution requires
reweighting of the sampling results under each modified potential against each other
which has a computational cost of O(ns3), where s is the number of modified poten-
tial energy functions and n is the number of sampling steps per individual sampling
run (cf. 3.2.6). Moreover, the weights change as the sampling progresses. Thus,
building the histograms for the symmetric torsion angles requires looking at all time
steps of the samplings under each potential modification. Therefore, a convergence
monitor based on symmetry errors should not be used for ZIBgridfree due to its
prohibitive computational cost. However, it is easy to calculate symmetry errors
during cluster analysis after the correct weights are calculated. The histogram for
a symmetric torsion angle is built by adding histograms for the sampling runs in
each potential modification which are multiplied by the respective weight of the
corresponding partial density function.

In an RE or ConfJump simulation with an interval of convergence tests ttest the
histogram at a time t can be reused when estimating the distribution at time t+ttest.
Therefore, each convergence test based on the symmetry criterion only needs to look
at the last ttest sampling steps. This is, in fact, less than the computational cost
of the Gelman-Rubin convergence monitor which has to look at all t + ttest steps.
Figure 4.3 shows the symmetry error decreasing in a typical sampling run using the
Replica Exchange method for the molecule L-benzylsuccinic acid (BZS) shown in
figure 5.1, which contains one 180◦ rotationally symmetric bond.

The fact that multiple chains are sampled as a requirement of Gelman and Rubin’s
method is useful for the symmetry criterion as well. By using 5 chains which is neither
divisible by 2 nor by 3, we know that at least one chain must sample the transition
between the 2 (or 3) symmetric parts of a monitored dihedral’s distribution in order
for an approximately equal number of points being generated from all symmetric
parts. If e.g. all 5 chains never crossed the barrier between the two periodic regions
in the distribution of a 180◦ rotationally symmetric torsion angle, there would be
at best 3

5
of the sampling points in one region and 2

5
in the other. The symmetry

criterion is thus able to recognize this type of local convergence.
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Figure 4.3.: The symmetry error decreases with growing number of simulation steps.

4.3.2. Automatic detection of molecule symmetries

Of course, it is desirable that the user of conformation analysis software such as
the ZIBgridfree program [47] need not input the information about rotational sym-
metries. Rather, it should be possible to identify such symmetries automatically
without any input from the user. Therefore, the following algorithm has been devel-
oped for examining symmetric properties of a molecule based on its topology.

Rotational symmetry of single bonds in a molecule is a property of the molecule’s
topology rather than its geometry. If two “branches” of a molecule are consid-
ered symmetric based on a topological analysis, the only geometric property that
remains to be tested is whether there exist chirality centers in the branches. There-
fore, rotational symmetries in a molecule are mainly determined based on a graph
representation of the molecule.

Let a graph G = (V,E) with a set of nodes V and a set of undirected edges
E ⊆ V × V be a graph representation of the given molecule, i.e. each node v ∈ V
represents one atom by storing the atom’s unique index and its atomic number, and
each edge e = (u, v) = (v, u) ∈ E represents a bond between atom u and atom v.
Then a node v with degree g = deg(v) ≥ 3 is a symmetry center if after removing
one edge (u, v) from the graph, the component of the remaining graph that contains
v and its remaining neighbors v1, . . . , vg−1 can be split into g − 1 non-overlapping
isomorphic subgraphs so that no two edges (v, vi) and (v, vj), i 6= j, are part of
the same subgraph. Such a graph partitioning is shown schematically in figure 4.4.
Then the edge (u, v) is rotationally symmetric if it is a single bond. Since we are
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interested in biomolecules, it is sufficient to consider nodes with a degree of 3 or 4,
i.e. 2 symmetric branches resulting in a 180◦ rotational symmetry or 3 symmetric
branches which gives a 120◦ rotational symmetry.

v

u

v1 v2

vg-1

...

Figure 4.4.: An edge is rotationally symmetric if the connected component border-
ing on one node v of the edge can be split into deg(v) − 1 isomorphic
subgraphs.

All symmetry centers (and consequently all rotationally symmetric single bonds)
for 180◦ rotational symmetry can be found efficiently by the following recursive
algorithm. It is assumed implicitly that no atom has more than four binding partners.
Full pseudocode can be found in appendix A.

Recursive algorithm for identifying symmetry centers

Start from an empty list of symmetric dihedrals.

For every node v ∈ V with deg(v) = 3 that is adjacent to a single bond described
by a “heavy” dihedral (cf. 2.5), repeat the following:

• For each neighbor u of v do:

1. Mark u and v as visited, all other nodes as unvisited.

2. Let l, r be the other two neighbors of v.
Call function compareSubgraphs(v, l, v, r) to determine whether the
branches starting with the directed edges v → l and v → r are isomorphic.

3. If the result of step 2 is True, the bond described by the edge (u, v) is
rotationally symmetric.
Identify the dihedral that describes the bond (u, v) and add it to the list
of symmetric dihedrals if each of the isomorphic branches contains more
than one atom.

compareSubgraphs(from1, to1, from2, to2)
Test the following cases in the order given:

Case 1: to1 = to2, i.e. a ring closes.
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to1/2

Figure 4.5.: Recursion ends if two branches meet.

a) to1 has ≤ 3 neighbors (at most one unvisited neighbor):

Return True.

b) to1 has four neighbors (two unvisited neighbors, l and r):

l r

to1/2

Figure 4.6.: Two branches meet at a new branching point.

Mark to1 = to2 as visited.
If compareSubgraphs(to1, l, to1, r), then return True.
Else, unmark to1 and return False.

Case 2: Nodes to1 and to2 are of different types of atoms or have a different number
of neighbors.
⊲ Atoms are incompatible ⇒ backtrack.
Return False.

Case 3: to1 has exactly one neighbor (the one we came from).

to1 to2

Figure 4.7.: Recursion ends at matching terminal atoms.

Return True.

Case 4: to1 and to2 have a different number of unvisited neighbors.
⊲ One branch is growing into the other ⇒ backtrack.
Return False.

Case 5: to1 has no unvisited neighbors.

Return True.
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to1 to2

Figure 4.8.: Recursion ends with a ring closing on each branch.

Else: Recurse into branches.
Set result ← False.
Mark to1 and to2 as visited.

a) to1 has 1 unvisited neighbor:

to1 to2

a A

Figure 4.9.: Only one path to pursue on each branch.

Set result ← compareSubgraphs(to1, a, to2, A).

b) to1 has 2 unvisited neighbors:

to1 to2

a b A B

Figure 4.10.: Branching point with 2 branches on each side.

⊲ The pairs of isomorphic subbranches are either (a, A) and (b, B) or
(a,B) and (b, A).
Call compareSubgraphs recursively to identify isomorphic pairs of
subbranches.
Set result accordingly.

c) to1 has 3 unvisited neighbors:

⊲ Try to find a permutation of (A,B,C) that is isomorphic to (a, b, c).
Call compareSubgraphs recursively to identify isomorphic pairs of
subbranches.
Set result accordingly.
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to1 to2

a
b

c A
B

C

Figure 4.11.: Branching point with 3 branches on each side.

If result = True, check for chirality.

a

b

c

a

b

c

a

b

c

a

c

b

Figure 4.12.: Two branches are not symmetric if they contain chiral atoms.

If the atom to1 is a chirality center, set result← False

⊲ See “A note on chirality” on page 57.

If result = False, unmark to1 and to2.
Return result.

The algorithm is very similar for 120◦ rotational symmetry. This variation is
omitted here.

A note on chirality

Chirality (or “handedness”) is a form of stereoisomerism which in organic chemistry
occurs with certain carbon atoms [48]. When a carbon atom is connected to 4
different functional groups, these can be arranged in two different ways that represent
nonsuperimposable mirror images of each other. Two molecules that differ only in
the configuration at one chiral center from each other have different physical and
chemical properties.

When looking for 120◦ symmetry, three branches that contain chirality centers can
only be accepted as symmetric if the chirality is the same on all branches. Otherwise
the resulting structure is not rotationally symmetric.

When trying to identify 180◦ rotational symmetry, however, two branches of a
molecule that are identified as symmetric based on topology must not contain any
chiral carbon atoms (see figure 4.12 for an illustration). Therefore, whenever in both
branches a node is discovered that has three undiscovered neighbors, the branches are
considered not symmetric if the functional groups to which the four neighbors belong
are all different. This property is tested in case 5c of the algorithm by applying a
variant of compareSubgraphs to pairs of the branches that start with from1, a,
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b, and c, respectively, until an isomorphic pair is found or all pairs have found to be
not isomorphic.
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The three sampling methods presented in chapter 3, ZIBgridfree, Replica Exchange,
and ConfJump were compared by trying to estimate the thermodynamically correct
distribution at 300K for the three model systems presented in section 5.2.

5.1. Performance measure for sampling runs

The most important quantities for comparing different sampling methods are the
time requirement, the mean accuracy, and possibly the memory requirement of each
strategy. It was decided to deal with the latter only theoretically and only incor-
porate the former two quantities into a measure of performance. The reciprocal of
the product of a time measure and a measure of sampling error is well suited as
performance measure as both time and sampling error will be close to zero in the
optimal case and large for “bad” sampling runs. It is impossible to normalize the
two measures against each other as no general statement is possible about the ratio
between one unit of time and one unit of error (in fact, this ratio is being examined
in this study). This leads to the problem that it is impossible to tell which case is
worse, that of a high sampling error after a short sampling time or that of a long
sampling yielding a low sampling error, where the product of the two is the same
in both cases. However, it is not the goal of this thesis to compare arbitrary sam-
pling runs, and samplings are always run either until all convergence criteria signal
convergence or until a fixed number of time steps which is chosen relatively high.
Therefore, the sampling error can be expected to be approximately on the same or-
der of magnitude for all samplings while the actual number of iterations needed by
each sampling run can differ strongly. At least, the constellation of a high sampling
error at a low sampling time is actively prevented. Thus, the performance measure
proposed here can be thought of as a measure of time until convergence augmented
by a punishment factor for sampling error.

As all sampling techniques under consideration are based on the hybrid Monte
Carlo approach (cf. section 2.4), it is sufficient to measure the time of each sampling
run in terms of total HMC steps. Corrections are necessary only for the preprocessing
step of ConfJump in which representatives from all low-energy regions are generated
(see 3.4). No correction was used for the presampling phase of ZIBgridfree, as that
value is low compared to the total number of time steps in 100 subsamplings (cf. 5.3).

As the identification of all low-energy regions in conformational space is not based
on HMC, a correction factor ν is introduced, which is the average time needed
by a simulation per HMC step on the same computer on which the preprocessing
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was performed. Thus, the time needed for detecting all low-energy regions in the
preprocessing can be expressed in HMC steps by division by ν.

The sampling error is measured as the distance between a sampling result and
the result of a reference run by the metric developed in section 4.2. Reference runs
were generated for each molecule by performing several very long runs (1.2 · 106

steps overall) of ConfJump and Replica Exchange, respectively, and choosing the
one which had the least distance to all others after removing obvious outliers. The
sampling runs used for creating the reference were discarded afterwards. Visual
inspection of the distributions in all heavy dihedrals also shows almost no flaws for
all the reference runs for every model system used (see chapter 6). The sampling
error must, of course, be considered zero if it lies below some fixed threshold due
to the inherent uncertainty inherent in the generation of reference runs which is
explained in more detail in section 4.2. The unweighted form of the sampling error
(calculated by equation 4.10) is used for evaluating the quality of all simulations.
It has been found empirically that when comparing pairs of random histograms,
the average bin-wise difference is 15.0%. When evaluating sampling error alone,
samplings that have an average bin-wise difference from the reference of less than
1%, are considered equal. Values above 1% are considered very low up to 3%, low
between 3% and 6%, medium between 6% and 11% and high if they lie above 11%.
The same scale applies to the symmetry error.

The performance of a sampling run S is measured against a reference run Sref in
all practical experiments as

G(S) =
1

n · δ(S,Sref)
, (5.1)

where n is the total number of HMC steps performed during sampling which is
corrected as described above.

5.2. Molecules used for this study

The performance of the sampling methods was measured for three different ligand
molecules which were extracted from the Protein Data Bank (PDB) [4]. The particu-
lar choice of ligand molecules used here was inspired by Boström [6]. Only molecules
were chosen that contain 180◦ rotational symmetries so as to be able to use the
semi-empirical convergence criterion developed in section 4.3. Table 5.1 shows that
the three molecules chosen from the PDB differ considerably with respect to their
size and complexity. The structural formulas of the molecules are shown in figures
5.1, 5.2, and 5.3. The single bonds that correspond to heavy dihedrals are labeled
with numbers.

L-Benzylsuccinate (found in the PDB under its “HET ID” BZS) is an inhibitor
of carboxypeptidase A [40]. It consists of 25 atoms of which 10 are hydrogen. The
molecule is shown in figure 5.1 and has one rotationally symmetric single bond
which connects the aromatic ring to the rest of the molecule. Its conformations
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5.2. Molecules used for this study

HET ID atoms H atoms d dsym

BZS 25 10 5 1
TOP 39 18 5 2
BSI 46 18 7 2

Table 5.1.: The molecules used for this study. d is the number of heavy dihedrals, and
dsym is the number of rotationally symmetric dihedrals (180◦ rotational
symmetry).
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Figure 5.1.: L-Benzylsuccinate (BZS). Numbers 1–5 indicate heavy dihedrals.

are described in terms of 5 “heavy” dihedral angles. BZS is the smallest and least
complex system considered in this work.

1 3

2

4

5

Figure 5.2.: Trimethoprim (TOP), an antibiotic.

Trimethoprim (HET ID: TOP) is an antibiotic that works by inhibiting bacterial
dihydrofolate reductases [11]. The molecule consists of 39 atoms of which 18 are
hydrogen and is more complex than L-benzylsuccinate. Of the 5 heavy dihedrals in
the Trimethoprim molecule two are rotationally symmetric, namely the two bonds
that lie in the symmetry axis of the aromatic ring shown on the left hand side in
figure 5.2, one facing the greater part of the molecule, the other facing the central
(-OCH3)-group.

BSI (2-(Biphenyl-4-sulfonyl)-1,2,3,4-tetrahydro-isoquinoline-3-carboxylate) is an
inhibitor of the enzyme neutrophil collagenase which is also called matrix metal-
loproteinase 8 (MMP-8) [41]. At 46 atoms of which 18 are hydrogen, BSI is not
only the largest but also the most complex molecule under consideration in this
work. As clearly visible in figure 5.3 the molecule contains a non-aromatic ring (top
left), which is why a similar behavior to that of cyclohexane (see figure 3.1) can
be expected from BSI. It is expected that this ring can assume two very different
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Figure 5.3.: 2-(Biphenyl-4-sulfonyl)-1,2,3,4-tetrahydro-isoquinoline-3-carboxylate
(BSI).

configurations that are separated by extremely high energy barriers which makes the
sampling very difficult. Of the 8 heavy dihedrals spanning the molecule’s conforma-
tional space 2 describe rotationally symmetric single bonds, namely that connecting
the two aromatic rings on the right hand side and the bond that connects one of
these rings to the sulfur atom.

5.3. Simulation details and choice of parameters

5 experiments were conducted for each molecule and each sampling strategy under
consideration which yields a total of 45 simulation runs. The 5 simulations for one
molecule using the same technique were run with the same set of parameters except
for the initial state of the random number generator which was chosen differently
for each simulation run. All computer simulations were performed using the ZIB-
gridfree framework [47]. All methods developed for this thesis, most importantly the
symmetry criterion (cf. 4.3) and the algorithm for automatic detection of molecule
symmetries (cf. 4.3.2) have been implemented within this framework which already
contained all three simulation techniques compared in this thesis. The ZIBgridfree
program is written in C++ and uses libraries from amira [63] and amiraMol [56].

All experiments were run at a temperature of 300K which is near to typical phys-
iological temperatures. Every individual HMC sampling run (including the presam-
pling phase of ZIBgridfree) was started with a disperse phase at a temperature of
2000K for 300 HMC steps and a burn-in phase at 300K for 10 steps in order to en-
sure that the Markov chains start in different regions of Ω. All disperse and burn-in
sampling steps are discarded (cf. section 4.1). Each HMC proposal was generated
by 60 integration steps of molecular dynamics. The length of an MD step was chosen
as 1.3fs. All three methods were used with the parameters set to values that were
found to be suitable in earlier experiments, see e.g. [45, 71].

ZIBgridfree simulations were restricted to 100 nodes resulting in 100 partial dis-
tributions to be sampled. The maximum number of HMC steps within for the
sampling of each partial density was set to 20000 per chain. 60 MD steps were per-
formed for trial generation for HMC in the “horizontal” sampling (see section ref-
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5.3. Simulation details and choice of parameters

sec:zmfsampling), while 30 steps of MD were used for generating the configurations
q′j in the “vertical” sampling. In presampling the maximum number of HMC steps
allowed was 18000. 5 Markov chains were launched per simulation both in presam-
pling and in sampling resulting in a total upper bound of approximately 11 · 106

HMC steps depending on the actual number of nodes used. The presampling was
performed at a temperature of 2500K, and convergence was detected by a Gelman-
Rubin statistic (see section 4.1) using a threshold of 1.05. The convergence of the
sampling was monitored by ... Convergence checks were performed every 500 HMC
steps. In order to accelerate calculations a cutoff value of 10−6 was used below which
the value of a basis function φi was set to zero.

Replica Exchange simulations for all three molecules were performed with 10 chains
at temperatures of 300K, 387.46K, 500.43K, 646.33K, 834.77K, 1078.14K, 1392.48K,
1798.45K, 2322.79K, and 3000K which were determined by equation 3.31. The max-
imum number of steps allowed per chain was set to 100000 which amounts to a total
upper bound of 106 HMC steps. Convergence was monitored by a combination of
the Gelman-Rubin statistic with a threshold of 1.01 and the symmetry criterion (cf.
section 4.3) using a threshold of 0.04. Convergence tests were performed at intervals
of 500 HMC steps.

For the ConfJump simulations the same convergence criteria were used as for
Replica Exchange (although the interpretation of the value of the Gelman-Rubin
statistic changes slightly for Replica Exchange, see section 4.1). The same total
upper bound of 106 HMC steps was chosen (mainly due to memory limitations) which
corresponds to 200000 maximally allowed steps in each of 5 Markov chains. The same
sets of precomputed representatives of the low-energy regions of the potential energy
as in [71] were used for all three molecules. As ConfJump simulations are expected to
converge fast from the simulations performed in [71], convergence was checked every
200 steps. The probability of jump steps was set to Pjump = 0.2 for all simulations
(see 3.4).
Correction factors ν (cf. 5.1), which are used to express the time for generating
representatives of all local minima of the molecule, were calculated for all three
molecules from ConfJump simulations of 1000000 steps in length (similar to the
actual simulation runs in setup) as shown in table 5.2.

HET ID tConFlow ν c
BZS 470s 83.1 39000
TOP 1700s 47.0 80000
BSI 2700s 34.5 93000

Table 5.2.: Time of generating representatives of low-energy regions tConFlow (in s),
number of HMC steps per second ν (in a ConfJump run), and c, the
product of the two, for the three model systems (approximate values).
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6. Results

In the following tables ‘error’ is the sampling error, ‘steps’ is the total number of
HMC steps performed, the column ‘corrected’ contains the corrected number of
steps in the case of ConfJump, ‘performance’ is the performance as calculated by
equation 5.1 while ‘Esym’ and ‘G-R’ contain the final values of the symmetry and
Gelman-Rubin criterion, respectively. µ̂ denotes the means over the values for the 5
respective sampling results while σ̂ is the estimated standard deviation.

6.0.1. L-Benzylsuccinate

Figure 6.1 shows the 1-dimensional projections of the Boltzmann distribution of L-
benzylsuccinate at 300K sampled by the reference run, a ConfJump simulation with
a length of 120000 steps per chain performed with overly strict convergence criteria
but with the other parameters set to the values given in section 5.3. The three
dihedral angles corresponding to rotationally symmetric single bonds, namely the
bond next to the aromatic ring (top left panel in figure 6.1) and the two bonds that
are adjacent to the carboxyl groups (bottom panels), show nearly perfect symmetry
at visual inspection. The symmetry error for the monitored dihedral (1) is very low
at 2.06%. The distribution of dihedral 2 (see figure 5.1; top center in figure 6.1)
shows two peaks with different weight. Remarkably, dihedral 3 (top right panel)
shows only a single peak which is probably due to the strong repulsion between the
two negatively charged carboxyl groups.

The ZIBgridfree strategy achieves a very low to medium sampling error except for
one outlier which is highly different at 20.5% average bin-wise difference from the
reference (see table 6.1). Excluding this outlier (line 4 in table 6.1), the average is
low at 5.83% with a standard deviation of 3.02%. Therefore, it can be concluded that
the ZIBgridfree method can reproduce the Boltzmann distribution at T = 300K with
a fairly low sampling error when using a meshless discretization into s = 100 partial
densities. The symmetry error is very low to medium, again except for simulation
run 4, with values between 2.9 and 8.6%. It must be noted that the results produced
by ZIBgridfree have a high standard deviation, which is almost as high as the means
with respect to sampling error, symmetry error and overall performance relative to
the reference run.
The method needs many time steps, and frequently, the sampling of a partial density
function does not converge (according to the criterion that was used (see 5.3)).
Therefore, the average simulation time (measured in HMC steps) is high at about
11.5 ·106 with a standard deviation of 322000. Consequently, the performance is low
at values between 4 · 10−7 and 4 · 10−6.
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Figure 6.1.: The sampled distributions of the five heavy dihedrals of L-
benzylsuccinate. Numbers below the diagrams refer to the dihedrals
marked in figure 5.1.

error steps performance Esym

1 0.0897 11.47 · 106 9.721 · 10−7 0.0857
2 0.0458 11.75 · 106 1.857 · 10−6 0.0364
3 0.0754 11.72 · 106 1.132 · 10−6 0.0288
4 0.2054 10.96 · 106 4.444 · 10−7 0.1592
5 0.0223 11.60 · 106 3.873 · 10−6 0.0428
µ̂ 0.0877 11.50 · 106 1.656 · 10−6 0.0706
σ̂ 0.0708 322000 1.339 · 10−6 0.0542

Table 6.1.: Results for BZS using ZIBgridfree.

Replica Exchange is able to reproduce the sampling result from the reference run
very well (see table 6.2). The mean sampling error is low at 3.6% average bin-
wise difference to the reference. However, all experiments except for the fourth
in table 6.2, where the sampling obviously has not converged (see the right-most
column, ‘G-R’), have yielded values that are below this average. Excluding the
outlier gives a very low mean error of 2.79% and a standard deviation of 0.42%. The
mean symmetry error is low at a value of 5.8% with a standard deviation of 2.35%.
Replica exchange converges fairly well according to Gelman and Rubin’s convergence
monitor within the maximally allowed number of HMC steps. This upper bound is
reached in 3 of the 5 sampling runs. The average simulation time is 946000 HMC
steps with a standard deviation of 358000. The average performance of the RE
method on BZS is 4.238·10−5, 5.002·10−5 after removing the outlier, with a standard
deviation of 2.8795 · 10−5 or 2.677 · 10−5, respectively. This is about 26 times the
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performance of ZIBgridfree.

error steps performance Esym G-R
1 0.0293 1.2 · 106 2.848 · 10−5 0.0642 1.02
2 0.0319 1.2 · 106 2.611 · 10−5 0.0948 1.05
3 0.0284 445000 7.912 · 10−5 0.0363 1.008
4 0.0704 1.2 · 106 1.183 · 10−5 0.0530 1.36
5 0.0220 685000 6.636 · 10−5 0.0398 1.008
µ̂ 0.03640 946000 4.238 · 10−5 0.0576 1.09
σ̂ 0.01937 358000 2.880 · 10−5 0.0235 0.152

Table 6.2.: Results for BZS using Replica Exchange.

In the simulations of L-benzylsuccinate, ConfJump yielded the best results on
average, with a mean sampling error of 2.17% which is very low (see table 6.3.
Highly accurate results are obtained with a high reliability as the standard deviation
of the sampling error is only 0.97%. The ConfJump sampling converged in every
case, i.e. the sampling error dropped below 0.04, and the Gelman-Rubin indicator
went below a threshold of 1.01 within the limit set for the number of HMC steps. In
fact, the sampling converged after less than 100000 steps (20000 steps per chain) in
4 of 5 runs.
The number of sampling steps was corrected by adding the correction value c =
39000 from table 5.2 for BZS. The resulting approximate total simulation time was
128800 with a very high standard deviation of 192200 due to the outlier in line 5 of
table 6.3. The performance calculated on the basis of these values was 4.639 · 10−4

on average and had a standard variance of 1.369 · 10−4. Thus, for L-benzylsuccinate
the performance of ConfJump was 32 times that of Replica Exchange and 827 times
as high as that of ZIBgridfree.

error steps corrected performance Esym G-R
1 0.0351 16000 55000 5.181 · 10−4 0.0393 1.007
2 0.0237 34000 73000 5.791 · 10−4 0.0393 1.009
3 0.0207 80000 119000 4.059 · 10−4 0.0389 1.007
4 0.0213 44000 83000 5.651 · 10−4 0.0397 1.005
5 0.0078 470000 509000 2.513 · 10−4 0.0400 1.0007
µ̂ 0.0217 128800 167800 4.639 · 10−4 0.03945 1.006
σ̂ 0.0097 192200 192200 1.369 · 10−4 0.0004 0.003

Table 6.3.: Results for BZS using ConfJump.

6.0.2. Trimethoprim

The sampled distributions over the 5 heavy dihedrals of Trimethoprim are shown in
figure 6.2. Again, the reference run was created by the ConfJump strategy running
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for 120000 steps per chain. The rotational symmetry of dihedral 1 is somewhat im-
perfectly reflected by the reference run (see top left panel), but still within acceptable
limits at a symmetry error of approximately 4.65%. Use of this particular run as
reference is justified by the fact that of all Replica Exchange and ConfJump runs it
is the one with the lowest mean distance to all others. The rotational symmetry of
dihedral 2 situated on the opposite side of the ring on the left hand side in figure 5.2
is considerably better reproduced by the result of the reference run, as a visual ex-
amination of the top center panel reveals. The distributions of the dihedrals of the
two methoxy groups at the sides of the symmetric ring (bottom panels) are nearly
identical (except for a shift by π), which is expected because the ring is symmetric
and the functional groups are equal. Therefore, they act chemically and physically
in the same way.

Figure 6.2.: The sampled distributions of the five heavy dihedrals of Trimethoprim.
Numbers under the panels refer to the numbering of heavy dihedrals in
figure 5.2.

ZIBgridfree produces consistently very low sampling errors with respect to the
reference for Trimethoprim at an average value of 2.66% with a standard deviation
of 0.6% (see table 6.4. Unfortunately, the symmetry error of the simulations was not
measured in the simulations. However, at visual inspection the dihedral distributions
look very similar to those in figure 6.2 for all 5 simulation runs (not shown).
ZIBgridfree’s overall performance on Trimethoprim is considerably better than for
L-benzylsuccinate. The sampling needs on average 9.5 · 106 steps at a standard
deviation of only 17000, which results in a mean performance of 4.2 · 10−6 with a
standard deviation of 1.25 · 10−6.

The Replica Exchange technique produces sampling results for Trimethoprim with
a low average sampling error of 3.88% at a standard deviation of 1.16% (see table 6.5,
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error steps performance
1 0.0290 9.715 · 106 3.548 · 10−6

2 0.0345 9.510 · 106 3.045 · 10−6

3 0.0244 9.445 · 106 4.332 · 10−6

4 0.0276 9.545 · 106 3.802 · 10−6

5 0.0172 9.260 · 106 6.280 · 10−6

µ̂ 0.0266 9.495 · 106 4.201 · 10−6

σ̂ 0.00638 165000 1.2515 · 10−6

Table 6.4.: Results for Trimethoprim using ZIBgridfree.

i.e. the results are reliably good. The symmetry error (which is actually the maxi-
mum of two symmetry errors, one for each symmetric dihedral) is, however, in the
medium range at 10% with a standard deviation of 3.31%. All simulation runs are
considered to have converged by the Gelman-Rubin criterion after the maximally
allowed number of 106 HMC steps.
As all 5 simulations have been run for the same time, the average performance de-
pends solely on the sampling error, which is very low in 4 of 5 cases. The mean
performance is thus 27.5 · 10−6 with a standard deviation of 7.48 · 10−6. This is 6.5
times as high as that of ZIBgridfree.

error steps performance Esym G-R
1 0.0274 106 3.654 · 10−5 0.1085 1.002
2 0.0347 106 2.882 · 10−5 0.0749 1.005
3 0.0558 106 1.791 · 10−5 0.1109 1.007
4 0.0450 106 2.222 · 10−5 0.1456 1.004
5 0.0312 106 3.206 · 10−5 0.0615 1.003
µ̂ 0.0388 106 2.751 · 10−5 0.1003 1.004
σ̂ 0.01155 0 7.484 · 10−6 0.03309 0.0017

Table 6.5.: Results for Trimethoprim using Replica Exchange.

The ConfJump strategy was more successful in reproducing the reference result
than Replica Exchange but less so than ZIBgridfree (see table 6.6. The mean sam-
pling error is 3.46% which is low. The standard deviation is 1.65%. As with the
RE simulations, the symmetry errors differ strongly between different sampling runs,
which gives rise to the conjecture that rotation around the single bond corresponding
to dihedral 1 of the molecule is sterically hindered to a high degree, possibly due
to electrostatic attraction between partial charges of different sign in the two rings.
The mean symmetry error is 9.7% with a standard deviation of 3.89%.
All simulations have been run for 106 steps, 120000 in each chain. Thus, the per-
formance only depends on the sampling error. A correction value of c = 80000 was
added to the simulation time for identifying representatives of all low-energy regions
in conformational space (see table 5.2. The mean performance was 3.332·10−5 with a
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standard deviation of 1.812 · 10−5. For Trimethoprim, ConfJump has a mean perfor-
mance that is 1.2 times that of Replica Exchange and 7.9 times that of ZIBgridfree.

error steps corrected performance Esym G-R
1 0.0152998 106 1.08 · 106 6.052 · 10−5 0.066784 1.0244
2 0.0219898 106 1.08 · 106 4.211 · 10−5 0.0724 1.06272
3 0.0332182 106 1.08 · 106 2.787 · 10−5 0.078386 1.02529
4 0.0521558 106 1.08 · 106 1.775 · 10−5 0.105084 1.02876
5 0.0505242 106 1.08 · 106 1.833 · 10−5 0.161262 1.02625
µ̂ 0.03463756 106 1.08 · 106 3.332 · 10−5 0.0967832 1.033484
σ̂ 0.016546929 0 0 1.812 · 10−5 0.038920972 0.016424458

Table 6.6.: Results for Trimethoprim using ConfJump.

6.0.3. BSI

Figure 6.3 illustrates the Boltzmann distribution of BSI sampled by the reference run
at 300K, a simulation run of 106 steps using the ConfJump method, projected into
5 of its 8 heavy dihedral angles. The top left panel and the central panel at the top
show the distributions of the two rotationally symmetric dihedrals that correspond
to the bond between the two aromatic 6-rings on the right hand side in figure 5.3
(left) and between the sulfonyl group and the adjacent planar ring (center). Both
distributions show only minor flaws at visual inspection. The single bond adjacent
to the carboxyl group, which corresponds to dihedral 4 is also rotationally symmetric
which is reproduced well by the reference run, as can be seen in the bottom left panel
in figure 6.3. The distribution of dihedral 3 which is situated between the S- and the
N-atom shows two peaks with very different statistical weights (top right panel), and
a similar behavior can be seen in the distribution of dihedral 8 which lies inside the
non-aromatic ring of the molecule. The three heavy dihedrals that are not shown
have only one visible peak each. Therefore, if BSI should show a similar behavior to
cyclohexane with respect to a large conformational change induced by a “flip” of the
non-aromatic ring, this behavior is at least not reproduced well by the simulation.
However, it is also conceivable that the large functional groups that surround that
ring force it into one of the two possible conformations most of the time. This
speculation is supported by the fact that none of the 15 sampling runs evaluated
below assigned a higher statistical weight to the small peak seen in dihedral 8, and,
in fact, most sampling runs failed to reproduce it at all.

The Replica Exchange simulations of BSI all produced results with a very low
sampling error except for one outlier with a low sampling error (see table 6.7). The
mean sampling error is 3.15% with a standard deviation of 1.45%. However, the
symmetry error is high at 24 to 28.5%.
As none of the simulations has converged within the maximally allowed time steps,
all simulations ran for 106 time steps. The performance thus depends only on the
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Figure 6.3.: The sampled distributions of five of the eight heavy dihedrals of BSI.
The numbers under each diagram correspond to the dihedrals marked
in figure 5.3.

sampling error. The mean performance is 3.58 · 10−5 while the estimated standard
deviation is 1.15 · 10−5.

error steps performance Esym G-R
1 0.0203 106 4.927 · 10−5 0.2723 1.04
2 0.0257 106 3.887 · 10−5 0.285 1.03
3 0.0274 106 3.645 · 10−5 0.2429 1.02
4 0.0272 106 3.678 · 10−5 0.2476 1.03
5 0.0570 106 1.755 · 10−5 0.2410 1.19
µ̂ 0.0315 106 3.578 · 10−5 0.2578 1.06
σ̂ 0.01452 0 1.1460 · 10−5 0.01973 0.074

Table 6.7.: Results for BSI using Replica Exchange.

For BSI, the ConfJump approach also produced results with a low sampling error
(see table 6.8). The means was 0.8%, while the standard deviation was 0.32%. These
exremely low results compared to the other methods (especially Replica Exchange)
combined with the high symmetry error with a very low variance gives some reason
to doubt the validity of the reference run.
None of the simulations has converged, like in the case of RE, within the maximally
allowed time steps. All simulations ran for 106 time steps. Therefore, the perfor-
mance is dependent only on the sampling error. 93000 steps have been added to the
sampling time, corresponding to the time for preprocessing. The mean performance
is 1.23 · 10−4 while the estimated standard deviation is 3.978 · 10−5.
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error steps corrected performance Esym G-R
0.00534 106 1.093 · 106 1.714 · 10−4 0.2516 1.08
0.00634 106 1.093 · 106 1.443 · 10−4 0.2525 1.10
0.00714 106 1.093 · 106 1.282 · 10−4 0.2521 1.04
0.01369 106 1.093 · 106 6.684 · 10−5 0.2487 1.04
0.00875 106 1.093 · 106 1.046 · 10−4 0.2528 1.12

µ̂ 0.00825 106 1.093 · 106 1.231 · 10−4 0.2516 1.07
σ̂ 0.00329 0 0 3.975 · 10−5 0.0017 0.036

Table 6.8.: Results for BSI using ConfJump.

Unfortunately, due to technical difficulties, the results obtained from the ZIBgrid-
free could not be evaluated for this thesis.

6.0.4. Performance comparison

Figure 6.4 shows a plot of accuracy (1−sampling error) vs. time in HMC steps for the
simulations of the three model systems with all ConfJump and Replica Exchange.
The corrected times are used for ConfJump.
ConfJump produces a lower sampling error (higher accuracy) than Replica Ex-
change for all three molecules. Overall, very few simulations converged, due to
the strict choice of convergence criteria. In the case of BZS, however, ConfJump was
able to beat Replica Exchange on both accounts by producing a better result in a
much shorter time. Surprisingly both methods fare best on BSI, the most complex
molecule. However, there are reasons to doubt the validity of the reference run in
that case.

The mean results of ZMFree are shown in comparison for BZS and Trimethoprim
in figure 6.5. ZMFree has a large computational overhead compared to ConfJump
and Replica Exchange. In figure 6.5, its results appear far to the right because of this.
ZMFree was able to sample the distributions of Trimethoprim and BZS sufficiently
well and in the case of Trimethoprim even produced the lowest sampling error of all
three methods.

While ZMFree needs a more thorough sampling of the conformational space than
the other two methods, it also gains more information than ConfJump and RE.
ZIBgridfree is the only method able to compute transition probabilities between the
conformations. The high number of basis functions needed for an accurate sampling
can in part be dealt with by parallelization. As mentioned in section 3.2, the current
implementation already uses a parallelization, and in fact, in every sampling, three
partial density functions were sampled at the same time.
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Figure 6.4.: Mean accuracy (y-axis) vs. time (x-axis) for the ConfJump and Replica
Exchange simulations.

Figure 6.5.: Mean accuracy (y-axis) vs. time (x-axis) for the ZIBgridfree simulations
in comparison to the values from the ConfJump and Replica Exchange
simulations.
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7. Conclusion

In this thesis a method for comparing sampling results from different Markov chain
Monte Carlo methods was developed and applied to samplings of three typical drug-
like molecules using three different sampling methods, ZIBgridfree, Replica Exchange
and ConfJump.

It has been shown that a method is generally more stable the less information it
needs about high-energy transition regions in conformational space.

• ConfJump employs knowledge about the shape of the potential and is thus
able to bypass high-energy regions altogether.

• In Replica Exchange, high-temperature chains must pass through high-energy
regions in sampling in order to be able to discover different low-energy regions
which are then sampled accurately by the chain at the sampling temperature.
However, Replica Exchange does not need to sample high-energy regions ac-
curately.

• ZIBgridfree, on the other hand, requires accurate sampling of transition regions
in order to correctly weight different low-energy regions against each other.

For small to medium-sized molecules where it is affordable to generate represen-
tatives of all low-energy regions in conformational space, the ConfJump approach
seems to be both the most accurate and the most stable method. By switching be-
tween HMC steps and jump steps that carry the system swiftly from one metastable
region to the next and thus actively avoiding the problem of broken ergodicity, the
ConfJump approach can greatly accelerate the sampling. However, as the dimension
of the conformational space grows, ConfJump will invariably become less efficient,
less stable and ultimately also less accurate than other methods. On the one hand,
low-energy regions in a high-dimensional, rough potential energy landscape will be
more irregularly shaped than in lower dimensions, which is a critical problem for the
efficiency of ConfJump. This is due to the fact that the jump vector is determined
independent of the shape of the target region (solely on the basis of one representa-
tive of that region) but is only accepted if it “hits” the target. On the other hand,
identifying all low-energy regions in the d-dimensional conformational space has a
computational cost that is exponential in d. This soon leads to a prohibitive compu-
tational cost as d grows. By relying on precomputed representatives of low-energy
regions, ConfJump gives up the crucial advantage of Monte Carlo methods over e.g.
numerical integration, namely being able to approximate high-dimensional statisti-
cal distributions at a computational cost that does not depend on the dimension of
the problem but only on the number of samples generated.
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Replica Exchange has been found in numerical experiments to be able to ap-
proximate the Boltzmann distributions of drug-sized molecules almost as well as
ConfJump, with a slightly higher average sampling error with a somewhat higher
variance. This means that it is less stable numerically than ConfJump. Exchanging
temperatures between replicas at certain intervals cannot avoid trapping in basins
of attraction of local minima as well as the ConfJump approach because no informa-
tion is available on the destination of the “jump” associated with a replica exchange.
One problem of the Replica Exchange method is the enormous amount of redundant
data that is generated. When sampling at ten temperatures only one tenth of the
data generated during sampling can be used for conformation analysis. In order to
be able to reach all regions of conformational space in an acceptable time on aver-
age, the maximum temperature must be chosen high enough. However, the hybrid
Monte Carlo method and especially the molecular dynamics integration are bound to
encounter numerical difficulties when working with very high temperatures. Worse,
systems such as DNA or clusters of lipids or proteins that are stabilized by weak
molecular interaction forces such as van der Waals forces and hydrogen bonds can
impossibly be simulated at high temperatures as high temperatures would break the
stabilizing interactions, and the system being studied would simply fall apart. An-
other problem for Replica Exchange that is independent of this consideration is that
the acceptance probability of two replicas exchanging temperatures depends on the
potential energy difference between the position states of the two chains. In large
systems the interesting low-energy regions will likely be far away from each other
which leads to a decrease in the acceptance ratio as it is less likely that two chains
are at similar energy levels, and the probability of a high-temperature chain being
in a high-energy region is high.

ZIBgridfree has also been found to be able to get very close to a given reference
run in most cases. However, the method is not very robust with respect to initial
conditions. ZIBgridfree will occasionally generate samplings with a large sampling
error. The reason for this is that this method relies on being able to weight all pairs
of “adjacent” sampled partial densities correctly against each other, which requires a
high accuracy of sampling also in high-energy transition regions which are seldom vis-
ited in sampling. Nevertheless, ZIBgridfree must be considered the most promising
strategy when the goal is to be able to simulate large systems as no other technique
discussed here is, in principle, able to deal with very rough potential energy surfaces
on high-dimensional conformational spaces. It seems inevitable to discretize very
complex Boltzmann distributions and look at uncoupled partial densities separately.
Very likely, ZIBgridfree’s approach for weighting partial densities against each other,
which relies on accurate sampling of high-energy transition regions, is bound to fail
on very rough potential energy surfaces. However, better methods for weighting the
different partitions against each other are being discussed already and will be the
subject of further research. It might be possible to use the ConfJump method to
quickly and accurately explore transition probabilities between partial densities that
contain low-energy regions without needing detailed information about the transi-
tion regions in between. Additionally, ZIBgridfree is the only method that yields
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transition probabilities between metastable regions thus allowing examination of the
dynamics of the system under consideration.

The semi-empirical convergence indicator for Markov chain Monte Carlo methods
that was developed in this thesis can be used to supplement convergence monitors
that are based solely on properties of Markov chains. This convergence indicator is
widely applicable as symmetric planar rings and other rotationally symmetric groups
are abundant in biomolecules and occur particularly frequently in the class of peptide
ligands. In the numerical experiments conducted for this thesis cases were observed
where the Gelman-Rubin statistic indicated convergence while the symmetry error
was still high as well as the reversed situation. Therefore, the convergence criterion
that uses the Gelman-Rubin statistic and the symmetry error in combination is
a more powerful criterion than either method alone. The computational cost of
the combined method is lower than twice the cost of Gelman-Rubin due to the
reusing of histograms by the symmetry monitor. The method owes some of its
easy applicability to the graph-theoretic algorithm for finding rotationally symmetric
groups in molecules that was developed in this thesis.
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A. Algorithm for automatic detection
of molecule symmetries

The following recursive algorithm is used to detect all single bonds with 180◦ rota-
tional symmetry. It operates on a graph representation G = (V,E) of the molecule
whose nodes v ∈ V represent atoms (by storing index and atomic number) and
whose undirected edges e = (u, v) = (v, u) ∈ E ⊆ V × V represent bonds between
atoms. This has been implemented as an adjacency list in which each node stores
the indices of its neighbors. It is assumed that no atom has more than four binding
partners (an extremely rare phenomenon in biomolecules).

An array discovered of N = |V | binary flags is used to mark which atoms have
already been visited. discovered [i] = True means that node i lies on one of the two
branches that are being compared at that moment. The discovered flags are used to
prevent branches from growing into themselves or each other – each atom can only
belong to one branch in which it also cannot occur twice.

The core of the algorithm is the function compareSubgraphs which determines
whether two branches starting with the directed edges from1→ to1 and from2→ to2
are isomorphic. This is done by removing the edges (from1, to1) and (from2, to2) from
the graph and recursively trying to split the component of the remaining graph that
contains to1 and to2 into two isomorphic subgraphs (where to1 is in one branch and
to2 in the other).

1: Initialize list of symmetric dihedrals symList ← [].
2: for all nodes v with 3 neighbors do

3: if v is adjacent to a single bond in a ‘heavy’ dihedral then

⊲ See section 2.5 for definition of ‘heavy’ dihedrals.
4: for all neighbors u of v do

5: for i← 1, N do

6: discovered [i]← False

7: end for

8: discovered [u]← discovered [v]← True

9: Let l, r be the other 2 neighbors of v.
10: if compareSubgraphs(v, l, v, r) then

11: Identify the dihedral D that describes the bond (u, v)
12: symList.append(D)
13: end if

14: end for

15: end if

79



A. Algorithm for automatic detection of molecule symmetries

16: end for

17: function compareSubgraphs(from1, to1, from2, to2)
⊲ Checks whether the two branches starting with the directed edges from1→ to1
and from2→ to2 are isomorphic.

18: if to1 = to2 then ⊲ a ring closes
19: if nNeighbors(to1) ≤ 3 then

20: ⊲ singular ring appendage is part of both branches ⇒ skip
21: return True

22: else ⊲ 4 neighbors ⇒ recurse into non-ring neighbors of ring link
23: Let l, r be the non-ring neighbors of to1 = to2.
24: discovered [to1]← True

25: if compareSubgraphs(to1, l, to1, r) then

26: return True

27: else ⊲ backtrack
28: discovered [to1]← False

29: return False

30: end if

31: end if

32: else if (atomType[to1] 6= atomType[to2]) or (nNeighbors(to1) 6=nNeighbors(to2))
then

33: ⊲ atoms to1 and to2 are incompatible ⇒ backtrack
34: return False

35: else if nNeighbors(to1) = 1 then

36: ⊲ reached (compatible) terminal atoms
37: return True

38: end if

39: ⊲ Build lists of undiscovered neighbors
40: neighbors1← neighbors2← []
41: for i← 0, nNeighbors(to1) do

42: if not discovered[neighbor[to1][i]] then

43: neighbors1.append(neighbor[to1][i])
44: end if

45: end for

46: for i← 0, nNeighbors(to2) do

47: if not discovered[neighbor[to2][i]] then

48: neighbors2.append(neighbor[to2][i])
49: end if

50: end for

51: if neighbors1.size() 6= neighbors2.size() then

52: ⊲ one branch grows into the other ⇒ backtrack
53: return False
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54: else if neighbors1.size() = 0 then

55: ⊲ a side ring closes on each branch; already checked
56: return True

57: end if

58: ⊲ Recurse through branches
59: a← neighbors1[0], b← neighbors1[1], c← neighbors1[2]
60: A← neighbors2[0], B ← neighbors2[1], C ← neighbors2[2]
61: ⊲ (provided these exist)
62: discovered [to1]← discovered [to2]← True

63: result ← False

64: if neighbors1.size() = 1 then

65: ⊲ only one path to pursue on each branch
66: result ← compareSubgraphs(to1, a, to2, A)
67: else if neighbors1.size() = 2 then

68: ⊲ Either A corresponds to a and B to b or A corresponds to b and B to a:
69: result ← (compareSubgraphs(to1, a, to2, A)
70: and compareSubgraphs(to1, b, to2, B))
71: or (compareSubgraphs(to1, a, to2, B)
72: and compareSubgraphs(to1, b, to2, A))
73: else if neighbors1.size() = 3 then

74: ⊲ Check all possible combinations
75: if compareSubgraphs(to1, a, to2, A) then

76: result ← (compareSubgraphs(to1, b, to2, B)
77: and compareSubgraphs(to1, c, to2, C))
78: or (compareSubgraphs(to1, b, to2, C)
79: and compareSubgraphs(to1, c, to2, B))
80: else if (not result) and compareSubgraphs(to1, a, to2, B) then

81: result ← (compareSubgraphs(to1, b, to2, A)
82: and compareSubgraphs(to1, c, to2, C))
83: or (compareSubgraphs(to1, b, to2, C)
84: and compareSubgraphs(to1, c, to2, A))
85: else if (not result) and compareSubgraphs(to1, a, to2, C) then

86: result ← (compareSubgraphs(to1, b, to2, A)
87: and compareSubgraphs(to1, c, to2, B))
88: or (compareSubgraphs(to1, b, to2, B)
89: and compareSubgraphs(to1, c, to2, A))
90: end if

91: ⊲ Check chirality of corresponding triples of atoms
92: if result then

93: result ← checkChirality(to1, from1, neighbors1[0], neighbors1[1], neighbors1[2])
94: ⊲ (using a variant of compareSubgraphs on a second discovered

array)
95: end if
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96: end if

97: if not result then

98: discovered [to1]← discovered [to2]← False

99: end if

100: return result
101: end function

The algorithm can easily be adapted for 120◦ symmetry (not shown).

82



Bibliography

[1] I. Andricioaiei, J. Straub, and A. Voter. Smart Darting Monte Carlo. J. Chem.
Phys., 114(16):6994–7000, 2001.

[2] Ehrhard Behrends. Introduction to Markov Chains. Vieweg Verlagsgesellschaft,
1st edition, 2000.

[3] Jeremy M. Berg, John L. Timoczko, and Lubert Stryer. Biochemistry. Palgrave
Macmillan, 5th edition, 2002.

[4] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N.
Shindyalov, and P.E. Bourne. The Protein Data Bank. Nucleic Acids Research,
28:235–242, 2000. http://www.rcsb.org/pdb.

[5] J.F. Bonnans, J.Ch. Gilbert, C. Lemaréchal, and C.A. Sagastizábal. Numerical
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