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Abstract

Mobile cellular communcication is a key technology in today’s informa-
tion age. Despite the continuing improvements in equipment design,
interference is and will remain a limiting factor for the use of radio com-
munication. This Ph.D. thesis investigates how to prevent interference
to the largest possible extent when assigning the available frequencies to
the base stations of a GSM cellular network. The topic is addressed from
two directions: first, new algorithms are presented to compute “good”
frequency assignments fast; second, a novel approach, based on semidef-
inite programming, is employed to provide lower bounds for the amount
of unavoidable interference.

The new methods proposed for automatic frequency planning are
compared in terms of running times and effectiveness in computational
experiments, where the planning instances are taken from practice. For
most of the heuristics the running time behavior is adequate for inter-
active planning; at the same time, they provide reasonable assignments
from a practical point of view (compared to the currently best known, but
substantially slower planning methods). In fact, several of these methods
are successfully applied by the German GSM network operator E-Plus.

The currently best lower bounds on the amount of unavoidable (co-
channel) interference are obtained from solving semidefinite programs.
These programs arise as nonpolyhedral relaxation of a minimum k-parti-
tion problem on complete graphs. The success of this approach is made
plausible by revealing structural relations between the feasible set of the
semidefinite program and a polytope associated with an integer linear
programming formulation of the minimum k-partition problem. Compa-
rable relations are not known to hold for any polynomial time solvable
polyhedral relaxation of the minimum k-partition problem. The appli-
cation described is one of the first of semidefinite programming for large
industrial problems in combinatorial optimization.

Keywords: GSM, frequency planning, mimimum graph k-partition,
heuristics, semidefinite programming, integer programming, polytopes.
Mathematics Subject Classification (MSC 2000): 90C27 90C35
90B18 90C22 90C57
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Preface

A crucial and difficult task in operating a GSM network is to estab-
lish a good frequency plan. When the project described in this thesis
started in 1995, the commercially available software tools to assist a ra-
dio engineer in this task were insufficient. Hence, many engineers kept, on
planning the frequency (re-)use essentially by hand. Facing a stunning
growth of the GSM network installations, this habit soon hit its limits. In
search for new planning algorithms the German operator E-Plus Mobil-
funk GmbH & Co. KG approached Professor Dr. Martin Grotschel, head
of the optimization department at the Konrad-Zuse-Zentrum fiir Infor-
mationstechnik Berlin (Z1B). A cooperation between E-Plus and ZIB on
the frequency planning problem was set up.

At that time, I applied at ZIB for a Ph. D. position, and it became my
task and my challenge to develop automatic frequency planning software
for the use at E-Plus. The software that was developed and several sub-
sequent extensions are nowadays in successful use at E-Plus, integrated
into the regular network planning system.

This thesis describes in detail the planning methods developed, the
underlying mathematical model, its connection to the problem of finding
a minimum k-partition in a graph, and how a quality guarantee for a fre-
quency assignment can be computed by solving a large-scale semidefinite
program. All of this is documented in a form accessible and informative
to a mathematician as well as to a radio engineer, I hope.

I am greatly indebted to my family, my friends, and my colleagues for
their continuing support in many ways. This thesis would not have been
possible without them. To all of them go my sincere thanks.

In particular, I would like to mention three persons. My advisor Pro-
fessor Dr. Martin Grotschel has provided a most fertile and stimulating
environment at the Konrad-Zuse-Zentrum fiir Informationstechnik Ber-
lin. Dr. Thomas Kiirner from the E-Plus Mobilfunk GmbH & Co. KG has
been my link to the radio engineering world, and he introduced me to the
European Cooperative Research in Science and Technology action 259 or
CosT259, for short. My understanding of the GSM radio interface, in
general, and the technical aspect of frequency planning, in particular,
has benefitted substantially from the numerous discussions with him and
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other participants of CoST259. My colleague Dr. Christoph Helmberg
has seen me by-pass his advertisements for semidefinite programming for
a long time, and yet he supported me right on from the minute I decided
to give it a finally successful try.

February 14, 2001 Andreas Eisenblétter
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CHAPTER 1

Introduction

Frequency planning for GSM cellular radio networks is the topic of this
thesis. We present results which were obtained in the context of a coop-
eration between the Konrad-Zuse-Zentrum fiir Informationstechnik Ber-
lin (Z1B) and the German GSM 1800 network operator E-Plus Mobil-
funk GmbH & Co. KG. This cooperation started in September 1995, and
has since then been extended several times.

Our focus was primarily on fast frequency planning heuristics for the
use in the regular radio planning process at E-Plus. New planning meth-
ods were developed at ZIB and integrated into E-Plus’ software environ-
ment. In 1997, our software was first used successfully in practice, and, in
the meantime, it has been extended to better meet practical needs. We
also studied approaches to provide quality guarantees for heuristically
generated frequency plans.

GSM is a second generation digital cellular radio system. Among
others, GSM provides telephony service: a mobile phone may establish
a communication link with any other party reachable through a public
telephone network. This is achieved by means of a radio link to some
stationary antenna which is part of a large infrastructure, see Figure 1.1.
Since the introduction of GSM, radio telephony has grown from a costly
service used by few professionals to a mass market with penetration rates
as high as 70% in Finland and Iceland, for example. In more and more
countries, the mobile cellular phone subscribers outnumber the fixed-line
telephone subscriptions.

Frequency planning is a key issues in fully exploiting the radio spec-
trum available to GSM. It has a significant impact on the quantity as well
as on the quality of the radio communication services. Roughly speak-
ing, radio communication requires a radio signal of sufficient strength
which is not suffering too severely from interference by other signals. In
a cellular system like GSM, these two properties, strong signals and little
interference, are in conflict. The problem of finding a “good” frequency
plan is sketched in the following and described in full detail later.

1
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Figure 1.1: GSM in principle

Every base station operates a number of elementary transceivers, each
of which uses some frequency to transmit on. A network operator has
usually between 30 and 120 evenly spaced out frequencies available to
satisfy the demand of several thousand transceivers. The reuse of fre-
quencies is therefore unavoidable, but this reuse is limited by interfer-
ence and by so-called separation requirements. Significant interference
may occur between transceivers using the same frequency (co-channel) or
directly neighboring frequencies (adjacent channels). Separation require-
ments are given for pairs of transceivers and impose that the assigned
frequencies have a specified minimum separation in the electromagnetic
spectrum. Furthermore, not every frequency is necessarily available for
all transceivers. In summary, the problem to be solved is the following.

Given are the transceivers, the set of generally available fre-
quencies, the local unavailabilities, as well as three square
matrices specifying the necessary minimum separation, the
potential co-channel, and the potential adjacent channel in-
terference values. One frequency has to be assigned to every
transceiver such that the following holds. All separation re-
quirements are met, and all assigned frequencies are locally
available. The optimization goal is to find a frequency assign-
ment resulting in the least possible interference.

We are primarily interested in minimizing the sum over the incurred
co- and adjacent channel interferences here, but other goals of practical
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interest exist as well. Striving for “minimum interference” assignments is
in a sense a luxury to be paid for with frequencies. If only few frequencies
are available to a GSM operator, then the emphasis is likely on providing
some acceptable frequency plan at all. But the optimization aspect gains
importance when feasible assignments can be obtained “easily.” E-Plus is
currently in the latter position. The network contains roughly 8000 base
stations, and 115 frequencies are available.

New assignments have to be computed on several occasions. Some
examples are: the network is modified or expanded, the characteristics
of a transceiver are changed, or significant unpredicted interference is
reported and has to be resolved.

Several commercial software packages exist which allow to document,
the network configuration, to plan radio coverage, and to predict interfer-
ence in addition to frequency planning. GSM infrastructure manufactur-
ers develop such tools, but also independent companies such as AIRCOM
International (Asset), COSIRO GmbH (Fun), Lociga Plc. (Odyssey),
L&S Hochfrequenztechnik GmbH (CHIRplus), or Metapath Software In-
ternational Limited (PlaNet). At the time when the cooperation with
E-Plus started, however, the optimization of frequency assignments with
respect to interference was often only poorly supported. This has cer-
tainly improved since then.

In the following, we deal with a broad spectrum of topics ranging
from the technical background of the GSM frequency planning problem
over alternative mathematical models and heuristic planning methods to
quality assessments for the generated frequency plans. In addition to
this introduction, the thesis comprises seven chapters and an appendix
containing a compilation of mathematical notation used in the following.
The content of each chapter is now briefly stated.

In Chapter 2, we give a survey of GSM and explain the technical
conditions to be taken into account during frequency planning. We also
describe how the input data is generated and stress the importance of
reliable interference predictions for the success of automatic frequency
planning.

In Chapter 3, the frequency planning problem (as sketched above) is
formalized as a combinatorial minimization problem. We investigate the
computational complexity of the model beyond stating its NP-hardness,
and we discuss extensions of the model as well as alternative models.

In Chapter 4, seven heuristic frequency planning methods are de-
scribed. Depending on the point of view, five or six of them can be used
(in combination) for generating frequency assignments in practice. In



accordance with the objective of the cooperation with E-Plus, our focus
is on fast methods rather than on more elaborate, but slower methods.

In Chapter 5, the previously described planning methods are com-
pared on the basis of realistic frequency planning problems. In this com-
parison, we include the currently best performing method we know of as
a reference. An analysis of the realistic planning scenarios is provided,
and we explain how to use the described heuristics in order to obtain
time savings and quality improvements in practice.

In Chapter 6, a lower bound on the amount of unavoidable co-channel
interference is computed for each planning scenario. These bounds are
obtained by solving large semidefinite programs (which are challenges to
the currently existing solvers). Based on these bounds, quality guarantees
are provided for the frequency assignments from the preceding chapter.
Moreover, we introduce a relaxed version of our frequency planning prob-
lem. The solutions for the relaxed problem can sometimes be turned into
feasible assignments for the original problem. Exploiting this connection,
we point out room for further development of heuristics.

The relaxed version of frequency planning leads us to the study of
the mathematical MINIMUM K-PARTITION problem and its semidefinite
relaxation (which we considered so far mostly as a “black box” providing
lower bounds).

In Chapter 7, we mostly review results on a polytope, which is ob-
tained as the convex hull of the feasible solutions to an integer linear
programming formulation of the MINIMUM K-PARTITION problem. Par-
ticular emphasis is on the hypermetric inequalities.

In Chapter 8, we first give an introduction to semidefinite program-
ming and then study the semidefinite relaxation for the MINIMUM K-
PARTITION problem. In particular, we describe a large class of valid
inequalities for the solution set of the semidefinite relaxation (a shifted
version of hypermetric inequalities), and we prove that neither the linear
programming relaxation of the integer linear programming formulation
nor the semidefinite programming relaxation is always stronger than the
other.



CHAPTER 2

Frequency Planning in GSM

The General System for Mobile Communications or GSM,! for short, is a
multi-service cellular communication system providing speech and data
services. The most important service is radio telephony, but data services
like short message service (SMS) and mobile Internet access building
on the Wireless Application Protocol (WAP) are also rapidly gaining
popularity.

In this chapter, the ground is laid for understanding the constraints
and the objectives of frequency planning for a GSM network. Moreover,
the frequency planning problem is informally stated. A brief sketch of
GSM’s history is given in Section 2.1. The four major subsystems are
explained in Section 2.2, and those parts of the radio interface which are
relevant to frequency planning are discussed in detail. In Section 2.3,
we show how to phrase frequency planning as an optimization problem,
explain the constraints to be met, discuss how the input data is generated,
and report on practical aspects of frequency planning. The reader who
is familiar with GSM and is primarily interested in frequency planning
may skip straight to Section 2.3.

2.1 A Brief History of GSM

GSM has been designed as a pan-European cellular communications sys-
tem to be operated in the 900 MHz radio frequency band. It has subse-
quently been extended to the 1800 MHz band in Europe. Today, there
are also variants operated in the 1900 MHz band in other parts of the
world. The respective systems are nowadays called GSM 900, GSM 1800,
and GSM 1900. A fourth variant, called GSM 400, is under specification
and will operate between 400 and 500 MHz. Table 2.1 lists the precise
frequency bands for mobile station to base station (up-link) and base

1GSM and “General System for Mobile Communications” are trademarks of the
GSM Association, Geneva, Switzerland.

GSM
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CEPT

PTT

station to mobile station (down-link) radio communication for all GSM
variants. Apart from the frequency bands (and the thereby caused dif-
ferences in the radio transmission equipment) there is little difference

between the systems.

system up-link band down-link band
GSM 900 890-915 MHz 935-960 MHz
GSM 1800 | 1710-1985MHz | 18051880 MHz
GSM 1900 | 1850-1910MHz | 1930-1990 MHz
GSM 400 | 450.4-457.6 MHz | 460.4-467.6 MHz
478.8-486.0 MHz | 488.8-196.0 MHz

Table 2.1: GSM radio frequency bands

In 1978, two bands of 25 MHz radio spectrum around 900 MHz were
reserved for mobile communication in Furope. In 1982, the Conférence
FEuropéenne des Postes et Télécommunications (CEPT) established the
Groupe Spéciale Mobile, abbreviated as GSM. The task of this group was
to develop the specification of a pan-European mobile communications
network. Four years later, a Permanent Nucleus of GSM was set up
to coordinate the further developments, including the installation of test
beds to compare alternative system and radio interface designs. By 1987,
it was apparent that the new (second generation) system would be digital
(as opposed to the then existing first generation analog systems) and use
time division multiple access on the radio interface.

On the 7th of September 1987, thirteen European countries signed the
GSM Memorandum of Understanding (MoU) which covered, for exam-
ple, time-scales for the procurement and the deployment of the system,
compatibility of numbering and routing plans, concerted service intro-
ductions, and harmonization of tariff principles (cf. Mouly and Pautet
[1992]). From then on, many Posts, Telegraphs, and Telephones pub-
lic operating companies (PTTs), manufactures, and research institutes
collaborated in the design of an entirely digital system.

About two years later, the United Kingdom published a document
calling for a mass market mobile communications system operating in
the 1800 MHz frequency band. This lead to the definition of DCS-1800.
DCS-1800 is now being called GSM 1800.

Around 1990, it became evident that a deployment of GSM systems
within the foreseen time-scales would be impossible without issuing the
specification in mutually compatible phases. GSM became an evolv-
ing standard. The majority of the Phase 1 specification was published
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in 1990. At that time, the Technical Specification of GSM 900 contained
130 recommendations on more than 5000 pages. These recommenda-
tions comprised the full specification of the radio interface as well as
a detailed specification of infrastructure, architecture, and many intra-
and intersystem interfaces. The first GSM pilot network was successfully
demonstrated at the Telecom ‘91 fair, organized by the International
Telecommunication Union (ITU). Later in the same year, several net-
works were fully operational, but type approved GSM terminals were not
available, and GSM was made fun of as the acronym for the prayer “God
Send Mobiles.” The reason was simply that the procedures for type ap-
proval were not settled. In April 1992, an Interim Type Approval (ITA)
was agreed on.

In the course of 1992, hand-held terminals with ITA became widely
available, and by the end of 1992 GSM networks were operative in Den-
mark (2), Finland (2), France (1), Germany (2), Italy (1), Portugal (2),
and Sweden (3). Some roaming agreements had also been signed. In the
year 1993, the first million of GSM subscribers was registered, 70 parties
from 48 countries had signed the MoU, and the British operator One-
2-One launched the first GSM 1800 network. The world-wide success of
GSM is well reflected by its growth in terms of operating networks, total
number of subscribers, and the number of countries with GSM installa-
tions over the last decade, see Table 2.2, basing on figures published by
GSM Association [2000]; www.emc-database.com [2000].

year | networks | subscribers | countries
1992 13 250,000 7
1993 32 1,000,000 18
1994 69 4,000,000 43
1995 117 | 12,000,000 69
1996 167 | 30,000,000 94
1997 178 | 73,000,000 107
1998 320 | 135,000,000 118
1999 355 | 255,000,000 130
2000° 376 | 397,000,000 142

2Qctober 2000
Table 2.2: Growth of GSM

GSM soon spread beyond Europe. In 1992, the first non-European
operator, Telstra from Australia, had signed the MoU. In 1994, the Fed-
eral Communications Commission (FCC) of the United States of America

ITU

ITA
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auctioned several licenses to operate mobile networks around 1900 MHz.
No particular network type was imposed, and the first GSM 1900 net-
work (then still called PCS1900) was launched by American Personal
Communications in November 1995.

By the end of the third quarter of the year 2000, there were 376
operating GSM networks world-wide with a total of 396.6 million sub-
scribers. In Europe alone (including Russia), there were 141 GSM 900
and GSM 1800 networks with a total of 255.1 million subscribers.

In the meantime, the specification of GSM had been continued. GSM
Phase 2 was issued in 1993. Numerous extensions were made such as an
option for half-rate speech telephony, improved short message services,
calling/connected line identity presentation, call waiting and call hold
features, multi-party calls, and advice of charge. But data transmission
kept essentially restricted to at most 9.6 kbps. Opening up this bottleneck
has become a central theme in the still ongoing specifications of Phase 2+.
Three major new technologies are introduced. (The transmission rates
are taken from GSM Association [2000, Glossary].)

High Speed Circuit Switched Data (HSCSD) allows the transmis-
sion of circuit-switched data with a speed of up to 57.6kbps. The
data rate per time slot is increased to 14.4kbps and up to four
consecutive time slots may be concatenated.

General Packet Radio Service (GPRS) introduces the option for
packet-switched services into GSM. GPRS will provide data trans-
mission speeds of up to 115 kbps to mobile users.

Enhanced Data for GSM Evolution (EDGE) uses a new modulation
scheme to allow data transmission with rates of up to 384 kbps on
the basis of the GSM infrastructure.

These technologies, however, require a higher signal to noise ratio at
the receiver (i.e., they can cope with less interference) than regular data
transmissions in order to guarantee proper reception. This has an impact
on the planning of the radio interface in general and frequency planning
in particular.

Finally, over the past years the standards for third generation cellular
mobile systems (IMT-2000) have been under development. The Uni-
versal Mobile Telecommunications System (UMTS) is one of them, for
which a first standard was issued in the beginning of the year 2000. The
radio interface of UMTS is different from that of GSM. The Code Di-
vision Multiple Access (CDMA) scheme is used, and no frequency plan-
ning problem comparable to that of GSM has to be solved. UMTS is
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expected to be commercially available in Europe around the year 2002.
It allows for true global roaming, and it is supposed to support a wide
range of voice and data services. Depending on the user mobility and the
propagation environment, different maximal data transmission rates are
foreseen: 144 kbps for vehicular, 384 kbps for pedestrian, and 2 Mbps for
indoor users. UMTS will be deployed parallel to GSM, and more than
ten years of coexistence of GSM and UMTS are expected. In Germany,
for example, the first GSM license expires at the end of the year 2009.

2.2 The General System for Mobile Communications

GSM is a multi-service cellular radio system, capable of transmitting
speech as well as data and with numerous supplementary features. The
area covered by a GSM network consists of (overlapping) cells, which are
served by stationary antennas. The kind of service provided depends on
the content of the subscription, the capabilities of the network, and the
capabilities of the user-held equipment.

2.2.1 Mobile Stations

A radio link connects a mobile station to the GSM network infrastructure.
A switched-on mobile station is either in idle mode or in dedicated mode.
In idle mode, the mobile station listens to control channels, but does not
have a channel of its own. In dedicated mode, a bidirectional channel
is allocated to the mobile terminal allowing it to exchange information
with and through the GSM network. A mobile terminal switches from
idle into dedicated mode, for example, if the user wants to place a call.
The mobile sends a corresponding request to the cell of which it monitors
the control channel. Another example is the arrival of a call. In that case,
however, the network is generally not aware of the cell a mobile terminal
is listening to (if any) so that the mobile is “paged.”

To limit the amount of paging messages, location areas are defined.
A location area is a group of cells, and every cell belongs to exactly one
location area. The identity of the location area is broadcast by each cell
so that a mobile station can always find out what location area it is in. In
case the mobile is moved and the location area changes, a message is sent
out, and the network registers the change. This process is called location
updating. When a call for a mobile station arrives, a paging message for
that mobile station is broadcast in all cells of the location area the mobile
station has last registered in. (Sometimes, this is preceded by paging the

idle mode
dedicated mode

location area

location updating
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hand-over

ETSI

MS
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mobile station only in the cell of last active contact with the network.) If
this paging fails, a paging message is broadcast in all cells of the network.

A mobile terminal may, of course, also be moved while in dedicated
mode. Depending on the distance to the serving base station and the
propagation conditions, the radio link can degrade below the required
quality. The bidirectional channel has then to be dropped or to be main-
tained by another cell. Changing the serving cell in dedicated mode is
called hand-over. During a hand-over, the network has to reroute the
communication channel without the user noticing. The decisions, when
to perform a hand-over and to which cell, are taken in the network in-
frastructure, but with the support of the mobiles. Each mobile terminal
routinely monitors a list of neighboring cells, records the reception qual-
ity, and sends measurement reports the network.

Despite the option of international roaming, a GSM telephone call
usually comes to an end at national borders due to a call drop. The rea-
sons are primarily billing issues. But (presuming frequency band com-
patibility) the mobile station may then log on into a foreign network in
order to place and to receive calls, if the user’s subscription allows inter-
national roaming and appropriate roaming agreements are made between
the operators.

2.2.2 Subsystems

Next to the mobile stations, the three further major parts of GSM are
the base station subsystem, the network and switching subsystem, and the
operation and maintenance subsystem. A detailed description of these
subsystems and their interfaces is given in the relevant standards issued
by the European Telecommunications Standards Institute (ETSI), Sophia
Antipolis, France. A more accessible source of information, however, is
the book of Mouly and Pautet [1992].

A Mobile Station (MS) usually consists of some mobile equipment,
like a hand-held mobile, and a Subscriber Identification Module (SIM),
which is inserted into the mobile equipment. Depending on the frequency
band of the network, see Table 2.1, different mobile equipment is typically
required, but the same SIM can be used. Modern dual- or triple-band mo-
bile terminals allow to communicate in two or three of those bands. The
SIM carries an International Mobile Subscriber Identify (IMSI), personal-
izing the mobile equipment, and can be protected by a Personal Identity
Number (PIN), similar to the PINs of credit cards. The SIM is the peer
of the network during authentication, and it is involved in ciphering and
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deciphering transmitted messages (when encryption is applied).

The Base Station Subsystem (BSS) comprises base transceiver sta-
tions and base station controllers. A Base Transceiver Station (BTS)
is the peer of a mobile terminal in radio communications, both having
radio transmission and reception devices, including antennas and all nec-
essary signal processing capabilities. The site at which a BTS is installed
is organized in sectors; one or three sectors are typical. An antenna is
operated for each sector. If three sectors exist, then antennas with an
opening angle of 120 degree are usually employed. If only one sector ex-
ists at a site, then an omnidirectional antenna can be used. (The details
of how many sectors to choose, which antenna types, etc., depend on
the practical needs, and are more complex than indicated here.) Each
sector defines a cell. The capacity of a cell is determined by the number
of elementary transmitter/receiver units, called TRXs, installed for the
sector. As a rule of thumb, the first TRX of a sector provides capacity
for 6 parallel calls, and each additional TRX for seven to eight more calls.
The reduced capacity of the first and some of the additional TRXs is due
to the need to transmit cell organization and protocol information. A
maximum of 12 TRXs can be installed for one sector of a BTS. Every
BTS is connected to one Base Station Controller (BSC), whereas one
BSC typically handles several BTSs in parallel. A BSC is in charge of
the allocation and release of radio channels as well as the management
of hand-overs. All cells in a location area have to be controlled by the
same BSC, but one BSC may serve more than one location area.

The Network and Switching Subsystem (NSS) manages the commu-
nication to and from GSM users. Every BSC is connected to one Mobile
service Switching Center (MSC), and the core network interconnects the
MSCs. Specially equipped Gateway MSCs (GMSCs) interface with other
telephony and data networks. The Home Location Registers (HLRs) and
Visitors Location Registers (VLRs) are data base systems, which contain
subscriber data and facilitate mobility management. Each Gateway MSC
consults its home location register if an incoming call has to be routed
to a mobile terminal. The HLR is also used in the authentication of the
subscribers together with the Authentication Center (AuC). The VLRs
are associated to one or more MSCs and temporarily store information
on all subscribers that were last traced in one of the BSCs attached to
any of its associated MSC(s). The interworking of all components of the
NSS is organized via a SS7 signaling network.

The Operation and maintenance SubSystem (OSS) is specified to a
smaller extent than the rest of GSM. The network is run and maintained
through the OSS: calls have to be billed and charged; SIMs have to
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be initialized; stolen or misbehaving mobile equipment is registered and
possibly excluded from network service on the basis of the FEquipment

EIR Identity Register (EIR). The network and switching subsystem, the base
station subsystem, and, to some extent, also the mobile stations (via the
OMC BSS) are administered from Operation and Management Centers (OMC).

Three of the four subsystems are shown in Figure 2.1: Mobile Station
(MS), Base Station Subsystem (BSS), and Network and Switching Sub-
system (NSS). The interface between the MSCs and the BSCs is called
A interface; the interface between the BSCs and the BTSs is called Abis
interface; and the Radio Interface is between the BTSs and the MSs.

M2

NSS
‘ \ "6

MSC N
A interface \

\ N
/ E/J [B22 \ |B\31\| 34!

I\\ 23\'

Abis interface >~ BSS
[BS31]
(Bs14] [Bs21] [Bs23] [Bss2]
; [Bs24]

BTS -

Radio interface = ' 3

Figure 2.1: Architecture of GSM

MS

2.2.3 Network Dimensioning

Having seen the major subsystems of GSM, a natural question is how to
lay out an actual GSM network such that it provides the desired services
cost-effectively. Numerous decisions have to be taken. We give a few
examples with a strong appeal to combinatorial optimization:
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Where to install the BTSs? How to adjust the antennas and what
frequencies to use? How to connect the BTSs to the BSCs, and where to
put the MSCs? How to connect the MSCs among each other and to the
BSCs?

These important questions have to be answered prior to network de-
ployment or expansion. All of them have an impact on generating rev-
enues, because these decisions affect the cost of deploying and operating
the network as well as the quality of service that can be offered.

Before focusing on frequency assignment in the chapters to come, we
pick out some of these questions and explain the underlying optimization
problem briefly. We give references, whenever we are aware of them.

At the core of planning a network deployment or extension is cus-
tomers’ demand. This demand may be observed or forecasted. In one way
or another, the customers’ demand for mobile telecommunications has to
be made precise in a geographical distribution in terms of Erlang, a unit
for measuring telecommunication demand. This distribution essentially
states how large the need for mobile telecommunications is depending on
the location.

Base Transceiver Station Location is the step in which radio engi-
neers decide how many and where to erect BTSs in order to provide
service for the (prospective) demand. This is a mixture of deter-
mining sites, which are preferable from an “electromagnetic” point
of view (providing good coverage), and searching for sites, which
are actually available. Research in this direction has been carried
out, for example, in ACTS/STORMS project (supported the Eu-
ropean Union), see Menolascino and Pizarroso [1999], as well as by
Eidenbenz, Stamm, and Widmayer [1999] and Tutschku, Mathar,
and Niessen [1999).

Base Transceiver Station Clustering denotes here the problem of
where to place the BSCs and which BTSs to connect to them.
Examples for the issues to be taken into account are the costs for
renting or building spaces for operating BSCs and the running cost
of attaching BTSs to BSCs by cables or point-to-point radio links.
The mobility profile of customers also plays a role here, because
hand-overs between cells handled by the same BSC are treated lo-
cally for the most part, whereas an inter-BSC hand-over requires a
rerouting of connections in the core network also. Similar comments
apply with respect to location-updating. Ferracioli and Verdone
[2000] report on results in this area.
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FDMA
TDMA

channel

Core Network Design denotes here the planning necessary to decide
where to operate MSCs, which BSCs to connect to them, and how
to interconnect the MSCs among each other. The locations of MSCs
are usually more dependent on “political” rather than “technical”
considerations. The core network may comprise leased lines, the
operator’s own cable infrastructure, and point-to-point radio links.
Usually, not every pair of MSCs is connected directly in the core
network. Instead, routing tables are used to describe how to route
traffic from one MSC to another along one or more links. The
network has to be laid out (selection of connections, capacities, and
routings) in such a way that a failure of a single link or a failure of a
single MSCs has only a “manageable” impact on the traffic volume,
which can be handled by the remaining part of the network. Such
a network is called “survivable” in the literature, see, for example,
Wessily [2000] and the references therein.

Frequency Assignment or Channel Assignment or Frequency Plan-
ning are synonyms for the following problem. Once the sites for
the BTSs are selected and the sector layout is decided, the number
of TRXs to be operated per sector has to be fixed. This is done
by means of the Erlang-B formula, taking the demand to support
and the maximally tolerable blocking probability (of 2% or the like)
as input. The result is a listing of the demand in TRXs per cell.
Now, every TRX has to receive a channel. This demand has to be
satisfied by a frequency plan.

The last problem is going to be the central topic from now on, and
further details of the radio interface are discussed next.

2.2.4 Along the Radio Interface

In order to understand the various restrictions and the possible alterna-
tive objectives in frequency planning, we take a closer look at the tech-
nicalities of the GSM radio interface. Even more details can be found in
the books by Mouly and Pautet [1992] and Redl, Weber, and Oliphant
[1995] as well as in the relevant ETSI standards.

GSM uses a Frequency Division Multiple Access (FDMA) and Time
Division Multiple Access (TDMA) scheme to maintain several communi-
cation links within one cell “in parallel.” The available frequency band
is slotted into channels of 200kHz width. The time axis is organized
in 8 cyclicly recurring time slots, numbered TNO, TN1, ..., TN7. A
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schematic frequency/time diagram is shown in Figure 2.2. The square
blocks of 200kHz by 7.5/13 ms in the frequency/time diagram are called
slots. BTSs and MSs both transmit bursts of data within slots. Of the
at most 147 bit per burst, no more than 114 bit are traffic data.

A frequency

o, AAAEEEEEE
18
AEEEEEEEE

TNO TNI TN2 TN3 TN4 TN5 (TN6 TN7 (TNO time

|

| 7.5/13 ms 0.396/13ms |
e 60/13 ms >

Figure 2.2: Frequency/time slot diagram

The direction from BTS to MS is the down-link and the reverse di-
rection is the wup-link, see Table 2.1. Up- and down-link channels are
paired and referred to by their absolute radio frequency channel numbers
(ARFCNs), which are defined separately within each variant of GSM.
In GSM 900, for example, there are 124 (paired) channels numbered 1
through 124 and the associated frequencies are 890.0 MHz + (200 kHz) - n
for the up-link and 935.0 MHz + (200kHz) - n for the down-link part of
the nth channel. The 374 channels in GSM 1800 are numbered from 512
up to 885, and the frequencies are 1710.0 MHz + (200kHz) - (n — 511)
and 1805.0 MHz + (200kHz) - (n — 511) for the nth up- and down-link
channel, respectively.

Recall from Section 2.2.1 that the first TRX of a sector usually offers
capacity for up to six parallel (full-rate) speech connections and that ad-
ditional TRXs typically offer seven to eight such connections. The first
TRX has to use TNO to broadcast cell organization information, among
others. The channel used by the first TRX is therefore called broad-
cast control channel (BCCH). Additional cell management information
is transmitted in one of the time slots TN2, TN4, or TN6. The remaining
six slots are used for traffic. Although, the need for signaling increases
with additional TRXs, this can often be handled by already installed
signaling channels. Hence, some additional TRXs may transmit traffic

slot
burst

down-link
up-link
ARFCN

BCCH
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TCH

SDMA

data in all eight time slots. The channels used by any of the additional
TRXs in a cell are called traffic channels (TCHs).

For full-rate speech telephony, the BTS and MS transmit a burst of
encoded speech data of 114 bit in every eighth time slot. This results in a
net speech rate of 13kbps. (An option for half-rate service is specified in
(GSM Phase 2. Only about half the number of bits are transmitted, but
due to a different encoding scheme the perceived quality is much better
than half as good.)

Speech data is assembled in code words of 456 bit. If a code word
is distorted at scattered rather than clustered positions, then the code
allows for error detection and correction to a significant extent. Only
every eighth bit of a code word is therefore transmitted in one burst,
and each code word is spread over eight bursts. The applied scheme is
referred to as restructuring, reordering, and diagonal interleaving.

Several hurdles have to be taken in order to receive a burst properly
at a remote receiver. At reception, the signal has suffered from distortion
in the modulator and demodulator, by the transmission medium, from
noise sources, and from fading phenomena. In an urban environment,
for example, the transmission medium suffers from shadowing, multipath
propagation, and resulting delay spread. The noise sources comprise nat-
ural frequency radiation, human-made sources, and, most prominently,
other transmitters within the GSM network itself.

A cellular system like GSM uses by definition Space Division Multiple
Access (SDMA) to the precious resource of radio spectrum. (In the sense
that the same frequency can be reused in several cells, but not yet in the
sense of reuse within the same cell, which is possible with beamforming
antennas.) A cellular layout of the systems allows to support a high traffic
density over large regions. The area covered by cells varies considerably.
The “cell diameter” ranges from around 20 km or 35km for Macro-cells
in GSM 1800 and GSM 900, respectively, over a few hundred meters for
Micro-cells to less than one hundred meters for (indoor) Pico-cells.

Between the number of channels available to a GSM operator and
the number of TRXs operating in the network are often two orders of
magnitude. Hence, the same frequency slot has to be used in parallel on
several BTSs, and the only shielding against mutual interference comes
from attenuation. Only co-channel and adjacent channel interference,
i.e.; signals from transmitters using the same channel or one of the two
neighboring channels, have to be considered as serious intrasystem noise
sources. According to the GSM specification, a burst has to be decoded
properly if it is received at a signal level of at least 9dB above noise,
including intrasystem interference.
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A number of measures is foreseen in GSM to counteract the generation
of and the sensitivity to interference. We mention only those with a
significant impact on the frequency planning problem.

Power Control is a feature of GSM that allows to dynamically ad-
just the transmission power to an appropriate level. A maximum
emission power is specified for GSM transmitters. For hand-held
mobiles this is 1 W or 2W, depending on the GSM variant. In case
less transmission power is sufficient to guarantee proper reception,
the power can be reduced. Any power excess would only cause un-
necessary interference and power consumption. A trade off between
power control and hand-over has to be made: without the emission
power being at the maximum level, a hand-over may be favorable
to enter another cell, where a yet smaller power level suffices.

Discontinuous Transmission (D7X) is a feature of GSM that sup-
presses transmission if no data has to be transmitted. There is, for
example, no need to transmit the (short) phases of silence within
a conversation. The transmission is suspended and the receiving
mobile generates a so-called comfort noise to make the suppression
(almost) imperceptible. Triggered by a mechanism called voice ac-
tivity detection, the transmission resumes as soon as the need arises.
Figure 2.3(a) gives an illustration, where the pattern indicates the
bursts. In case a channel is used as BCCH, a burst has to be trans-
mitted in every time slot and DTX cannot be applied. (Hence, none
of channels in Figure 2.3(a) is used as BCCH in the corresponding
cell.)

Slow Frequency Hopping (SFH) allows the transmission of consec-
utive bursts on different frequencies. Two variants exist. With
synthesized frequency hopping, each TRX of a sector transmits suc-
cessive bursts on different channels. The sequence, in which the
available channels are switched, is determined by two parameters.
One is the Hopping Sequence Number (HSN), selecting one out
of 64 hopping sequences, and the other is the Mobile Allocation
Index Offset (MAIO), which determines the starting point within
the sequence. If more than one TRX is used for a sector, baseband
frequency hopping can be applied alternatively. Each TRX uses a
fixed channel, and the code words constituting a flow of communi-
cation are dispatched to changing TRXs, see Figure 2.3(b).

Frequency hopping addresses two problems. The quality of a ra-
dio path is frequency dependent. Frequency diversity is obtained

DTX

SFH

HSN

MAIO

frequency
diversity
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interferer diversity

by varying the frequency, and the odds of always having a bad
frequency for a particular radio link are thus reduced. This is of in-
terest mostly to users who are moving slowly or not at all. For fast
moving users, the diversity is caused by the movement. Another
effect of changing the transmission frequencies is that successive
bursts suffer from varying sources of interference. This phenomenon
is called interferer diversity. The distortions of the received signals
are less correlated, and this increases the probability of correcting
the transmission errors. Notice, however, that in any case no hop-
ping is applied at the broadcast control channel (BCCH) in time
slot TNO.

frequency A frequency

TNO TN1 TN2 TN3 TN4 TNS TN6 TN7 TNO time TNO TN1 TN2 TN3 TN4 TN5 TN6 TN7 TNO time

(a) (b)
Figure 2.3: DTX and SFH

Although, it is not stated here explicitly, there are numerous param-
eters, which the individual GSM operator is able to change. The setting
of those parameters also affects the efficiency of the radio interface.

2.3 Automatic Frequency Planning

As stated before, frequency planning is a key point for providing capacity
and quality of service by fully utilizing the available radio spectrum in
GSM. The automatic generation of a good frequency plan for a GSM
network is a delicate task for which the three major building blocks are:

(i) a concise model
(ii) the relevant data
(iii) efficient optimization techniques

The importance of each prerequisite is explained in the following.
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First, the automatic generation of a frequency assignment by a com-
puter relies on the representation of all relevant aspects. Hence, a concise
(mathematical) model of the frequency planning problem is necessary.
On one hand, this model should be simple for the sake of easy handling.
On the other hand, all information has to be captured which is necessary
to accurately estimate a frequency plan’s quality (without testing it in the
real network). This is, for example, a point where the traditional model
with hexagonal cell shapes fails, compare with Section 2.3.2. (The model
still receives attention in the literature, however, because all relevant
data is easily generated and planning based on this model is more easily
accessible.) The spectrum of models currently in use is wide. It ranges
from simplistic graph coloring models over graph-based models dealing
with the maximization of satisfied demand or the minimization of inter-
ference to models building directly on signal predictions and looking at
the probability of failed code word reception (frame erasure rate), see,
for example, Koster [1999], Murphey, Pardalos, and Resende [1999], and
Correia [2001, Section 4.2|. After preparing the ground in Section 2.3.1,
we come back to models in Chapter 3.

Second, the concise model is futile unless the corresponding data is
provided. The main difficulties here are related to data on radio signal
levels. This data is needed in ample ways, for example, in order to
estimate how much interference can occur between transmitters or to
determine between which cells a hand-over can be supported. Details are
discussed in Section 2.3.2.

Third, with a concise model and reliable data in hands, the task of
producing a good frequency plan can be reduced to the problem of finding
a solution to a mathematical optimization problem. Special software
for this purpose is in demand. Operations Research has picked up this
problem in the late 1960s and dealt with it steadily, compare Metzger
[1970], Hale [1980], and Roberts [1991a]. The most progress has been
made within recent years, accompanying the deployment and extension
of GSM networks and often stimulated by close cooperations between
research facilities and network operators or equipment manufacturers.
We come back to planning algorithms in Chapter 4.

An overview on the frequency planning process in practice is given
in Figure 2.4. Starting from the site data, including information on
antenna, locations, sectorizations, tilts, etc., as well as information on
terrain, building structures, and sometimes even vegetation data, the
signal propagation is predicted for all antennas. The results are used in
calculation the cell areas. Linked to cell areas is the interference analysis,
the hand-over planning, and the traffic estimation, each of which produces
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mandatory input data for the actual frequency assignment. Details on
most of these items are given in the remainder of this chapter.

‘ site data ‘

‘ path loss prediction ‘

‘ cell calculation ‘

‘interference analysis‘ ‘ hand-over planning ‘ ‘ traffic calculation ‘
‘ neighborhood list ‘

‘  J
interference matrices ‘ ‘ separation matrix ‘ ‘Channel requirements
frequency assignment
Figure 2.4: Frequency planning process

2.3.1 Objective and Constraints

Next, we explain the most important parameters to be taken into account
for frequency planning. Those parameters must be present in the math-
ematical model. We use a small artificial but realistic example network
called TINY for this purpose, see Figure 2.5.

site TINY comprises three sites, named A, B, and C. Site A has three

sector sectors with sector numbers 1, 2, and 3. Sites B and C have two sectors,

cell numbered 1 and 2. Each sector of a site defines a cell. The numbers of

elementary transceivers (TRXs) installed per cell are given in Table 2.3.

| Cell [A1]A2]A3]B1[B2[C1][C2]
|TRXs | 1 |3 [2 ]2 |1 ]1]2]

Table 2.3: Number of TRXs installed per cell
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Figure 2.5: Network TINY
We assume that TINY is a GSM 1800 network and that the paired fre-
quency bands 1750.0-1752.4 MHz and 1845.0-1847.4 MHz are available.
The absolute radio frequency channel numbers (ARFCNs) of the corre-
sponding thirteen channels are 711-723, and we call this set the spectrum spectrum

of available channels.

Due to technical and regulatory restrictions, some channels in the
spectrum may not be available in every cell. Such channels are called
locally blocked. Local blocking can be specified for every cell. We assume
that channels 711 and 712 are blocked in cell B2, and that channel 719
is blocked in cell C1.

Each cell operates one broadcast control channel (BCCH) and possibly
some dedicated traffic channels (TCHs). Two to three TCHs in a cell are
common for urban areas today.

The difference of the ARFCNs of two channels is a measure for their
proximity. Sometimes a restriction applies for a pair of TRXs on how
close their channels may be. This is called a separation requirement,
and its purpose is to ensure that the TRXs can transmit and receive
properly or to support the preparation of call hand-overs between cells or
to avoid strong interference. Separation requirements and locally blocked
channels give rise to so-called hard constraints. None of them is allowed
to be violated by an assignment.

There are several sources of separation requirements. For example,
if two or more TRXs are installed at the same site, co-site separation
constraints have to be met. A co-site separation of 2 is assumed for all
sites of TINY. Furthermore, if two TRXs serve the same cell, a co-cell
separation constraint has to be met. The minimum co-cell separation is 3

locally blocked

separation

hard constraints

co-site separation

co-cell separation
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co- and adjacent
channel
interference

in each cell for TINY. In practice, this value may vary from cell to cell
due to different technologies in use, but the values given here are typical.

— || 41| 42| A3 | B1 | B2|C1|C2|

Al ® .
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B2 ° °
C1 ° °
C2 ° °

Table 2.4: Hand-over relation for TINY

During a hand-over, an ongoing call is passed from one cell to another.
Technically speaking, the cellular phone switches from using a channel
operated in the passing-on cell to a channel used by some TRX in the
receiving cell. The hand-over relation is defined between all ordered pairs
of cells and tells from which cell to which other cell a hand-over is possible.
The hand-over relation for TINY is given in Table 2.4. A “e” at the
intersection of a row and a column indicates that a call may be handed
over from the cell listed in the row to the cell listed in the column.

Since the hand-over operation is a sensitive process, some separation
between the channels in the two involved cells is required. Table 2.5 lists
the minimum separation to support hand-over for TINY. The BCCH and
all TCHs in the source cell have to be separated by at least 2 from the
BCCH in the target cell. The BCCH and all TCHs in the source cell
have to be separated by only 1 from the TCHs in the target cell. These
values are again typical.

| — | BCCH | TCH |
BCCH| 2 1
TCH 2 1

Table 2.5: Hand-over separation for TINY

In GSM, significant interference between transmitters may only occur
if the same or adjacent channels are used. Correspondingly, we speak of
co-channel and adjacent channel interference.

Interference in the up-link band may occur between mobile stations
being served in different cells. Interference in the down-link band may
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occur between TRXs operated at different sites. Although the up-link
is usually more critical in GSM than the down-link, the interference is
specified for the down-link. The reason for this is the lack of appropriate
ways to predict up-link interference. Already the prediction of down-link
interference is intricate, see Section 2.3.2.

Interference relations do not have to be symmetric, i.e.; if cell Bl
interferes with cell A1, cell A1 does not necessarily also interfere with
cell B1. And in case two cells interfere mutually, the ratings of the
interference can be different. The ratings are normalized such that all
interference values lie between 0.0 and 1.0. The co- and adjacent channel
interference ratings for cell pairs in TINY are specified in terms of affected
cell area in Table 2.6. The upper number in each cell of the table refers to
co-channel interference, and the lower number refers to adjacent channel
interference. Blank spaces indicate that either no interference is predicted
or interference is ruled out by separation requirements.

— || A1 A2 A3 Bl B2 C1 C?2
Al

A2 010 | 005

A3 000 | 006
51 000 | 009 0oe
52 001
1 000

2| oot loos|  loos

Table 2.6: Interference between cells in TINY

The specification of interference for pairs of cells rather than for pairs
of TRXs presupposes that all TRXs in a cell use the same technology, the
same transmission power, and emit their signals via the same antenna. If
this assumption does not hold, then a sector of a base transceiver station
can be treated as the host for several “cells” within which the assumption
holds. This is for example relevant if discontinuous transmission is ap-
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soft constraints

(un-)changeable

plied, because the average interference caused by a TCH applying DTX
is less than that of the BCCH, which is not allowed to apply DTX.

In case interference is very strong, it may not be possible to pro-
cess calls. Interference should then be ruled out by means of separation
requirements with minimum separation of one or two. A minimum sepa-
ration of one excludes co-channel interference, because the involved pairs
of TRXs may not use the same channel. A minimum separation of two
excludes co- and adjacent channel interference. For TRXs installed at the
same site, interference is generally ruled out by appropriate co-cell and
co-site separation requirements. Table 2.7 displays a channel assignment
for TINY, which incurs no co-channel interference and a total of 0.02 ad-
jacent channel interference. The interference relations are also called soft
constraints in the literature.

Cell Al A2 A3 BL B2 | C1 C2
TRX 0 [0 1J]2 o] 1 ]]o]1]oo]o]1
[ Channel [[ 715 [ 717 | 713 | 722 | 711 [ 720 | 720 [ 711 [ 715 | 714 [ 723 | 718 |

Table 2.7: Feasible assignment for TINY incurring interference

Because a frequency assignment is typically already installed in (parts
of) the network when generating new plan, some of the existing assign-
ments might have to be kept fixed. A TRX, for which the channel shall
not be changed, is called unchangeable. Otherwise, we call it changeable.

All this data has to be represented adequately and in a computation-
ally tractable fashion as a basis for automated frequency planning.

Our objective then is to find frequency plans incurring the least pos-
sible amount of overall interference, which we define as the sum over all
interferences between pairs of TRXs. Although this figure reveals only
a small part of the picture from a practical viewpoint, it has neverthe-
less proven effective in practice. We give one example for its inadequacy.
Let us consider two frequency assignments incurring the same amount
of overall interference. In one case, the entire interference occurs in one
area, whereas in the other case the interference is scattered in small quan-
tities. The second plan is certainly favored in practice, but the objective
function does not show the difference. A few alternative optimization
objectives (with other drawbacks) are discussed in Section 3.1.2.

The effects of discontinuous transmission (DTX) and slow frequency
hopping (SFH) are not explicitly addressed here. How this can be done
accurately during the planning process is, in fact, unclear, compare with
Section 2.3.2. Common practice is to evaluate their impact by computer
simulations once ordinary frequency planning has been performed. In
case the outcome is not satisfactory, the planning process is repeated.
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Our version of the frequency assignment problem is, thus, as follows:

Given are a list of TRXs, a range of channels, a list of
locally blocked channels for each TRX, as well as the mini-
mum separation, the co-channel interference, and the adjacent
channel interference matrices.

Assign to every TRX one channel from the spectrum which
s not locally blocked such that all separation requirements are
met and such that the sum over all interferences occurring
between pairs of TRXs is minimized.

We give a mathematical statement of this problem in Chapter 3. Next,
we explain how the input data is generated with sufficient accuracy and
in which way solving the above problem is embedded in practice.

2.3.2 Precise Data

The main difficulties concerning reliable data arise with respect to radio
signal levels. Signal levels are provided through measurements in few
cases only. In the other cases, the signal strength is predicted using wave
propagation models. We sketch the most prominent tasks and the related
problems to be tackled in preparation for algorithmic frequency planning.

Cells and Neighbors

The area, where a mobile station may get service from a particular sector
of a BTS, is called cell area. Cell areas may overlap. The cell areas have
to be estimated for at least two purposes.

One purpose concerns the provision of sufficient cell capacity. We are
looking mostly at call blocking probability here, that is, the probability
of not being able to get full service from the network due to lacking
capacity at the radio interface. The cell capacity is provided by installing
TRXs. How many TRXSs are sufficient for a cell depends on the expected
traffic load. More precisely, there have to be predictions (supplemented
by measurements) of the peak communications traffic depending on the
location. (A relevant measure for the peak traffic is the number of busy-
hour call attempts (BHCA).) The traffic data is then related to the cell
areas, resulting in a traffic estimate in Erlang per cell. Let A. denotes
the traffic of cell ¢ in Erlang, then the number of required communication
channels m, is determined from the well-known FErlang-B formula

me 1\ e
Boam) =(3o55) &

m,!
k=0 ¢

cell area

BHCA

Erlang-B formula
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hexagonal cell

best server

assignment
probability

by setting m. to the least possible value such that a blocking probability
B(A¢, me) of 2%, say, is not exceeded. Then the smallest number of TRXs
is chosen for cell ¢, which allows to support m, simultaneous calls.

The other purpose of calculating the cell areas is to decide on the
hand-over relations, that is, from which cell to which other cell a hand-
over should be possible. This has to be settled in advance, because every
cell broadcasts on the BCCH to which neighboring cells a hand-over is
supported, and, correspondingly, hand-over separation requirements have
to be observed during frequency planning. In order to hand an established
communication link from one cell over to another, the mobile station has
to be located in the overlap of the two cell areas.

Notice that the cell area does not only depend on the installation
and configuration of the BTS and its sectors (including antenna height,
tilt, transmission power, etc.) but also on the noise and interference from
other BTSs. In addition to having a sufficiently strong radio signal at the
receiver, this signal must also be sufficiently undistorted to be decoded
correctly. This issue, however, is neglected in the following discussion of
cell area prediction models.

The simplest model assigns each point to the cell with the strongest
signal. The BTSs are assumed to be spaced out regularly on a grid and
to have identical antenna configurations as well as identical transmission
powers. The propagation conditions are taken to be isotropic. The result
is a hexagonal cell pattern. In case the antennas radiate omnidirection-
ally, the BTS would be in the middle of a cell. In case a sectorization
with 120 degree is used, the BTSs are located on the intersection of three
cells, each of the sectors serving one of the cells, see Figure 2.6(a).

More precise cell models rely on realistic signal propagation predic-
tions. For each sector, an attenuation diagram for the emitted radio
signal is computed. For the following discussion, we assume that for
each grid point of a regular mesh the signal strength of the surrounding
base stations is known. Each of the grid points is a representative of its
surrounding. Typical mesh sizes are 5 X 5m (metropolitan), 50 x 50m
(urban), and 200 x 200m (suburban & rural). Up to which distance base
stations have to be considered is a matter of experience. In a GSM 1800
network, this distance can be in the order of up to 50 km.

The best server model is commonly used today. Each grid point is
assigned to the cell with the antenna providing the strongest signal. This
results in a partition of the service region into cell areas without overlap,
see Figure 2.6(b).

In the assignment probability model, the probability is estimated that
a mobile station, located at a given grid point, is served by a given cell.
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(a) (b) (¢)

Images (b) and (c) are kindly provided by E-Plus Mobilfunk GmbH & Co. KG.

Figure 2.6: Cell models: hexagonal, best server, assignment probability

Every cell providing a signal of sufficient quality (see the discussion be-
low) is considered as a potential server, and the probability of serving is
computed by simulating the hand-over behavior of moving mobile sta-
tions. This model gives a better indication of the cell area than the best
server model. So far, however, it is hardly used in the context of frequency
planning. Typical applications are related to location-dependent tariffs
like “local calls” within city borders or fixed network tariffs at home and
its close surroundings. In Figure 2.6(c), the probability of being served
by the cell with the strongest signal is color coded. The lighter the color
gets, the higher is the probability of being served by one particular cell.

Interference Predictions

Several ratings of interference are conceivable. Area-based and traffic-
based ratings are most often used in practice. The occurrence of interfer-
ence is either measured or predicted. A purely distance-driven estimation
of interference, as it is sometimes used in Operations Research literature,
is unacceptable. There are, for example, drastic differences with respect
to signal propagation between a flat rural environment and a metropoli-
tan environment with narrow street canyons and irregular building struc-
tures, see, e.g., Kiirner, Cichon, and Wiesbeck [1993] or Damosso and
Correia [1999].

The standard procedure nowadays is to aggregate the grid-based sig-
nal predictions into interference predictions at a cell-to-cell level. For
an area-based rating, this is typically done using the best server model,
see above. Signals from cells are neglected if they are more than ¢dB
below the strongest signal. All other signals are considered as potential
interference. The way, in which area-based interference is accounted for,
is depicted schematically in Figure 2.7. Two cells, A and B, are shown
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free space model

together with their cell areas. The cell areas are assumed to be deter-
mined according to the best server model. We focus on interference in
cell A caused by cell B. The shaded portion of the cell A indicates the
area, where cell B has a signal level of at most ¢t dB less than cell A itself.
The “interference” of cell B in cell A is taken as the number of shaded
(distorted) pixels in cell A relative to the number of all pixels in the area
of cell A. The same procedure, but with a different threshold value ¢, is
used to determine adjacent channel interference. The converse direction
is treated identical.

Figure 2.7: Area-based interference prediction

The GSM specifications state that a signal has to be decoded prop-
erly by a receiver if it is 9dB above noise and interfering signals (and
of sufficient strength). As a consequence, the value ¢ = 9 is often used
as threshold in practice. An investigation carried out by Eisenblétter,
Kiirner, and Faub [1999] reveals, however, that a threshold value of 15dB
or even 20dB often results in frequency plans, where interference is more
evenly distributed and at a lower overall level. No satisfactory explana-
tion for this observation is known so far.

Clearly, the accuracy of the interference predictions is a cornerstone
for automated frequency planning. An analysis of how accurate interfer-
ence predictions affect the quality of a resulting frequency plan is given
by Eisenblatter, Kiirner, and Fauk [1998], see also Correia [2001, Sec-
tion 4.2.7]. Three interference predictions are computed for the same
planning region on the basis of the best server model and using three
different signal propagation prediction models.

e In the free space model, the propagation conditions of free space
are assumed, but a decay factor of 1.5 rather than 1 is used. The
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increase of the factor from 1 to 1.5 (or the like) is taken as an
empirical value between the decay factor when only the direct ray is
taken into account (resulting in a decay factor of 1) and the decay
factor observed in a two ray model, see, e.g., Kiirner and Faufl
[1994]. In the two-ray model, the interaction between the direct
ray and a reflected ray results in a decay factor of 2 for distances
larger than a specific threshold.

e The Modified Okumura-Hata race predictor bases on an 1800 MHz
extension of the basic path loss equation as described in Damosso
and Correia [1999]. Land use information is used by means of em-
pirical correction factors for each land use class. Terrain variations
are taken into account by using an effective antenna height. To-
pographical obstacles are treated as knife-edges, that is, infinitely
long, straight “razor blades,” for which a closed, simple formula for
the diffraction is known.

e The eplus propagation prediction model, see Kiirner, Fauf, and
Wiisch [1996], is the most sophisticated approach used in the com-
parison. The model consists of a combination of several propaga-
tion models like COST 231-Walfisch-Ikegami, Maciel-Xia-Bertoni,
and Okumura-Hata. It is developed for GSM 1800 and calibrated
with numerous measurements in the network of E-Plus.

Ranking these wave propagation prediction models has its difficulties.
The crucial question is how to compare assignments computed on the
basis of different predictions without implementing the assignments into
the live network and performing measurements. In the approach taken
by Eisenblétter et al. [1998], each assignment’s interference is determined
according to all three interference predictions. The findings are as follows.

e The assignments computed on the basis of the predictions from the
eplus model have relatively little interference according to all three
predictions.

e The assignments computed on the basis of the predictions from the
free space model have decent interference ratings according to the
race predictions, but are mediocre according to the eplus predic-
tions.

e For the assignments computed on the basis of the race predictions
the worst picture is obtained. They are mediocre to bad according
to the two other predictions.

race model

eplus model
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hopping gain
load gain

pre factors
post factors

In view of this, the eplus model is ranked above the free space model,
which, in turn, is ranked above the race model (in this particular context).
In total, varying the signal propagation predictor shows a larger impact
on the frequency assignment quality than choosing among the different
frequency planning heuristics considered by Eisenblétter et al. [1998],
which are similar to those described in Chapter 4 and Section 5.1.2.

Effects of DTX and SFH

The GSM features of discontinuous transmission (DTX) and slow fre-
quency hopping (SFH) both address the problem of interference either
by reducing interference itself (DTX) or by reducing the impact of inter-
ference (SFH).

Neither of these features is explicitly addressed within our frequency
assignment model, but it is possible to incorporate their effects into the
interference ratings. Nielsen and Wigard [2000] and Majewski, Hallmann,
and Volke [2000] propose different ways to do so, both being validated
using GSM simulators. Nielsen and Wigard [2000] introduce two param-
eters called hopping gain and load gain by whose product the interference
rating is scaled. The setting of the parameters depends on the load of
each cell, a voice activity factor, and the number of channels to hop
on, among others. Majewski et al. [2000] introduce pre factors and post
factors in order to scale interference, but do not provide the full details.

Bjorklund, Varbrand, and Yuan [2000] optimize the hopping sequence
for each cell. This sequence is determined by the hopping sequence num-
ber (HSN) and sequence starting point (MAIO).

2.3.3 Practical Aspects

Since the introduction of GSM, operators have steadily increased their
network’s coverage and capacity. This typically involves installing addi-
tional TRXs and providing them with channels. Hence, the frequency
plan has to be adjusted. The same holds if the transmission characteris-
tics of a BTS change.

Installing a new frequency plan is not as simple as it may sound at
first. In Germany, for example, the operator has to submit the frequency
plan to a governmental regulation office and ask for approval. This ap-
proval is given if the frequency plan adheres to the bilateral agreements
on channel use along national borders and if no interference with other
radio systems operating in the same frequency band is expected. The
restrictions from both sources are recorded as locally blocked channels.
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The former are known in advance, but the latter are often only revealed
through rejection. The turn around time for such an approval is in the
order of a few weeks.

Changes in the frequency plan take effect at the BTSs. In “old times,”
the channels had to be adjusted manually at the combiners. Nowadays,
remotely tunable combiners may be used. These allow to change the
channels through the OSS, but this convenience comes at the expense
of less effective combiners. In principle, a TCH can be changed while
the cell is in operation as long as the corresponding TRX is not in use.
Changing a BCCH, however, requires to shut down the cell completely
for a couple of minutes. Therefore, changes in the frequency usage are
mostly performed at night times.

Another problem is that the effects of the changes are not easily
assessed. Extensive, time-consuming quality measurements campaigns
could be performed, but much rather a “sit and wait” strategy is adopted:
measurements by the Operation and Maintenance Center (OMC) of the
rate of quality-driven hand-overs and an increase in customer complaints
substitute the explicit quality assessment. Common to both alternatives
is that they require users which are getting service or unsuccessfully try
to get service. This happens to a sufficient extent only at the next day.

The way in which frequency planning is done differs from operator to
operator. Some operators divide their service area among regional offices,
which act more or less independently. For example, E-Plus operates five
regional offices. Between the regional offices, the channel use along the
regional border is settled through agreements similar to bilateral agree-
ments for national borders. Obviously, regional borders (these are the
ones an operator may choose) should be in areas with little telecommuni-
cations traffic, where planning is simple even with additional restrictions.

Even if operators are confident in the overall reliability of the fre-
quency planning process, they try to change the BCCH assignment rather
seldom. Recall in this context that solving the combinatorial optimiza-
tion problem of finding a good frequency plan is merely one important
step in this process. Other, equally important ones, are maintaining up
to date and sufficiently detailed data about terrain and buildings as well
as generating accurate interference predictions.

Some GSM operators split their available spectrum into two separate
parts, one for BCCHs, the other for TCHs. This is called band split. The
reasoning behind performing a band split is to be able to plan the TCHs
(almost) independently from the BCCHs. Table 2.8 shows an assignment
for TiNY, which is compatible with splitting the spectrum of 711-723 into
a BCCH-band of 711-716 and a TCH-band of 717-723.

band split
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Cell Al | A2 | A3 | B1 B2 | C1 | C2 A2 A3 | B1 | C2
TRX 0 0 0 0 0 0 0 1 ]2 1 1 1

[ Channel || 711 | 716 | 713 | 711 | 713 | 711 | 715 ]| 719 | 723 | 721 | 721 | 718 |

Table 2.8: Assignment respecting a band split

Planning BCCHs from a separate, often relatively large band is one
way to protect these channels against interference. Moreover, only TCHs
perform DTX, which leads to load-dependent interference among the
corresponding TRXs. Again, by using separate bands, the BCCHs are
shielded against this load-dependency. The only conflicts may arise where
the two bands meet and adjacent channel interference from TCHs ex-
tends into the BCCH-band. Since network expansion is mostly capacity
enhancement provided by additional TRXs, the capacity increase is typi-
cally achieved at the expense of additional interference in the TCH-band.

While extensions and minor changes of a frequency plan are performed
regularly, major changes or even replanning the entire service arca are
treated with great precaution. Some operators are willing to replan about
once a year, others use even larger time intervals.

The planning proceeds in steps regardless of whether a small or a large
change is envisaged. TRXs eligible to changes are selected, and one or a
few frequency plans are computed. These plans are analyzed thoroughly
according to various criteria. Our objective function of minimizing the
overall interference is just a coarse approximation of that. If none of the
plans is considered good enough, the radio engineer may change technical
characteristics of BTSs, such as the direction of the sectors, in order to
decrease interference potential. New frequency plans are computed. This
process is iterated until a decent frequency plan is identified. During the
iterations, fast heuristics for frequency planning are favored because of
their short running times. If a final plan is to be determined, the use of
more time consuming, elaborate methods is acceptable.

Fast planning methods are presented in Chapter 4, and one selected
example of a more time consuming method is described in Section 5.1.2.
Notice that the heuristic planning methods discussed here and elsewhere
typically address the problem of assigning channels to several hundreds of
TRXs at once. In case of a minor network expansion, the situation is dif-
ferent: only a few TRXs have to be assigned, up to a hundred, say, while
taking restrictions from the presently installed assignment into account.
In this case, branch-and-cut methods can often find the optimal assign-
ment in reasonable time. Using standard tricks of Integer Programming
the integer linear program (3.6) can be solved effectively, see the work of
Koster [1999] and that of Jaumard, Marcotte, and Meyer [1999].



CHAPTER 3

Mathematical Models

In the following, we translate the informal statement of the GSM fre-
quency planning problem from Section 2.3.1 into a mathematical model.
For convenience, we restate the problem:

Given are a list of TRXs, a range of channels, a list of
locally blocked channels for each TRX, as well as the mini-
mum separation, the co-channel interference, and the adjacent
channel interference matrices.

Assign to every TRX one channel from the spectrum which
is not locally blocked such that all separation requirements are
met and such that the sum over all interferences occurring
between pairs of TRXs is minimized.

Our mathematical model is presented in Section 3.1. In the context
of GSM frequency planning, similar models are used by Duque-Antén
and Kunz [1990]; Duque-Antén, Kunz, and Riiber [1993]; Carlsson and
Grindal [1993]; Plehn [1994]. During the late nineties, this model became
popular among researchers as well as practitioners, see Koster [1999, Sec-
tion 2.6] and Correia [2001, Section 4.2.5], for example. A few competing
models are addressed in Section 3.1.2. The computational complexity
of solving our model of the frequency assignment problem is studied in
Section 3.2. It turns out that finding a feasible solution is N'P-complete,
and even if that were simple, finding (close to) optimal solutions would
remain NP-hard. Finally, two reformulations of the frequency assign-
ment problem as integer linear programs are given in Section 3.3. The
mathematical notions used in the following are explained in Appendix A.

3.1 The Model FAP

The objective of minimizing the overall interference is blind to the “direc-
tion” of interference, that is, whether the use of a channel in a cell causes

33
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interference somewhere or whether the channel itself suffers from interfer-
ence. The mathematical formulation of our frequency planning problem
is therefore undirected, and we simply add the interference ratings given
for the two directions into a single value.

Let (V, E) be an undirected graph. The vertices of the graph are
also called carriers and represent the TRXs. The spectrum C' is a finite
interval in Z, the set of nonnegative integers, representing the range of
channels. For every carrier v € V, a set B, C C of blocked channels is
specified. The channels in C'\ B, are called available at carrier v. B,
may be empty.

Three functions, d: E — Z, ¢®: E — [0,2]g, and ¢®: E — [0, 2]q,
are specified on the edge set. For an edge vw € F, d(vw) gives the
separation necessary between channels assigned to v and w. c®(vw)
and c*(vw) denote the co-channel and adjacent channel interference,
respectively, which may occur between v and w. (Both functions map into
the interval [0, 2]g rather than into [0, 1]g because of the symmetrization
mentioned above. This may be remedied by scaling if desired.)

We refer to the 7-tuple N = (V, E,C,{ B, }ucv,d, ¢, ™) as carrier
network or network, for short. A frequency assignment or simply an
assignment for N is a function y: V — C. An assignment is feasible if
every carrier v € V is assigned an available channel and all separation
requirements are met, that is, if

y(v) € C\ B,
ly(v) — y(w)| > d(vw)

Yv eV, (3.1)
Vow € E. (3.2)

Feasible assignments are a generalization of list colorings and are re-
lated to T-colorings of graphs in the following way. For a list coloring
problem, a graph and lists of colors for every vertex are given. The task
is to find a vertex coloring for the graph such that every vertex receives
a color from its list and such that no two adjacent vertices receive the
same color, compare Erdds, Rubin, and Taylor [1979|. Since an available
channel has to be picked for every carrier, feasible assignments are list
colorings.

T-colorings are introduced by Hale [1980]. Given an undirected graph
G = (V, F) and nonempty finite sets T'(vw) of positive integers for all
edges vw € E, a T-coloring of G is a labeling f of the vertices of G with
nonnegative integers such that |f(v) — f(w)| € T'(vw) for all vw € E.

A frequency assignment has to meet list coloring as well as T-coloring
constraints in order to be feasible. Such list T-coloring are first studied
by Tesman [1993].
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The definition of a carrier network is illustrated using the scenario
TINY from Section 2.3.1. The vertex set is V = {Aly, A2, A2y, A2,
A3y, A3y, Bly, Bly, B2y, Cly, C2, C2,}. The edge set can be identified
from Table 3.1 as all pairs of vertices where at least one of the functions
d, ¢, or ¢* is nonzero.

Table 3.1 shows the minimum required separation, the co- and adja-
cent channel interference in full detail. The lower left-hand part displays
the nonzero separation requirements, whereas the upper right-hand part
lists the co-channel interference on top of the adjacent channel interfer-
ences. The symbol “o0” is used, where interference cannot arise due to

separation requirements.

Alg | A2 | A2y | A2y | 430 | 431 | Blg | Bl: | B2y | C1o | C26 | €24
Alo o0 o0 oo oo o0
o0 oo oo oo o0
00 fo'e} [ere] [e'e] [e%) [ele] 0.10
A2 2 [o'e} o0 o0 o0 00 0.19 | 0.02
oo jo'e} o0 00 20 0.10
A2 2 3 o0 jo'e} fe's} o0 0.19 | 0.02
jo'e} fe's} 0 o] 0.10
A2, 2 3 3 jo'e} o0 00 0.19 | 0.02
A3 2 2 2 2 o0 S o Bk
o0 oo oo o0
oo oo o0
A3q 2 2 2 2 3 0o oo 0.09
o0 ) oo o0
Blo 2 2 2 00 00 o0 0.08
o0 oo o0
Bl 1 1 1 3 0 00 0.08
oo o0
B2 2 2 oo | 0.12
Clo 2 2 oo |
oo o0
2 2 2 2 2 2 2 2
C2; 2 1 1 1 1 2 3

Table 3.1: Separation and interference for TINY

The spectrum C' is the set {711,...,723}. The local blockings are
listed in Table 3.2.

[ Al [ A% [ A2 [ A% [ Aso [ A3: [ Blo [ BL [ B% [ Clo [ 02 [ 021 ]
(BT =T =TT —=-T=T—=-T—=T—=TJrLm2[7] —=T—]

Table 3.2: Local blockings for TINY

Four assignments for the network are shown in Table 3.3. The assign-
ment y', which is the same as that in Table 2.7, is feasible and incurs no
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co-channel interference, but a total of 0.02 adjacent channel interference.
The assignment y? is also feasible and incurs no interference at all. The
assignments 3® and y* are both infeasible. The local blocking of channel
719 for B2, is not obeyed by y3, whereas the required separation of 2
between the channels for the carriers A2; and A3, is not achieved in y*.

[ [ Ao [ A% [ A2 [ A% [ A3 [ A3 [ Blo [ BLi [ B2 [ Clo [ 02 [ €21 ]
715 77 713 722 711 720 720 711 715 714 723 718
713 728 722 725 711 720 711 720 713 713 715 718

713 | 730 | 724 | 727 | 711 715 | 714 TL7 | 712 713 | 719 | 722
712 | 711 717 | 715 [ 713 | 716 | 719 720 713 711 722 | 723

@ | || <=
o ] N

Table 3.3: Assignments for TINY

Our objective is to determine a feasible assighment that minimizes
the sum of co- and adjacent channel interferences.

Definition 3.1. Given a carrier network N, we call the optimization
problem

min Z clvw) + Z ™ (vw) (FAP)

y feasible
vwek: vwel:
y(v)=y(w) ly(v)—y(w)|=1

the frequency assignment problem FAP.

Focusing on interference minimization is justified if feasible assign-
ments can be produced sufficiently well. This is the case for (most of)
the planning scenarios we are interested in, but not necessarily in general,
as is shown in Section 3.2. The example of planning a capacity extension
for an already congested area underlines that even in practice-relevant
situations this assumption will not always be satisfied. Two questions
naturally arise in such a situation: Is no feasible extension found because
none exists? And if so, how many of the established assignments have
to be changed the least (and which are the ones) in order to obtain a
feasible plan for the extended network?

Both questions are linked to interesting lines of research. The first
question has close connections to the “min-span problem,” compare with
Section 3.1.2, and the second one is related to the “minimum blocking
problem.” The latter problem addresses the minimization of the call
blocking probability per cell, i. e., the maximization of the portion of the
specified demand per cell that is satisfied. Neither of those questions is
pursued here, because, as already mentioned, feasibility is almost always
easily obtained for the test instances at our disposal, see Section 5.1.1.
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We point the interested reader to the surveys given by Koster [1999]| and
Murphey et al. [1999].

Our objective function asks for minimizing the sum of all interfer-
ences. One consequence is that we will exchange a number of small
interferences for one big interference between two carriers as long as the
total interference is reduced. Not much effort is required to come up with
an example where this is inappropriate. Such examples, however, do not
seem to be typical for GSM frequency planning practice, and the objec-
tive of minimizing the total interference is widely accepted in practice.
In addition, our model does allow to counteract undesired exchanges in
at least two ways. Omne method is explained as “tightening the sepa-
ration” in detail in Section 4.1.2. Roughly speaking, high interferences
between pairs of carriers are ruled out by introducing extra separation
requirements. The other method, we have in mind, transforms the speci-
fied interference ratings by applying a monotonously increasing function.
This changes the trade off between many small interferences and one
large interference in favor of the many small ones.

Another comment on our model is the following. Each vertex of the
carrier network corresponds to an individual TRX in the GSM network.
As an alternative, one might identify “equivalent” TRXs per cell and
represent those by one vertex. Two TRXs of a sector would be considered
equivalent if they shared the same planning requirements. The number of
channels to assign to a vertex would depend on the vertex, and within the
set of channels assigned to a vertex the minimum co-cell separation would
have to be met. Both alternatives are equivalent in the mathematical
sense, of course. But the latter may be more appealing if synthesized
frequency hopping is applied and more channels can be assigned to a cell
than there are TRXs. In our model, this is mimicked by introducing
extra carriers for those cells.

3.1.1 Variants

There are some straightforward generalizations of FAP. The first one, we
present, addresses the question of finding an interference-minimal assign-
ment, extending a given partial assignment. In the second variant, an
assignment is given and the objective is to find a cost-minimal assign-
ment, when, in addition to interference, cost for changing the channel of
a carrier is accounted for. The third variant generalizes the first and the
second one. An assignment is given together with a set of carriers, which
are not to be changed. Furthermore, a cost function on the changeable
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bi-criteria
optimization

partial assignment
extension

reassignment
penalty

carriers is given, and if a carrier’s channel is changed, then the corre-
sponding cost is accounted for in the objective function. The second
and the the third variant are both examples for bi-criteria optimization
problems. The general arguments about the trade off between the two
competing optimization goals apply here, too.

FAP, A partial assignment p: P — C with P C V is given. The carriers
in P are already assigned. A frequency assignment y ezxtends p if
y(v) equals p(v) for all carriers v € P. Our first variant is the
optimization problem

: co ad
, i Z cvw) + Z c(vw). (FAP,)
y extends p y(v)=y(w) [y(v)—y(w)|=1

If there is no partial assignment specified, this problem is just the
ordinary frequency assignment problem FAP. Conversely, this can
also be expressed as an ordinary FAP by setting B, = C \ {p(v)}
for all carriers in P.

FAP, A frequency assignment y,,.: V — C is supplied, and a penalty
has to be paid if any of the channels is changed. The individual re-
assignment penalties are specified by a mapping r: V' — Q.. The
penalty for changing the channel of a carrier is independent of the
amount by which the new and the old channel differ, because im-
portant is merely whether the assignment is changed. The objective
is to minimize the total cost of a frequency assignment, where the
savings in interference are traded off against the spending for re-
assigning carriers. Our second variant is the optimization problem

y%isﬁle Z vw) + Z “vw) + Z r(v).

y(v)=y(w) ly(v)—y(w)|=1 y(v)#ypre (v)
(FAP,.)
The ordinary frequency assignment problem FAP is obtained in case
nothing is charged for reassigning a carrier.

FAP,,. Given are a frequency assignment y,,.: V — C and aset P C V of
carriers, which are supposed not to be altered. Moreover, penalties
for reassigning each carrier v are specified by a functionr: V' — Q. .
(Because the carriers in P cannot be changed, the values r(v) for
v € P are irrelevant. These values are given merely for notational
convenience.) In order to give a mathematical formulation, consider
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the partial assignment p: P — C obtained from y,,. by letting
P = Ypre| P, 1. €., p maps every carrier v contained in P to the channel
p(v) and is undefined on all carriers not in P. Our third variant is
the optimization problem

, min Z c“(vw) + Z c“(vw) + Z r(v).
y extends p ¥(v)=y(w) ly(v)—y(w)|=1 y(v)EYpre (v)
(FAP,:)
A similar effect can be achieved by using the model FAP, and setting
r(v) for all v € P to an arbitrarily high value (exceeding all other
penalties by far).

By specializing FAP,,, the two first variants and FAP itself can be
obtained: in case r(v) = 0 for all penalties, FAP,, reduces to FAP,; in case
P =0, FAP,, simplifies to FAP,; and in case both previous restrictions
hold, then FAP,, turns into FAP.

Conversely, an equivalent instance of FAP exists for every instance of
FAP,, for which the maximum penalty for reassigning is bounded by 2.
The penalties for reassigning in FAP,, are accounted for as co-channel
interference with additional carriers in FAP. The bound of 2 comes from
the definition of a carrier network, in particular, from the maximum
admissible amount of co-channel interference.

Let N = (V,E,C,{B,}vev,d,c®,c*), P CV, r: V = [0,2]g, and
Ypre: V' — C be an instance of FAP,.. We define a FAP instance N as
follows. An extra carrier is introduced for every f € C. The edges in N
are all edges from N plus all vf for v € V, f € C with r(v) # 0 and
Ypre(v) # f. The spectrum is unchanged and so are the locally blocked
channels for all v € V. We set By = C \ {f} for the new carriers f € C.
The edge labelings d, ¢, and ¢ are extended to the new edges with
zeros for d and & and with é°(vf) = r(v). (The transformation can be
generalized to the case where r(v) > 2 for some v € V. More than |C|
additional carriers become necessary, which may lead to carrier networks
of significantly increased size.)

Notice that if changing the channel allocation of a TRX is penalized
too heavily in comparison to the interference it would incur without a
change, then the character of the optimization problem may change. In
this context, optimal solutions for problem with up to one thousand
TRXs are reported by Aardal, Hurkens, Lenstra, and Tiourine [1996]
on test instances which do not arise from GSM frequency assignment.
Nevertheless, these findings are likely to hold for GSM instances, too.
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FCA

DCA

HCA

min-span model

3.1.2 Alternative Models

The scientific study of frequency planning started in the late sixties. The
presentation of Metzger [1970] is often seen as the starting point. Ten
years later, Hale [1980] published a classification of frequency planning
problems and their applications. To our best knowledge, these early
works do not address problems that are equivalent to frequency planning
for GSM. This changed with the deployment of GSM networks.

Several different problem types are subsumed under the general terms
frequency planning, frequency assignment, and channel allocation. In
our following discussion of alternative models, we focus solely on models
which we consider relevant for GSM frequency planning. More compre-
hensive treatments of frequency planning in general are given by Koster
[1999] and by Murphey et al. [1999]. Notice also that we only address
Fized Channel Allocation (FCA), where the channel demand per cell is
fixed. Two other types of problems with varying demands are briefly
explained and references are given.

Dynamic Channel Allocation (DCA) considers varying traffic profiles
and, consequently, also varying channel demands per cell. Channels have
to be assigned on request. GSM does not support dynamic channel allo-
cation. The planning is done statically for the busy hour, i.e., with the
peak traffic in view although the traffic load is clearly changing over time.
Studies on the potential impact of using DCA for GSM networks are de-
scribed by Kennedy, Vries, and Koorevaar [1998], for example. More
general studies of DCA are performed by Malesiriska [1997|, Grace, Burr,
and Tozer [1998], and Grace [1999].

A mixture of FCA and DCA is called Hybrid Channel Allocation
(HCA). Some basic demand is covered by solving an FCA problem, and
additional demand is handled dynamically in the sense of DCA. Hybrid
channel allocation is studied by Malesinska [1997], for example. HCA is
also not supported by GSM.

We now turn back to FCA and alternative models for FAP. The ac-
tual quality of a frequency plan is at best predictable with very time-
consuming simulations using a GSM link-level simulator. In practice,
the quality will typically be only observed once a frequency plan is in-
stalled. The model underlying the planning process should express the
anticipated quality reasonably well and be pessimistic in doing so. It
would be unrealistic to expect that the model is completely accurate.
Consequently, there is a range of different and yet reasonable models
focusing on different quality aspects of a frequency plan.

In the min-span model, frequency planning is handled as a generalized
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graph coloring problem (see Tesman [1993]). Each vertex has a set of
available “colors” and the edges are labeled with minimum separation
requirements. The result is a mixture of list and T-coloring as explained
in Section 3.1. The objective is to find a coloring of the vertices, which
satisfies the list as well as the T-coloring constraints and which uses
“colors” from an as narrow range as possible. The span is the difference
between the largest and the smallest “color” used.

Interference information is not directly taken into account within this
model. Instead, when setting up the underlying graph and fixing the min-
imum required separation along each edge, a distinction is made between
“acceptable” and ‘“unacceptable” interference. This is typically done by
means of a threshold value. For example, co-channel interference above
the threshold is ruled out by introducing a separation requirement of at
least 1. Interference below the threshold value is neglected altogether.
The min-span model is not directly applied in GSM frequency planning,
but occurs as the core problem in minimizing the maximal interference.
This is the next approach described below.

A detailed discussion of the min-span model and an extensive survey
of related mathematical results and algorithmic developments is given
by Murphey et al. [1999], see also Koster [1999, Section 2.4] and FAP web
[2000]. Numerous authors have addressed the problem of computing
lower bounds on the required span. We mention only a few important
contributions: Gamst [1986] provides a bound basing on cliques in the un-
derlying graph; Raychaudhuri [1994], Roberts [1991b], Smith and Hurley
[1997] obtain bounds from solving the TRAVELING SALESMAN PROBLEM
(see Section 6.4.2) on subgraphs; and Janssen and Kilakos [1996] as well
as Janssen and Kilakos [1999] derive bounds from polyhedral studies.

In GSM frequency planning practice, the min max interference ap-
proach has been popular until recently. At first, similar input data is
generated as required for the specification of our carrier network. In a
second step, the interference predictions are the basis for increasing sep-
aration requirements in order to prevent the occurrence of severe inter-
ference. As indicated in the context of the min-span model, a tentative
threshold value is chosen to separate “acceptable” from “unacceptable”
interference. “Unacceptable” interference is transformed into additional
separation requirements, and “acceptable” interference is simply ignored.

The result is a min-span problem with local blockings recorded at the
vertices and with minimum required separation recorded at the edges.
An attempt is made to solve this min-span problem. Two outcomes are
possible. In one case, a feasible solution is generated. This corresponds
to a frequency assignment obeying all imposed conditions. In the other

span

min max
interference
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min max local
interference

case, no solution is found. The tentative threshold value is increased,
which results in less “unacceptable” interference and, correspondingly, in
fewer additional separation requirements. The planning process is started
over with the new input.

The final threshold value is the result of repeatedly increasing or de-
creasing the value with the goal of finding an assignment that barely fits
into the available spectrum. In practice, the threshold value is driven
up beyond desirable limits by capacity-related interference problems in
metropolitan areas. As a consequence, interference not exceeding this
threshold becomes generally invisible to the planning process. Although
avoidable outside of the critical areas by careful planning, many inter-
ference situations are not resolved because they have become impercep-
tible. Alternatively, the planning radio engineer may choose (potentially
many) location-dependent, threshold values. Either way, this planning
style proved unattractive in practice.

Minimizing the mazimal interference experienced by a TRX can be
done on the basis of our carrier network representation as well, but the
use of a directed version is also conceivable. The difference to our fre-
quency planning problem is primarily in the definition of the objective
function. The goal here is to keep the maximal interference experienced
by a TRX as low as possible. To that end, the impact of the interfering
TRXs is recorded for every TRX and the maximum is determined. This
maximum is to be minimized. Most prominently, this approach is pur-
sued by Fischetti, Lepschy, Minerva, Jacur, and Toto [2000]|, who also
give satisfactory computational results for realistic planning problems
with several hundreds of TRXs.

3.2 Computational Complexity

The results presented in this section are the justification for our focus
in Chapter 4. Resorting to heuristic methods for solving FAP would not
be (easily) justified if reasonable approximations of optimal frequency
assignments were computable in polynomial time. We show in Proposi-
tion 3.11 that this is not the case.

3.2.1 Preliminaries

Throughout the following discussion, we assume basic familiarity with
the concepts of computational complexity. Several textbooks contain
introductions, see, for example, Garey and Johnson [1979], Bovet and
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Crescenzi [1994], Papadimitriou [1994] as well as Cormen, Leiserson, and
Rivest [1990, Chapters 36, 37|. With respect to the complexity of ap-
proximation, we recommend the book of Ausiello, Crescenzi, Gambosi,
Kann, Marchetti-Spaccamela, and Protasi [1999], which is also our pri-
mary reference here. Nevertheless, we recall the basic definitions, which
are required in the following, from the literature.

We start with the complexity of an algorithm. (See any of the above
mentioned books for a discussion of the subtleties of defining “algorithm.”)
For an algorithm A, let 74(x) denote the number of steps executed by
A on input z. The worst case running time of A is defined as t4(n) =
max{#4(z) | z : |z| < n}. The size |z| of an instance = depends on the
encoding scheme. We assume here that a “reasonable” compact binary
encoding of the instances is used, see the discussion in Garey and Johnson
[1979, Chapter 2| or Grétschel, Lovész, and Schrijver [1988, Section 1.3],
for example. Algorithm A has a running time complezity O(g(n)) if ta(n)
is in O(g(n)), see Appendix A for the meaning of the O(-)-notation. In
accordance with this definition, we say that A runs in polynomial time if
t4(n) isin O(p(n)) for some polynomial p. Likewise, A runs in ezponential
time if t4(n) is in O(2P™) for some polynomial p. Similar definitions for
the space complexity of an algorithm exist.

Next, we deal with decision and optimization problems. We address
decision problems first. Formally, we define a decision problem P as a
tuple (I, SOL), where I is the set of instances and SOL: I — {0,1} as-
sociates with every instance x € [ either zero or one. The problem P
is identified with the language Lp = {z € I | 1 = SOL(z)}. Answer-
ing the question whether x € Lp for any given z is called to recognize
the language Lp or to solve the problem P. The two most prominent
complexity classes concerning decision problems are defined as follows.

Definition 3.2. A decision problem P is solved by a deterministic al-
gorithm A if the algorithms halts for every instance x € Ip and returns
YES if and only if x € Lp. The class P consists of all problems solvable
in polynomial time by some deterministic algorithm.

In addition to deterministic algorithms, nondeterministic algorithms
are considered. One way of thinking about a nondeterministic algorithm
is that the algorithm nondeterministically chooses one out of at most two
possible instructions for execution at each step.

Definition 3.3. A decision problem P is solved by a nondeterministic
algorithm A if, for any instance x € Ip, A halts and x € Lp if at least
one possible sequence of instructions causes the algorithm to return YES.

worst case
running time

running time
complexity
polynomial time

exponential time
space complexity

decision problem

language
recognize
solve

P

nondeterministic
algorithm

NP
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optimal solution
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The class NP consists of all problems solvable in polynomial time by
some nondeterministic algorithm.

Clearly, P € NP. One of the challenging open problems iq} com-
putational complexity theory is to settle the question whether P =NP.
Despite continuous and serious efforts over the past three decades, this
problem is still open. It is, however, commonly believed that P C NP.

Given two decision problems P; and P,, P; is said to be (poly-
nomial time m-)reducible to P, if a polynomial time algorithm A ex-
ists which maps instances © € Ip, into instances A(z) € Ip, satisfying
x € Lp, <= A(z) € Lp,. On the basis of this reducibility, the notions
of N'P-completeness and N'P-hardness are defined.

Definition 3.4. A decision problem P is called N'P-hard if every problem
in NP is reducible to P. The problem is N'P-complete if, additionally,
P itself is in N'P.

If P C NP, then no N'P-complete problem can in general be solved
deterministically in polynomial time; in Section 3.2.3, we show that de-
ciding whether there is a feasible assignment for a carrier network is
NP-complete.

We now turn to the complexity of optimization problems and approx-
imation. Our focus is on minimization problems, and all our definitions
are specialized to this case. Definitions applying simultaneously for min-
imization and maximization problems can be found in Ausiello et al.
[1999, Chapters 1, 3, and §|.

Formally, a minimization problem P is characterized by a triple (/p,
SOLp, mp), where Ip is the set of instances of P; SOLp is a function
that assigns to every instance = € Ip a set SOLp(x) of feasible solutions
for x; and mp is the measure function that assigns to every pair (z,y)
with « € Ip and y € SOLp(x) a positive integer, called the value of the
feasible solution y.

Given some z € Ip, the objective is to find an optimal solution y* €
SOLp(x), satistying mp(z,y*) = mingesor,@) mp(x,y). We denote the
value of an optimal solution by m}(z). A decision problem is associated
to every optimization problem in a natural manner: let Pp = (Ip X
Z.,S0L), where SOL(z,K) = 1 if m}(z) < K and SOL(z,K) = 0
otherwise. The language Lp, is called the underlying language of P.

According to the above definition, FAP itself does not qualify as a
minimization problem, because the objective function may take every
value in Q.. By adding the following measure function, this is remedied.
Given an instance z, let digits(x) denote the number of decimal digits in
the smallest interference value (other than zero) in z. Prap is defined by
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e [rap, which is the set of all carrier networks;

e SOLpap, which associates with each carrier network its set of feasi-
ble assignments;

e mpap, which computes digits(z) and the total interference of an
assignment, scales the result by the factor of 104&1(*) (in order to
make it integral) and adds one (in order make it strictly positive).

With respect to optimization problems, NPQO plays a role similar to
that of NP among decision problems.

Definition 3.5. A minimization problem P = (Ip, SOLp, mp) belongs
to the class N PO if the following three conditions hold:

(i) the set Ip of instances is recognizable in polynomial time;

(i1) a polynomial g exists such that |y| < q(|z|) for ally € SOLp(x) and
such that it is decidable in polynomial time whether y € SOLp(x)
for every y with [y| < q(|21);

(ii1) the measure function mp is computable in polynomial time.

The problem Prap is in NPQ. First, it is recognizable in polynomial
time whether a string encodes a carrier network. Second, the encoding
of a feasible assignment does not take more space than the encoding of
a carrier network (assuming that all carriers are listed individually and
that all channels in the spectrum are listed as well); and it is recognizable
in polynomial time whether an assignment is feasible. Third, digits(x)
and the total interference of an assignment are computable in polynomial
time and so is the above measure function.

An optimization problem P € NPQO is N'P-hard if the language un-
derlying P is N'P-complete. (The precise definition of NP-hardness for
optimization problems is more involved, compare, e.g., Ausiello et al.
[1999, Definition 1.19]. Our definition is merely an immediate conse-
quence of the more general definition.) Sometimes, the NP-hardness
of a minimization problem P is only due to instances involving large
numbers. If this is not the case, the problem P is said to be strongly
NP-hard. Prap is strongly NP-hard as we show in Section 3.2.3.

NPO

NP-hard
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strongly N'P-hard

performance ratio

r-approximate

APX

Definition 3.6. Consider a problem P € N'PO, and let max(x) denote
the value of the largest number occurring in the instance x. For a polyno-
maal p, P™%P is the restriction of P containing only the instances x with
max(z) < p(|z]). The problem P is called strongly N'P-hard if P™¥P js
NP-hard for some polynomial p.

Finally, we address the complexity of approximating optimal solu-
tions for minimization problems. Given a minimization problem P, the
performance ratio of a solution y € SOLp(z) with respect to instance
x € Ip is defined as
mp (:C ’ y)

mp(x)
Recall in this context that the measure function takes values in the pos-
itive integers even though it often seems convenient to allow zero or
negative values, too. But this would clash with the previous definition.

R(x,y) =

Definition 3.7. Given an optimization problem P, an algorithm A for
solving P, and a function r: Zy —|1,00|[, then A is an r-approximate
algorithm for P if for every instance x € Ip with SOLp(z) # 0 the
performance ratio of the approximate (feasible) solution A(z) is bounded
by r(|z]), i. e., R(x, A(z)) < r(|z]).

In case the function r maps all arguments to some constant ¢ € Q. , we
also speak of a c-approximate algorithm. The class APX contains of all
minimization problems in N'PQO that are approximable with a constant
performance guarantee in polynomial time. We show in Section 3.2.3
that Prap is not in APX.

Definition 3.8. A minimization problem P € NPQO is in APX if, for
some constant ¢ > 1, a c-approrimate polynomial time algorithm for P
exists.

3.2.2 Classical Problems related to FAP

The variant Prap of FAP is in N'PQO. Prap is closely related to several
optimization problems studied in the literature. We quote some examples
from the list of NPO-problems of Ausiello et al. [1999, Appendix B|. The
labels correspond to those given in the reference.

GT5 MINIMUM GRAPH COLORING

GT22 MaXIiMUM CLIQUE
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GT27 MINIMUM EDGE-DELETION SUBGRAPH WITH PROPERTY Il
GT32 MiNIMUM EDGE DELETION K-PARTITION

GT33 MAXIMUM K-COLORABLE SUBGRAPH

ND 14 Maximum CUT

ND 17 MaximMuMm K-CUT

ND 55 MINIMUM K-CLUSTERING SUM

MS16 MAXIMUM FREQUENCY ALLOCATION

We pick out the MINIMUM EDGE DELETION K-PARTITION problem
and show in which way Prap generalizes this problem. We then quote
results on the complexity of MINIMUM EDGE DELETION K-PARTITION
from the literature and derive lower bounds on the complexity of Prap.

Definition 3.9. An instance of the MINIMUM EDGE DELETION K-PAR-
TITION problem consists of an undirected graph G = (V, E), a weighting
w: E — Z. of the edges, and a positive integer k < |V|. The objective is
to find a partition of V into at most k disjoint sets Vi, ..., V}, such that

Y4

2. D, wy

=1 ijeE:i,jeV,

1s minimized. The associated measure function evaluates the objective
function and adds 1.

Proposition 3.10. The following statements hold with respect to the
computational complexity of MINIMUM EDGE DELETION K-PARTITION:

(i) The problem is strongly N'P-hard.

(i1) Unless P = NP, the problem is not in APX. (Sahni and Gonzalez
[1976))

(iii) For k > 3 an approzimation within O(|E|) is N'P-hard, even when
restricting the instances to graphs with |E| = Q(|V|*7¢) for a fized
e, 0 <e < 1. (Kann, Khanna, Lagergren, and Panconesi [1997])

(iv) Unless P = NP, no polynomial time algorithm can achieve a better
performance ratio than 1.058 in the case of k = 2. (Hdstad [1997])
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(v) In case of k = 2, a polynomial time algorithm with a performance
guarantee of log|V| is known. (Garg, Vazirani, and Yannokakis

[1996])

(vi) In case of k = 3, a polynomial time algorithm with a performance
guarantee of |V |* for any € > 0 is known. (Kann et al. [1997])

Although the first fact listed in Proposition 3.10 is certainly known,
we are not aware of a reference. The following simple proof is given for
the sake of completeness.

Proof of Proposition 3.10 (i). Let P denote the minimization problem
MINIMUM EDGE DELETION K-PARTITION. We show that the restricted
version P™3%! js A'P-hard by reducing the A'P-complete decision prob-
lem GRAPH K-COLORABILITY, see Garey and Johnson [1979, GT 4], to
the language underlying P!,

We associate to every instance (G, k) of GRAPH K-COLORABILITY
an instance zq of MINIMUM EDGE DELETION K-PARTITION by simply
labeling every edge in G with a weight of 1. Clearly, G is k-colorable if
and only if the optimal solution to the associated instance zgy has a
value of 0. Hence, the language underlying P™*%! is A"P-hard. O

3.2.3 Complexity of FAP

We now transfer the negative results concerning MINIMUM EDGE DELE-
TION K-PARTITION to Prap. To every instance of the former problem,
we associate an instance of Prap as follows:

(‘/;E)aw7k = (‘/;Ea{lw"7k}7(®)UEV:0760070)7

where ¢®(ij) = 10748 4 (j5) and digits(w) denotes the number of
digits of max{w(ij) | ij € E} (in a representation to the basis 10). The
corresponding carrier network can be computed in polynomial time and,
in particular, its encoding length is polynomially bounded in the encod-
ing length of the MINIMUM EDGE DELETION K-PARTITION instance.
The k-partitions of the graph (V, E') and the frequency assignments for
the carrier network are in one-to-one correspondence. By definition, the
measure functions produce identical values for all partitions of V with
respect to both problems. Hence, the hardness results from Proposi-
tion 3.10 translate directly to Prap. Together with the already established
NP-hardness of finding any feasible assignment for a carrier network, we
obtain the following list of results.



3 MATHEMATICAL MODELS

49

Proposition 3.11.

(i) Deciding whether a feasible assignment ezists for a carrier network
is N'P-complete.

(ZZ) Prap € NPO.
(iii) Prap is strongly N'P-hard.
(iv) Unless P = NP, Peap is not in APX.

(v) Unless P= NP, an approzimation of Peap within O(|E|) is impos-
stble in polynomaial time for k > 3.

Unlike in the case of MINIMUM EDGE DELETION K-PARTITION, pos-
itive results on the approximation of Prap cannot be proven due to Propo-
sition 3.11 (i) unless P = N'P. We read the above negative results on
the approximation of Prap in the following way: even if feasible solutions
were producable in polynomial time (while still assuming P # NP),
finding approximately optimal solutions would be hard nevertheless.

As a final remark concerning the approximation complexity, we add
that the result stated in Proposition 3.11 (v) does not depend on the par-
ticular measure function associated with Peap. The result of Kann et al.
[1997] also transfers directly to FAP, because their proof only involves
instances with edge weights of 1.

3.3 Alternative Formulations

In the remainder of this chapter, two integer linear programming formula-
tions of FAP are presented. Solving either of the associated integer linear
programs (ILPs) for a given carrier network to optimality is equivalent
to solving FAP.

The modeling of the nonlinear separation constraints |y(v) — y(w)| >
d(vw) poses a problem in linear formulations. The two models cope
with them differently. Our first formulation, called “stable set model,” is
classical. The variables are only allowed to take the values zero or one.
The second formulation, called “orientation model,” uses binary as well
as integer variables. For the ease of notation, let us define

E* = {vw € E | d(vw) > 0}, (3.3)
E® ={vw e E | d(vw) = 0,c*(vw) > 0}, (3.4)
E = {yw € E | dvw) < 1, *(vw) > 0}, (3.5)

for a given carrier network N = (V, E,C,{B, }yev, d, ¢, c*).
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3.3.1 Stable Set Model

Binary variables y/ are used to select a channel per carrier. The co-
and adjacent channel interference indicator variables 2% and 2% re-
spectively, are needed for accounting the total amount of interference in

the objective function. The following ILP is equivalent to FAP:

: co O ad ad
min E : Cow Rvw + E : CowRow

vwl Bee vweEad
s. t.
Z y! =1 YWweV (3.6a)
FEC\By
yl +y8 <1 VYow € EY|f — g| < dyw (3.6b)
yl 4yl -z <1 Yowe E® feC\(B,UB,) (3.6¢)
yl +ylt -4 <1 Vowe B feC\B,, f—1€C\ B, (3.6d)
y! € {0,1} YweV,feC\B, (3.6¢)
zoo € {0,1} Yvw € E® (3.6f)
74 € {0,1} VYvw € E* (3.6g)

We first explain the constraints and then the objective function. The
constraints (3.6a) model that precisely one available channel has to be
assigned to every carrier. In case channel f is assigned to carrier v, then

7 takes the value 1. Otherwise, the value is 0. The inequalities (3.6b)
enforce that the selection of the available channels also satisfies all sep-
aration constraints. Every 0/1-assignment of the variables y/ satisfying
the constraints (3.6a) and (3.6b) corresponds to a feasible frequency as-
signment for N, see constraints (3.1) and (3.2) on page 34.

We now turn to the interference accounting. A binary variable 252
is used for every edge vw € E to indicate co-channel interference, i.e.,
zgo. =1 has to hold if vw € E and v and w receive the same channel.
This implication is implemented by the constraints (3.6¢). Likewise, a
binary variable 224 is used for every potential adjacent channel interfer-
ence. In case vw € E% and v and w have adjacent channels, 224 = 1 has
to hold. This is achieved by the corresponding constraints (3.6d). Ex-
changing v and w and replacing f by f+1 in (3.6d), yields the constraint

Tyl -l <L

Notice that the interference accounting variables are not fully con-

trolled by the given constraints in the sense that 22 , for example, may
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take the value 1 where a value of 0 would be sufficient. This never hap-
pens in an optimal solution because we are minimizing and all objective
function coefficients are assumed to be strictly positive.

We call the formulation (3.6) a stable set model for the following rea-
son: if no interference were allowed, then the set of carriers receiving the
same channel in a feasible assignment would be stable sets in the under-
lying graph G = (V, E). (A subset of the vertices in G is called stable or
independent if no two vertices are adjacent.) Hence, a feasible assignment
not incurring any interference partitions the vertices of G = (V, E) into
stable sets. The Ph.D. thesis of Borndorfer [1998] contains an in-depth
treatment of set partition problems and the related problems of set cov-
ering and set packing. We also refer to the Ph. D. thesis of Schulz [1996,
Chapter 4|, where an extension of the set packing problem is described.
This so-called transitive packing puts our interference accounting con-
straints (3.6¢) and (3.6d) into a general framework.

We come back to the stable set model in Section 6.2.2.

3.3.2 Orientation Model

The orientation model, as presented here, is only correct if the input
data satisfies additional restrictions. The first type of restrictions is that
c® > ¢® has to be met for every edge vw € E with dy, = 0. This
is uncritical from a practical point of view and can be seen as a merely
technical restriction. The second type of restrictions concerns locally
blocked channels. Those are not handled in the model, and we assume
that none exist. This restriction is drastic, but we explain how to by-
pass it later on. The model is introduced and discussed thoroughly by

Borndorfer, Eisenblatter, Grotschel, and Martin [1998b).

As the main difference to the stable set model no binary variables ¥
with v € V and f € C are used. Instead, an integral variable y, with
domain C is introduced for every carrier v € V. The value of y, indicates
the channel to assign. As before, binary variables 2% and z%¢ are used
for accounting interference.

The intuition behind the model is to consider FAP as two nested
problems. An acyclic orientation A of the edges E in the graph underlying
the carrier network is determined in the outer part. Such an orientation
A of the edges induces a partial order <4 on the carrier set: we declare
v <4 w if a directed path starting at v and ending at w exists in (V, A).
(Checking that <4 is indeed a partial order is straight forward.) The
inner part of the nested problem is to find a feasible frequency assignment

stable
independent

transitive packing

outer part

inner part
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compatible

y: V. — C with minimum interference, which is compatible with the
partial order <4 in the following sense:

y(v) < y(w) = V< 4w

Two variables, 0, ) and oy ), are introduced for every edge, one for
each possible direction. The orientation model reads as follows for the
carrier network N = (V, E, C,{ B, }yev, d, ¢, ).

: : co  _Co ad ad
min min E Cow %ow T E Cow “vw

d
0 g,200 20

pwe Feo pwe Fad

s. t.
O(w,w) T+ O(w,v) = 1 Vow € E (3.7a)
-_y'u + y’w- + + Z dfuw -O('U,’LU)- _ -O(Wa'u)- M va E Ed (37b)
[+Yy — Yo LO(w,w)!  LO(v,w)
T e > 12w ] J[%e]y vew e B2 (3.70)
[+Yy — Yo LO(w,w)!  LO(v,w)
=Yy + Y] + +Z$3, > 9 [O(uw)] _ [O(ww)] M Vow e E“ \ o
[+Yy — Yo LO(w,w)!  LO(v,w)

(3.7d)
[— Yo T Yu] +22510U+Z33) > 9 [O(w,w)] _ [O(ww)] M Vvw e E¥N E©
LYy — Yo LO(ww)d  LO(v,w)

(3.7¢)
Yo e C VveV (3.7f)
2ol € {0,1} Vow € E“  (3.7g)
zd e {0,1} Yow € E*  (3.7h)
O(v,w) O(w,v) S {0, 1} Yow € E (3.71)

Weset M = Cpp = max{f | f € C’}. The different parts in the ILP
formulation are explained in the following. The objective function is the
same as before.

By means of the constraints (3.7a), a direction is selected for every
edge in the carrier network. Depending on the direction, one of the
“paired” constraints in (3.7b), (3.7c), and (3.7d) is vacuously true, be-
cause the value of the left-hand side cannot be less than —C,,,, = —M.

Concerning (3.7b), if the edge vw € E? is oriented from v to w, i.e.,
O(w,w) = 1 and o0(y,,) = 0, then the channel y,, has to be at least as large as
y,- The separation constraint |y, — yu| > dyy simplifies t0 Yy, — Yy > doy-
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This is expressed in the first constraint of (3.7b). Conversely, if the edge
vw is oriented the other way around, the separation constraint reduces
t0 Yy — Y > dyw, as imposed in the second part of (3.7b).

Concerning (3.7¢), if the edge vw € FE¢ is oriented from v to w, then
Y > Y, has to hold. This is enforced by the first constraint of (3.7¢). Co-
channel interference arises in the case of y,, = y,, and the same constraint
drives the variable 252 to 1. The reverse case is analogous.

Accounting adjacent channel interference is more subtle. The cases
vw € B\ E and vw € E“ N E are distinguished. First, we consider
two carriers v, w € V with dy,, = 1 and ¢®¢ > 0, i.e., vw € F%\ E*.
Examining the two cases of either o(, ) = 1 and o(w’v) =0o0r oy =0
and 0w,y = 1, we observe that the pair of constraints of (3.7d) drive

2% to 1 if |y, — yw| = 1. Second, we consider two carriers v,w € V
Wlth dyw = 0 and ¢2,c% > 0, i.e., vw € E“ N E®. We pick the

orientation expressed by 0 = 1 in order to discuss the effects of the
paired constraints (3.7e). Assuming o(,.,) = 1 and o) = 0, the second
part is vacuously true, and the first part reduces to

—Yy + Yo + 22°° + 294 > 2.

Consequently, z59 = 1 has to hold in case of ¥, = yy. If yy —y, = 1,
however, both 2 =1 and 2%¢ = 1 would satisfy the constraint. At this
pomt the additional assumption of ¢ > ¢ steps in to guarantee that
2% =1 holds in an optimal solution.

The integrality constraints need no further explanation, but recall
that B, = ) is assumed for all carriers.

Although we do not give all the details here, it should be clear that
solving the orientation model to optimality is equivalent to solving FAP,
if the additional restrictions mentioned above hold.

Finally, we indicate how the restriction of B, = ) for all carriersv € V
can be by-passed. We do not formalize how to include locally blocked
channels in the orientation model, because it is simpler to express in
words. The problem with the local blockings is that they may “puncture”
the otherwise contiguous domain C' of the y-variables. Let B = .\, B,
denote the union of all locally blocked channels. (By definition, B C C )
We introduce an artificial carrier b for each b € B and restrict its available
set of channels to the singleton {b}. Additionally, for each carrier v with
b € B,, an edge vb is inserted, and the edge labelings d, c*°, and ¢*¢ are
extended by setting d(vb) = 1, ¢®°(vb) = 0, ¢*¢(vb) = 0. The orientation
model for this extended carrier network fixes the values of the variables
yp to b € C. A closer inspection of the extended model reveals that some
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new constraints may be superfluous, but the details are technical and we
skip the corresponding discussion.

The “inner part” of the orientation model, which deals with finding
an assignment of minimal interference among all feasible assignments
compatible with a given orientation, forms the basis of the improvement
heuristic MCF. This is discussed in Section 4.3.4.



CHAPTER 4

Fast Heuristic Methods

Before we proceed, let us recapitulate our points up to now. The problem
of generating “good” frequency plans for GSM networks was explained in
detail, see Section 2.3, and the notion of a carrier network, see Section 3.1,
was introduced to represent the essential characteristics of a GSM fre-
quency planning problem: N = (V, E,C,{B,}yev,d, c°, c*®) denotes a
generic carrier network, the carriers in the set V' represent the TRXs,
the edges in the set E the relation between carriers, the channels in the
set C' the available spectrum, and the sets { B, }.cy the locally blocked
channels; furthermore, d, ¢, and ¢* represent the required minimum
separation, the expected co- and the expected adjacent channel interfer-
ence between pairs of carriers, respectively.

We argued that the sum over all co- and adjacent channel interferences
between carriers is an adequate measure for the quality of a frequency
assignment. This quantity is minimized in the mathematical optimization
problem FAP, see Section 3.1. Furthermore, we pointed out that the
generation of reliable input data for setting up the carrier network is
intricate. This holds in particular for interference data. But we also
stated that the generation of input data can be mastered with a sufficient
accuracy today, see Section 2.3.2.

We are now at the point to address the optimization problem FAP
computationally. Recall from Section 3.2.3 that solving FAP is N"P-hard
and that finding solutions which are guaranteed to be close to optimal
is also N'P-hard. Hence, according to present understanding, both tasks
are unlikely to be algorithmically solvable in a running time which is
polynomially bounded in the size of the input. This is our justification
for the development of fast methods which neither necessarily produce
close to optimal nor even feasible assignments (provided some exist).

Our focus is on frequency planning heuristics, capable of dealing with
carrier networks of around 2000 carriers in a quarter of an hour on a mod-
ern PC or workstation. Such methods are well-suited for GSM frequency
planning in practice with particular emphasis on the intermediate steps

95
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surveys

in the planning cycle, see Section 2.3.3. Several of these methods are now
in use at the GSM operator E-Plus Mobilfunk GmbH & Co. KG.

More elaborate but also more time-consuming methods are capable
of producing better results than our fast heuristics. This type of meth-
ods targets primarily the generation of the final frequency plan, where
running times in the order of one or two days are acceptable. We come
back to this issue in Section 5.6.

The algorithmic solution of frequency planning problems is not a new
topic, of course. Well over a hundred articles and reports propose and
discuss algorithmic techniques for frequency planning in general or in the
specialization to GSM. Recent surveys are given by Jaumard et al. [1999],
Koster [1999], and Murphey et al. [1999].

The published algorithms can be distinguished according to whether
they guarantee to produce optimal solutions or approximately optimal
solutions or neither of both. None of the enumeration or cutting-plane
algorithms, however, which may produce provably optimal solutions in
the general case are suited for frequency planning in practice, because
their running times grow exponentially with the size of the carrier net-
work. And for the algorithms proven to produce (approximately) optimal
assignments for special cases in polynomial running time, the relevant
cases are not known to appear in practice. Hence, these two types are
not of interest to us. Among the algorithms without quality guarantee,
there are proposals for procedures building on the meta-heuristics Sim-
ulated Annealing, Tabu Search, Genetic Algorithms, Neural Networks,
etc. Such procedures typically have much higher running times than the
ones we are aiming at. But also fast methods are proposed, which mostly
build on ideas published in connection with computing graph colorings.

Despite our focus on fast methods, we also performed extensive exper-
iments with Simulated Annealing and Tabu Search, see Schneider [1997]
for an early report on these experiments. A general introduction to local
search methods as well as to Genetic Algorithms and Neural Networks is
given in Aarts and Lenstra [1997]. The implementations of those meth-
ods typically have running times in the order of several hours up to one
or two days on large carrier networks. Our own results are in the range
of what is published by Beckmann and Killat [1999]. Further imple-
mentations of Simulated Annealing or Tabu Search for GSM frequency
planning are discussed by Duque-Antén et al. [1993], Castelino, Hurley,
and Stephens [1996], Hurley, Smith, and Thiel [1997|, Hao, Dorne, and
Galinier [1998], Smith, Allen, Hurley, and Watkins [1998|, and Correia
[2001, Section 4.2.5]. This list is incomplete, but provides starting points
for a further exploration of the literature.
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The chapter is organized as follows. In Section 4.1, we describe tech-
niques for preprocessing the carrier network prior to running frequency
planning procedures. Then, we turn to two types of algorithms, which are
generally known for efficiently “solving” combinatorial optimization prob-
lems: greedy construction heuristics and simple improvement heuristics.
We describe methods of these kinds in Sections 4.2 and 4.3, respectively.
Computational results for our methods are reported in Chapter 5.

For the most part, this chapter describes joint work with Ralf Born-
dorfer, Martin Grétschel, and Alexander Martin as well as with the stu-
dents Daniel Haberland and Margherita Hebermehl. The MCF method is
described together with the orientation model (presented in Section 3.3.2)
by Borndorfer et al. [1998b]. The other heuristics of Sections 4.2 and 4.3,
except for K-OPT and VDS, are also contained in Borndérfer, Eisenblit-
ter, Grotschel, and Martin [1998a].

4.1 Preprocessing

Prior to calling some planning method, a carrier network may be prepro-
cessed in order to simplify the frequency planning problem. Techniques
to identify possible simplifications are, for example, studied in the field of
constraint satisfaction programming (CSP). We are not aware, however,
of any specific study for our version of the frequency planning problem.

We consider two types of modifications here. In the case which we call
structure-preserving, the modified carrier network allows feasible assign-
ments if and only if the original carrier network allows them. Moreover,
for each optimal assignment for the modified network, an optimal assign-
ment for the original network can be generated in polynomial time. In the
other case, we call it heuristic, the modifications may change the feasibil-
ity status, and optimal assignments to both networks are not necessarily
related. We are interested in this type of modifications, nevertheless, be-
cause the frequency assignments produced by some of our methods are
often better when such a preprocessing is applied.

We present structure-preserving modifications in Section 4.1.1 and
heuristic modifications in Section 4.1.2.

4.1.1 Eliminating Channels and Carriers

We specify a few situations in which the carrier network may be reduced
structure-preservingly by either dropping available channels for a carrier
or by dropping a carrier altogether.

structure-
preserving

heuristic
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generalized degree

Dropping Channels

As a motivating example, we look at a carrier network, where some of the
carriers are effectively fixed by having only one channel available. Let vg
denote such a carrier with C' \ B,, = {fo}. Moreover, let w be a carrier
with d(vow) > 0. Then the channels fo—(d(vow)—1),..., fo+(d(vow)—1)
may be added to B,, without changing the set of feasible solutions.

This can be generalized to situations, where vy has a few channels
available and for a fixed ¢ € C'\ B,, the relation |f — g| < d(vow) holds
for all channels f € C'\ B,,. Then the channel g may be added to B,.
The idea can be pursued further and extended to larger sets of carriers
than merely two carriers. The computational burden of recognizing such
a situation, however, becomes significantly harder with each additional
carrier considered.

None of the above cases turns out to be relevant for our test instances
introduced in Section 5.1.1. In planning practice, however, the first case
is relevant and therefore part of our preprocessing. The other cases are
not addressed.

Dropping Carriers

Clearly, we may drop every carrier for which only one available channel is
left. This is preferably done after dropping channels. Another situation,
in which carriers may be dropped without harm, is described next. We
call the generalized degree gd(v) of a carrier v the quantity

gd(v) = Z (2 max{d(vw), h(vw)} — 1)
with

2, if ¢*(vw) > 0,
h(vw) =< 1, if e°(vw) > 0, ¢ (vw) = 0,
0, otherwise.

For a fixed carrier w, the summand “2 max{d(vw), h(vw)} — 17 equals

the maximal number of channels which may become burdened with sep-
aration constraints or interference for carrier v if w gets assigned. Hence,
the above sum gives an upper bound on the effect of assigning channels
to all adjacent carriers of v. The actual effect, however, may be much
smaller.

If the generalized degree of a carrier is less than the number of avail-
able channels, then the carrier may be dropped for the following reason.
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Whatever the assignments to the adjacent carriers are, there is always
at least one channel available which can be assigned without causing a
separation constraint violation or interference.

As reported in Section 5.1.1, this form of preprocessing often allows
to drop a few carriers. If one carrier is dropped, the generalized degree of
its adjacent carriers reduces. Consequently, the technique can be applied
repeatedly until no more carrier is dropped. A feasible assignment for
the reduced carrier network is extended in the reverse dropping order
to a feasible assignment of the original network and without introducing
extra interference. Carriers may also be dropped if the generalized degree
exceeds the number of available channels by some small factor. In that
case, however, the modification is heuristic.

We also look for possibilities to reduce the size of a carrier network
by amalgamating carriers, i.e., by treating them exactly the same way.
Let v and w be two nonadjacent carriers. We say that v dominates
w if B, C B, and if the edge vz is in E for all wx € FE satisfying
d(vz) > max{d(wz), h(wz)}. The function h is the same as defined
above. Then, a feasible assignment for a carrier network without w can
be extended to include w by simply assigning the channel of v to w as
well. Although appealing in principle, domination plays no role for any
of our planning instances.

4.1.2 Tightening the separation

The following modification is a heuristic in the sense defined above. Let
v and w be adjacent carriers, then d(vw) is the minimum necessary sep-
aration between the channels assigned to v and w. In case d(vw) > 1,
the same channel must not be given to both carriers. This rules out
co-channel interference between v and w. Similarly, in case d(vw) > 2,
no adjacent channel interference between v and w occurs in a feasible
assignment.

One approach to control interference beyond minimizing its overall
sum is to exclude assignments causing large interference between individ-
ual carrier pairs. To this end, we introduce a threshold t. The threshold
is used to impose a sufficiently large separation between carriers which
may otherwise cause interference exceeding ¢:

max{1,d(vw)}, if c®(vw) >t and ¢*(vw) < ¢
d'(vw) = { max{2,d(vw)}, if c(vw) >t

d(vw), otherwise

dominates

threshold
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The carrier network N* = (V) E, C,{B, }ev, d', c°, ¢*) is obtained
tightening from N by tightening the separation with t. A feasible assignment for N*

partial assignment

may still incur interference, but none exceeding the threshold ¢ between
a carrier pair. Because an assignment causing high interference between
one pair may save considerably between others, no optimal assignment
for the original problem may be feasible for the modified one.

Despite this fact, tightening the separation works well in conjunction
with some of our heuristics. By applying heuristics to N* for different
threshold values, solutions of varying quality are usually obtained. A
suitable threshold value ¢ may be determined by some search routine.
One example for such a search routine is described in Section 5.2.2.

4.2 Greedy Methods

Greedy methods compute a frequency assignment from scratch, step-wise
extending an initially empty assignment to a complete assignment. In the
course of the construction, partial frequency assignments occur. A partial
frequency assignment is a mapping y: A — C that is defined on a subset
A of the carrier set V. In case A = V, a partial assignment is just an
ordinary frequency assignment.

We have performed experiments with several greedy methods and
describe three prototypical ones in the following. Among them is the
adaption DSATUR WITH COSTS of the well-known graph coloring heuris-
tic DSATUR. This is our most successful greedy method, and it is used
in frequency planning practice at E-Plus Mobilfunk GmbH & Co. KG.

4.2.1 T-Coloring

We recall the definition of a T-coloring. Given an undirected graph G =
(V, E) and nonempty finite sets T'(vw) of nonnegative integers for all vw €
E. A T-coloring of (G is a labeling f of the vertices of G with nonnegative
integers such that |f(v) — f(w)| € T(vw) for all edges vw € E. Since
their introduction by Hale [1980], T-colorings of graphs and methods to
produce them have been studied by several authors. A survey is given by
Murphey et al. [1999]. Here, we are interested in the blend of T-coloring
and list coloring introduced by Tesman [1993], where each vertex has a
list of colors available.

Our T-COLORING heuristic, designed and implemented by Haber-
land [1996|, is a modification of a T-coloring procedure proposed by
Costa [1993]. The underlying idea is, however, already used in the graph
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Algorithm 1 T-COLORING
Input: carrier network without interference information:

‘/7 E7 07 {Bv}v€V7 d
Output: a feasible assignment y or a resignation message

{Initialization}
for all v € V do
satdeg[v] := |B,| {saturation degree: unavailable channels}
spadeg(v] := Z d(vw)  {spacing degree: Z d(vw)}
vweEER vw€ Eaw unassigned
end for
{Assigning}

U:=V {contains unassigned carriers}
while U # §) do
pick u s. t. satdeg[u] = meagc{satdeg[v] | spadeg[v] = max spadeg(w] }

{ties are broken arbitrarily}
U:=U\{u}
let y(u) be the available channel for u of least index
if no such available channel exists then
resign  {y is merely a partial assignment}
end if
for all v € U with uv € E' do
update satdeg[v], spadeg[v]
end for
end while
{y holds a feasible assignment}

coloring heuristic DSATUR by Brélaz [1979]. T-COLORING is our only
“min-span” method, compare with Section 3.1.2. That is, T-COLORING
does not try to minimize the overall interference but focuses solely on
computing a feasible assignment using channels from a spectrum which
is as narrow as possible. In conjunction with the preprocessing tech-
nique of tightening the separation, see Section 4.1.2, T-COLORING may
be employed to search for assignments for which the maximal incurred
interference between carrier pairs is minimal.

Algorithm 1 gives a sketch of the procedure. After the initialization,
the carriers are assigned in the while-loop. The carrier to assign next is
determined by means of the saturation and spacing degrees. For a formal
definition of both quantities see Algorithm 1. Roughly speaking, the
saturation degree keeps track of how many channels from the spectrum
are no longer available for each of the remaining unassigned carriers. The

saturation degree
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spacing degree

spacing degree represents how much impact assigning all of a carrier’s still
unassigned neighbors would have on its own assignability. If this impact
is larger than that of its neighbors, the carrier should be handled before
its neighbors. For similar reasons, carriers with a high saturation degree
should be assigned as soon as possible.

T-COLORING is implemented using binary heaps (see Cormen et al.
[1990, Chapter 7]) for bookkeeping of which carrier to assign next. The
running time obtained this way is in O(|C||E|+ |E|log|V|), and the
space requirement is in O(|C||V|+ |E|). Computational results for the
T-COLORING heuristic are given in Sections 5.2.1, 5.4, and 5.5.

4.2.2 Dsatur With Costs

The DSATUR WITH COSTS heuristic is another modification of the graph
coloring heuristic DSATUR proposed by Brélaz [1979], and again we in-
corporate ideas of Costa [1993]. The goal of DSATUR WITH COSTS is
to produce a feasible assignment of least possible total interference. Re-
peatedly, that carrier is assigned next, which seems to be hardest to deal
with. The measure for “hardest to deal with” generalizes the saturation
and spacing degrees introduced with the T-COLORING heuristic. Each
carrier is assigned the channel presently incurring the least additional
interference. An outline of the procedure is given as Algorithm 2.

A matrix cost is used to record the cost (= interference + separa-
tion violation penalty) of the carrier/channel combinations. The rows
of cost are indexed by the carriers, and the columns are indexed by the
channels. All entries corresponding to unavailable carrier/channel com-
binations are invalidated during the initialization. The matrix cost is
updated throughout the process by adding update matrices, which re-
flect the effect of the current step. The generic update matrix A®/) is
defined component-wise by

M, if vw € E,g € C\ By, |f — ¢g| < d(vw),
c(vw), ifvw € E,dlvw) =0,f =g,9 € C\ By,
c(vw), if vw € E,d(vw) < 1,|f —g|=1,9 € C\ By,

0, otherwise.

A fullg) =

M is a suitably chosen constant. The still unassigned carriers are main-
tained in a heap H. A carrier’s heap key is defined by

key(v) = |B,| M + Z h{cost[v][f]) with h(c) =

{M, if e > M,
fEC\By

¢, otherwise.
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Algorithm 2 DSATUR WITH COSTS
Input: carrier network N = (V, E, C, {B, }yev, d, ¢, ¢*)
Output: an assignment y, possibly infeasible
{Initialization}
for all v € V do

cost[v][f] = {

insert v into the heap H with key(v)
end for
{Assigning}
while H # () do
extract carrier v with maximum key(v) from heap H
y(v) := f, where f is available and of least value in the row cost[v]
update cost by adding A(v, f)
update key(v) for allv € H
end while
{y holds the resulting assignment}

0, iffeC\B, {initialize}

oo, otherwise {invalidate}

While the heap is not empty, a carrier v with maximum value key(v) is
extracted and assigned its least costly available channel f. This channel
may induce separation violations, but then all other available channels
do as well (assuming that M is chosen large enough).

A Fibonacci heap (see Cormen et al. [1990, Chapter 21]) is used in
our implementation to determine the next carrier. The minimum-cost
channel for a carrier v is determined simply by a search in the matrix
row cost[v]. Notice that, once a carrier is assigned, the corresponding
row in cost is no longer needed and may become outdated without harm.
This fact is exploited in our implementation and in the analysis of the
amortized running time (see Cormen et al. [1990, Chapter 18]). As-
suming that the graph underlying the carrier network is connected and,
hence, |V| € O(|E|), the running time of DSATUR WITH COSTS is in
O(|C||E| + |V|log|V]), and the space requirement is in O(|V||C| + |E|).

The choice of the first carrier to assign has a considerable impact
on the quality of the resulting assignment. No sufficiently general rule,
however, is known to determine the carrier to start with. As a rather
time consuming countermeasure, all carriers may be tried in turn, and the
best resulting assignment is picked in the end. The following compromise
between the two extreme of choosing only one or all carriers as starting
points proves effective. Some small subset of the carriers, 5% say, is
chosen at random, each of those is used as starting point, and the best

starting point
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resulting assignment is returned in the end. The computational behavior
of DSATUR WITH COSTS is documented in Sections 5.2.2 and 5.4, see
also Section 5.5.

4.2.3 Dual Greedy

The DUAL GREEDY heuristic constructs an assignment by means of elim-
inating alternatives. Repeatedly, an option for assigning some channel
to a carrier is eliminated until only a single channel remains for every
carrier. Qur interest in this type of method is due to the results obtained
by Jiinger, Martin, Reinelt, and Weismantel [1994] in VLSI design.

The DuAL GREEDY is greedy in the following sense: the exclusion
of a carrier/channel combination is based on a local perception of what
seems to be an unfavorable combination. We use aset A C V x C to
keep track of the remaining eligible combinations. Initially, A contains
all carriers paired with all their available channels. A basic version of the
procedure is shown as Algorithm 3.

Hebermehl [1996] investigates this basic version and several variants.
The principal distinction among the studied variants lies in the defini-
tion of “unfavorable.” The following example, where y is the already
established partial assignment and A is the set of remaining eligible com-
binations, is taken from Hebermehl [1996]:

unfavorable(y, A4; (w, g)) = Z c“(vw) + Z ™ (vw)
(v,9)€A: (v,g£1)c A:
vweE d(vw)=0 vwe B, d{vw)<1

+ Z M; + |conflict(y; (w, g))| W

(v,f)eAwwweE,

|f—g|<d(vw)
The set conflict(y; (w, g)) contains the already assigned carriers in y which
are adjacent to w and which satisfy one of the three conditions ¢ =
y(v), c®(vw) > 0 or |g — y(v)| = 1,c*(vw) > 0 or |g — y(v)| < d(vw).
My; and W are two parameters.

This definition of unfavorable(-, -, -) is not the best performing among
those investigated, but it is easily explained. On assigning channel f to
carrier v, the parameter W is used to penalize all still eligible combina-
tions that would result in interference or a separation violation if one of
them were picked for assignment. Among the still unassigned carriers,
potential co- and adjacent channel interference is directly accounted for,
and potential separation constraint violations are penalized with the pa-
rameter M;. High values for W should lead to little interference and few
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separation violations—if any. M; weighs separation violations against
interference. High values for M; put emphasis on obtaining a feasible
assignment.

Algorithm 3 DuAL GREEDY
Input: carrier network N = (V, E, C, {B, }scv, d, ¢, ¢*)
Output: an assignment y, possibly infeasible
{Initialization}
A:={(v,f)eVxC|feC\B,} {eligible combinations}
{Assigning/Eliminating}
while 4 # 0 do
{Assigning}
for all (v, f) e VxCs.t. [{geC|(v,9) € A}|=1do
set y(v) := f and remove (v, f) from A
end for
{Eliminating}
if A#( then
delete (w, g) with highest value unfavorable(y, A; (w, g)) from A
end if
end while
{y holds the resulting assignment}

The success of the DUAL GREEDY procedure hinges on the definition
of unfavorable(-, -,-). Reasonable rules for a given carrier network could
be identified in extensive experiments, but those rules are rather problem
dependent.

Fibonacci heaps (see Cormen et al. [1990, Chapter 21]) are used to
keep track of unfavorable eligible carrier/channel combinations. Us-
ing such heaps, the DUAL GREEDY heuristic has a running time in
O(|C]2V]1og(|C||V]) + |C|*|E|) and requires O(|C||V| + | E|) space. In
order to decrease the practical running time, the method for increasing
the key of a heap element (in the LEDA 3.6.1 [1998| implementation) is
tuned. The amortized running time of this operation is still O(logn),
but practical time savings of roughly 25% are achieved. (See Cormen
et al. [1990, Chapter 18] for an introduction to the concept of amortized
analysis.) Nevertheless, the computational study of Hebermehl [1996]
suggests that this method is generally inferior in terms of assignment
quality as well as in terms of running time in comparison to (most) other
methods presented here. We therefore exclude DUAL GREEDY from our
comparison in Chapter 5.
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4.3 Improvement Methods

improvement An improvement heuristic takes a (partial) assignment as input and tries

heuristic to improve it. Neither the assignment to be improved nor the assignments

obtained are required to be feasible.

In the following, we generically refer to N as the carrier network
N = (V,E,C {B,}vev, d, ¢, c*?). Moreover, for a (partial) assignment
y for N, the set EY is defined as EY = {vw € E | y(v),y(w) are defined}.
The “cost” of the (partial) assignment is

cost(y) = interf(y) + infeas(y),

where
interf(y) = Z “(vw) + Z c*(vw)
vwEEy, vwEEy,
y(v)=y(w) |ly(v) —y(w)|=1
and

infeas(y) = M [{vw € EY | [y(v) — y(w)| < d(vw)}|
+ M [{v € V| y(v) undefined }|.

My and M are parameters. The definition of cost(y) does not penalize
the use of locally unavailable channels, because our methods never assign
an unavailable channel. The cost of a carrier/channel combination (v, f),
f € C\ B,, with respect to an assignment y is defined as

cost(y; (v, f)) = interf(y; (v, f)) + infeas(y; (v, f)),

where
interf(y; (v, f)) = E E c’(vw) + E E c““(vw)
? ? 2 2
vweEE: vweE:
y(w) defined, y(w) defined,
f=y(w) |f—y(w)|=1
and

M
infeas(y; (v, f)) = 71 [{vw € F | y(w) defined, | f — y(w)| < d(vw)}|.
Together with

cost(y; (v, =) = M
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as the cost for not assigning carrier v, we obtain that cost(y) is equal
to the sum over the costs for all combinations (v, y(v)) if v is assigned
or (v,—) if v is not assigned. We set M = 2, and we let M; be large
enough to penalize separation violations more heavily than interference
under “usual circumstances.”

We explain four improvement heuristics in the following, namely, IT-
ERATED 1-OPT, VDS, K-OPT, and MCF. The first three heuristics rely
on classical local improvement steps and have already been applied nu-
merous times in other contexts. The last method does not easily fit into
the framework of local improvement and its motivation is given by the
orientation model (3.7) described in Section 3.3.2.

4.3.1 TIterated 1-OPT

Our simplest improvement method, ITERATED 1-OPT, repeatedly ap-
plies an I-opt step, where the assignment of one carrier is changed to the
current best channel. The 1-opt steps themselves are organized in passes.
Within a pass, each carrier is considered once, according to a given or-
der. This order is determined at the beginning of a pass by ordering the
carriers decreasingly according to their cost. One or more passes may
be performed up to the point where no further improvement is achieved.
Algorithm 4 is a schematic formulation of the procedure.

Algorithm 4 ITERATED 1-OPT

Input: carrier network N = (V, E, C, {By}yev, d, ¢, c*),
(partial) assignment yq
Output: an assignment y, possibly infeasible

{Initialization}
Y=Y
for all v € V do
sort carriers into decreasing order O according to cost(y; (v, y(v)))
{unassigned carriers should be at the beginning of O}
end for
{Pass}
for all carriers v € V', according to order O, do
pick f s.t. cost(y; (v, f)) = mingec\s, cost(y; (v, g))
y(v) := f
update the order O to conform with the initial sorting criterion
end for
{y holds the resulting assignment}

1-opt step

pass
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local minimum

pass

ITERATED 1-OPT is a classical local search method. The states in the
search space are the assignments, the neighborhood relation is defined
through the 1-opt step, and the merit of moving to a neighbor is the
difference of the costs. A comprehensive survey on local search methods
is given by Aarts and Lenstra [1997], for example.

Unless the current assignment constitutes a local minimum with re-
spect to the neighborhood relation and the cost structure, consecutive
passes result in repeated improvements. We iterate while improvements
are obtained, and computational experiments indicate no need for some
tailing-off control in practice.

Fibonacci heaps (see Cormen et al. [1990, Chapter 21|) are used
to determine which carrier to consider next and what channel to as-
sign to that carrier. We observe that the running time of a single
pass is in O(|C||E|log|C| + |V|log|V|) and that the required space is in
O(|C||V| + |E]). In theory, the number of improving passes is not poly-
nomially bounded in the size of a carrier graph, because that number
may depend exponentially on the values of ¢® and ¢*. Computational
results for the ITERATED 1-OPT are reported in Sections 5.3.1 and 5.4.

4.3.2 Variable Depth Search

The VDS heuristic is an implementation of the concept of variable depth
neighborhood search as introduced by Lin and Kernighan [1973], see also
Aarts and Lenstra [1997, Chapter 1]. The carriers are sorted into some
order O, and the assignment of each carrier is changed one by one accord-
ing to this order. The best alternative channel to the presently assigned
one is tentatively selected. Once all carriers have been considered, the
sequence of tentative changes is scanned from start to end and the cost of
every intermediate assignment is recorded. Finally, the tentative changes
are committed up to the point, where the first assignment of least cost
is obtained. All further tentative changes are rejected.

Like in the case of ITERATED 1-OPT, we call the processing of one
order a pass. Passes are performed as long as improvements are achieved.
A formal description of VDS is given as Algorithm 5.

VDs is a local search method. Given an assignment, another assign-
ment is its neighbor if this assignment can be obtained by the improve-
ment process described above for some order of the vertices. Hence, the
neighborhood of a given assignment consists of all assignments that can
be produced by executing the tentative assigning and the committing
part of Algorithm 5 for some order O. (In that respect, our method
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Algorithm 5 VDS
Input: carrier network N = (V, E, C, {B,}yev, d, ¢, ),

assignment g
Output: an assignment y, possibly infeasible

{Initialization}
¥ = Yo
¢ = cost(yp)
for all carriers do
sort carriers into decreasing order O according to cost(y; (v, 9(v)))
end for
{Tentative changes}
for all carriers v € V', according to the order O, do
pick f s.t. cost(§; (v, f)) = mingec\(,ut50)1) €ost(7; (v, 9))
g(v) = f
if cost(y) < ¢* then
c* = cost(9)
vt i=w
end if
end for
{Commit changes}
Y=Y
for all carriers v € V up to v* according to the order O do
y(v) == 9(v)
end for
if cost(y) < cost(yp) then
Yo=Y
goto Initialization {iterate in case of improvement}
end if
{y holds the resulting assignment}

is rather limited because only a single neighbor is determined.) If the
cost of the original assignment is already minimal among the sequence of
obtained assignments, the search is trapped and aborted.

The number of improving executions of the core part of VDS is not
polynomially bounded in the size of a carrier graph in general. The
complexity analysis is therefore only given for a single pass. The running
time of VDs is in O(|E||C|log|C|+ |V |log|V|) and the required space
is in O(|C||V|+ |E|). Computational results for the VDS heuristic are
reported in Sections 5.3.2 and 5.4, see also Section 5.5.
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4.3.3 k-Opt

An extended version of the ITERATED 1-OPT procedure may choose more
than just one carrier at the time and optimize their channels simultane-
ously with respect to each other as well as with respect to the remaining
fixed assignments. In the K-OPT heuristic, &k carriers are picked out
each time. The number of possible assignments on k carriers is |C|*, in
principle. This quantity grows exponentially with £, but the amount of
feasible combinations is usually much smaller in practice. The reason for
this reduction is typically not due to genuine locally blocked channels.
Instead, it stems from the restrictions imposed by the carriers which are
not to be changed. Nevertheless, the possibilities are still too numerous
to simply rely on enumeration. We use a branch-and-cut algorithm in-
stead. (The principle of a branch-and-cut algorithm is briefly explained
in Section 7.4. Comprehensive treatments are given by Jiinger, Reinelt,
and Thienel [1995b] and Thienel [1995], for example.)

The stable set model, see Section 3.3.1, forms the basis for the pro-
cedure. Let K denote the set of carriers to optimize over, and let
A, C C\ B, denote the set of channels assignable to v € K without caus-
ing separation violations with any carrier in V\ K. This restricted version
of the corresponding stable set formulation (3.6) is stated here for con-
venience. Recall the definitions of the sets £ E, and E% from (3.3),
(3.4), and (3.5), respectively.

: co .Co ad ad
min E : Cor o + E : Copny Foap

vw€FCC: vweRed;

vEK vEK

S.t

>yl =1 Wwek (4.1a)

FeA,

yl + o <1 Yowe Ev,we K, |f — g < dpw (4.1b)

yl +yl —2% <1 Vowe E®v,weK,f€A,NA, (4.1c)

yl 4yl =2 <1 Yowe B vwe K, f€ A, f—1€ A, (4.1d)

y! —zo <1 Yowe E®ve K,uwg K,ylw) = f € A, (4.1e)

y! — 2% <1 Yowe B ve Kwg K y(w)+1=f¢c A,
(4.1f)

yl c {0,1} WEK,fcA, (4.1g)

zoo € {0,1} Yowe E“:ve K (4.1h)

P € {0,1} Vowe E*:vc K (4.11)
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Our implementation builds on the ABACUS framework developed by
Thienel [1995]. The objective here is not to design an effective branch-
and-cut algorithm to solve FAP in general. Our own computational ex-
periments as well as the experiences of other research groups, compare
Aardal, Hipolito, van Hoesel, Jansen, Roos, and Terlaky [1995] and Jau-
mard, Marcotte, and Meyer [1998], indicate that even rather small carrier
networks with 25 carriers and 20 channels, say, are hardly solvable to op-
timality. The LP relaxation is highly degenerate.

Due to storage capacity and running time considerations, we do not
start with the full description of the program (4.1). Initially, only the
constraints listed under (4.1a), (4.1¢), (4.1d), (4.1e), and (4.1f) are con-
tained in the LP relaxation. In addition to that, the relaxations of (4.1g),
(4.1h), and (4.1i) to arbitrary values between 0 and 1 are also imposed.
The constraints (4.1b), reflecting the minimum separation requirements,
are separated at need. They are not considered individually, however,
but in the stronger, aggregate form of the well-known clique constraints.
More precisely, given a fractional solution of the LP relaxation, a graph
(W, F) is constructed from the nonzero y{-variables, where

W ={(v,f)e KxC|f€A, yl>0}

and

F = {@ ), (w9} (@ f) (w,g) €W,
“yl +y9 < 17 is listed in (4.1b)}.

The vertices of the graph are weighted with the y{f -values. We associate to
every subset of the vertex set the total weight of its vertices. By means of
an algorithm similar to that proposed by Carraghan and Pardalos [1990],
we compute a maximum weight clique @) in the graph (W, F). If the
weight of () exceeds 1, then the valid inequality

>, ul<1

(v,f)eQ

is violated, and this constraint is added to the LP. Notice that the prob-
lem of finding maximum weighted clique in a graph is NP-hard, compare
Ausiello et al. [1999, Appendix B, GT 22|. In our application, however,
such a clique is usually found sufficiently fast.

We also make use of ABACUS’s ability to remove slack constraints
from the LP in order to keep the LP small. The branching is performed
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restrictions

on z°°- and z%-variables only. Among those, a variable of value clos-
est to 0.5 is selected. There are, of course, many ways to improve our
coarse implementation. Two examples are the use of refined branching
schemes and the separation of other valid inequalities (such as a blend
of the feasibility constraints (4.1b) with the interference-accounting con-
straints (4.1c) and (4.1d) in the form of transitive cliques, see Schulz
[1996, Chapter 4]).

Computational results for the K-OPT heuristic are contained in Sec-
tions 5.3.3 and 5.4, see also 5.5.

4.3.4 Min-Cost Flow

The McCF method is originally proposed as the inner part of a two-level
heuristic to solve the frequency assignment problem. The two levels cor-
respond to the “outer” and the “inner” optimization goal in the orientation
model explained in Section 3.3.2. Our presentation follows along the lines
of the more detailed exposition given by Borndorfer et al. [1998b]. We
treat only the most basic case here. The corresponding restrictions are:

(i) no channel from the spectrum is blocked locally;

(ii) for all carrier pairs with no required separation the co-channel in-
terference is at least twice as much as the adjacent channel inter-
ference.

We assume that the carrier network N = (V, E, C, { B, }scv, d, ¢, ¢*%)
satisfies the above restrictions and that y, is an associated feasible as-
signment. A directed version of the graph (V, E) underlying the carrier
network is defined: let each edge point from the vertex with the smaller
channel to the vertex with the larger channel; if the channels of both
vertices are the same, either orientation is fine as long as the resulting
orientation does not contain a (directed) cycle. Such an orientation can
always be computed in polynomial time. Let (V, A) denote the directed
graph obtained in this way. Notice that yy is compatible with A in the
sense of Section 3.3.2. The MCF method finds the best feasible assign-
ment y which is also compatible with A.

We set up a linear program which is closely related to the dual of the
LP relaxation of (3.7). The primal program is modified slightly before
forming its dual. The changes are the following. We add constraints un-
der (3.7b) for all remaining edges with d(vw) = 0, and we drop the upper
bound constraints on the 2% - and 2%%-variables. Both types of modifi-
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cations do not affect the optimal value of (3.7), but will be convenient in
the following.

Notice that for a fixed orientation of the edges, each of the constraint

pairs (3.7b), (3.7c), and (3.7d) reduces to one constraint. Furthermore, as
a consequence of the above restrictions, the constraints (3.7e) disappear
from the orientation model formulation (3.7). The linear program we are
interested in is the dual to the LP relaxation of the resulting ILP.
The dual variables z¢,, %, and x%¢ are associated to the con-
straints (3.7b), (3.7c), and (3.7d), respectively. The dual variables [,
and u, are associated with the upper and lower bound constraints which
are implicitly given by (3.7f). With ¢ = min{f | f € C} and C =
max{ flfecC } the dual program now reads as follows:

dn%(z}xad Zdewi + Z T+ Z o +ZCZ —Cuv)

vweE vwe Eeo vwC Fad\ Feo veV
s. t.
d d

-2 Tt DL T

vweE: vweE:

(vyw)eA (w,w)EA
D DI D

vwEEC: vweE°:

(v,w)eA (ww)EA

d d

- D Twt D v
vwC B4\ Feo: vw BN\ Eeo:

(vyw)eA (ww)eA
— Uy + 1, <0 WweV (4.2a)
x5y < ¢ Yvwe E” (4.2b)
o < VYow e E“\ E” (4.2¢)
T >0 VoweE
Lo >0 Yvwe E®
o >0 Vow € B\ E®
lva Uy Z 0 VU & V

The program (4.2) may be solved by computing a min-cost flow
(see Ahuja, Magnanti, and Orlin [1992], for example) on an auxiliary
graph. First, observe that the inequality constraints (4.2a) may be turned
into equations, because any slack can be eliminated by increasing [, with
positive or no effect on the objective value (due to C' > 0). Further
necessary transformations are:
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e the objective function of (4.2) is multiplied by —1 and the max
operator replaced by the min operator;

e the constraints (4.2a) (with equality sign) are multiplied by —1;

e a new vertex s is added, and the variables [, and u, are replaced
by x,s and x,.

The constraints (4.2a) read now as

d d co co
E:mvw_ E:wi—i_ E:wi_ E:wi

vwck: vwCkE: vwEEC: vywCE:
(vyw)EA (w,w)EA (vyw)EA (w,w)eA
d d
+ E Ty — E Ty T Ty — Tys = 0 YveV.
vwC B\ Fee; vw€ B2\ Fee:
(v,w)eA (ww)eA

(4.3)

By means of those transformations, the problem (4.2) turns into the
problem of computing a min-cost flow in a directed graph with parallel
edges. The edges corresponding to z%,, z,s, and x,, are uncapacitated,
the edges corresponding to 2%, and x% have limited capacity. There
is no sink or source. Instead, we are looking for a circulation, meeting
the flow conservation constraints (4.3). Numerous methods for solving
such a problem are described in the literature, see Ahuja et al. [1992,
Chapters 9-11], for example. Given an optimal circulation, we may con-
struct integral node potentials 7, (a dual solution) with 7, = 0. Setting
y(v) = 7, for all v € V| we obtain the desired frequency assignment. A
more detailed discussion on this connection is given by Borndorfer et al.
[1998b)].

Algorithm 6 gives a sketch of the employed procedure, where we also
show how to handle the case in which the above restriction (ii) is not met.
MCcF reduces the adjacent channel interference of the corresponding edges
temporarily in order to meet this constraint. That way, MCF turns into
a heuristic with respect to its own optimization goal. The flow along
each arc in the associated directed graph incurs integral cost. From
general min-cost flow theory, we may conclude that the dual solution
is also integral. In fact, the dual solution induces a feasible frequency
assignment.

Restriction (i) may also be relaxed in the following sense. Let v be
a carrier where some channel is blocked locally, that is, B, # 0. The
local exceptions puncture the set of otherwise contiguous channels in C.
We may think of the set C'\ B, as the union of maximal intervals of
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contiguous channels. We call each such interval a window, and, given
a feasible assignment yp, the window % with yo(v) € I% is called the
active window for v. If local blockings are present, the objective function
of (4.2) can be changed by replacing C' and C by Ivo = min{f | f € It}
and IA}{O = max{ flfe I},’O}, respectively. The effect of this change is
that each node receives a channel from the active window.

The auxiliary directed graph is easily constructed in O(|E|) time.
The min-cost flow problem is solved by means of a Network Simplex
Method implementation, see Libel [1997]. The space requirement of this
algorithm is in O(|E|), but its worst-case running time is exponential
in the input size. Although there are strongly polynomial min-cost flow
algorithms (see Ahuja et al. [1992, Chapter 10]), we choose this imple-
mentation of the Network Simplex Algorithm for its typically competitive
running time in practice. Computational results for the MCF heuristic
are reported in Sections 5.4.

window

active window
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Algorithm 6 McF

Input: carrier network N = (V, E, C, {B, }vcv, d, ¢, ),

feasible assignment g
Output: a feasible assignment y

{Initialization: orient edges of G = (V, E)
for all edges vw € E with yo(v) # yo(w

)
— {(va)}v if yO(U) < yO(w)
PO ol o) > o)
end for
for all edges vw € E with yo(v) = yo(w) do
O:=0U{(v,w)}or O:=0U{(w,v)}

{ensure that the final orientation is acyclic}

end for
{Construction of an auxiliary directed graph D = (W, A)}
W=V
for all (v,w) € O without dy, =0, ¢, >0, ¢ >0 do
if d,, =0, 5%, > 0 then
A= AU {(v,w)} with capacity ¢ and cost —1
else if d,, = 1, ¢ > 0 then
A= AU {(v,w)} with capacity ¢®¢ and cost —1
end if
A= AU {(v,w)} with capacity oo and cost —d,,
end for
for all (v,w) € O with dy, =0, ¢, >0, ¢ >0 do
W =W U {Spw}
A:=AU{(v, spw)} with cap. max{c%, — 2%, ¢ } and cost —1
A= AU {(v, 8y)} with cap. oo and cost 0
A= AU {(syw, w)} with cap. min{c®¢ £} and cost —1
(

W 2 VW
A= AU {(syy,w)} with cap. co and cost 0
end for
W =W u{s}

for allv € V do
A:= AU {(s,w)} with capacity co and cost —I¥
A:= AU {(w,s)} with capacity co and cost +I%
end for
{Solve min-cost flow problem}
solve resulting min-cost flow problem on D = (W, A)
let y(v) := w(v), v € V, for an optimal, integral dual solution 7
{y holds the resulting feasible assignment}




CHAPTER 5

Computational Studies

In this chapter, we report on computational experiments performed with
the frequency planning heuristics described in the previous chapter. Re-
sults are given for eleven realistic benchmark scenarios.

We introduce these scenarios in Section 5.1. The individual perfor-
mance of the heuristics and their parameter interdependence is analyzed
in Sections 5.2 and 5.3. The concerted acting of the heuristics is studied
in Section 5.4, where we also select our favorite combination of methods
together with the relevant parameter settings. We focus on three out of
the eleven scenarios for these extensive studies. In Section 5.5, our fa-
vorite combinations of heuristics are applied to all benchmark scenarios
and a detailed analysis of the resulting frequency plans is given. Finally,
in Section 5.6, we compare our swiftly generated plans with those com-
puted by the elaborate planning heuristic procedure of Hellebrandt and
Heller [2000], explained in Section 5.1.2. We give recommendations for
the use of the various heuristics in practice.

The following technical information on the computer system environ-
ment, should allow to estimate how the running times of the heuristics
provided here translate to other system environments. The computations
are performed on an IBM ThinkPad 600X with an Intel Pentium III pro-
cessor, operating at 650 MHz clock speed, and equipped with 576 MB of
system memory. The operating system is GNU/Linux in the SuSE 6.4
distribution, kernel version 2.2.14.

The heuristics are implemented in the programming language C++,
using data structures for graphs and priority queues from the Library of
Efficient Data structures and Algorithms (LEDA), version 3.6.1, see Mehl-
horn and Néher [1999]; LEDA 3.6.1 [1998]. The compilations are per-
formed by means of GNU g++, version 2.95.2, with -mcpu=i1686 -06 as
optimization flags. The min-cost flow problem arising within the McCF
heuristic is solved using the Network Simplex Method implementation of
Lobel [1997], version 1.0. ABACUS, version 2.2, is used to implement the
K-OPT heuristic, and all LPs are solved using CPLEX, version 6.5.
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The reported running times of the heuristics do not include the ini-
tialization of the test framework, the reading of the data, or the setup of
the carrier network.

A graphical user interface (GUI) allows to call the various methods
and to visualize the interference incurred by a frequency plan. This
user interface was implemented using the programming language Java
for a demonstration at the CeBIT 99 fair. Figure 5.1 shows the display
panel of the program. Within the display panel, geographical and other
information on the planning instance K, see Section 5.1.1, is listed. In
addition, information on the current frequency plan is given in numbers
(in the lower right panel) as well as pictorially (in the upper left panel).
Every node in this panel denotes a site, and edges between two sites
represent interference among TRXs of the two sites.

File Assignments Miscellaneous

@ QHbl o —d
o

9
&0
o

32
v 7
orma
e & e
@ Unsatisiied o4
Violat o
@ violated

Figure 5.1: GUI for automatic frequency planning

5.1 Benchmarks

A fair comparison of computational experiments is often hard to achieve.
The running times of the same method, for example, depend heavily on
the computing environment as well as on the actual implementation of
the method. This can hardly be remedied. Another source of uncer-
tainty, however, can be remedied by means of using publicly available
and established input data. Within the COST 259 action, the subgroup
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on “Standard Scenarios for Frequency Planning” established a collection
of realistic GSM frequency planning scenarios in order to allow a sound
comparison of different planning methods. Several of these test scenarios
are used here, plus one additional scenario. All our scenarios are avail-
able via the Internet from the FAP web [2000]. They are introduced in
Section 5.1.1, together with an analysis of their characteristics.

In Section 5.1.2, we describe the frequency planning heuristic pro-
posed by Hellebrandt and Heller [2000]. This heuristic is presently the
most competitive one for our scenarios, and we use its results as reference
in the comparison of our own, faster methods.

5.1.1 Test Instances

Our benchmark instances are introduced in the following. For notational
convenience, we use other labels than the original ones, but provide the
original names in the descriptions. The brief descriptions of the planning
scenarios are mostly taken from Eisenblatter and Kiirner [2000]. Each
scenario gives rise to a carrier network.

Data for a GSM 1800 network with 92 active sites, 264 cells, and
an average of 1.01 TRXs per cell. Fifty contiguous channels form
the spectrum. (Provided by E-Plus Mobilfunk GmbH & Co. KG.)

Data for a GSM 1800 network with 649 active sites and 1886 cells.
The parameter ¢ scales the traffic demand. The available spectrum
consists of 75 contiguous channels. (Provided by E-Plus Mobil-
funk GmbH & Co. KG as “bradford _nt-d-eplus.”)

The basic traffic load is drawn at random according to a distri-
bution observed empirically by Gotzner, Gamst, and Rathgeber
[1997]. This traffic is then scaled with the factor d equal to 0, 1,
2, 4, and 10 prior to applying the Erlang-B formula in order to
obtain the required number of TRXs per cell. The resulting aver-
age numbers of TRXs per cell are 1.00, 1.05, 1.17, 1.47, and 2.20,
respectively. The different traffic demands may be seen as the evo-
lution of a network over time. The interference predictions base on
signal propagation predictions according to the “eplus” model, see
Section 2.3.2. The two alternative prediction models “free space”
and “race”; also mentioned in Section 2.3.2, are not considered here,
because in most of the cases a frequency plan without any interfer-
ence is easily obtainable, see Eisenblétter and Kiirner [2000].

B[d]
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SiEl

SIE2

SIE3

SiE4

Sw

Data for a GSM 900 network with 179 active sites, 506 cells, and an
average of 1.84 TRXs per cell. The available spectrum consists of
two contiguous blocks containing 20 and 23 channels, respectively.
(Provided by Siemens AG as “siemensl1.”)

Data for a GSM 900 network with 86 active sites, 254 cells, and an
average of 3.85 TRXs per cell. The available spectrum consists of
two contiguous blocks containing 4 and 72 channels, respectively.
(Provided by Siemens AG as “siemens2.”)

Data for a GSM 1800 network with 366 active sites, 894 cells, and
an average of 1.82 TRXs per cell. The available spectrum comprises
55 contiguous channels. (Provided by Siemens AG as “siemens3.”)

Data for a GSM 900 network with 276 active sites, 760 cells, and an
average of 3.66 TRXs per cell. The available spectrum consists of
39 contiguous channels. (Provided by Siemens AG as “siemens4.”)

Data for a GSM 900 network in a city with many locally blocked
channels. On average, 2.09 TRXs are installed per cell. There
are 148 cells with 1 to 4 TRXs and 707 neighbor relations. In
general, 52 channels in two contiguous blocks of sizes 3 and 49 are
available, but 136 cells have local restrictions. Only 15 channels
are available in the worst case; the median of available channels
per cell is 29. (Other figures concerning the availability of channels
are provided with the scenario. We give the results of our own
computations.) Together with the scenario, a partial assignment
is supplied which is supposed to be extended. The restrictions
imposed by the unchangeable TRXs are already taken into account
in the above figures. (Provided by Swisscom Ltd. as “Swisscom.”)

Further details concerning the underlying GSM network are listed in
Table 5.1; namely: the number of sites in the planning area; the number
of cells (no site hosts more than three cells); the spectrum size or, in the
presence of globally blocked channels, the sizes of the contiguous portions
in the spectrum; the average number of TRXs per cell; and the mazimum
number of TRXs per cell. Notice that in each of the scenarios with
globally blocked channels, the resulting gap in the spectrum exceeds the
maximal required separation. Thus, there is no direct coupling between
distinct contiguous portions of the spectrum.

Three further figures are given for each scenario in Table 5.1. These
are easiest explained in terms of the carrier network which is obtained
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Table 5.1: Scenario characteristics

if each cell operates only one TRX. Then, every carrier in the network
corresponds to a cell, and the graph underlying this network reflects the
relations among the cells. For this graph, the average degree (average
number of adjacent cells), the maximum degree (mazimum number of
adjacent cells), and the diameter (of the largest connected component)
are listed. See Appendix A for definitions of these terms.

We point out a few peculiarities of those graphs. First, for reasons
which are not entirely clear, the graph is not connected for all scenarios.
Sometimes, a few cells form small subgraphs, which are isolated from the
rest. (This phenomenon might be due to shielded indoor cells.) The sizes
of the small connected components are as follows: 2x 1,1 x 2, and 2 x 3
for B[1], 1 x 34 for SIE3, and 1 x 1 for Sw. All those small components
are cliques with the exception of SiE3, where the largest clique contains
only 12 of the 34 vertices.

d # TRXs
avg. | max.
01 1.00 1
11 1.05 3
21 1.17 5}
4 1.47 9
10 || 2.20 12

Table 5.2: Properties of B|d| depending on the traffic factor d
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Second, looking at the column showing the average number of adja-
cent cells, we see that cells are adjacent to surprisingly many other cells
on average. In scenario K, for example, each cell is adjacent to more than
half of all cells. (We believe that the comparatively high numbers for the
scenarios provided by E-Plus Mobilfunk GmbH & Co. KG are due to the
use of a 20dB threshold in distinguishing between interference affected
and unaffected pixels, see Section 2.3.2 for further explanations.)

Finally, the last column shows that the cells are all rather “nearby”
in almost all scenarios. Recall that the diameter in a connected graph is
the maximum length among all shortest paths between pairs of vertices.
Thus, a diameter of 2, for example, implies that for every nonadjacent
pair of cells, there is one cell being adjacent to both of them. If the
graph has more than one connected component, we give the diameter of
the largest component. The diameter of the small connected component
of SIE3 is 5. The diameter of all other small components is either 0 or 1.

After having looked at the scenarios, we turn to the carrier networks
derived from the scenarios. The focus is on the undirected graphs under-
lying the scenarios and on a few characteristics of the edge labelings d,
¢, and ¢*®. The results of our analysis are given in Table 5.3, which is
organized in five blocks of columns. In the first column, the label of the
associated scenario is given. The next block contains information on the
graph, namely, its number of vertices, its edge density (that is, number
of edges relative to the maximum possible number of W), the aver-
age degree of its vertices as well as the maximum degree, and the size of
a maximum clique. The third block addresses the minimum separation
requirements as specified by the labeling d. The total number of edges
with nonzero separation requirements as well as the breakdown of the to-
tal according to the required separation is displayed. The forth and fifth
block provide information on the co- and adjacent channel interference
labelings c® and ¢, respectively. In each block, we list the total number
of interference relations, their average and maximal interference values
as well as the sum over all interference values.

There are again some noteworthy facts. First, the average degree of
a carrier is significantly higher than the number of available channels in
all the carrier networks except for Sw. This indicates that the channel
assignment for different cells has to be carefully tuned in order to produce
good frequency plans.

Second, the size of the maximum cliques in most carrier networks is
larger than the number of available channels. For those carrier networks
every feasible assignment must incur interference. We investigate this
further in Chapter 6.
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planar graph

tree
decomposition

Third, recall from Section 3.1 that the interference labelings are ob-
tained by summing up the two directed interference ratings between pairs
of TRXs. Those directed ratings are normalized and take values be-
tween 0 and 1. The sum is thus bounded by 2. In several cases the
maximal co- or adjacent channel interference is, in fact, close to 2. The
occurrence of such heavy interference is considered completely unaccept-
able in practice. In Section 5.5, we see that such heavy interference can
typically be avoided by “good” frequency assignments. This happens ei-
ther by coincidence, indirectly due to the optimization goal, or is imposed
by “tightening the separation” as explained in Section 4.1.2.

Fourth, we see that no co-channel interference is reported for Sw.
When generating the scenario, the radio planer apparently decided to rule
out this type of interference entirely by adding the necessary separation
constraints.

Fifth, one might have guessed that the graphs underlying carrier net-
works are not much denser than planar graphs. (A planar graph can
be drawn in the Euclidean plane in such a manner that edges are rep-
resented by piece-wise straight lines and no edges cross.) Planar graphs
are of interest because many generally NP-hard problems on graphs are
solvable in polynomial time if restricted to planar graphs. The following
relation between the number of vertices and edges in a planar graph is
well-known and follows from Euler’s formula.

Proposition 5.1. A planar graph G = (V, E) satisfies |E| < 3|V | — 6.

For the carrier network K, for example, the expression vields 3-267 —
6 = 795 as opposed to 27388 edges. Even the number of edges with
separation constraints is roughly 1.3 times this value. Consequently, the
graph underlying the carrier network cannot be planar. The large max-
imum cliques in the carrier networks as well as the small diameters of
the connected components also indicate substantially tighter couplings
among large sets of carriers than one might have suspected.

The degree of interdependencies clearly affects the possibilities for de-
composing the optimization problem. Ideally, we would like to be able
to independently solve small subproblems to optimality and assemble an
optimal solution for the whole problem from the solutions to the sub-
problems. The stronger the dependencies between the subproblems we
choose, the harder is the assembling. In the Ph. D. thesis of Koster [1999],
such an approach is described using a tree decomposition of a graph, see,
for example, Bodlaender [1993] for an introduction to tree decomposi-
tion. We do not give details here, but merely state that this approach is
successfully applied to graphs with a treewidth of up to 11, say, and that
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the running time grows exponentially in the treewidth. Because the size
of maximum clique minus one is a lower bound for the treewidth, this
approach is likely to fail on all our scenarios.

In an heuristic decomposition approach, the subproblems need not
to be solved optimally, and the reassembling might introduce controlled
degradation. But even in this relaxed sense, no convincing decomposition
method has been proposed so far. We explain one of the obstacles to
overcome.

We define a labeling me: V' — Z, of the carriers in a network N =
(V, E,C,{By,}vev,d, c®, c*) by setting mc(v) to the size of the largest
clique in which v is contained. (On our instances, a maximum clique
can be computed in reasonable time by means of a branch-and-bound
algorithm.) We then consider the graphs G' = G[{v € V | me(v) > i}],
i.e., the subgraphs of G = (V, E) induced by the set of all carriers which
are contained in a clique of size at least i. The graphs G' are nontrivial
for ¢ between 1 and the size of a maximum clique in G.

Figures 5.2, 5.3, and 5.4 show the sizes of the connected components
of G* for the carrier networks of the instances K, B[1], and SIEl, respec-
tively. Obviously, large cliques are no isolated phenomena in these carrier
networks. On the contrary, a major portion of all carriers is contained in
cliques which are larger than the number of available channels. Similar
results can also be observed for the other scenarios. Leaving the small
connected components of the carrier networks aside, we also see that only
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in case of SIEl the subgraphs G* decompose. (For i = 32, the cliques
observed for 31 disappear, and from ¢ = 33 up to 50 a new component
splits off from the major chunk.) Good frequency plans thus have to
resolve separation conflicts and interference among large sets of strongly
interdependent carriers.

In this context, we also report on the effects of the preprocessing
techniques proposed in Section 4.1. Table 5.4 documents that these tech-
niques have only a rather limited impact. A few carriers can often be
safely excluded from frequency planning due to a small generalized de-
gree. Most dominated carriers, however, are in fact isolated and thus
trivially dominated by every other carrier. The scenario SW may be con-
sidered as a minor exception, because the reduced 85 carriers constitute
a significant portion of all carriers. Nonetheless, SW is the scenario for
which almost no feasible assignment can be produced using our heuristics
from Chapter 4, compare with Section 5.5.

[ [ KB B[ B2 | B[4] | B[10] ]| Siel | Sie2 | Sie3 | Sie4 | Sw |
reduction 15 27 26 22 19 21 60 6 96 10 83
domination 0 2 2 1 0 0 0 1 1 0 5

Table 5.4: Effects of preprocessing

With a number of benchmark scenarios in stock, we now turn to a
“benchmark” heuristic to compare our own heuristics with.

5.1.2 Threshold Accepting

We use the heuristic proposed by Hellebrandt and Heller [2000] to com-
pare our computational results with. The implementation of Hans Heller,
Siemens AG, Germany, shows presently the best performance in compar-
ison with several methods on the COST 259 scenarios, see the study of
Eisenblitter and Kiirner [2000]. The referenced frequency plans are also
available via the Internet from the FAP web [2000]. Because the method
is not yet published in open literature, we give an outline of this method,
drawing freely on our presentation in Correia [2001, Section 4.2.5].

The method of Hellebrandt and Heller [2000] makes use of the Thresh-
old Accepting paradigm. Threshold Accepting is proposed by Dueck and
Scheuer [1990] as a variant of Simulated Annealing with a deterministic
acceptance criterion: a proposed change of the solution, also called a
move, is accepted if an improvement is achieved or the deterioration is
below a threshold. The value of this threshold declines with the progress
of the algorithm. The basic scheme is augmented here by alternating be-

preprocessing

move
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tween random changes and local optimization. A sketch of the algorithm
is given as Algorithm 7.

Algorithm 7 THRESHOLD ACCEPTING
Input: carrier network N = (V, E, C, {B, }sev, d, ¢, ),

assignment o, time bound T;,,
Output: an assignment y, possibly infeasible

{Initialization}
initialize threshold
while stopping criterion not met do
for time 7" do
select random move M
if cost of M < threshold then
execute M
end if
select random cell and optimize it
end for
decrease threshold
end while

The cost of a move is the difference between the cost of the assign-
ments after and before the move. For the most part, Threshold Accepting
inherits from Simulated Annealing the variety of popular implementa-
tions for each general step. The following choices are made by Helle-
brandt and Heller [2000].

Start Solution: The random moves described below are not specially
suited for finding a feasible assignment if many hard constraints
have to be taken into account. In such a case, a feasible assignment
should be provided at the start. Otherwise, any assignment is fine.

Initial Threshold: The threshold value controls how much deviation is
allowed from the cost of the current solution. A binary search is
performed to identify a threshold, where 80-90% of the proposed
random moves are accepted.

Stopping Criterion: The termination is triggered when the acceptance
rate for random moves sinks below 5%.

Inner Loop/Threshold Reduction: The running time of the proce-
dure depends on the initial threshold, the factor by which the
threshold is reduced, the length of the inner loop, and the stop-
ping criterion. The length of the inner loop is limited by a time
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bound of 10 sec, for example. Taking this and a maximum desired
running time into account, a factor for reducing the threshold at
the end of each outer loop is computed. Running times in the range
of 10 minutes to several hours on a modern PC are used for our
benchmark scenarios.

Random Moves: First, a TRX is chosen at random. Then, an available
channel is chosen for this TRX that does not cause any separation
constraints. This constitutes the random change. Both choices are

done according to a uniform distribution. In case no channel is
available for the TRX, the choice of the TRX is repeated.

Cell Optimization: The optimization of a cell is done by Dynamic Pro-
gramming. This is the topic of the following paragraphs.

The essential feature of this variant of the Threshold Accepting algo-
rithm is the cell optimization step. Cell optimization is a counterweight
to the perturbation and deterioration of random moves. The special
structure of the GSM frequency assignment problem allows a complete
and yet efficient optimization of one cell, provided that the assignment in
all other cells is kept fixed. The reason for this is that co-cell separation
is usually at least 3 and, therefore, no interference can arise among TRXs
within the same cell.

The optimization of a cell is first explained under the provision that a
broadcast control channel (BCCH) and a traffic channel (TCH) show no
difference with respect to frequency planning. How this restriction can
be removed is discussed later. Two observations can be made under this
provision. Consider a feasible assignment and a cell with two or more
TRXs.

(i) The channels assigned to the cell’s TRXs may be redistributed
among the TRXs without changing the feasibility or the cost of the
assignment. (Recall that the TRXs in a cell are ordered.) Hence,
it suffices to consider assignments, where the channels assigned to
a cell’s TRXs are in increasing order.

(ii) The current costs of the channels and the currently forbidden chan-

nels have to be computed only once, because they are the same for
all TRXs in the cell.

Finding an optimal assighment for the cell can thus be reduced to
the following problem. Identify an increasing list of channels such that
its lengths matches the number of TRXs in the cell, such that successive
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channels are at least the required co-cell separation apart, and such that
the list incurs minimal cost. This optimization problem is efficiently
solvable using Dynamic Programming with Memoization (see Cormen
et al. [1990, Chapter 16]), where a top-down computation strategy is
used and the solutions to subproblems are stored for later look-ups.

We now come back to the assumptions made above. These assump-
tions are trivially met by splitting up each cell into as many “virtual cells”
of TRXs with identical needs as necessary. The cell optimization is then
performed merely within the virtual cells.

In Section 5.6, we give computational results for the THRESHOLD
ACCEPTING heuristic and compare them with the ones obtained from our
own methods. Our methods are analyzed in the following three sections,
and we start out by looking at the construction heuristics.

5.2 Analysis of Greedy Heuristics

In this section, the behavior of the two heuristics T-COLORING and
DSATUR WITH COSTS, described in Section 4.2, is analyzed on the three
carrier networks K, B[1], and S1E1. We observe that tightening the sepa-
ration has a significant impact. As explained in Section 4.2.3, the DUAL
GREEDY heuristic is not considered here, because neither the quality of
its frequency assignments nor its running time efficiency have met our
expectations.

5.2.1 T-Coloring

In order to study the effect of tightening the threshold on the assign-
ments produced by T-COLORING, compare with Section 4.2.1, we allow
the use of an unbounded number of channels. Recall, however, that the
T-COLORING heuristic does not assign a previously unused channel un-
less all of those already in use are infeasible. In that case, the smallest
possible new channel is taken. Thus, inspecting the assignment after ter-
mination reveals which spectrum would have been sufficient for finding a
feasible assignment. The separation is tightened with thresholds values
between 0.0 and 1.0 in steps of 0.01. The consumed spectrum size and
the incurred total interference are shown in the Figures 5.5, 5.6, and 5.7.
Roughly speaking, the interference increases and the required spectrum
size decreases with increasing threshold values. A minor surprise may
be the fact that the interference increases more evenly than the required
spectrum size decreases.
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Figure 5.7: T-COLORING on instance SIE1

5.2.2 DSATUR with Costs

For the DSATUR WITH COSTS heuristic two parameters are relevant,
compare with Section 4.2.2. These parameters are the threshold value for
tightening the separation and the amount of carriers selected randomly
as starting points. We consider the threshold values ¢ = 0.01, 0.025, 0.05,
0.075, 0.10, 0.15, 0.20, 0.25, 0.50, 0.75, and 1.00. Moreover, 1, 2, 3, 5,
10, 25, 50, and 100% of the carriers are used as starting points in turn.
For all possible combinations of these two parameters frequency plans
are computed for the carrier networks K, B[1], and SIEL.

The running times of this algorithm do not depend significantly on the
threshold value and scale linearly with the percentage value. Table 5.5
shows the running times in seconds of DSATUR WITH CoOSTS for 1% of
the carriers as starting points and using a threshold value ¢ = 0.05.

| [ K] B[1]]SiEl |
| time || 0.10 | 17.85 | 1.04 |

Table 5.5: Running times in seconds of DSATUR WITH COSTS

The total interference incurred by the resulting frequency plans are
given in Figures 5.8, 5.9, and 5.10. We make three observations:



5 COMPUTATIONAL STUDIES

93

e The results depend significantly on the threshold value for tight-
ening the separation. The best results are typically obtained for
small threshold values at which already a substantial portion of the
produced assignments is feasible.

e There is little dependence on the percentage of starting points.
The improvements from taking more than 5% of the carriers as
starting points are often negligible and do not justify the additional
computational effort.

¢ In all cases, the threshold value yielding the best result if all carriers
serve as starting points (100%) also gives the best result among the
solutions obtained for 1%.

Certainly, similar observations cannot be expected to be made for all
possible carrier networks. Nevertheless, based on the above observations,
which are in accordance with our general computational experience with
the DSATUR WITH COSTS heuristic for practice-relevant carrier networks,
we make the following assumption: the interference decreases with the
value of the threshold as long as sufficiently many feasible assignments are
found, and it increases again if the threshold value is lowered beyond that
point. This assumption is exploited in a binary search for an appropriate
threshold value. During this search, only 1% of the carriers serve as
starting points. Once a good threshold is found, higher percentage values,
like 5%, are used for computing an assignment.

Total Interference

Threshold > 0780 1,000

Figure 5.8: DSATUR WITH COSTS on instance K
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Figure 5.9: DSATUR WITH COSTS on instance B|1]

Figure 5.10: DSATUR WITH COSTS on instance SIEL
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A few details concerning the search are important. It is advantageous
to randomly select the starting points once and for all in the beginning.
Our search proceeds in two phases. First a coarse approximation {; of a
good threshold value is determined. Then, the search is repeated between
t1/2 and 2t for the final threshold value t,. The desired accuracy is 1%
of t;. Table 5.6 lists the outcomes of applying this procedure in case the
initial threshold value ¢y is set to 1.0. In this particular setting, DSATUR
WITH COSTS is executed 9 times in the first as well as in the second
phase.

| [ K [ B [ Sl |
total interference 0.93 1.86 3.58
time [s] 17.89 | 322.47 | 46.42
final threshold 0.0270 | 0.0139 | 0.0330

Table 5.6: DSATUR WITH COSTS including threshold search

5.3 Analysis of Improvement Heuristics

First, we investigate the performance of the two improvements heuris-
tics ITERATED 1-OPT and VDS when started from randomly generated
assignments.

One hundred random assignments for each of the carrier networks K,
BJ1], and SIE1 are generated. None of these assignments is feasible. Ta-
ble 5.7 lists the average number of separation violations and the average
interference. These assignments are taken as starting points for applying
both heuristics. The threshold ¢ for tightening the separation is set to
the values 0.010, 0.025, 0,050, 0.075, 0.100, 0.150, 0.200, 0.250, 0.500,
0.750, and 1.000. If no tightening is applied, we write £ = 2.000.

For the instances K, B[1]|, and SiEl, the Tables 5.8, 5.9, and 5.10,
respectively, show the number of feasible assignments obtained; the best,

100 RANDOM ASSIGNMENTS

separation violations total interference
min. | avg. | max. min. | avg. | max.
K 47 | 62.5 82| 43.63 | 59.43 | T7T2.74

BJ1] 280 | 320.4 366 | 270.14 | 300.73 | 322.12
SIEL | 374 | 425.2 488 | 56.10 | 65.60 | 76.58

Table 5.7: Evaluation of 100 random assignments
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the average as well as the worst total interference among the obtained
feasible assignment; and the average number of separation constraint
violations among the infeasible assignments. The Figures 5.11 up to 5.16
are generated from the total interference of the feasible assignments and
give a qualitative impression of the best, the 25th, 50th, 75th and the
100th assignments.

ITERATED 1-OPT VDs
t fea- | total interference | avg. || fea- | total interference | avg.
sible | min. | avg. | max. | viol. || sible | min. | avg. | max. | viol.
0.010 0 7.9 0 5.0
0.025 0 4.7 26]0.77| 244 ] 5.50| 2.0

0.050 6516|0516 | 5.16 | 2.3 811090 | 137|363 1.1
0.075 18 | 247 | 3.36 | 4.49 | 2.0 94 1099|128 | 225 1.0
0.100 44 1 1.70 | 3.43 | 5.06 | 1.6 || 100 | 0.91 | 1.27 | 2.42
0.150 7711741263518 | 1.0 100 | 0.90 | 1.29 | 1.61
0.200 90 [ 1.88 | 2.51 | 4.11 | 1.0 || 100 | 1.03 | 1.35 | 1.73
0.250 97 1165|230 | 3.52 | 1.0 | 100 | 0.98 | 1.30 | 1.63

0.500 || 100 | 1.79 | 2.16 | 2.75 1001 098 | 1.31 | 1.70
0.750 || 100 | 1.69 | 2.22 | 3.06 1001 1.02 | 1.35 | 1.75
1.000 || 100 | 1.86 | 2.26 | 2.75 100 | 1.02 | 1.33 | 1.63
2.000 || 100 | 1.76 | 2.22 | 2.75 100 | 0.99 | 1.37 | 1.77

Table 5.8: Evaluation of 100 random assignments for instance K improved
by ITERATED 1-OPT and VDs.

5.3.1 Iterated 1-Opt

Let us now focus on ITERATED 1-OPT and examine the Tables 5.8, 5.9
as well as the Figures 5.11, 5.12, and 5.13.

A significant spread between the best and the worst result can typ-
ically be observed for each threshold value. For small threshold values,
where feasible solutions are barely obtained, the few feasible assignments
are often mediocre to bad with respect to their total interference. Once
the threshold value is large enough to yield feasible assignments for most
of the random assignments, the results hardly depend on the actual value
of the threshold.

The Table 5.11 lists the average number of passes performed and the
average running times in seconds of the ITERATED 1-OPT heuristic on
the set of 100 random assignments. We observe that more passes are
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ITERATED 1-OPT VDs
t fea- | total interference | avg. | fea- | total interference | avg.
sible | min. | avg. | max. | viol. || sible | min. | avg. | max. | viol.
0.010 0 39.8 0 17.6
0.025 0 13.6 0 4.0
0.050 0 29| 47 |3.50 452|575 1.2
0.075 || 50| 6.01 | 701|877 | 1.5 98|381|449|529| 1.0
0.100 || 93 |5.95|6.66 | 7.39 | 1.0 100 | 3.87 | 4.61 | 5.37

0.150 || 100 | 5.89 | 6.62 | 7.44 100 | 4.04 | 4.74 | 5.38
0.200 || 100 | 5.80 | 6.63 | 7.27 100 | 4.21 | 4.60 | 5.38
0.250 || 100 | 5.82 | 6.56 | 7.42 100 | 4.08 | 4.64 | 5.39
0.500 || 100 | 5.91 | 6.60 | 7.25 100 | 3.95 | 4.66 | 5.21
0.750 || 100 | 6.01 | 6.52 | 7.11 100 | 4.19 | 4.67 | 5.25
1.000 || 100 | 5.87 | 6.57 | 7.32 100 | 4.16 | 4.63 | 5.57
2.000 || 100 | 6.02 | 6.60 | 7.15 100 | 4.07 | 4.59 | 5.53

Table 5.9: Evaluation of 100 random assignments for instance B[1] im-
proved by ITERATED 1-OPT and VDs.

ITERATED 1-OPT VDS
t fea- | total interference | avg. | fea- | total interference | avg.
sible | min. | avg. | max. | viol. | sible | min. | avg. | max. | viol.
0.010 0 58.4 0 36.1
0.025 0 22.9 0 9.0
0.050 0 6.7 101|438 498|646 | 2.1
0075 || 11582661725 21| 61|4.38|490|583| 1.1
0.100 || 54 |5.72 628693 | 1.1| 92446 |497|561| 1.0
0.150 || 93| 538 |6.17| 6.62 | 1.1 100 | 4.41|5.01 | 5.57
0.200 || 98| 5.56 | 6.18 | 6.89 | 1.0 | 100 | 4.52 | 5.06 | 5.75
0.250 || 99|5.70 | 6.27 | 6.83 | 1.0 | 100 | 4.58 | 5.02 | 5.49

0.500 || 100 | 5.76 | 6.21 | 7.03 100 | 4.59 | 5.03 | 5.95
0.750 || 100 | 5.38 | 6.14 | 6.80 100 | 4.30 | 4.98 | 5.76
1.000 || 100 | 5.53 | 6.12 | 6.99 100 | 4.57 | 5.02 | 5.59
2.000 || 100 | 5.56 | 6.16 | 6.68 100 | 4.61 | 5.04 | 5.89

Table 5.10: Ewvaluation of 100 random assignments for instance SIEl
improved by ITERATED 1-OPT and VDs.
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performed as the number of carriers increases from instance K over SIE1
to B[1]. There is, however, little dependence on the threshold ¢.

ITERATED 1-OPT

t K BJ[1] SIEL
passes | time | passes | time || passes | time
0.010 7.22 | 0.69 12.43 | 14.86 8.46 | 2.18
0.025 6.60 | 0.65 10.15 | 12.88 7.07 | 1.92
0.050 6.39 | 0.64 9.62 | 12.41 7.07 | 1.77
0.075 6.27 | 0.64 9.27 | 12.15 721 1.78
0.100 6.14 | 0.63 913 | 12.27 6.93 | 1.75
0.150 6.32 | 0.64 9.25 | 12.39 7.34 | 1.80
0.200 6.24 | 0.63 9.26 | 12.29 6.89 | 1.76
0.250 6.35 | 0.64 9.07 | 12.25 6.96 | 1.72
0.500 5.92 | 0.61 9.21 | 12.35 7.18 | 1.76
0.750 5.83 | 0.62 9.01 | 12.19 7.05 | 1.74
1.000 5.76 | 0.61 941 | 12.31 6.83 | 1.74
2.000 6.12 | 0.61 9.15 | 12.30 6.92 | 1.81

Table 5.11: Averaged figures over the number of passes and the running
times in seconds for ITERATED 1-OPT on the 100 random assignments.

In conclusion, we recommend not to tighten the separation during the
application of the ITERATED 1-OPT heuristic.

5.3.2 Variable Depth Search

Now, we focus on the performance of the VDS heuristic on the same sets
of 100 random assignments as before for each of the carrier networks K,
B|1], and S1El. The Tables 5.8, 5.9, and 5.10 are once more of interest.
Moreover, the Figures 5.14, 5.15, and 5.16 are relevant.

Again, we observe a significant spread between the best and the worst,
result among the feasible assignments for a specific threshold value. Un-
like in the case of the ITERATED 1-OPT heuristic, however, in two out
of the three cases the best assignment is found for the smallest thresh-
old value for which a feasible assignment is produced at all. In the one
remaining case, the result is second best. The results for K clearly ad-
vocate the tightening of the separation with a small threshold value, but
the results from the other two instances are less conclusive.

Table 5.12 displays the average number of passes performed and the
average running times for the VDs heuristic observed on the set of 100
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Figure 5.12: ITERATED 1-OPT on 100 random assignments for B[1]
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Figure 5.14: VDs on 100 random assignments for instance K



5 COMPUTATIONAL STUDIES 101

Total Interference

Trials

Total Interference

Trials

' ' 0,750
Threshold ' 1,000 2,000

Figure 5.16: VDS on 100 random assignments for instance SIEL
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VDS

t K BJ[1] SIE]
passes | time || passes | time | passes | time
0.010 1891 | 5.16 50.24 | 235.05 22.63 | 16.35
0.025 20.58 | 5.63 30.24 | 142.16 20.30 | 14.85
0.050 15.82 | 4.32 27.70 | 127.01 13.96 | 9.87
0.075 14.06 | 3.89 24.57 | 113.50 11.27 | 8.04
0.100 13.45 | 3.66 21.77 | 99.55 11.35 | 8.06
0.150 12.67 | 3.45 20.87 | 97.45 11.26 | &8.02
0.200 12.45 | 3.36 21.90 | 101.17 11.12 7.93
0.250 12.38 | 3.36 22.28 | 102.34 10.65 7.54
0.500 11.42 | 3.10 21.81 | 101.07 11.25 7.76
0.750 11.40 | 3.10 21.97 | 102.26 10.78 | 7.41
1.000 11.72 | 3.18 21.74 | 100.07 11.12 | 7.62
2.000 11.46 | 3.04 22.28 | 103.13 10.84 | 7.74

Table 5.12: Averaged figures over the number of passes and the running
times in seconds for VDS on the 100 random assignments.

random assignments for the instances K, B[1]|, SIE1. There is a significant
dependency of the number of passes on the value of the threshold ¢. In
comparison to not tightening the separation (¢ = 2.000) the number of
passes increases by a factor of 2.4, for example, for the smallest threshold
(t = 0.010) in case of BJ1].

In conclusion, we favor not to tighten the separation. In our opinion,
the sometimes better alternative of choosing small threshold values has
a too negative effect on the running times.

5.3.3 k-Opt

The tractability of k-opt steps strongly depends on the restrictions which
are imposed by the carriers that remain unchanged on those carriers to
be optimized. If & becomes too large, we are no longer able to solve
the corresponding optimization problem in reasonable time. Moreover,
it turns out that experiments like those for ITERATED 1-OPT and VDS
fail. Starting from an infeasible assignment, which most of the randomly
generated assignments are, has a strong negative effect on the bounding
part and blows up the branch-and-bound tree.

Therefore, we perform different experiments here to compare 1-opt
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and VDs-type steps on one hand, and k-opt steps on the other hand.
Starting with 100 random assignments, we run ITERATED 1-OPT and
VDs on each of them and apply K-OPT to the best assignments obtained.

Instead of selecting carriers completely at random, we select the carri-
ers by sites. This is reasonable because the co-site and, in particular, the
co-cell separation constraints impose strong mutual restrictions on their
assignment. The optimization is again organized in passes. All sites are
arranged in a random order in the beginning, and in the course of a pass
the first unprocessed sites are iteratively selected until either at least &
many carriers or the carriers from s many sites are selected.

We consider three cases. First, one site is optimized at a time for
s = 1 and no bound on k. In the two remaining cases, s is unbounded
and as many sites as necessary are selected to obtain k carriers in total.
We let k either be the number of available channels in the scenario or one
and a half times that quantity. In case s = 1, we stop after completing
one pass without improvement. In the other two cases, the optimization
is halted once two passes without improvement are completed.

With the above parameter choices the optimization gets sometimes
“stuck” for some selection of carriers and either runs for hours or ex-
hausts the available memory. We avoid such “dead-ends” by restricting
the permitted branch-and-bound tree to at most 8 levels. This number
is determined experimentally as a compromise between completing most
computations and aborting when continuing a computation seems futile.

The results are shown in Table 5.13. The interference incurred by the
best plans from ITERATED 1-OPT and VDS is contrasted with the result
obtained from K-OPT. For the different runs of the K-OPT heuristic we
list the number of passes, the average number % of carriers optimized
over, the average number s of considered sites, and the number of times
the growth of the branch-and-bound tree triggered termination. No run-
ning times are listed, because these computations are performed on a
different computer system. Translated into running times on the PC
used otherwise, they range from some minutes to one or two days.

Obviously, the local optimization performed by K-OPT is capable of
improving on the results from ITERATED 1-OPT and VDS in all cases
except for one, namely, VDS applied to B[1]. Notice that in three cases,
two for K and one for B[1], K-OPT computes a better result when started
from the inferior assignment produced by ITERATED 1-OPT. To some
extent unexpected, however, are the merely modest improvements if we
consider the large amount of carriers optimized over simultaneously. We
come back to this issue in Section 5.5.
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interference K-OPT
orig. || K-OPT || passes | avg. k | avg. s | aborts
K 1-OpT | 1.76 1.74 3 2.90 1.00 0
0.71 30 | 44.50 | 15.33 2
0.69 21| 66.75| 23.00 7
VDs 0.99 0.98 2 2.90 1.00 0
0.74 27| 44.50 | 15.33 0
0.70 19| 66.75 | 23.00 0
B[1] || 1-OpT | 5.98 5.96 4 3.04 1.00 0
3.24 78 | 75.73 | 24.94 2
3.09 81 | 109.50 | 36.06 3
VDs 4.05 4.05 1 3.04 1.00 0
3.48 48 | 75.75 | 24.94 1
2.93 96 | 109.50 | 36.06 1
SiEl || 1-OPT | 5.46 5.24 8 5.20 1.00 0
4.15 29 | 44.29 8.52 40
3.70 55 | 64.58 | 12.43 169
VDs 4.64 4.55 3 5.20 1.00 0
3.79 53 | 44.29 8.52 61
3.58 39 | 64.65| 12.44 141

Table 5.13: K-OPT versus ITERATED 1-OPT and VDS

5.3.4 Min-Cost Flow

The MCF method, as described in Section 4.3.4, does not succeed in
turning any of the infeasible 100 random assignments into a feasible as-
signment. This is due to limitations of the possible changes. A more
interesting application of MCF is in combination with the other improve-
ment methods, see Section 5.4.

5.3.5 Comparisons

The K-OPT heuristic is already compared with ITERATED 1-OPT and
VDs in Section 5.3.3. There is nothing to add here. In order to compare
ITERATED 1-OPT and VDS, we reexamine the Tables 5.8, 5.9, and 5.10.

First of all, VDS is more successful in producing feasible assignments
than ITERATED 1-OPT. With the threshold values as chosen, we observe
that VDs is essentially one value earlier capable of producing feasible
assignments, which also show competitive interference values. Moreover,
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if the results of the two heuristics are compared per threshold value, then
the worst result of VDS is in most cases better than the best result of
ITERATED 1-OPT. The average of the VDs results is always better than
the best of ITERATED 1-OPT, see also Figures 5.11 up to 5.16.

On average, VDs performs between 2 and 3 times as many passes as
ITERATED 1-OPT, and each pass takes about three times as long. The
resulting effect on the total running time for the sets of 100 assignments
is not uniform. Taking averages again, VDS is about 5 to 10 times slower
than ITERATED 1-OPT.

In conclusion, VDS is our method of choice in practice, because K-OPT
is practically not an alternative and VDs always outperforms ITERATED
1-OPT in our experiments. In addition, we consider the increase in run-
ning time to be tolerable. Reviewing our previous discussion about which
threshold value to use for VDS, we tend not to tighten the separation for
its potential negative effect on the running time.

5.4 Combinations of Heuristics

In this section, we study the concerted acting of our heuristics. Numerous
combinations of the greedy construction and the improvement heuristics
are possible. We identify favorable combinations of these methods to-
gether with the relevant parameter settings.

Given two frequency plans of different quality, the application of (the
same) improvement heuristics can possibly lead to plans for which the
quality ranking is reversed. As we observe in extensive comparisons, this
is seldom the case for the heuristics considered here. Therefore, we use
for each heuristic the parameters setting which is favored in Section 5.3,
that is, the setting we obtained from looking at each of the heuristic
separate from the others.

We compare combinations of heuristics on the instances K, B[1], and
SiEl in Table 5.14. For each instance, three assignments are produced
using a greedy starting heuristic:

e Plain T-COLORING is called without tightening the separation.
This usually results in an assignment, where only few of the avail-
able channels are used.

e The acronym Ts T-COLORING stands for calling T-COLORING
with the separation being tightened with the least possible thresh-
old value yielding an assignment that still fits into the available
spectrum. This threshold is computed in the same fashion as for

T-COLORING

Ts T-COLORING
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Ts D¢

1-OPT

(Mcr 1-OpT)+
(McF VDs)-+

DsATUR WITH COSTS, see Section 5.2.2. The threshold’s initial
value is 0.5.

e We denote by T's Db the following application of DSATUR WITH
CosTs. The value of the threshold ¢ for tightening the separation
is determined as explained in Section 5.2.2. The threshold’s initial
value is 0.5. During the threshold search 1% of the carriers are

randomly selected as starting points, whereas 5% are selected at
the final threshold.

In the subsequent improvement phase, the separation is never tight-
ened. Each of the previously constructed assignments is alternatively
improved by calling either McF, ITERATED 1-OPT (1-OPT, for brevity)
or VDS. In the latter two cases, we try to obtain further improvements
by alternately calling MCF and 1-OPT, denote by “(McCF 1-OPT)+,” or
McF and VDs, denoted by “(MCF VDs)+,” respectively, until this fails.

K BJ1] SIEL

intf. | time intf. | time intf. | time
T-COLORING 558.19 | 0.03 || 4766.92 0.51 || 351.16 | 0.10
oMCF 49.21 | 0.26 732.89 | 12.56 || 296.88 | 2.14
ol-OPT 1.84 | 0.83 6.69 | 13.37 6.14 | 2.09
oo(McF1-OPT)+ 1.84 | 1.11 5.92 | 60.80 594 | 7.21
oVDSs 1.39 | 3.04 4.56 | 125.02 5.05 | 8.25
oo(MCFVDS)+ 1.39 | 3.61 4.55 | 156.48 5.04 | 12.62
Ts T-COLORING 2.72 1 0.95 20.50 | 15.92 15.59 | 2.36
oMCF 2.48 | 1.13 19.71 | 44.28 14.82 | 3.73
0ol-OPT 1.46 | 1.27 432 24.16 5.16 | 3.78
oo(MCF1-OPT)+ 1.46 | 1.52 4.08 | 62.23 5.16 | 6.84
oVDs 1.25 | 3.13 3.54 | 122.68 4.95 | 8.96
oo(MCFVDS)+ 1.25 | 3.73 3.54 | 131.81 4.87 | 15.76
Ts Dcbh 0.93 | 20.70 1.77 | 364.70 3.60 | 53.90
oMCF 0.93 | 20.85 1.77 | 367.59 3.59 | 55.00
0ol-OPT 0.93 | 20.84 1.68 | 368.67 3.54 | 54.50
oo(MCF1-OPT)+ 0.93 | 21.40 1.67 | 388.63 3.54 | 55.80
oVDs 0.86 | 23.76 1.57 | 412.34 3.44 | 59.70
oo(MCFVDs)-+ 0.86 | 28.01 1.56 | 461.06 3.44 | 61.90

Table 5.14: Computational results for combinations of heuristics
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Table 5.14 displays the incurred total interference of the resulting
frequency plans and the required running times in seconds. A “o” in front
of the name of an improvement heuristic indicates that the assignment
obtained from the last preceeding construction heuristic is improved. A
“00” indicates that the result of the directly preceeding heuristic is used
as starting point. The running times in seconds are totals in all cases.
A few observations can be made:

e The start heuristics show a clear ranking with respect to their re-
sults: T's D¢5 is best, Ts T-COLORING second, and T-COLORING
third. The order reverses when considering running times.

e The ranking of the assignments produced by different start heuris-
tics is in no case changed when the same combination of improve-
ment heuristics is applied. Leaving MCF aside, this is also true
without requiring the use of the same combination of heuristics.

e The MCcF heuristic has no arguable use on its own. Even the simple
ITERATED 1-OPT heuristics beats MCF in all cases.

e The MCF heuristic is of some use in combination with ITERATED
1-OPT, but hardly ever in combination with VDs.

e VDs alone is the preferable improvement heuristic to be applied
after a start heuristic.

e The total running times required by T-COLORING oVDs and T's T-
COLORING oV DS are about the same in all cases.

e T-COLORING or Ts T-COLORING in combination with VDS pro-
duce worse assignments than T's DC5 alone, but spend only about
a fifth of the time required by T's DcC5.

In summary, our combination of choice is TS DCoVDS. That this
selection is not best in all cases, however, is documented in Table 5.15.
If a feasible assignment is not easily obtained, then T-COLORING ocVDS
and Ts T-COLORING oVDs are attractive alternatives.

5.5 Selected Results for all Benchmark Scenarios

The total amount of interference incurred by a frequency assignment is
used as cost function during the optimization. As mentioned in Sec-
tion 2.3.1, this figure reveals only a small part of the picture from a
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interference plot

line plot

practical point of view. In the following, we give a more detailed ac-
count of a frequency plan’s properties than previously. Nevertheless, we
stress again that the ultimate benchmark for a plan’s quality is its perfor-
mance in the network. Not even network simulations give a fully reliable
prediction of a frequency plan’s impact. Since such simulations are not
an option here, we have to resort to even simpler means of analyzing a
frequency plan.

Interference plots are commonly used in network planning practice.
An interference plot depicts the likely occurrence of interference on the
basis of the signal level predictions at pixel-level. Two variants are com-
mon, both of which implicitly associate each pixel to the sector providing
the strongest signal (best server model). In the one case, the difference in
dB between the serving sector’s signal and the second strongest signal at
the same frequency is color-coded, whereas in the other case the difference
between the serving sector’s signal and the superposition of all interfer-
ing signals is color-coded. Figure 5.17 gives examples of the former plot,
depicting interference in same region before and after optimization.

20 km

Figure 5.17: Interference plots: improvements from optimization

A cruder visualization of interference, called line plot here, requires
only coordinates for the carriers (sites) in the Euclidean plane in addition
to the carrier network. Figure 5.18 gives two examples of line plots. Two
sites are connected by a colored line if the frequency assignment results
in interference among TRXs from the two sites. If the line is drawn in
a pale color, then the interference is small. With increasing interference,
the color of the line turns into black.

A line plot still provides qualitative information on the interference
and its geographical distribution. For several of the scenarios, however,
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Figure 5.18: Line plots: interference reduction from optimization by 96 %

we lack the required site coordinates. Solely on the basis of the carrier
network the following characteristics of a frequency assignment can be
determined, compare with Eisenblitter and Kiirner [2000].

The numbers of separation violations, invalid channel assignments,
and unassigned carriers are reported.

The total interference is the sum over all co- and adjacent channel
interference occurring between carriers.

The co- and adjacent channel interference is given in terms of the
maximum, average (among the occurrences), and standard devia-
tion of interference of each type.

The interference at carriers is given in terms of the maximum, av-
erage (among the occurrences), and standard deviation. The inter-
ference is summed up from the perspective of a carrier, regardless
if it is co- and adjacent channel interference from other carriers.

The histogram of interference displays how many times the inter-
ference between two carriers exceeds the value of 0.01, 0.02, 0.03,
0.04, 0.05, 0.10, 0.15, 0.20, and 0.50, respectively.

Four assignments are generated for each of the eleven benchmark
instances by means of:
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5.5 SELECTED RESULTS FOR ALL BENCHMARK SCENARIOS

T-CoL o VDS

Ts T-CoL o VDS

Ts Dch o VDS

THRESHOLD
ACCEPTING

a. T-COLORING followed by VDs;

b. T-COLORING with automatic tightening of the separation followed
by VDs;

c¢. DSATUR WITH COSTS with 5% of the carriers randomly selected
as starting points, automatic tightening of the separation, and fol-
lowed by VDs;

a. THRESHOLD ACCEPTING (the assignments are kindly provided by
Hans Heller, Siemens AG, Germany).

These forty-four assignments in total are analyzed according to our above
criteria, and the results are displayed in Table 5.15. The fields which
would otherwise contain a zero are left blank for the sake of better leg-
ibility. We first observe a few points concerning the feasibility of the
assignments.

e T-COLORING fails to generate a (feasible) assignment for SIE3
S1E4, and SW, even without the separation being tightened. In
this case, no assignment is generated by T-COLORING, and we
take the situation with all carriers unassigned as starting point for
VDs. Hence, the assignments obtained for T-COLORING o VDS and
Ts T-COLORING o VDS are the same. For these three scenarios the
resulting assignment is infeasible.

e Ts Dcb o VDS also fails to generate a feasible assignment for in-
stances SIE3, SIE4, and SW.

Next, we focus our attention to the results of Ts Dc5 o VDS and
THRESHOLD ACCEPTING on the instances, where Ts Dc5 o VDS pro-
duces a feasible assignment.

e In all cases, the assignment from the combination TS D5 o VDS
incurs more interference in total than that from THRESHOLD AcC-
CEPTING. The difference ranges between 29 % and 90 %. The av-
erage difference is 60 %.

e The values for the maximum co- and adjacent channel interference
and the maximum interference affecting a carrier are about equal.
In the case of instance B[4], the THRESHOLD ACCEPTING result, is
even noticeably worse in that respect.
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The second point can be explained as a side effect of automatically
tightening the separation in T's Dcb. It is, nevertheless, fair to say that
the THRESHOLD ACCEPTING heuristic is the clear winner among the
methods compared here in terms of the overall incurred interference and
it is competitive with respect to the local distribution of interference.
None of our improvement heuristics (except for K-OPT) improves the
THRESHOLD ACCEPTING results. (We also apply the K-OPT heuristic to
the THRESHOLD ACCEPTING assignments for the instances K, B[1], and
SIE1 without any success. The parameter & is set to 1.5 times the number
of available channels, the parameter s is left unbounded. We stop the
optimization after two unsuccessful passes, compare with Section 5.3.3.)

We should keep in mind, however, that one of our primary design
goals has been to device methods with a small overall running time.
Although the precise running times of THRESHOLD ACCEPTING are not
known to us, it takes about one order of magnitude longer than Ts Dcb
o VDs (Heller [2000]). Taking this into account, Ts D5 o VDs presents
itself as a fast planning method which does not compromise too much
on the optimization goal. In case TS DC5 o VDs is still too slow, then
Ts T-COLORING oVDS or, even faster, TS T-COLORING oI TERATED 1-
OPT are alternatives. Again, some degradation of the solution has to be
accepted.

We come back to the issue of how good a frequency plan is in the
next chapter.

5.6 Conclusions and Challenges

A steady expansion of GSM networks can still today be observed in
terms of coverage as well as capacity. Every change of the network in
this respect calls for a change of the frequency assignment. Up to this
point, we focused on how to use mathematical optimization techniques
in order to provide frequency plans for GSM cellular networks incurring
little interference between radio signals.

Planning the use of frequencies is one central tasks in engineering the
radio interface of a GSM network and a cornerstone for providing the
desired grade of service as well as the desired quality of service. One
of the limiting factors is interference; and it has been our objective to
design algorithmic methods for quickly generating frequency plans that
incur as little interference as possible.

Typically, a network operator tries to keep the assignment essentially
fixed for a considerable time, performing only minor changes, which are
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forced by modifications of the network. But every now and then, once
a year, say, a new assignment is generated for (major portions of) the
network. Then, all previous changes are fully taken into account and
the foreseen future changes are prepared for. This is a highly complex
task with literally tens or even hundreds of thousands constraints to
consider. Clearly, there is a need for algorithmic optimization procedures
to support the radio planner in this task. From our point of view three
distinct planning tasks can be identified in practice.

e In what we call the relaxed planning situation, the planner wants to
produce a new frequency assignment for a large region in a network
and is in the fortunate position to have ample frequencies available.
The objective is then to minimize interference and thus to deliver
the radio service at high quality.

e In what we call the congested planning situation, again a new plan
for large portions of a network is to be produced, but this time the
number of available frequencies hardly allows to provide the desired
grade of service (at the least accepted level of quality).

e In the adaption planning case, the planner is interested in adapting
locally the frequency assignment to changes in the network.

According to our experience each of these situations calls for different
algorithmic planning methods. Our focus here is clearly on the “relaxed”
planning situation. Nevertheless, we consider the K-OPT heuristic dis-
cussed in Section 4.3.3 as a prime choice for adapting locally to changes.
Surveys on research directed more towards the “congested” case are given
by Koster [1999], Murphey et al. [1999], and Jaumard et al. [1999], for
example. The book of Nielsen and Wigard [2000] is also of interest in that
respect because it deals with the use of GSM features like slow frequency
hopping (SFH) in order to tune the radio interface.

In the course of the previous chapters, we gave a thorough intro-
duction to the GSM frequency planning problem and discussed several
algorithmic methods solving this problem heuristically. In more detail,
we explained the technical background of frequency planning and picked
an adequate mathematical model of the planning task. The resulting op-
timization problem is AP-hard, and solving this optimization problem
to optimality is not practicable (from today’s point of view).

We therefore designed a number of planning algorithms with small
theoretical and practical running times. The latter property, in partic-
ular, renders them attractive for use in an interactive planning process,

relaxed planning

congested
planning

adaption planning
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where frequency plans are generated for alternative tentative changes in
the network. We analyzed their computational behavior on eleven realis-
tic planning scenarios. These scenarios have been made publicly available
at the FAP web [2000] through the COST 259 action, see Eisenblitter and
Kiirner [2000] or Correia [2001, Section 4.2.7].

Our findings can be summarized as follows. The self-set goal of swiftly
generating low-interference frequency plans is achieved reasonably well
on all scenarios except for one, where no feasible assignment is obtained.
This exception, however, represents a hard “congested” planning situa-
tion. Among our methods, we identified a combination of two heuristic,
namely, DSATUR WITH COSTS and VDS, as a reasonable compromise be-
tween planning effectiveness and running time efficiency. In comparison
to the best alternative method we are aware of our assignment incur at
most twice the amount of interference on the studied scenarios.

Notice, however, that this alternative planning heuristic THRESHOLD
ACCEPTING proposed by Hellebrandt and Heller [2000] is a randomized
local search procedure similar to Simulated Annealing, and it often re-
quires at least one order of magnitude higher running times than our
heuristics. Despite the superiority of that method in terms of the over-
all incurred interference, our favorite combination produces assignments
which are competitive in terms of local interference. Such local properties
are of equal practical interest. Therefore, we consider our methods a rea-
sonable choice during the interactive planning process. More elaborate
planning methods, like THRESHOLD ACCEPTING, may be used prefer-
ably for computing the final production plan in a batch process.

We mention two more points concerning the heuristics before turn-
ing to their practical merits. First, although we applied k-opt steps for
values of k£ as large as 1.5 times the number of available frequencies,
the assignments provided by Heller, Siemens AG, were not improved in
our experiments (see Section 5.5 for details). This is surprising because
THRESHOLD ACCEPTING relies on a mix of a comparatively weak local
optimization step and small random perturbations of declining deteriora-
tion. It is not obvious to us why a much more powerful local optimization
fails to improve the three resulting assignments for the scenarios K, BJ1],
and SIE1—in particular, since we show in the next chapter that at least
the assignment for K is far from optimal.

The second point concerns the question whether some sort of decom-
position might be applied to a planning problem. The goal would be to
solve the resulting parts separately and to combine the partial solutions
to an assignment for the whole problem in the end. Our experiments in
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this direction failed. The discussion concerning the high connectivity ob-
served in the planning instances (see Section 5.1.1) is certainly one item
in explaining this failure, but we lack a better understanding.

After having dwelt on the mathematical optimization problem and
discussing the pros and cons of trading off running time versus solution
quality, it is time to turn back to practice. To cut a long story short: our
software 1s used successfully in practice at E-Plus, and better frequency
assignments have been obtained more much quickly than through the pre-
vious planning process. In one example, a region containing 2118 cells
with 1-3 TRXs per cell and 75 available frequencies was planned using
DsATUR WITH CoSTS followed by ITERATED 1-OPT. The assignment,
was installed into the network. After performing fewer changes of cells
in reaction to unforeseen heavy interference than usual (a regular on-
line optimization process), the down-link quality hand-over request rate
had dropped around 20% in comparison to the previously operational
frequency plan.

Finally, GSM networks will certainly remain in operation throughout
this decade. Most European networks face major capacity extensions
in order to support the foreseen increase in data services. Hence, the
presently satisfying planning methods may reach their limits at some fu-
ture point in time. We close by listing four directions for further research
in that respect.

e Improvements in the planning methods are still possible. We give
reasons for our point of view in the next chapter, where we ob-
tain a much better assignment for the benchmark scenario K than
those presented up to now. Among others, however, the unsuc-
cessful attempts to improve the assignments provided by Heller,
Siemens AG, using the local optimization K-OPT indicate that the
local optimization steps considered so far are not powerful enough
to deal with the complex interdependencies among large amounts
of TRXs.

e A more practical point is the design and tuning of software which
automatically handles all three types of the above mentioned plan-
ning situations. Such a software should also suggest when to per-
form a major replanning.

e Instead of aggregating all pixel-based signal predictions into inter-
ference relations at cell-level, all the available data should be fed
into a more complex optimization model. This would allow for a
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migration path

more accurate analysis of a frequency plan during the optimization
process. Moreover, the effects of GSM features like discontinuous
transmission (DTX) or slow frequency hopping (SFH) could better
be taken into account. (We are aware that some work in this di-
rection is already done within companies and at the University of
Cardiff, but further studies are certainly of use.)

Among the several ways to enlarge the scope of the frequency plan
optimization, we want to highlight the following. Given a network
and the installed frequency plan, find an optimized assignment and
a migration path from the given assignment to the ultimate new one.
Here, we understand a migration path as a sequence of changes to
be performed, one after the other, such that all the intermediate
stages constitute feasible frequency plans and the changes comply
with restrictions related to the available maintenance personnel, for
example.



CHAPTER 6

Quality of Frequency Plans

In the previous two chapters we explained and analyzed several heuristic
methods to generate frequency plans for GSM networks. A significant
spread is observed in how well (combinations of) these methods achieve
the goal of finding feasible assignments incurring minimum interference.
So far, however, it remains open whether the best results are actually
good or merely the relative bests among mediocre ones. In order to rem-
edy this uncertainty we would like to prove statements like the following:
this assignment, for the given planning scenario, incurs at most twice the
amount of interference which is unavoidable. Such a statement is called a
quality guarantee. Our aim in this chapter is to provide such guarantees
for the assignments of Section 5.5.

Let us put our quest for lower bounds and quality guarantees into
perspective. We show in Section 3.2 that unless P = NP no polynomial
time algorithm is capable of computing frequency assignments that are
close to optimal (or merely feasible) in all cases. As a consequence,
we do not analyze algorithms here. We analyze the algorithms’ input,
namely, the carrier networks. We want to prove that a certain amount of
interference is unavoidable due to the network layout. Hence, the bounds
have to be computed on a per-instance basis. For reasons to become
clear, our bounds take co-channel but no adjacent channel interference
into account.

We provide the first significant lower bounds for the objective of
minimizing overall interference on realistic frequency planning scenarios.
Large gaps between the amount of interference incurred by the heuristi-
cally generated frequency plans and the lower bounds still exist. We give
reasons that these gaps are not to be blamed entirely on the weakness of
the lower bounds. Instead, the gaps also indicate room for improvement
on the side of the frequency planning methods.

Up to now, our bounds have no direct practical impact. The situation
may improve if information from the lower bound computation were to be
exploited in the frequency planning process. With the approach pursued
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here, however, it is not yet clear how this can be done effectively.

The chapter is organized as follows. In Section 6.1, we introduce the
“relaxed frequency planning problem.” Optimal solutions to this problem
yield lower bounds on the unavoidable interference in the original prob-
lem. In Section 6.2, the tight connection between the relaxed planning
problem and the well-known MINIMUM K-PARTITION problem is shown.
Moreover, two possible approaches for (approximately) solving a MINI-
MUM K-PARTITION problem are described. In Section 6.3, lower bounds
are provided by means of one of the approaches, namely, by solving large
semidefinite programs. We use these bounds to estimate the quality of
the frequency assignments from Section 5.5. In Section 6.4, we revisit fre-
quency planning heuristics. Our goal is to turn feasible frequency plans
for the relaxed frequency planning problem into feasible plans for the
ordinary planning problem. In some cases it is possible to produce sig-
nificantly better frequency plans than before. This supports our opinion
that, from the point of view of mathematical optimization, the frequency
planning problem is not yet fully mastered; this also sheds a new light
on the lower bounds, which now appear stronger than before.

Including this chapter, our focus is primarily on frequency assignment.
We change our point of view for the last two chapters, where we deal with
the mathematics behind our computations of unavoidable interference,
that is, the MINIMUM K-PARTITION and its semidefinite relaxation.

6.1 Relaxed Frequency Planning

We consider a “relaxed” version of our frequency planning problem, where
the feasibility constraints are weakened and the objective function is sim-
plified. Although the complexity status of both problems is formally the
same, the resulting problem is more accessible than the original frequency
assignment problem. The simplifications are the following.

Dropping adjacent channel interference: The major portion of the
total interference incurred by a frequency plan is often co-channel
interference, see Table 5.15 in Chapter 5. Good lower bounds for
our scenarios are, thus, hardly obtained without fully exploiting co-
channel interference, whereas adjacent channel interference often
plays a minor role. (An exception is the scenario SW, where only
adjacent channel interference is specified. Our approach does not
allow to derive a nontrivial lower bound for the scenario Sw, but
as explained in Section 5.1.1, this scenario is atypical.)
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Dropping local blockings: Only few local blockings are present in our
scenarios. Thus, assuming B, = () for all v € V leads to minor
changes in the scenarios. We pointed out, however, that in a real-
life planning numerous local blockings may be present. One source
of blockings are the agreements between GSM network operators on
the use of available spectrum in border regions, e. g., along national
borders. Another source is the necessity to seamlessly integrate the
frequency plan for a rearranged portion of the network with the
assignment for the remaining part of the network. (The frequency
plan for an entire network is hardly ever changed at once.)

Cutting down required separation: A certainly debatable step is to
relax the separation requirements by bounding the maximal re-
quired separation in d by 1. But this is essential for arriving at a
“simpler” problem.

All three simplifications together yield a problem, which is almost
a MINIMUM EDGE DELETION K-PARTITION problem, see Sections 3.2.
Computational methods may now be applied that are not suited for solv-
ing the original frequency planning problem, see Sections 6.2 and 6.3.

Formally, we write the relaxed problem as an ordinary frequency plan-
ning problem on a simplified carrier graph. Given a carrier network
N = (V,E,C,{B,}vev, d, ¢, ), the associated simplified carrier net-
work is defined as the 5-tuple N; = (V| E, C, d, ¢*°), where d: F — {0, 1}
with vw — min{d(vw),1}. The sets B, of locally blocked channels as
well as the adjacent channel interference c®® disappear, and the required
minimum separations in d are cut off at 1.

As before, a frequency assignment or just an assignment for N, is a
function y: V — (' that assigns a channel to every carrier. An assignment
is feasible if |y(v) — y(w)| > d(vw) for all vw € E.

Definition 6.1. An instance of the relaxed frequency planning problem
consists of a simplified carrier network Ny, and the objective is to solve
the optimization problem

, in E c (vw). (RFAP)
vweE:
y(v)=y(w)

Solving the relaxed frequency assignment problem clearly yields a
lower bound on the optimal solution for the ordinary assignment prob-
lem, but not vice versa. Finding an optimal solution for the relaxed

simplified carrier
network
assignment

feasible

relaxed FAP
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frequency planning problem is not known to be simpler than for the
original problem. Both problems are N"P-hard. (The considerations of
Section 3.2 for the ordinary frequency planning problem transfer directly
to the relaxed problem.) The following observation, however, points out
one major difference between the original problem and its relaxed version.

Observation 6.2. For a simplified carrier network and an associated
frequency assignment y the following holds. Let fi and fs be two chan-
nels from the spectrum, and let the assignment § be obtained from y by
changing oll carriers with channel fi to fo and all carriers with channel
fa to fi. Then, 3 is feasible if and only if y is feasible. Furthermore, 4
and y incur the same amount of interference.

Consequently, all assignments differing only in the permutation of
channels may be considered equivalent. If all channels are in use, then
there are |C|! many assignments which are equivalent in that sense.

6.2 Minimum k-Partition

Relaxed frequency planning is done on a simplified carrier network N, =
(V, E,C,d,c*°), where no adjacent channel interference or locally blocked
channels are specified and minimum separation is at most 1. Basically,
a partition Vi,...,V, of V into at most k£ = |C| disjoint sets of carriers
(using distinct frequencies) has to be determined such that no two vertices
v, w with d(vw) = 1 are in the same set and such that the sum over the
edge weights in the induced subgraphs G[V}], 1 <1 < k, is minimized.
This problem is almost the same as finding a minimum k-partition of the
vertex set of the graph G = (V| E), which underlies the simplified carrier
network. The edge weights for G are derived from d and c¢*.

Let B, ={vw € E : ¢ > 0} and E; = {vw € E : dy, > 0}. We
may assume that the intersection of E,, and E,; is empty and that their
union is E. Furthermore, we set M =3 o ¢ + 1. The edge weight
function ¢: E — R, is defined as c(vw) = ¢, in case of vw € E,, and
c(vw) = M in case of vw € Ej.

Any solution to this MINIMUM K-PARTITION problem induces a fre-
quency assignment for N;. The same channel is assigned to all vertices
in one block, and distinct channels are given to distinct blocks. If an
optimal solution to the k-partition problem has a value less than A,
then the induced assignment is feasible for N;. The solution value is the
interference incurred by a corresponding assignment—no matter how we
choose to distribute the frequencies among the blocks. If, on the other
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hand, the optimal solution value is at least M, then there is no feasible
assignment for N;.

Another way of looking at the problem is to find a weight-minimum set
of edges whose removal results in a k-partite graph. A graph is k-partite,
if its vertex set can be partitioned into at most k independent sets, i.e.,
all edges have their endpoints in distinct sets. A graph is obviously k-
colorable if and only if it is k-partite. A graph without edges is k-partite,
and a graph containing a clique of size £+ 1 is not. A natural question to
ask is: what is the maximum number of edges that a k-partite graph on n
vertices may have? The well-known answer is ( ) L J +r(k—1) L J + (g),
where r denotes the remainder of the integer division of n/k. Hence, k-
partite graphs can be fairly dense. The complete graph Kogr, for example,

has (237) = 35511 edges, a 50-partite graph on 267 vertices can have as

many as 34926 edges, which is only r(("é’ﬂ) + (k— T)(L”ékj) = 585 less
than in the complete graph.

Formally, the minimum graph k-partition problem or MINIMUM K-
PARTITION problem can be stated as follows:

Definition 6.3. An instance of the MINIMUM K-PARTITION problem
consists of an undirected graph G = (V, F), a weighting c: E — Q of the
edges, and a positive integer k. The objective is to find a partition of V

wnto at most k disjoint sets Vi, ..., V, such that the value
DD DT
=1 vweE(G[Vi))

18 minimaized.

The MINIMUM K-PARTITION problem is a generalization of the MIN-
IMUM EDGE DELETION K-PARTITION problem, see Definition 3.9, to
general rational edge weights. Therefore, the computational complexity
of the former is at least as hard as that of the latter.

The MINIMUM K-PARTITION problem is explicitly studied by Chopra
and Rao [1993], but more is known from related problems, e. g., by means
of the following equivalence: for every partition, an edge has either its
both endpoints within the same block or within distinct blocks; hence,
the problem of finding a minimum k-partition is equivalent to finding a
k-cut, where the sum over the weight of all edges with their endpoints in
distinct sets is maximized. The MAXIMUM K-CUT problem has received
more attention in the literature than the MINIMUM K-PARTITION prob-
lem, see, e.g., Deza, Grotschel, and Laurent [1991, 1992] and Chopra

k-partite graph

MINIMUM
K-PARTITION
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MiINIMUM
K-CLUSTERING
SuM

and Rao [1995]. Results on the approximation of the MaxiMuMm K-CUT
problem are obtained by Karger, Motwani, and Sudan [1994] as well as
by Frieze and Jerrum [1997]. Those results are, however, of little help
here. The optimal cut value is underestimated so that the value of the
MINIMUM K-PARTITION is overestimated, and no lower bound is supplied
that way. Assuming that all edge weights are nonnegative, Goldschmidt
and Hochbaum [1994] show how a mazimum partition of the graph into &
nonempty components can be computed in O(n#*/2=3/2+4 T'(n_m)) time,
where T'(n, m) is the time required to compute a minimum (s, £)-cut. Due
to the sign-constraint, their result does not apply here either.

Notice also the connection to the MAXIMUM CUT problem: an edge-
weighted graph is given, and the task is to find a partition of the vertex set
into two sets (one possibly empty) such that the sum over the weights
of all edges with their endpoints in different sets is maximized. The
literature on the MAXIMUM CUT problem is extensive, see the survey
article by Poljak and Tuza [1995], the book by Deza and Laurent [1997],
and the references contained therein. The MAXiMUM CUT problem is
equivalent to the MINIMUM 2-PARTITION problem.

6.2.1 Interference is not essentially metric

The MINIMUM K-PARTITION problem gets simpler if the edge weights
are nonnegative and fulfill the triangle inequalities, i.e., €yz + €y > Cow
for all triangles in the graph. The problem is then also called MINIMUM
K-CLUSTERING SUM, see Ausiello et al. [1999, Appendix B, ND 55|, and
is proven to be approximable within a factor of two in polynomial time by
Buttmann-Beck and Hassin [1998]. We show, however, that the triangle
inequalities are far from being fulfilled by our data sets.

A systematic reason is due to the mapping of separation constraints to
large weights. Consider the placement of transmitters and their pairwise
interference as depicted in Figure 6.1. The rectangle in the center repre-
sents an obstacle. Assume the availability of only two adjacent channels
and that the channels for transmitters a and b need to be at least one
apart. If all triangle inequalities are to be met, then the triangle between
a, b, and ¢ bounds the value of M to at most 0.2. Setting M to 0.2
or less, however, implies that the minimum-weight solution assigns a, b,
and d the same channel. The resulting assignment is infeasible. Hence,
separation conditions can, in general, not be represented adequately by
an appropriately chosen weight without violating the triangle inequality.
This first obstacle stems solely from representing separation constraints
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by weights.

Figure 6.1: Turning separation to interference clashes with A inequalities

A second obstacle is based on interference entries alone. Interference
predictions are derived by means of signal propagation predictions for an
outdoor environment so that the edge weights are not arbitrary. Maybe
this implies that the triangle inequalities are (almost) fulfilled. This is
not the case, as we show now.

We drop all edges carrying a separation constraint from the graph
and check whether the triangle inequalities are met among the remaining
edges. To this end, we solve the following linear program derived from
the graph G = (V, E°) with the edge labeling ¢:

vw€ o
(Cog — Tog) + (Cow — Tow) — (Cow — Tow) = 0 Voz,zw,ow € E“ (6.1)
D = Py e B Vow € E®

The optimal value to this linear program gives the total sum of how
much the weight of individual edges have to be decreased in order to
obtain weights that meet all triangle inequalities. Clearly, if the optimal
value is zero, then all triangle inequalities are met without change. Notice
that the alternative of increasing the edge weights is not available to us,
because we want to use the results as lower bounds.

Table 6.1 shows how severely the triangle inequalities are violated
by the interference predictions for the realistic scenarios K, B[1], and
SIEl from Chapter 5. We generate (6.1) on the basis of the entire car-
rier network (all), the carrier network induced by all vertices in a clique
larger than the set of available channels (union), and the carrier net-
work induced by a maximum clique (cligue). In order to obtain LPs of
reasonable sizes, the separation is tightened with 0.05, see Section 4.1.2,
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and all edges with co-channel interference less than 0.001 are dropped.
This reduces the number of potentially violated triangle inequalities in
the carrier networks. The first two columns of Table 6.1 indicate the in-
stance and the type of the (sub-)network. Then, the number of violated
triangle inequalities, the maximum violation, and the average violation
are shown. Next, the number of variables and constraints in the gen-
erated LPs are reported. Finally, the optimal value of the LP is given.
The optimal solution could not be computed for B[1]/all due to a lack of
computer memory (CPLEX requests more than 4 GB of memory).

# viol. | max. | avg. LP(6.1)
A violation J vars | 4 cons || opt.
K all 32290 | 0.0476 | 0.0132 7477 | 137394 89.02
union 30179 | 0.0476 | 0.0132 6744 | 129000 82.04
clique 649 | 0.0447 | 0.0133 500 3033 5.34

B[1] | all 1343380 | 0.0480 | 0.0131 || 143758 | 5826507 —
union 54995 | 0.0475 | 0.0131 9825 | 254466 || 138.65

clique 811 | 0.0439 | 0.0119 764 5112 6.18
SIE] | all 81683 | 0.0466 | 0.0140 || 21709 | 323649 || 202.72
union 28686 | 0.0466 | 0.0140 8278 | 118833 || 88.86
clique 540 | 0.0406 | 0.0111 475 3153 3.07

Table 6.1: Violation of the A inequality by interference predictions

The reductions of the edge weights that are necessary to fulfill all tri-
angle inequalities are, in fact, orders of magnitude larger than the total in-
terference incurred by the feasible frequency plans analyzed in Table 5.15.
Hence, is seems futile to consider the (polynomial time) 2-approximation
algorithm for the MINIMUM K-CLUSTERING SUM problem by Buttmann-
Beck and Hassin [1998] as a reasonable option for computing strong lower
bounds on the unavoidable interference. We therefore turn back to the
general MINIMUM K-PARTITION problem.

6.2.2 An ILP formulation and a SDP relaxation

Two formulations of the MINIMUM K-PARTITION problem on a complete
graph K, with n > k > 2 are given next. (The graph G = (V, E) with
edge weights c is completed to Ky|, and the edge weighting is extended
to all new edges by assigning a weight of zero.) These two formulations
have relaxations of quite different kind.

The first formulation is a plain integer linear program (ILP), see (6.2),
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with an LP relaxation obtained by dropping all integrality constraints.
A binary variable z,,, is associated to every edge vw of the graph. The
value of z,, equals 1 if and only if both endpoints are in the same partite
set. The constraints (6.2a) require the setting of the variables to be
consistent, that is, transitive. For example, if z,, and z,, indicate that
v, x, and w are in the same partite set (by transitivity), then the setting
of 2y, has to reflect that as well. The constraints (6.2b) impose that at
least two from a set of £ + 1 vertices have to be in the same partite set.
Together with the constraints (6.2a) this implies that there are at most k
partite sets. We deal with the ILP (6.2) extensively in the next chapter.

min E Cow Zow

vweV
s. t.
Zoz + Zaw — Zow < 1 Vo, z,w €V (6.2a)
> zw > 1 VQCV with |Q=k+1  (6.2b)
v WER
Zow € [0,1]
Zow integer

The second formulation can be seen as a semidefinite program with
“integrality” constraints. This formulation builds on the following two
facts: there are k unit vectors in R™ with mutual scalar products of
k_—_ll, and this value of the scalar products is least possible. Consider, for
example, a simplex with k& vertices in R™, centered at the origin and scaled
such that all vertices have a Euclidean distance of 1 to the origin. The
vectors pointing at the vertices of this simplex have the desired property.

Formally, the following can be proved.

Lemma 6.4. For all integers n and k satisfying 2 < k < n+1 the
following holds:

(i) There exist k unit vectors @y, ..., U, € R™ such that (U;,0;) = =%

for alli # 3.

(ii) Any k unit vectors uy, ..., u; € R™ satisfy:

d Zi<j<ui7uj> > _g;
o if {(uj,u;) <98 foralli#j, then § > k_—_ll
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Hence, the scalar products among the unit vectors #i,..., 4, € R”
are indeed least possible. Although we believe that Lemma 6.4 is folklore,
we only know references for the first and the last claim, see, e. g., Karger,
Motwani, and Sudan [1998] or Frieze and Jerrum [1997]. We give a
complete proof of Lemma 6.4 here for the sake of completeness.

Proof. Ad (i):  Considering the case of k = n + 1 suffices to prove the
existence of k£ unit vectors @y,...,%; € R™ such that (@;,4;) = k_—_ll for
1 # j. Since the one-dimensional case is trivial, we focus on the cases
n> 2. Let t;, 1 <i<n+1, be the (n+ 1)-dimensional vector with all

ST +1) except for the ith one, which is V1 Every

t; is a unit vector in R™™, and (t;, ;) = n(”n—jl) A== for i ;é J-

If the vectors ¢; were in R”™ instead of R”*!  then the claim would
be proved; indeed, the subspace spanned by those vectors is at most n-

entries equal to —

dimensional, because (t;, [1 ... 1]T) =-n \/ﬁ + \/% = 0 for all

1. Hence, we may rotate the coordinate system in such a way that the
T

vector [1 1} turns into a multiple of the vector [O ... 0 1]

Then the last coordinate of each vector t; is zero according to the new
coordinate system, and we obtain the vector #; from ¢; by truncation.

Clearly, each @, is a unit vector in R", and we have (@;, @;) = —% for
all © # j.
Ad (ii):  For proving the first claim, we fix n and use induction

on k. For k = 2, the scalar product of any unit vector u € R™ and its
negative —u is —1 = o= 1, this is least possible. We now consider £ > 3.
By induction hypothesis,

k—1
E <uiauj>2_T Vlzl,,k‘
1<j
371

Summing up all these inequalities yields

—k;— < ZZ Uiy U ) -1) Z(uiauj>7

=1 i<y 1<j
4,371

and the claim follows.

Finally, we turn to the second claim of (ii). From the fact that the
norm of a vector is nonnegative and the assumption, we conclude 0 <
(ug + -+ ug, Uy + A ug) =, m)%—zi#(ui,uj) <k+k(k—1)0.

This 1mphes e 1, as desired. O
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According to Lemma 6.4 we may fix a set U = {uy,...,ux} C R"
of unit vectors with (u;,u;) = == for i # j (and (u;,u;) = 1 for i =
1,...,k). These k vectors are used as labels (or representations) for the
k partite sets. The MINIMUM K-PARTITION problem can then be phrased
as follows. We search for an assignment ¢: V +— U that minimizes the
expression

v,wEV(Kn)
Notice that the quotient in the summands evaluates to either 1 or 0,
depending on whether the same vector or distinct vectors are assigned to
the respective two vertices.

If we assemble the scalar products {¢(v), ¢(w)) into a square matrix
X, being indexed row- and column-wise by V', then the matrix X has
the following properties: all entries on the principal diagonal are ones, all
off-diagonal elements are either k_—_ll or 1, and X is positive semidefinite.

Notably, every matrix X satisfying the above properties defines a k-
partition of V' in the same way as ¢ does. This can be seen as follows.
Since X is a positive semidefinite matrix, there exists a matrix C such
that X = CTC. We claim that C contains at most & distinct column
vectors. For the sake of a contradiction, let us assume that cy,...,cx 1
are k+1 distinct column vectors from C. Then (c¢;, ¢;) = = for all i # j
and (¢;, ¢;) = 1 for all 4. According to Lemma 6.4, the k + 1 unit vectors
may only have a mutual scalar product as low as (H_ﬁ = _Tl > k_—_ll,
a contradiction. Therefore, the columns of C' may indeed serve as the
vectors assigned by ¢, representing the partite sets.

The combinatorial problem to minimize (6.3) may be relaxed to a
semidefinite program (SDP). First, the explicit reference to the set U is
dropped, and the problem is rewritten as follows:

k—1) Xy +1
min Z va( ) *

k
vweB(Ky)
s. t.
Xy =1 YoeV (6.4a)
-1
Xyw € {ﬁ’ 1} Yo,weV (6.4b)
X0

Then, we replace the constraints (6.4b) by X,, > —5. Notice that
Xyw < 1 is enforced implicitly by X being positive semidefinite and
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Xy = 1. The SDP relaxation of the problem is the following:

k—1) Xy +1
min Z cvw( ) *

k
vwEE(Ky)
8. t.
Xy =1 YvoeV (6.5a)
-1
X >0

Lovasz [1979] introduces this type of relaxation of a combinatorial
optimization problem to compute the Shannon capacity of a graph, and
Goemans and Williamson [1995] use it in an approximation algorithm
for the MAxiMUM CUT problem. Although published some years apart,
Karger et al. [1994, 1998] as well as Frieze and Jerrum [1997] used around
the same time and independently the semidefinite relaxation (6.5) in com-
bination with randomized rounding to obtain a polynomial time approx-
imation algorithm for the MAXIMUM K-CUT problem.

An introduction to semidefinite programming and an analysis of the
semidefinite program (6.5) are provided in Chapter 8. Our interest is here
merely in the fact that the semidefinite relaxation of the MINIMUM K-
PARTITION problem associated to our test instances are (approximately)
solvable on today’s PCs.

6.3 Numerical Bounds and Quality Assessments

In this section, we provide nontrivial lower bounds on the amount of un-
avoidable co-channel interference. We consider all our planning scenarios
with the natural exception of SW, because no co-channel interference is
specified for SwW. The lower bounds are obtained through solving the
semidefinite relaxation (6.5) associated to the simplified carrier graphs.
In fact, we solve a slightly modified semidefinite program, where the con-
straint X, > k_—_ll is enforced at equality for all edges with d(vw) =1
in the simplified carrier graph. The previously suggested construction,
using very high weights for these edges, is therefore not necessary.

We (mostly) apply dual solution methods to solve the SDPs. A dual
method is not guaranteed to find the value of the optimal solution, but
it computes a lower bound on the optimal value and terminates if no
further (significant) improvement is foreseen. Primal-dual methods for
solving SDPs exist as well. Such a method computes primal as well as
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dual feasible solutions and terminates if a provably optimal solution is
found or the value of the primal solution is sufficiently close to the lower
bound. Hence, by design, a primal-dual method produces more reliable
information on the optimal value than a dual method.

To our best knowledge, however, no presently available primal-dual
SDP solver can handle the sizes of our problems. For example, the soft-
ware package SeDuMi of Sturm [1998| requires more than 800 MB of
memory to solve a problem on merely 100 vertices. Hence, we use two
implementations of dual methods, namely, BMZ by Burer, Monteiro, and
Zhang [1999] and SB by Helmberg [2000]. In both cases, the running
times for solving our SDPs range from several minutes up to days or
even weeks.

Due to the dual character of the employed SDP solvers, a few irregu-
larities can be observed in their computational behavior. The best lower
bound, for example, may not be obtained for the SDP derived from the
entire (simplified) carrier network, but rather for one which is derived
from an induced subnetwork. A thorough comparison of these and other
SDP solvers is currently performed as part of the seventh DIMACS im-
plementation challenge, see Johnson, Pataki, and Alizadeh [2000] and
Mittelmann [2000, Semidefinite/SQL Programming].

We give an account of our computational results in Table 6.2. In
addition to the bound obtained for the entire carrier network (all), we
report results for a subnetwork induced by a maximum clique (cligue)
and for the subnetwork induced by the union of all cliques larger than
the number of available channels (union), not counting blocked channels.
A field is left blank if no reasonable result has been produced, either

| | clique | union | all |

K 0.0206 | 0.1735| 0.1836

B[0] | 0.0013 | 0.0096

B[] || 0.0052 | 0.0297
|

B[2] [[0.0213] 0.4747 | 0.1097
B[4] | 0.2893 4.0342
B[10] || 2.7035 54.0989

SIEl || 0.0165 | 0.1242 | 0.1280
SIE2 || 1.3378 | 6.8300 | 6.9463
SIE3 | 0.0444 | 0.4132 0.4103
SIE4 || 0.4598 | 21.4610 | 27.6320

Table 6.2: Lower bounds on unavoidable interference

SeDuMi

BwMmz
SB
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because the solver stops prematurely with a negative objective function
value or because this value is still negative after running for at least one
day. The best lower bound for each scenario is typeset in bold face.
Almost all entries are produced using BMZ, due to its superior running
time behavior in comparison to SB. The exceptions are as follows. The
bound for K/clique is computed with SeDuMi. The other two bounds
for K are best for SB. The same holds for B[4]/all and B[10]/all.

Table 6.3 lists quality guarantees for the assignments from Table 5.15
on the basis of the best bound for each scenario except for Sw. In order
to provide information on the split between co- and adjacent channel
interference in the assignments, we give the respective values for the
assignments from THRESHOLD ACCEPTING. The gap LVL_—L between the
total interference I, incurred by a assignment y produced heuristically
and the lower bound L on the unavoidable co-channel interference is
reported in percent. If no feasible assignment is generated by a heuristic
for some scenario, then the corresponding cell contains a “—.”

These are the first significant lower bounds on the amount of overall
unavoidable interference for realistic GSM frequency planning scenarios.
(Some forerunners of these bounds, obtained from an even weaker re-
laxation, are described by Eisenblitter [1998]|.) We learn, for example,
that the best of the assignments listed for K, B[10], SIE2, and SIE4 incur
no more than three times the amount of provably unavoidable interfer-

lower || best assignment gap [%]
bound | coch.|ad-ch.| d | ¢ | b | a
K 0.1836 0.43 0.02 145 347 668 657

BJ|0] 0.0096 0.55 0.02 || 5838 | 9692 | 25942 | 32504
BJ[1] 0.0297 0.84 0.02 || 2796 | 15254 | 12762 | 5388
BJ|2] 0.4747 3.10 0.07 || 568 | 1107 — | 2215
Bl4] 4.0342 || 17.29 0.44 || 339 280 — 800
B[10] || 54.0989 || 142.09 4.11 || 170 273 339 316
SIE] 0.1280 1.06 1.24 || 1697 | 2525 | 3658 | 3845
SIE2 6.9463 || 12.57 218 || 112 175 195 201
SIE3 0.4132 3.64 1.62 || 1173 — | 1911 | 1911
SIE4 || 27.6320 || 71.09 9.87 | 193 — 279 279

a. T-CoOLORING o VDS; b. Ts T-COLORINGo VDSs; c. Ts Dch o VDs;
d. THRESHOLD ACCEPTING

Table 6.3: Quality guarantees for selected frequency assignments
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ence. Yet, it is fair to say that our quality guarantees are not particularly
strong. The gap between the upper and the lower bound is considerable
in all cases. Nevertheless, the gaps are small enough so that the differ-
ences in quality between simple (and fast) methods like DSATUR WITH
CosTs and the more intricate method THRESHOLD ACCEPTING are not
diminished.

One might conjecture that the large gaps between upper and lower
bounds are to be blamed primarily on the lower bounds. After all, we are
merely approximately solving a relaxation of a relaxation of the original
problem. In the next section, however, we present a frequency plan for the
scenario K that is much better than the best one reported in Table 5.15.
This shows that the heuristically generated plans are not generally as
good as one might have hoped.

6.4 Relaxed and Ordinary Frequency Planning

We would like to turn a feasible frequency assignment for a simplified
carrier network into a feasible one for the associated ordinary carrier
network. The only change we allow is to relabel the channels in the
assignments. Thus, among the |C|! many equivalent assignments for the
simplified carrier network we look for one which is feasible for the original
problem (and incurs as little adjacent channel interference as possible).
How to find such a permutation is the topic of this section.

The absence of locally blocked channels, of separation constraints
larger than one, and of adjacent channel interference simplifies the tasks
of a planning heuristic. Running the same heuristic methods as before,
we often obtain frequency plans with less co-channel interference than
in the original setting, and we try to take advantage of this as follows.
First, we heuristically produce a frequency plan for the relaxed problem;
then, provided the plan is feasible, we try to turn this plan into a feasible
one for the original problem by relabeling the channels. If we succeed,
the new plan will have the same amount of co-channel interference as
the one for the relaxed case. The amount of additional adjacent channel
interference should be as small as possible. Although this procedure is
certainly of limited applicability, we obtain the best known frequency plan
for scenario K in this way. This assignment incurs 18 % less interference
than the previously best one.

6.4.1 Feasible Permutations

We start out by formally introducing the notion of a feasible permutation.
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feasible
permutation

Hamiltonian path

separation graph

shortcut

Definition 6.5. Given a carrier network N and a feasible assignment
y for the associated simplified carrier network Ny, we call m: C — C a

feasible permutation of the channels if the assignment w o y is feasible
for N.

Testing whether a feasible permutation exists is N'P-hard in general.
(The N'P-complete problem of checking for a Hamiltonian Path in an
undirected graph, compare with Garey and Johnson [1979, GT39|, can
be reduced to it.) In the following, we describe a method for finding a fea-
sible permutation. Despite the fact that the running time of the method
is not polynomially bounded in the input size in general, the method
is merely a heuristic. Its results are, however, optimal if no channel is
locally blocked (in particular, the spectrum has to be contiguous).

The major building block of the proposed method is to find a Hamil-
tonian path of minimum weight satisfying one extra condition. Recall
that a path in a graph is called Hamiltonian if it contains every vertex.
The extra condition rules out “shortcuts,” which are defined below.

Given a carrier network N = (V, E,C,{B, }vev, d, ¢, ¢*) and a fea-
sible assignment, y for the simplified network N, = (V, E,C,d, c*°), we
construct a complete graph K¢. The channels in the spectrum C' are
the vertices. The weight w;; of edge ¢j is the maximum of 1 and the sep-
arations required among all carriers assigned channel ¢ and all carriers
assigned channel j, i.e., w: E(Ky|) = Z;,cc’ = wee = max{1,d(vz) |
ve € E : y(v) = ¢,y(z) = ¢'}. We call this edge-weighted graph the
separation graph associated to carrier network N and assignment y.

Every Hamiltonian path p = wvg,...,v¢—1 In the separation graph
defines a permutation 7,: C — C. The permutation 7, is obtained from
the order in which the vertices occur in the path p = 7,(c1), ..., 7 (¢/c))-
Clearly, the following holds.

Observation 6.6. The Hamiltonian paths in the separation graph and
the permutations on C are in one-to-one correspondence.

We call a path p = vy, ..., in the separation graph a shortcutting
path or simply a shortcut if 22:1 Wy, 1u; < Wyyy- A path p = a,b,c
with three vertices, for example, is a shortcut if and only if the triangle
inequality wg, + Wy > W, is violated. We say that a path contains a
shortcul if some of its consecutive vertices form a shortcutting path.

Figure 6.2 gives an illustration of a separation graph on the vertex
set {a,b,c,d,e}. The edge weights are written next to the edges; that
is, ab, ad, bc, bd, and de require a separation of 1; ae, ce a separation
of 2; and ac a separation of 3. The triangle inequality is violated once,
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namely, wg, + Wy < Wq., and the paths abc and cba are shortcuts. The
Hamiltonian path abede of weight 4 contains a shortcut, whereas the
Hamiltonian paths bedea of weight 5 does not. The Hamiltonian path
abedc contains no shortcut and its weight of 4 is minimal. The associated
permutation Tapeqc is defined by 71—abedc(a') = a, 7"-abedc(b) =0, 7Tabedc(c) =¢,
77-abedc(d) =d, and 7"-abedc(e) =C.

Figure 6.2: Separation graph with shortcuts

Although, shortcuts in a separation graph may contain more than two
edges, their length is bounded by the largest edge weight in the separation
graph, and thus by the largest required separation in the underlying
carrier network.

Observation 6.7. Given a shortcut vy, ..., v in a separation graph, the
number of its vertices is bounded by | < wyy,. Hence, every shortcut
contains at moslt max{wij |i,j € C} many vertices.

The first part follows from w;; > 1 for all ¢,7 € C and the latter
is a consequence of the former. For the carrier graphs introduced in
Section 5.1.1, the largest required separation is three in all cases except
for K, where it is four. Four is also the largest value for which we know
a technical reason in the underlying GSM network.

Observation 6.8. If a Hamiltonian path p in o separation graph has
o weight 33,5\ wy,_p, > [C]

e or contains a shortcut,

then m, is not feasible.
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TSP
tour

shortest tour

Hence, only Hamiltonian paths with all edges having weight 1 may
give rise to feasible permutations. The converse, however, holds only if
no channel is locally unavailable.

In addition to finding some feasible permutation, we also want to keep
the adjacent channel interference under control. This issue is addressed
as follows. We set l;; = wy; + Ie max?j{;ﬁj‘i,j < for every edge in the
separation graph, where

ad: E =Ry, ij—ady = Z < (vw).

viy(v)=i
wiy(w)=j

Then w;; < li; < wy +|C \_1, and every Hamiltonian path of least weight
with respect to [ is of least weight with respect to w. With our preceding
discussion in mind, the following is easy to see.

Proposition 6.9. Given are a carrier network N without blocked chan-
nels, that is, B, = 0 for allv € V, and a feasible assignment y for the cor-
responding simplified carrier network. Moreover, let p be a Hamiltonian
path of least weight with respect to | in the separation graph associated to
N and y. Then the following holds.

If p has weight |C| — 1 with respect to w and does not contain a
shortcut, then myoy is a feasible solution for the carrier network N. Fur-
thermore, Ty oy incurs the least amount of adjacent channel interference
among all feasible assignments o y.

Next, we explain how such a Hamiltonian path can be computed
heuristically by solving a modified TRAVELING SALESMAN PROBLEM.

6.4.2 Tours without shortcuts

Finding a Hamiltonian path of minimum weight in a graph is traditionally
done by solving a TRAVELING SALESMAN PROBLEM. An instance of the
TRAVELING SALESMAN PROBLEM (TSP) consists of a complete graph
together with edge weights. The task is to find a minimum weight four
(or cycle) containing every vertex. The weight of an edge is usually
called its length in the context of a TSP, and a tour of minimum weight
is called a shortest tour. We stick to this tradition. The TSP and many
of its variations receive considerable attention in the literature. Jiinger,
Reinelt, and Rinaldi [1995a], for example, give a survey on the TSP, and
Applegate, Bixby, Chvatal, and Cook [1998] report on recent progress.
Our restricted Hamiltonian path problem is transformed into a re-
stricted TSP as follows. First, we add one additional vertex ¢ to the
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separation graph, which is made adjacent to every other vertex. (This is
the first step of the classical transformation of a Hamiltonian path prob-
lem to a TSP.) We call the result the augmented separation graph. The
edge weighting [ of the separation graph is extended to the augmented
graph by letting I,, = max{li]- |i,j € C} for every edge incident to o.

The notion of a shortcutting path is transfered to the augmented sep-
aration graph. A path p = vy, ..., v; is called a shoricut if Zizl |y, _0s] <
|l |, Where |x| denotes the largest integer less than or equal to z. The
slight change in the definition of a shortcut has the advantage that a path
is a shortcut in the augmented separation graph (with respect to [) if and
only if it is a shortcut in the separation graph (with respect to w). No
shortcut contains 0. A Hamiltonian paths (of minimum weight) in the
separation graph gives rise to a (shortest) tour in the augmented graph
by connecting both endpoints of the path to o. Conversely, every (short-
est) tour in the augmented graph gives rise to two Hamiltonian path (of
minimum weight) by chopping off o and reading the remaining path in
both possible directions. The same direct correspondence holds under
the condition that no shortcuts may be contained.

The ILP (6.6) is the classical integer linear programming formulation
of the TSP, extended by the constraints (6.6¢), called shortcut constraints
here. A binary variable z;; is used for every edge ij in the augmented
separation graph, and an edge 4j is in the tour if and only if z;; is 1.
Without the shortcut constraints, every optimal solution corresponds to
a shortest tour. With the shortcut constraints included, each optimal so-
lution corresponds to a tour that does not successively contain a shortcut
and is shortest among all those.

min E lij £L'i]'
T

ijeE

s. t.

doay =2 VieV (6.6a)
jeVijer

doomy >2 ViCSCV (6.6b)
i€5,jEV\S

ijer
inj <l|p/—1 Vshortcuts p (6.6¢)
=
Ti5 € {0, 1} Vije E

The use of a TSP for finding a feasible permutation is inspired by
the TSP bound for the minimum span of particular T-coloring problems,

augmented
separation graph

shortcut

shortcut
constraints
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see Section 3.1.2. This connection is first observed by Raychaudhuri
[1985] and used by Roberts [1991b]; Janssen and Kilakos [1996, 1999].
Allen, Smith, and Hurley [1999] extend this idea and augment their TSP
formulation by introducing “excess’™-variables in order to rule out conflicts
with shortcuts. Our idea is similar to their’s, although in a slightly
different context and with a different goal.

6.4.3 Computational Results

Any branch-and-cut method for the ordinary TSP can, in principle, be
modified in order to solve the ILP (6.6). Recall from the previous subsec-
tion that in our case none of the separation graphs contains a shortcut of
length four or more. In this case, the number of shortcuts is polynomi-
ally bounded in the problem size, and all shortcuts can be enumerated in
polynomial time. We do not pursue this further here, because this is not
in the center of our interest. Instead, we use the state-of-the-art solver
for the ordinary TSP with some additional processing. The CONCORDE
program, developed by Applegate, Bixby, Chvatal, and Cook [1997], is
employed to solve the basic TSPs.

We are often lucky and find a shortest tour not containing a shortcut.
But there are, of course, cases where the shortest tour does contain a
shortcut. We then resort to the following crude heuristic. A shortcutting
path is determined, and the length of one edge is increased in such a
way that this shortcut is eliminated and no other is introduced. (There
are several possible variations of this principle.) The TSP is then solved
afresh, and the process is repeated until a tour without shortcut is ob-
tained. If any such tour exists, then one will ultimately be found due to
the way in which we increase the lengths.

Computational results are given for the scenarios K and BJ[1] in Ta-
ble 6.4. The scenario SIE1 is omitted here, because its spectrum is not
contiguous and this does not fit with our assumptions. A feasible so-
lution is generated with the THRESHOLD ACCEPTING heuristic for the
associated simplified carrier networks (all), for the subnetworks induced
by a maximum clique, and for the subnetworks induced by the unions of
cliques larger than the size of the spectrum. Every available channels is
used at least once in each assignment. The table displays the co-channel
interference of the assignments with respect to the simplified carrier net-
works. The adjacent channel interference and the number of separation
violations with respect to the associated carrier networks are also given.
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interference sep.

co-ch. || adj.-ch. | viols.

K all 0.37 1.38 38
union 0.37 1.33 36
clique 0.02 0.76 6

B[1] | all 0.59 2.23 212
union 0.11 0.21 21
clique 0.01 0.27 6

Table 6.4: Analysis of assignments for simplified carrier networks

Table 6.5 gives details concerning the separation graphs constructed
from each of these assignments. Ordered by columns, we first list the
number of vertices in the (induced) simplified carrier network. For the
separation graph, we then list the number of vertices, a histogram of
the edge weights, the number of violated triangle inequalities, and the
minimal number of edges of weight 1 incident to a vertex (minimal 1-
degree). Recall that every violated triangle inequality gives rise to a
shortcut of length two. In the case of B[1]|/all and the given assignment,
some vertex in the associated separation graph has no incident edge of
weight 1. A feasible permutation cannot exist.

weight viol. | min.
Vi e 1 ] 2 [3]4] A |ldeg.
K all 267 || 50| 476 | 746 | 0|3 78 8
union || 233 | 50| 511 | 711 | 0|3 92 7
clique 69 || 50| 1101 | 123| 0|1 36 36
0
0
0

B[1] | all 1971 | 75| 157 | 2532 | 86 24 0
union || 252 | 752098 | 669 | 8 373 38
clique 84 || 7512554 | 218 | 3 198 54

Table 6.5: Analysis of separation graphs

In all other cases, a feasible permutation is obtained by applying the
TSP-based heuristic. Notably, the resulting assignments incur no or only
very little additional adjacent channel interference. This is achieved by
using the augmented separation graph when determining the best permu-
tation. All permutations are optimal with respect to the amount of adja-
cent channel interference incurred. If additional interference is incurred,
then the corresponding permutation is obtained without changing any
edge weight in the augmented separation graph. The results are given
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in Table 6.6. The table also displays the gap between the permuted as-
signments and the lower bounds listed in Table 6.2. Attempts to further
improve the assignments using VDS fail: only in one case a negligible
improvement is achieved.

interference sep. || gap

co-ch. | adj.-ch. | viols. || [%]

K all 0.37 | 0.0009 0| 102
union 0.37 | 0.0009 0| 114
clique 0.02 | 0.0000 0 0

B[1] | all — — — | —
union 0.11 | 0.0000 0| 270
clique 0.01 | 0.0000 0 92

Table 6.6: Analysis of permuted assignments for carrier networks

As stated before, the assignment obtained for the instance K/all is
significantly better than the previously reported ones. The total inter-
ference is reduced from 0.46 or more to a value of 0.37. Correspondingly,
the gap is reduced from 151 % or more to 102 %.

6.5 Conclusions

In the preceding chapters, we have dealt with models and heuristics for
frequency planning in GSM networks. Here, we considered the issue of
proving that, for a given carrier network, a certain amount of interference
is unavoidable by any feasible frequency plan. This allows to compare
the interference incurred by a frequency plan with the amount of prov-
ably unavoidable interference. In the ideal case, where both values are
equal, the plan is proven to be optimal (in terms of the mathematical
optimization problem FAP). But also in the more likely case, where the
values do not coincide, knowing how much interference is unavoidable
can be very helpful. We may use this information to estimate the quality
of a frequency assignment, or use it as a common reference point when
comparing results from several heuristics.

Unfortunately, it is still unknown how to compute strong lower bounds
on the interference in general. We proposed an approach to bound the
unavoidable co-channel interference from below. In this context, we intro-
duced the “relaxed frequency planning problem” and explained its relation
to the MINIMUM K-PARTITION problem. Drawing on the semidefinite
relaxation of the MINIMUM K-PARTITION problem and using state-of-
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the-art SDP solver, we computed the first significant lower bounds for
the frequency planning problem FAP. In the best case, we show that
a frequency assignment incurs merely twice the amount of provably un-
avoidable interference. In the worst case, however, the factor is almost 60.
This situation is not satisfactory and deserves further investigations

A drawback of our approach is that solving the large semidefinite
programs is presently quite challenging and may take days or even weeks
of running time. Moreover, it is not yet clear how information acquired
through the solution of the semidefinite program can be effectively ex-
ploited to generate better frequency plans. This also deserves additional
attention.

We pointed out that for our scenarios many triangles in the carrier
graph violate the triangle inequality significantly. Alternative approaches
to compute strong lower bounds on the unavoidable interference may fail
if they rely on the triangle inequalities being (almost) fulfilled.

Finally, frequency planning methods for GSM networks have been
developed for almost a decade now, and several of the recent methods
show good performance in practice. One might conclude that frequency
planning, at least from a practical point of view, can be considered as
“solved,” see also our comments in Section 5.6. In this respect, however, it
is irritating that we were able to provide a significantly better solution to
a realistic planning problem than known before. The employed method,
i.e., first solving the relaxed frequency planning problem heuristically
and then trying to fix all separation violations by relabeling the chan-
nels, is certainly of limited applicability. Its success, however, documents
that improvements on the presently used techniques are possible. This
will be of interest for GSM network planners if, at some future point in
time, frequency planning again becomes a limiting factor. From the com-
binatorial optimization point of view, the frequency assignment problem
FAP, even on the rather restricted set of realistic planning data, is clearly
not yet fully mastered.






CHAPTER 7

Partition Polytopes

The focus of the remaining two chapters is no longer directly on frequency
assignment. Instead, we pursue the problem of finding a k-partition of
the vertex set in a complete graph such that the edge weights in the
induced subgraphs are minimal (MINIMUM K-PARTITION). We are led
to this problem by its close relation to the relaxed frequency planning
problem, see Section 6.2.

In this chapter, we mostly survey results from the literature concern-
ing the polytope P<i(Ky), which is defined by the convex combination
of all feasible solutions to the ILP formulation (6.2) of the MINIMUM
K-PARTITION problem. This polytope is full-dimensional in the space
spanned by the edge variables. A particular emphasis is on the hyper-
metric inequalities. Moreover, we address the complexity of solving the
separation problem for several classes of (facet-defining) inequalities.

In the next chapter, we turn to the semidefinite relaxation (6.5) of
the MINIMUM K-PARTITION problem. The set of the relaxation’s feasible
solutions is studied and related to the polytope P<y(K,). This is done
mostly on the basis of the hypermetric inequalities.

The chapter is organized as follows. In Section 7.1, two binary lin-
ear programming formulations of the MINIMUM K-PARTITION problem
are compared. We explain why the formulation (6.2) is favored. In Sec-
tion 7.2, the polytope obtained for & = n is studied. Several classes of
facet-defining inequalities from the literature are reviewed. In Section 7.3,
we consider the polytope Py (K,,) for k& < n with a strong emphasis on
the hypermetric inequalities. In Section 7.4, we briefly discuss the issue of
developing a branch-and-cut algorithm for the MINIMUM K-PARTITION
problem on the basis of the classes of valid inequalities presented in the
preceding two sections.

Appendix A contains a compilation of mathematical notions, which
are used but not introduced here.

Usually, we assume & > 3 or even k£ > 4 in the following. Clearly, if
k = 1, then only one “partition” exists; in the case of £ = 2, the MINIMUM

141



142

7.1 BINARY LINEAR PROGRAMS

2-PARTITION problem is equivalent to the well-known MAXiMUM CUT
problem, see the survey article by Poljak and Tuza [1995] or the book
by Deza and Laurent [1997] and the references contained therein.

7.1 Binary Linear Programs

Let G = (V,E) be a graph with at least three vertices, w: E — Q be
a weighting of the edges, and 2 < k < |V integer. Two binary linear
programming formulations of the MINIMUM K-PARTITION problem are
considered in the literature.

The first formulation (7.1) given below is the same as (6.2). It is
restated here for convenience. One binary variable is used for every edge
of the graph, which has to be complete. Thus, (‘g') many variables
occur. The intended meaning is that z;; = 1 if and only if the vertices
1 and j are in the same partite set of the partition. The number of
triangle inequalities (7.1a) is 3 (“;‘), and there are (k“fr‘l) many clique
inequalities (7.1b). The value of the expression (k“ﬁl) grows roughly as
fast as |V'|¥ as long as 2k < |V|. Hence, the number of constraints is not
bounded by a polynomial in |V| and logk. Deza et al. [1991, 1992] as

well as Chopra and Rao [1995] consider this formulation.

min E Wij 245

i,jEV
s. t.
Zin + 2p — 2 <1 Vh,i,jeV (7.1a)
>z > 1 VQCV with |Q=k+1 (7.1b)
hL,jeQ
Zij € [O’ 1]
2 integer

For the second formulation (7.2) the graph does not have to be com-
plete. In addition to the edge variables, k binary variables ¢!, I = 1,..., k,
are introduced for every vertex i with the obvious meaning of y! = 1 if
and only if the vertex 7 is in /th set of the partition. Hence, the number
of variables is k|V'| + | E|. There are |V| many constraints of type (7.2a),
and 3k |E| constraints of type (7.2b). This formulation is considered by
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Chopra and Rao [1993], for example.

min E wijzij

ijcE
s. t.

k
Zyé =1 VieV (7.2a)
=1

—yi—y+z;>—1  VijeENVle{l,... k}
—yity—z; > -1 Vije E\Vle{l,... k} (7.2b)
+yi—y—z; > -1 VijeEvie{l,. .. k}

Yi 7 € [0,1]

yé, z;; integer

For a sparse graph, the formulation (7.2) may have significantly fewer
variables than (7.1) after the graph is completed with edges of weight
zero. Despite this fact, the formulation (7.2) has a major drawback. In
case the vertex set of a graph is partitioned into & (nonempty) sets, then
there is a unique variable setting corresponding to this partition in (7.1).
But there are k! many corresponding settings in (7.2). This is because the
introduction of the y variables goes along with the necessity of labeling
the classes of the partition. Although such a labeling is mandatory in an
ILP formulation of the frequency planning problem, compare with (3.6)
in Section 3.3.1, it introduces unnecessary and unwelcome degrees of
freedom here.

We are not aware that either of these formulations has been used suc-
cessfully for solving MINIMUM K-PARTITION problems with nonnegative
weights on dense graphs with several hundred vertices.

No formulation using edge variables alone is known for incomplete
general graphs. Taking, for example, simply the first formulation and
applying the triangle-based constraints (7.1a) and the clique-based con-
straints (7.1b) merely to induced subgraphs does not work. One reason
is that a consistent setting in the vector z cannot be ensured for incom-
plete graphs by considering triangles alone. Instead, restrictions on all
chordless induced cycles apply. Let C be a chordless induced cycle in G
and let 77 be any edge in E(C'), then

>z — 2 < |B(C)] -2
e B(C)
ii#1
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ng (Kn)

has to be satisfied. The number of chordless cycles in a graph can, in
general, not be bounded by a polynomial in the number of vertices. An-
other, more intricate reason is the following: imposing that every induced
clique of size (k + 1) is partitioned into at most k classes does not guar-
antee that the entire vertex set is consistently partitioned into at most k
classes. Instead, the following has to be imposed:

A vector z € {0,1}¥ is infeasible unless the graph obtained
from G by contracting all e € E with z. = 1 is k-partite.

One way to impose this condition is the introduction of vertex variables,
as done in (7.2).

The focus in the remainder of this chapter is on the first formulation
and its associated polytope, i.e., the set of all convex combinations of
feasible solutions. From now on the underlying graph is assumed to be a
complete graph K, with n > 3. We denote the convex hull of all integral
points satisfying the conditions given in (7.1) by

ng(Kn) = COIIV({Z - {0, 1}E(Kn) ‘Zh,' + Zi]' —_ Zhj S 1 Vh,l,j & V;
d wi=1 VQCV, QI =k+1}).

5LJCQ

Every partition of the vertex set of K,, into at most & many sets is also
a partition with at most £ + 1 many sets. Thus,

PSQ(Kn) g Pﬁk(Kn) - P§k+1(Kn) g Pén(Kn)a

and each inclusion is proper. Every inequality valid for P, (K,) is also
valid for P<,(K,) for every 2 < k < n. The boundary cases k = 2
and £ = n, i.e., at most two classes and no restriction on the number
of classes, have already been studied extensively in the literature. The
shorthand notation P(K,) for P<,(K,) is used in the following.

Observation 7.1. 0 € P(K,,), but 0 & P<i(K,,) for every 2 < k < n.

Hence, no matter how good the knowledge of P(K,) in terms of
valid and facet-defining inequalities is, without taking the clique inequal-
ities (7.1b) into account, the optimal value of (7.1) will always be non-
positive. In fact, if all weights are nonnegative, then the zero-vector is
always an optimal solution when minimizing over P(K,).
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7.2 The Polytope P(K,)

Our survey on properties of P(K,,) does not aim at completeness. The
Ph. D. thesis of Rutten [1998] contains a more comprehensive compilation
(which, however, omits the results of Deza et al. [1991]).

Proposition 7.2 (Grétschel and Wakabayashi [1990]). The poly-
tope P(K,,) has dimension (“2/‘).

The clique inequalities (7.1b) are void for P(K,). The remaining
constraints in the binary linear programming formulation are the trian-
gle inequalities (7.1a), the bounds on the variables, and the integrality
conditions. The bound constraints are called trivial inequalities.

Proposition 7.3 (Grotschel and Wakabayashi [1990]). With respect
to the polytope P(K,), n > 3,

e cvery nonnegativity constraint z;; > 0 defines a facet,
e cvery triangle inequality (7.1a) defines a facet,
e no upper bound constraint z;; < 1 defines a facet.

Some properties are shared by all nontrivial facet-defining inequalities
for P(K,). One of the three properties listed next concerns the support
graph of an inequality. Given some inequality a’z > ag, the support
graph of a¥z > ag, or just a, is the subgraph of K,, induced by all edges
Z] with Q5 # 0.

Proposition 7.4 (Grétschel and Wakabayashi [1990]). Let a2z <
ag be a nontrivial inequality defining a facet of P(K,,), then

e gy >0,

e a has positive and negalive enlries,

o the support graph of a” z < ay is 2-connected.

Corollary 7.5. Under the same assumptions as in Proposition 7.4, the
subgraph H" of K,, induced by ES = {ij € E(K,) | a;; > 0} is a
connected, spanning subgraph of the support graph.

Proof. Let [S,T] be any cut in the 2-connected support graph H induced
by E,. There exists a vector Z € {0, 1}#(&%) gatisfying a”Z = ao > 0 for
which restriction to the cut [S, 7] is not identical to zero. (Otherwise,
the facet defined by a”z > ay would be contained in all the trivial facets

trivial inequalities

support graph
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2-chord

2-chorded cycle
02
q

2-chorded cycle
inequality

defined by z5 > 0 with st € [S,T], which is a contradiction.) The vector
Z, obtained from Z by setting

{0, if ij €[S, 7],

- Zij, otherwise,

is also the characteristic vector of a partition and thus satisfies a” z < a,.
Consequently, o’z — a¥z = Zste[S,T] agZ2s > 0, and at least one of the
ast’s, st € [S,T], has to be positive.

The claim now follows since this holds for every cut in H. [l

Notice, however, that H' is not always 2-connected. The 2-chorded
path inequalities, see (7.4), form a counterexample. They can even have
arbitrarily large support.

Recall that we want to partition the vertex set of a complete graph by
means of deciding for each edge whether or not its two endpoints are in
the same partite set. The setting of the edge variables has to be transitive,
i.e., the subgraphs induced by selected edges have to be complete. In
that respect, Proposition 7.4 and Corollary 7.5 can be read as follows:
all facet-defining inequalities for P(K,,) are concerned with imposing the
additional (fractional) selection of edges with negative coefficient once
some set, of edges with positive coefficient has already been (fractionally)
selected. No inequality may, however, impose the selection of an edge to
begin with, because the origin is contained in P(K,,).

7.2.1 2-chorded Inequalities

Two fairly general classes of valid inequalities are known for the polytope
P(K,). These are treated in the two subsequent subsections. Here, we
list a few other classes, which have in common that the support graph of
the inequality has 2-chords. Given a graph G = (V, E), we call an edge ij
a 2-chord if there exists some h € V such that ik, jh € E. A 2-chorded
cycle is a cycle with all 2-chords added. A 2-chorded cycle with ¢ vertices
along the cycle is denoted by CqQ.

Proposition 7.6 (Grétschel and Wakabayashi [1990]). Let C7 be
a 2-chorded cycle of length ¢ > 5 in K,,. Let C be the edges of the cycle,
and let C' be the set of 2-chords, then the 2-chorded cycle inequality

2(C) - 2(C) < [%J (7.3)

is valid for P(K,). The 2-chorded cycle inequality defines a facet of
P(K,) if and only if ¢ > 5 is odd.
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Figure 7.1 depicts a 2-chorded cycle inequality on a cycle with 7 ver-
tices. Solid lines indicate a coefficient of +1 in the corresponding inequal-
ity, whereas broken lines have a coefficient of —1.

Figure 7.1: Support graph of a 2-chorded cycle inequality on 7 vertices

A 2-chorded path is a path with all 2-chords added. We denote the
2-chorded path on ¢ vertices by qu.

Proposition 7.7 (Grétschel and Wakabayashi [1990]). Let P? be
a 2-chorded path of length q > 2 together with a simplicial vertex h &
V(PqQ). Let P be the edges of the path, P be the set of 2-chords, R be
the sel of edges from the simplicial vertex to every other vertex of PqQ,
starting with the second path vertex, and let R be the set of edges from
the simplicial vertex h to every other vertex of Pq?, starting with the first
vertex in the path. Then the 2-chorded path inequality

#(PUR)—2(PUR) < L%J (7.4)

is valid for P(K,,). The 2-chorded path inequality defines a facet of P(K,,)
if and only if ¢ is even.

In Figure 7.2, a 2-chorded path inequality on a path of length 3 is
shown. As before, solid lines indicate a coefficient of 4+1 in the corre-
sponding inequality, and broken lines have a coefficient of —1.

Consider a graph consisting of a cycle and one additional vertex,
which is adjacent to all vertices on the cycle. This is called a wheel and
denote by W,, where ¢ is the number of vertices along the cycle. We call
every edge incident to a vertex on the cycle and to the simplicial vertex
a spoke. A 2-chorded wheel is a 2-chorded cycle wheel with an additional
simplicial vertex.

2-chorded path Pq2

2-chorded path
inequality

wheel W,

spoke
2-chorded wheel
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2-chorded even
wheel inequality

Figure 7.2: Support graph of a 2-chorded path inequality

Proposition 7.8 (Grétschel and Wakabayashi [1990]). Let C7 be
2-chorded cycle of even length ¢ > 8 in Ky, and let h & V(Cg). We denote
by C the edges of the cycle, by C be the set of 2-chords, by R the set of
edges from the simplicial vertex h to the every other vertex of Cg, and by
R the set of remaining spokes. The 2-chorded even wheel inequality
2(CUR)—2(CUR) gg (7.5)

is valid for P(K,) and defines a facet of P(K,).

A 2-chorded even wheel inequality for a wheel with 8 vertices on the
rim is depicted in Figure 7.2. Again, solid lines indicate a coefficient of 41
in the corresponding inequality and broken lines a coefficient, of —1.

Figure 7.3: Support graph of a 2-chorded even wheel inequality
Generalizations of the previous three types of inequalities are given
by Rutten [1998].
7.2.2 Clique-web Inequalities and Special Cases

The next two types of inequalities are specializations of the rather general
clique-web inequalities (except for boundary cases), which are described
at the end of this section.
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Proposition 7.9 (Chopra and Rao [1993]). Let W, be a wheel in K,
with ¢ > 3. We denote by C' the edges along the rim, and by R the spokes
of the wheel. The g-wheel inequality g-wheel inequality

(R) ~ =(0) < |5 (76)

is valid for P(K,) and defines a facet if q is odd.
The support graph of a 5-wheel inequality is depicted in Figure 7.4.

Solid lines indicate a coefficient of +1 in the corresponding inequality,
and broken lines indicate a coefficient of —1.

Figure 7.4: Support graphs of a 5-wheel inequality

A graph consisting of a cycle and two additional vertices, which are
adjacent to each other and to all vertices on the cycle, is called a bicycle bicycle BW,
in the following. We denote a bicycle with ¢ vertices along the cycle by
BW,.

Proposition 7.10 (Chopra and Rao [1993]). Let BW, be a bicycle

in K, with ¢ > 3. Let s; and sy be the two vertices not on the cycle, E

the spokes incident to s1, and Fy the spokes incident to sy. The g-bicycle

inequality g-bicycle
AEL) — 2(By U {s155}) < 2 [%J (7.7) inequality

is valid for P(K,,) and defines a facel if q is odd.

Figure 7.5 shows the support graph of a bicycle inequality with 5
vertices along the cycle. As before, a solid line stands for a coefficient
of +1, and a broken line stands for a coefficient of —1 in the inequality.
Extending the notion of a 2-chord in a graph G = (V, E), we call an
edge i7 an I-chord, | > 2, if there exists a path of length [ in G with ¢ I-chord
and j as endpoints. We say that a cycle of length p is augmented with
all l-chords, 2 < [ < L if the endpoints of each path of length [ on the
cycle are connected by an edge.
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Figure 7.5: Support graph of a 5-bicycle inequality

Definition 7.11 (Deza and Laurent [1992b]). Given two nonnegative

antiweb AW integers p, v satisfying p > 2r+1, an antiweb AW is a graph on a vertexr
set {v1,...,vp}. If r =0, then there are no edges. In case r > 1, AW}
web Wy 15 a spanning cycle augmented by all I-chords with 1 = 2,...,r. The web

W, is the graph complement of the antiweb AW].

The web Wzg’ , for example, is a complete graph on p vertices; Wy, is
a graph containing 2r + 1 isolated vertices; and W35 is a cycle on 2r +3
vertices. A AW? antiweb and a W2 web are shown in Figure 7.6.

(a) (b)
Figure 7.6: AW?Z is depicted in (a) and W7 in (b)

Proposition 7.12 (Deza et al. [1991]). Let W) = (W, F) be a web
in K, withp > 1 and r > 0 and let U be a set of vertices with U C

clique-web V(K )\W, |U| =¢q>1 such that p— q > 2r + 1. Then the clique-web
inequality inequality
2(E(U,W)) — 2(Wy) — 2(E(U)) < q(r+1) (7.8)
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is valid for P(K,). The cliqgue-web inequality defines a facet of P(K,,) in
case of p—q>2r+1orp—qg=2r+1 and q > 2.

Setting p = ¢, r = ‘1;—3, and |U| = 1 in the clique-web inequality

vields a ¢-wheel inequality. Keeping the same setting for p, ¢, and r, but
considering |U| = 2, we arrive at the ¢-bicycle inequality. Furthermore,
forU=Sand T = VV‘%‘ the 2-partition inequality, see 7.9 below, is ob-
tained. The support graph of a clique-web inequality on a AW? antiweb
and a set U of size one is depicted in Figure 7.7. As before, solid lines
indicate a coefficient of +1 and broken lines a coefficient of —1 in the
corresponding inequality.

Figure 7.7: Support graph of clique-web inequality on AW? with |U| =1

7.2.3 Partition and Claw Inequalities

The hypermetric inequalities are introduced by Deza and Laurent [1992a]
for the MAXIMUM CUT polytope, i.e., for the case of k = 2. They
are generalized to 2 < k < n by Chopra and Rao [1995]. The right-
hand side of a hypermetric inequality depends on £ in a nontrivial way.
We therefore defer the discussion of the hypermetric inequality to the
next section, which is devoted to P<;(K,). Only two special cases are
presented here.

Proposition 7.13 (Gr6tschel and Wakabayashi [1990]). Let @ be
a subset of the vertices in K,, of size at least 3, and let S, T be nonempty
disjoint subsets of Q@ with |S| < |T|, then the 2-partition inequality

2([5,T]) = 2(B(5)) — 2(E(T)) < |5] (7.9)

is valid for P(K,). The 2-partition inequality defines a facet of P(K,,) if
and only if |S| # 1.

2-partition
inequality
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general 2-partition
inequality

claw inequality

The 2-partition inequalities generalize the triangle inequalities (7.1a).
Figure 7.8 shows a triangle inequality and a (2,3)-partition inequality.
Other generalizations of the 2-partition inequalities are the general 2-
partition inequalities, described by Rutten [1998], as well as the clique-
web inequality (7.8), both of which are not themselves hypermetric in-
equalities.

(a)
Figure 7.8: Support graphs of two 2-partition inequalities

Proposition 7.14 (Oosten, Rutten, and Spieksma [1995]). Let
¢ > 1 be integer and fix o vertex s € K, and a vertex set T C V(K,)\{s},
then the claw inequality

Y- Y va§<c42r1> (7.10)

teT vweE(T)

is valid for P(K,). In case ¢ > 2, a facet is defined if and only if
7| > c+2.

Notice, for ¢ = 1, the claw inequality (7.10) is a special case of the
2-partition inequality (7.9).

7.3 The Polytope P<i(K,)

We now drop the restriction £ = n and look at cases with 4 < k£ < n.
Sometimes k£ = 2 or k = 3 is also considered. By restricting the number
of classes in the partition, the dimension of the polytope does not drop.

Proposition 7.15 (Barahona and Mahjoub [1986]). The polytope
Py (K,) has dimension () for every 2 < k < n.
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The origin, however, is no longer contained in P<;(K,) if & < n. The
valid inequalities for P (K,) which are violated by the origin have large
support, namely:

Proposition 7.16. Let a”z < ag be a valid inequality for P<x(K,) and
H its support graph. If H is k-partite, then ag < 0.

Proof. Assume H = (V,, E,) is k-partite, and let V1, ...V} be a partition
of V, into at most &£ many independent sets. Let z be the characteristic
vector of the partition (V (K,)\V,)UV1, Vs, ..., V4. Then a’'z = 0 because
Zow = 0 for all vw € E,. Hence, ay < 0 has to hold in order for ¢’z < a,
to be valid. [l

Corollary 7.17. If o™z < ay with ay > 0 is valid for P<i(K,), then the
support set E, = {ij €F|ay;# O} of a is of size at least (k;ﬂ)

Proof. The claim follows directly from Proposition 7.16, because every

graph which is not k-partite has at least W many edges, see West

[1996, p. 177], for example. O

A number of results in the literature give sufficient conditions on how
a facet-defining inequality for the polytope P(K,,) can be extended onto
the additional variables associated with P(K,), m < n, such that the
extended or “lifted” inequality is facet-defining for P(K,,). The simplest
such result states that all new variables may receive the coefficient zero
in the extended inequality. This is called zero-lifting.

Proposition 7.18 (Deza and Laurent [1992a]; Chopra and Rao
[1995]). Let a™2 < ag be a facet-defining inequality for P<i(K,), k > 2,
m > 3. Then, for every n > m, the inequality a’ z < ag defines a facet
of P<i(K,), where a, =0 if e ¢ E(K,,) and a, = a. otherwise.

Recall that all inequalities valid for P(K,,) are also valid for P, (K,,)
for all 2 < k < n. In fact, several of the inequalities from Section 7.2
remain facet-defining when turning from P(K,,) to P<,(K,). Sometimes
restrictions on the relations between & and the inequality parameters
apply. The following section contains a survey over several such results.
Notice that none of the inequalities dealt with so far is violated by the
origin (except for the clique inequalities (7.1b)). This is different for
many cases of the hypermetric inequality, which is discussed in the next
but one subsection.

zero-lifting
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7.3.1 Inequalities with right-hand side independent of k&

Several of the facet-defining inequalities for P(K,,) are also facet-defining
for Py (Ky).

Proposition 7.19 (Chopra and Rao [1993]). For 3 < k < n, the
following inequalities define facets of P<y(K,):

o the triangle inequalities (7.1a)

o the g-wheel inequalities (7.6) if and only if ¢ > 3 is odd

o the q-bicycle wheel inequalities (7.7) if and only if ¢ > 3 is odd
The clique-web inequalities quite often also remain facet-defining.

Proposition 7.20 (Deza et al. [1992]; Chopra and Rao [1995]).
Fork > 2 and integersp, q > 1, r > Qwithn=p+qandp—q > 2r+1,
the following assertions hold with respect to P<y(Ky):

(i) Fork > 3 andp—q = kr+1, the clique-web inequality (7.8) defines
a facet if p>2kr and 1 <r <k —2.

(i1) For p—q = 2r+1, the clique-web inequality (7.8) defines a facet if
q > 2.

(11i) Forr > 1 andp—q > 2r+2, the clique-web inequality (7.8) defines
a facet in case [(p— q)/(r +1)| +2 <k < n, but does not define a
facet in case 2 <k <[(p—q)/(r+1)] —1.

(iv) If p—q=k(r+1) withr > 1, then the clique-web inequality (7.8)
s not facet-inducing.

(v) Forr =0 and p— q > 2, the clique-web inequality (7.8) defines a
facet if k > p—q+ 2, but it does not define a facet if k <p—q—1.

The above results are cited from (i) Chopra and Rao [1995], Thm. 5.1
(dealing with the special case of a hypermetric inequality (7.12) called
antiweb inequality  antiweb inequality); (ii) Deza and Laurent [1992b]; (iii) Deza et al. [1992],
Thm. 1.17 (ii, iv); (iv) Deza et al. [1992], Thm. 1.17 (v); and (v) Deza
et al. [1992], Thm. 1.20.
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7.3.2 Hypermetric Inequalities and Special Cases

The hypermetric inequalities are introduced for the case &k = 2 by Deza
and Laurent [1992a] and generalized to k£ > 2 by Chopra and Rao [1995].
Their right-hand sides involve a peculiar function, depending on two in-
tegral parameters n and £, n > 0, k > 1:

ol b = (77 m;d k) [%"24_ (k—772m0d k) {%r

+ (n mod k)(k — n mod k) [%-‘ {%J

As usual, (Z) = 01in case a < b. If n < k, for example, then straightfor-
ward calculations show:

Fr(m ) = (g) (1< k)

(7.11)

Equivalently, fr,.(n,k) = max{zlgqgk T; %5 | Zle T =1,% € Ly}
can be defined. This definition makes the connection to k-partitioning
more explicit, but is inconvenient in several of our computations. The
following facts are, however, obvious from this characterization.

Observation 7.21. The function fu,(n, k) increases with k and strongly
increases with 7.

The function fp,(+,-) appears as some kind of “correction term” in
the right-hand side of the hypermetric inequality defined next.

Proposition 7.22 (Chopra and Rao [1995]). Given k > 2 and a
complete graph K,, and vertex weights b, € Z with n = ZUEV(Kn) b, > 0.
The hypermetric inequality

Z bvbw Ryw > Z bvbw - fhm(na k) (712)

vweEE(Ky) vweE(Ky)
is valid for P<y(Ky).

The condition “|{v € V | b, > 0}| > k” given by Chopra and Rao
[1995] in their Lemma 2.1 concerning the validity of the hypermetric in-
equality is not necessary, and it is, in fact, not used in their proof. The
hypermetric inequality generalizes a number of previously known inequal-
ities. The claw inequality (7.10) is one example. (The claw inequality
was introduced later than the hypermetric inequality, but the previously
known cases in which the hypermetric inequality defines a facet do not
include that of the claw inequality.) Other examples are the clique in-
equality (7.1b) and the following general clique inequality.

fhm ("77 k)

hypermetric
inequality
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general clique
inequality

Proposition 7.23 (Chopra and Rao [1993]). Consider a clique Q
with ¢ = |Q| > k vertices in K,,. Then the general clique inequality

Y oz > (%J) (k — ¢ mod k) + U?)(q mod k) (7.13)

JEE(Q)

is valid for P<x(K,) and facet defining if and only if q is not a multiple
of k.

The general clique inequality (7.13) is obtained from the hypermetric
inequality (7.12) by setting the weights of all vertices in @ to 1, and to 0
otherwise. A straightforward calculation shows that the right-hand sides
of both inequalities are indeed the same. Moreover, the right-hand side
of (7.13) is positive if and only if ¢ > k. Hence, each of the general clique
inequalities (7.13) separates the origin from Py (K,).

There are other cases in which the right-hand side of the hypermetric
inequality (7.12) is positive.

Proposition 7.24. Given an integer k > 2 and a complete graph K,,
k < n, with vertex weights b, = +1 for allv € V(K,,) such that S = {'u €
V(K,) | by=—1} and T = {v € V(K,) | b, = 1} satisfy 1 < |S| < |T.
Then the hypermetric inequality (7.12) reads as follows:

ABEN+E@)-5,1) 2 () + (15 ) ~13 7= fun(i71-151 1
(7.14)
A facet of P<x(Ky) is defined if (|T| — |S]) mod k& # 0.
The inequality (7.14) is valid for the origin if |T| — 2|S| < k. It
is violated by the origin if |T| — 2|S| > k + 1. This bound is tight for
1 <|S| <k and can be relaxed for |S| > k.

Theorem 2.1 of Chopra and Rao [1995] states that in case |S| > 2,
|T| >k, |T| > S|, and (|T|—1|S|) mod k # 0 the inequality (7.14) defines
a facet. Proposition 7.24 relaxes the first two conditions so that the 2-
partition inequality for P(K,) and the triangle inequality for P<j(K,)
are now covered, too. In the part of the proof concerned with facets,
we apply the same technique as Chopra and Rao [1995], but a weaker
version of their Lemma 2.2 suffices. Their full Lemma 2.2 is stated next,
but only the case with the third set M3 being empty is used later.

Lemma 7.25 (Chopra and Rao [1995]). Let a2z > ay be a valid
inequality with respect to P<(K,). Moreover, let My, My, M3 C V(K,)
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be three pairwise disjoint sets. Let iy = (V1,..., V), r < k, be a partition
of V(K,,) such that My, My C Vi and M3 C Vs and such that the incidence
vector z(uy) satisfies a’ z(puy) = ay at equality. Three variations of the
partition uy are defined:

MQZ(%\M27 ‘/ZUM% ‘/377‘/;“)
ps = (ViU M3\ My, Vo U My \ Ms, Vi, ..., Vi)
ps = (Vi UM\ (MyUM,), Vo U (MU M)\ Ms, Vs, ..., V)

If the incidence vectors z(p;), 1 = 2,3, 4, also satisfy a” z(j;) = ay, then

E Qyy = E Gy -

wEMy vEM>2 vEMo,wEMs

In case My = 0, then

Z Ay = 0.

uEMy wEM>

We now turn to the proof of Proposition 7.24.

Proof of Proposition 7.24. Consider any valid and facet-defining inequal-
ity a’'z > ay for P<x(K,,) such that

n
2

{z € P<i(K,) | z satisfies (7.14) at equality} C {z € R(%) |a"z = ao}

An incidence vector z of a partition attains equality in (7.14) if and
only if z corresponds to a partition Vy,...,V, of V(K,) with b(V;) €
{L(T| = 1SN /K], [(T) = |S))/k1} for all i = 1,...,k (see, e.g., the proof
of Lemma 2.1 given by Chopra and Rao [1995]). Since we presuppose
that (|7| — |S|) mod k # 0, we may assume that b(Vy) = [(|T| — |S])/k]
and b(Va) = [(|T| — |S])/%] holds.

We first show that all entries in a corresponding to edges with both
endpoints in 7" have the same value v and that the entries corresponding
to edges in the cut [S,T] are —y. In order to prove this, we may also
assume without loss of generality that ] contains at least one vertex s €
S and at least two vertices ¢1,6, € T. Let My = {s,t1}, My = {2}, and
Mz = (). Tt is straightforward but technical to check that the incidence
vectors of all three partitions as constructed in Lemma 7.25 satisfy (7.14)
at equality and therefore o’z = ag as well. We omit the details. Applying
Lemma 7.25, we obtain —ay, = a4,¢,. The roles of ¢; and ¢» can be played
by any pair of distinct vertices in 7. This allows to derive q;, = v for
all t;,t, € T. Likewise, a;; = — can be obtained for alls € Sandt € T.
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In case S contains more than one element, it remains to show that
as,5, = ¥ for all 1,50 € S. We consider the same partition as above,
but exchange V; and V4 so that now b(V}) = [(|T] — |S])/k] and (V) =
[(|T| — |S]|)/k]. This time, we may assume without loss of generality
that V; contains two vertices 51,82 € S and one vertex ¢t € T. With
M, = {s1,t}, My = {s3}, and M3 = () the incidence vectors of the
partitions as constructed in Lemma 7.25 satisfy (7.14) at equality. As
before, Lemma 7.25 allows us to conclude that ag,,, = —a4,; and, further
on, ag,,, =y for all 51,5, € 5.

Together with {z € P<,(K,,) | z satisfies (7.14) at equality } # 0, this
shows that a’z > ay is a multiple of the hypermetric inequality (7.14).
The scaling factor has to be positive, because both inequalities are valid
for Py (K,). Therefore, the hypermetric inequality (7.14) does indeed
define a facet under the specified conditions.

Finally, the claims concerning the right-hand side of the inequality
are immediate consequences of Proposition 7.26 below. [l

Our next result addresses the right-hand side of the hypermetric in-
equality (7.12). We want to identify conditions under which the right-
hand side is strictly positive. Instead of bounding the right-hand side
from below, we only manage to bound it from above. For those cases, in
which we show that the upper bound is attained, we can draw conclu-
sions.

Proposition 7.26. Given are an integer k > 2 and a complete graph
K,, n >k, together with integral vertex weights b,, v € V(K,,), satisfying

ZUEV(Kn) by >0. Lett=3%,, sobyando =~ ., by
(i) The following inequality is valid:

T [e2
Z byby, < (2> + (2> —TC
vweEE(Ky)

FEquality holds in the inequality if and only if all positive weights
differ by at most one and all negative weights differ by at most one.

(11) The right-hand side of the hypermetric inequality (7.12) correspond-
ing to the given vertex weights is bounded from above:

Z bvbw _fhm(T_J’ k)

vweE(Ky)
< k(L?J> + {T;JJ (r—o)modk—o




7 PARTITION POLYTOPES 159

Fquality holds under the same conditions as in (i).
(111) Moreover, if

k+1, for0<o<k,
T—20 >
k, foro >k,

then

k(VfJ) + {T;UJ (r—0)modk— o > 0.

In case 0 < o <k, the condition T — 20 > k + 1 is also necessary.
Proof. We prove the three parts separately.

Ad (i): LetT={veV(K,)]|b >0}, S={veV(K,)|b, <0},
then:

<fhm(TT) <.fhm(U’U)
S bbe = 3 bby+ Y bbe + S by
vweB(Ky) vweE(T) vw€ B(S) vwé€[S,T)

S fhm(T T)+fhm00 Zb wa

()

The inequality is fulfilled at equality if and only if the bounds on the two
first terms are tight. This happens precisely if max{\bv — byl | v,w €
T} <1 and max{[b, — by| | v,w € S} < 1, see the definition (7.11) of
fhm('a )

Ad (ii):  We define ¢ = | 722 and r = (7 — 0) mod k. (Recall that
7 — 0 > 0 by hypothesis.) Two cases are distinguished.

If r =0, then

Fan(T = 0 k) = fam{ak, k) = (g) . @) 240 hag = (/;) -
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Using this equation and 7 = o + ¢k, we derive the desired result:

Z bvbw _fhm(T_O-a k)

vweE(Ky)

< (75") (3) o ama—mtann

() (- )

1
= 5[((;2 + 2kgo — k*¢* — 0 — kq) + (0° — o)

— 2(0” + kqo) — (K*¢* — kq¢?))

= % [—20 + kq” — kq|

A

If » > 0, the derivation is more involved but does not require addi-
tional insight. We therefore omit the details.

Ad (i5):  Let h(r,0) = k(L?J) + |=2] (r — o) mod k — o, then

Wk + 20,0)
kto
:k(LSJ>+{k—;OJ(1f+J)mOdk—O
_ (1L o
—k( 5 )—i—(l—l—{ED(amodk)—a
k(;)—i—la—a, if0<o<k,
={k()+2-0—0, if o =k,
E(E) + A+ q)r — (gk+7), if 0 >kg=[%],r =0 mod k.

The result is zero in the first two cases. In the case of 0 > k, we further
deduce

h(k+2a,0)=kq+k(g> +r+qr—(qk+r)=k(g) +gqr >0,

using the identity (}') = (‘{) + (%). The last strict inequality holds
because either ¢ = 1 and r > 0 or ¢ > 2. Finally, we observe that, for
fixed o, h(r,0) is strictly increasing with 7 (> o). Let ¢ = V_TUJ and
r = (t—0) mod k, then h(7, ) = k(?)+gr—o. For fixed ¢, this expression

increases with 7. Hence, the only problem may arise when p increases and
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T—0 becomes divisible by k. Due to k(*}) = k() +kq > k(2) +q(k—1),
this is not the case. The sufficiency and the necessity of the conditions
now follow as claimed. O

By Proposition 7.26 (ii), the right-hand side of (7.14) is equivalent to

—s+k(VT_|SJ) + {WJ (IT] = |S]) mod k. (7.15)

Hence, the inequality (7.14) is equivalent to the 2-partition inequal-
ity (7.9) whenever |T'| — |S| < k.

The hypermetric inequality (7.12) is also known to be facet-defining
is several other cases, where the vertex weights are not restricted to 41.

Proposition 7.27 (Chopra and Rao [1995]). The hypermetric in-
equality (7.12) defines a facet of P<x(K,), k > 3, if one of the following
conditions holds:

(i)2<deZ, Rt={veV]b=1} R ={veV|b =-1},
St={veV|b=d}, 5 ={veV|b=-d}, V=R UR U
STUST, ST =[57], [RT[ = |[R7| 2 d, (|[RT| - [R7|) mod k # 0

(i))2<deZ R={veV|b=1},S={veV]|b =d}
V =RUS, |S| >k, |R| > (k—|S| mod k)d+1, |S| mod k < k—2,
(|IR|+d|S|) mod k Z0

(i) 2 <de€Z R={veV|b=1},S={veV]|b =d}
V=RUS, |R| > (2k—1|S|)d+1, |S| <k, (|R|+d|S|) mod k # 0

Another example for the case of k = n is the claw inequality (7.10).
Under the conditions given in Proposition 7.27 (ii) the origin is not feasi-
ble, whereas it is feasible under the conditions given in (iii). This follows
from Proposition 7.26.

7.3.3 Cycle Inequalities

For the sake of completeness, we also address the cycle inequalities here.
The cycle inequalities are introduced for the case £ = 2 by Deza and
Laurent [1992a] and generalized to ¥ > 2 by Chopra and Rao [1995].
Their left- and right-hand sides also involve the function fi.,(-, ) defined
in (7.11). This type of inequalities is even more complicated than the
hypermetric inequalities (7.12), and it is not addressed in Chapter 8. The
reason for mentioning them nevertheless is that under certain conditions
the cycle inequalities also separate the origin from P, (K,).
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cycle inequality

Proposition 7.28 (Chopra and Rao [1995]). Given a complete graph
Ky, 3<k<mn, andT CV(K,) with |T| > k, letb,, v € V(K,), be
integral vertex weights satisfying n = ZUGV yoo 21, T = {veV(K,)|
by > 0}, |3 vk bu/k] > 2, and (Zz;eV(Kn) b,) mod k = 1. Let C be
a Spanning cycle in the subgraph induced by T. The cycle inequality

Z bvbw Zyw — (fhm(na ) fhm 777 Z Zyw
vwEE(Kp) vweE(C)
> Z fhm 7, )_ (’T‘_ )(fhm(na )_fhm(nak_l))
UwEE(Kn)

(7.16)

is valid for P<i(Ky).
A cycle inequality defines a facet of P<y(Ky,) if the following condi-
tz’ons are met: |T| > 2k+1, by =p for somep € Z. and allv € T, and
by =—1 forallveS= {UEV n) | by < 0}

Assume that n = ¢k + 1 with 0 < ¢ < k — 2, then the following holds:

fhm(777 k) - fhm(na k— 1)
= fhm(qk + Lk) - fhm(Q(k - 1) +q+ 17k - 1)

1) - (T ey =[(53 ) - (TE e

+[1=1) - @+ DE-g-D)](a+ g

()

(Some intermediate steps are omitted.) Furthermore, assume that all
positive vertex weights differ by at most one and that all negative ver-
tex weights also differ by at most one, then, by Proposition 7.26 (ii),

> vwen,) bobw — fam(m, k) = k() + 1+ 3,5 by The right-hand side
of the cycle inequality (7.16) reduces to:

k(‘;) at+ Y by - (T|—k)(<‘2]) — kq)

vES

We now consider two sets of conditions under which the origin is not
valid for the inequality (7.16), but a facet of P (K,) is defined.

First, fix two disjoint subsets S and T of V(K,,) such that |S| < k—2
and \T\—2k+1+\5\. Let by =1forallve T, b, =—1forallv e S,
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and b, = 0 otherwise. The corresponding cycle inequality defines a facet
of P<(Ky,). The right-hand side is:

k(;) 218 — (2k+14]9] —k)(@) — 9k)

—k+2—|S|+ (k+1+4]|S])(2k—1)
= (k+ 1)+ k* +2(k - 1)|5]
>0

Second, fix an integer p with 1 < p < g — 1 and two disjoint subsets
S, T C V(K,) such that |T| = 2k + 1 and |S| = p—1. Let b, = p for
veT b,=—1forveS, and b, = 0 otherwise. We have n = p|T|—|S| =
p(2k+1)— (p—1) = 2pk+ 1. The corresponding cycle inequality defines
a facet of P<;(K,). The right-hand side of (7.16) simplifies as follows
under the given assumptions (with some derivations omitted):

k<22p> +2p—(p—1)— (2k+1—k)((22p> — 2kp)
:k<22p> +p+1- (k+1)((22p> — 2kp)

=1+2p(k +1) + 2p(k* — p)
> 0

Further details concerning the cycle inequality (7.16) are described
by Chopra and Rao [1995].

7.4 Separating Violated Valid Inequalities

Several classes of valid and sometimes facet-defining inequalities for the
polytope P<i(K,) are presented in the previous sections. We are now
at the point where a cutting planes algorithm or a branch-and-cut al-
gorithm on the basis of the known valid or even facet-defining inequali-
ties for P<x(K,) could be developed in order to solve the MINIMUM K-
PARTITION problem computationally. Cutting planes as well as branch-
and-cut algorithms have been successfully applied to solve instances of
numerous N P-hard combinatorial optimization problems. For example,
the already mentioned CONCORDE program, by Applegate et al. [1997],
for the TRAVELING SALESMAN PROBLEM is certainly among the most
advanced branch-and-cut algorithms.

The reader not familiar with cutting planes and branch-and-cut algo-
rithms may, for example, consult Jiinger et al. [1995b], Nemhauser and
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cutting plane

separate

separation

cutting planes
algorithm
branch-and-cut
algorithm

Wolsey [1988], or Schrijver [1986] for thorough introductions. Roughly
speaking, the notion of a “cutting plane” can be explained as follows. We
use the example of optimizing a linear objective function over P, (K,).
Instead of optimizing over the complete description of P<,(K,,) in terms
of linear inequalities (which is unknown for general n and & anyhow),
the linear function is optimized over [0, 1](3) subject to some set of linear
inequalities which are all valid for P (K,).

Assume the resulting optimal solution is a fractional vector 2, then
there exists another linear inequality which is valid for P<,(K,), but
violated by 2°. Since an inequality (usually) defines a half-space delimited
by an hyperplane, such an inequality is often called a cutting plane. If
a cutting plane can be identified, it may be added to the present set
of inequalities in order to “cut off” the vector z°. This is also called to
separate 2° from the polytope P<i(K,). Generally, given a class C of
inequalities and a vector z, the separation problem is to check whether
all inequalities in C are satisfied by z and if not to produce at least one
violated inequality out of C.

The optimization process is iterated and possibly other cutting planes
are added. If some z* happens to be an integral vector, then this might
be a vertex of P (K,). If so, z* is optimal in P<(K,) with respect to
the given linear objective function. Otherwise, there again exists an in-
equality which is valid for P« (K,,) and is violated by 2*. We iterate with
an appropriate inequality added. An algorithm employing this paradigm
is called a cutting planes algorithm.

A branch-and-cut algorithm may also use “branching:” assume some
Z* is fractional and [ is one of the fractional coordinates, then two sub-
problems can be generated. In one of the subproblems, the /th coordinate
is fixed to 0, in the other to 1. The vector z* is infeasible in each of the
two subproblems. Both subproblems have to be processed in order to
determine which of the “branches” contains the better solution inside
P<i(Ky). Of course, more complex branching rules than just branching
on a fractional variable can also be used.

We pursue neither of these approaches here. Our initial computational
experiments were not encouraging. Among others, we experimented with
the program developed by Ferreira, Martin, de Souza, Weismantel, and
Wolsey [1996] for the NODE CAPACITATED GRAPH PARTITION problem.
This is an extension of the MINIMUM K-PARTITION problem, where each
vertex is assigned a weight and there are upper limits on the weight a
partite set may have. Their program, however, did not provide nontriv-
ial lower bounds for the instances we tested. (Johnson, Mehrotra, and
Nembhauser [1993] describe a branch-and-cut algorithm which, in addi-
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tion, uses column generation for the NODE CAPACITATED GRAPH PAR-
TITION problem. We also like to mention the branch-and-cut algorithms
developed for other related partition problems, which, however, do not
comprise the MINIMUM K-PARTITION problem. See Grotschel and Wak-
abayashi [1989] for a branch-and-cut algorithms for the clique partition
problem, and Jiinger and Rinaldi [1998] for one for the MAXIMUM CuUT
problem.) We are not aware of any branch-and-cut algorithms for the
MINIMUM K-PARTITION problem itself.

Another reason not to pursue this further is that the semidefinite
program (6.5) turned out to be an appealing alternative when it comes
to prove lower bounds on the optimal value of MINIMUM K-PARTITION
instances.

Nevertheless, we briefly address the computational complexity of find-
ing violated inequalities in the course of a branch-and-cut algorithm. The
ILP formulation (7.1) itself is huge for the instances we are interested in.
Table 7.1 indicates the actual amount of the 3 (%) (facet-defining) trian-
gle constraints (7.1a) and (kil) (facet-defining) clique constraints (7.1b)
for three of our test instances, see Chapter 5 and 6. Such vast amounts
of constraints can hardly be handled at once by presently available LP-
solver. A branch-and-cut algorithm would therefore have to separate vi-
olated clique constraints and probably also violated triangle constraints.

| | »n | k| (71a)=30) | @1b) = (") |

k41
K 267 | 50 9,410,415 2.2 107
B[ || 1971 | 75 | 3,822,685,515 5.5 -107
Siel || 930 [ 43 || 400,382,080 311078

Table 7.1: Number of facet-defining inequalities for Py (K,,)

Proposition 7.19 states that all triangle inequalities (7.1a) listed in
our first integer linear programming formulation (7.1) for the MINIMUM
K-PARTITION problem define facets of the polytope P<;(K,). There are
3(3) inequalities of that type so that the following is obvious.

Observation 7.29. There exists an algorithms that checks in O(n?)
many steps whether a given rational vector z € [0, 1](3), n > 3, ful-
fills all triangle constraints (7.1a). If this is not the case, an inequality
is returned that is violated by z.

The same holds for the classes of odd wheel inequalities (7.6) and
odd bicycle wheel inequalities (7.7). This is proven by Deza et al. [1992],
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basing on an argument of Gerards [1985]. Both types of inequalities define
facets of P<y(K,) under fairly general conditions, see Proposition 7.19.

Proposition 7.30 (Deza et al. [1992]). The following tasks can be
accomplished by a polynomial time algorithm.

o Checking whether all g-wheel inequalities (7.6), ¢ > 3 and odd, are
met by a given rational vector z € [0, 1](3), n > 3, which meets all
triangle inequalities (7.1a). If not, a violated q-wheel inequality is

presented.

o Checking whether all g-bicycle inequalities (7.7), ¢ > 5 and odd, are
met by a given rational vector z € [0, 1](3), n > 3, which meets all
triangle inequalities (7.1a). If not, a violated g-bicycle inequality is

presented.

Separating the class of clique inequalities (7.1b), however, is A"P-hard
if k£ is considered as part of the input:

Proposition 7.31. Given the complete graph K,, n > 3, and a rational
5

vector z € [0, 1]( ), decide whether the inequality

221721

5,J€Q
is met for all Q C V(K,) with |Q| =k + 1. This problem is N'P-hard.

Proof. The proof is a simple reduction of the INDEPENDENT SET prob-
lem, see Garey and Johnson [1979, GT20], to the separation problem.
We are given a graph G = (V, E)) for which we want to know whether
it contains an independent set of size k + 1. Let n = |V, and define
z € [0, 1](3) by z; = 1if i € F and z;; = 0 otherwise. Then z violates
the clique inequality ZZ jegr % = 1 if and only if Q* is an independent
set of size k + 1 in G. O

One may think of several heuristic ways to separate violated clique
inequalities. One simple-minded example is the following. Given a ra-
tional vector z € [0, 1](3), let G, = (V, E,) denote the subgraph of K,
with 7j € E, if and only if 2z;; < (kgl)_l. For every clique in (G, of
size k 4+ 1, a corresponding clique constraints is violated by z. Testing
whether such a clique exists is, of course, also N"P-complete. But a sim-
ple greedy heuristic may often find such a clique as long as not very many

clique constraints have been separated. Another example is the heuristic
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described by Krumke [1996, Section 5.5]. This heuristic is a polynomial
time 2-approximation algorithm as long as the metric triangle inequalities
(25 + zjx > 2y;) are all satisfied by z.

Recall that the clique inequalities (7.1b) are a special case of the hy-
permetric inequalities (7.12). The complexity status of separating hyper-
metric inequalities is not yet fully settled in general. Deza and Laurent
[1997, Section 28.4] discuss this issue and give references to related work,
e. g., on heuristic approaches to separate hypermetric inequalities. To our
best knowledge, the complexity of separating cycle inequalities (7.16) is
not fully settled as well. The following holds in general.

Proposition 7.32. Suppose there exists a class of polytopes Pc, ,, 2 <
k <n, such that
(i) P<r(Kyn) € Pe,, C 0, 1](3) for all2 <k <mn;
(i) the inequality system C,y defining Pe, , is separable in polynomial
time for all 2 < k <mn;

(i) there exists a 6 > 0 for which § min,ep_, (k) ¢’ 2z < min,ep, . 'z

holds for all ¢ € {0, 1}(3) and all 2 <k <n;
then P = NP.

Proof. Let G = (V, E) be a graph on n vertices. We define ¢ by cg- =1
if ij € E and ¢} = 0 otherwise. The MINIMUM K-PARTITION problem
associated with ¢“ has optimal value min,cp_, (x,) (c°)"z = 0 if and only
if G is k-partite (or k-colorable), and at least 1 otherwise.

By assumption (i), the result of Grétschel et al. [1988, Theorem 6.4.9]
concerning the use of a strong separation oracle for solving the strong
optimization problem in oracle-polynomial time implies that any linear
function can be optimized over Pc,, in polynomial time. (Notice that
Pe, , is “well-described.”)

Exploiting assumptions (i) and (74i), we can therefore check in poly-
nomial time whether the graph G is k-colorable. Since this problem is
known to be N'P-complete, compare Garey and Johnson [1979, GT4],
the assumptions taken together imply P = N'P. O

Recall in this context from Corollary 7.17 that every valid inequality
a’'z > ag with positive right-hand side has to have a support of size at
least (’“2“1). For k = 50,75,43, this is 1275 2850, and 946, respectively.
In addition to the problems of identifying violated inequalities with such

a large support, there is another potential problem source. If many such
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inequalities are separated in the course of a branch-and-cut procedure,
this may lead to numerical problems in the LLP-solver. With this in mind,
we proceed to the next chapter. There, we argue that the semidefinite
relaxation (6.5) of the MINIMUM K-PARTITION problem can be solved
g-approximately in polynomial time and that its set of feasible solutions
can be seen as an reasonable approximation of the polytope Py (K,).



CHAPTER 8

Semidefinite Relaxation of the
Minimum k-Partition Problem

Lower bounds on the optimal solution of several MINIMUM K-PARTITION
instances are reported in Section 6.3. We use these results to bound the
unavoidable interference in a frequency assignment problem from below.
The bounds are obtained from (approximately) solving the semidefinite
relaxations (6.5) from Section 6.2.2. Semidefinite programming is the
task of minimizing (or maximizing) a linear objective function over the
convex cone of positive semidefinite matrices subject to linear constraints.

Here, we discuss the strength of the semidefinite relaxation. We relate
the solution set of the semidefinite relaxation to the polytope P<j(Ky,,)
as defined in Section 7.1. This is done by considering a projection of an
affine image of the solution set into R(%). The image of the projection
is called Oy, and contains P<;(K,). We bound the extent to which the
valid and often facet-defining hypermetric inequality (7.12) for P, (K,,)
may be violated by points in ©,. We prove that this bound is tight
in several cases. We also show that, for the MINIMUM K-PARTITION
problem, neither the LP relaxation of the ILP formulation (6.2)/(7.1)
nor the SDP relaxation (6.5) is generally stronger than the other.

The chapter is organized as follows. We fix notation in Section 8.1. A
short introduction to semidefinite programming is given in Section 8.2.
We treat the semidefinite relaxation (6.5) of the MINIMUM K-PARTITION
problem and its connection to the elliptope in Section 8.3. The relation
between the polytope P<i(K,) and the set Oy, is studied in Section 8.4.
Finally, we state possible directions of further research in Section 8.5.

8.1 Preliminaries
We recall here basic properties of symmetric and positive (semi-)definite

matrices, which are used in the following sections. See Appendix A for
general notation.
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symmetric and
skew-symmetric
matrices

orthonormal

orthonormal
diagonalization

positive
(semi-)definite

A square matrix A is symmetric if the matrix is identical to its trans-
pose, i.e., A = AT. The set of n x n-dimensional symmetric matrices is
denoted by S,. The matrix A is skew-symmetric if A = —AT. The two
sets of n-dimensional symmetric and of skew-symmetric matrices form
orthogonal subspaces of R**" of dimension (";1) and (g), respectively.
Every square matrix can be written uniquely as the sum of a symmetric

and a skew-symmetric matrix:

LA+ AT A AT

A
2 T

The inner product of two matrices A, B € R™*" is defined here as
(A,B) = >0 275 AiiBij. For the inner product of a square matrix
A € R¥™ and a symmetric matrix X € 5,,, the skew-symmetric part of
A is irrelevant, because

A+ AT A— AT A+ AT
(A4, X) =(—— X))+ {(—— X) = (—— X).
2 2 2
N—r— —
=0
A matrix P € R"" is orthonormal if its column vectors pi,...,p,

satisfy ||pi|| = 1 (they are unit vectors) and (p;,p;) = 0 for i # j (they
are pairwise orthogonal). A diagonal matrix D € S, is an orthonormal
diagonalization of a matrix A € R**" if D = PT A P for some orthonor-
mal matrix P € R**". The following result from linear algebra states
that every symmetric matrix has an orthonormal diagonalization.

Proposition 8.1 (orthonormal diagonalization). Let A € S,,. All
etgenvalues of A are real. There exists an orthonormal matriz P € R
such that PTAP = Ay, where Ay is a diagonal malriz for which the

entries are the eigenvalues of A. The column vectors of P are eigenvectors
of A.

An immediate consequence of the orthonormal diagonalization is that
every symmetric matrix can be written as the sum of rank-one matrices.

Proposition 8.2. Let A € Sy, then A=Y""  N(A)pipi", where \;(A),
i =1,...,n are the eigenvalues of A and the p;’s are associated eigen-
vectors.

A symmetric matrix A € S5, is positive semidefinite or A > 0, for
short, if 27 Az > 0 for all x € R™. If, in addition, 27 Az > 0 for
all z # 0, then the matrix is positive definite or A > 0, for short.The
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subsets of S,, consisting of all positive semidefinite and positive definite
matrices are denote here by S;™ and S+, respectively. The following two
propositions give known characterizations of positive semidefinite and
positive definite matrices.

Proposition 8.3. Let A be a symmetric n X n-matriz. The following
properties are equivalent:

(1) A is positive semidefinite.
(11) All eigenvalues of A are nonnegative.

i can be written as the product of a matriz C of ran and its
iii) A can be written as the product of a matriz C of rank(A) and it
transpose, A = CCT .

(iv) (A, B) > 0 for all matrices B € S;7 (Fejer’s Trace Theorem,).

(v) det(A;r) > 0 for every principal submatriz A;r of A.
Moreover, for each positive semidefinite matriz A holds:

(i) If B € S* and (A, B) = 0, then AB = 0.

(i1) A diagonal element is dominating all entries, 3i : Ay = max{\Akl| \
1<k, 1< n}, and if a diagonal element is zero, so are all entries
in the corresponding row and column, i. e., A = 0 implies A;; =0
for all 5.

(i) If B € R*™ is 4 reqular matriz, then A € ST < BTAB € S;.

Proposition 8.4. Let A be a symmetric n X n-matriz. The following
properties are equivalent:

(i) A is positive definite.
(i1) All eigenvalues of A are positive.
(iii) A is the product of a reqular matriz C' and its transpose, A = CCT.

(i) det(Ap) > 0,5 =1,....,nand I, C --- C I, for a nesled se-
quence of principal submatrices.

Moreover, for each positive definite matriz A holds:
(i) If B € ST+ is another positive definite matriz, then (A, B) > 0.
(ii) If B € R™"™ is regqular, then A € ST < BTAB € SI.

171
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(strictly)
diagonally
dominant

A matrix A € R*™" is diagonally dominant if |A;| > 370, il Ayl
holds for all ¢ = 1,...,n. In case the inequalities are all strictly fulfilled,
then the matrix is strictly diagonally dominant. The following sufficient
criteria for being positive (semi-)definite are direct consequences of Gers-

gorin’s disc theorem.

Proposition 8.5. Let A € S5, be diagonally dominant with nonnegative
entries on the principal diagonal, then A s positive semidefinite. In case
the principal diagonal is positive and A is strictly diagonally dominant,
then A is positive definite.

The trace of a square matrix is the sum of its eigenvalues. Bounds on
the inner product of two positive semidefinite matrices are easily obtain-
able from this fact.

Proposition 8.6. Let A,B € St. Then (A, B) can be bounded from
below and from above:

)\mm(A))\maw(B) S )\mm (A) tI'(B)
<{4,B) <
Ama;c (A) tI(B) < nAmaw (A)Ama:c(B)

Given a symmetric matrix for which it is known that some principal
submatrix is positive definite, the following theorem states the neces-
sary and sufficient condition under which the entire matrix is positive
semidefinite.

Theorem 8.7 (Schur complement). Let A € SIt B e R™™ ( €
Sy, then

T 4—1
BT C}EO@CEBA B.

[ A B
A partial characterization of the cone S; of positive semidefinite ma-
trices is the following.

Proposition 8.8. The set of positive semidefinite matrices S; is a full-
dimensional, closed, and pointed cone in the vector space S, of symmetric
matrices. The positive definite matrices St are the interior of this cone.

Proof (Folklore). Obviously, S is a nonempty cone. In order to see
that S is pointed, pick any A € S other than the matrix containing
only zeros. There exists a vector x € R” such that 27 Az > 0. Thus,
' (—A)z < 0, and —A ¢ S;. Now, consider the set of symmetric
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matrices that have ones at positions (4,17), (j,7), (¢,7) and (j, ) and zeros
elsewhere for possibly equal ¢ and j. There are ("'QH) such matrices,
all of which are positive semidefinite and mutually linearly independent.
Thus, S;F is full-dimensional. Finally, a symmetric matrix is positive
semidefinite if and only if all principal subdeterminants are nonnegative,
and it follows from continuity that S is a closed set. O

The polar cone C* of a cone C C R™ is the set C* = {y € R" |
Ve € C : (y,z) > 0}. Hence, another way of stating Fejer’s Trace
Theorem, see Proposition 8.3, is to say that the polar cone of positive
semidefinite matrices coincides with itself, that is, S; is self-polar. This
fact is important in the duality theory of semidefinite programming.

Proposition 8.9. S = ST
We state the simple proof.

Proof (Folklore). ST C S*:  Consider A € S and let Ay = PAPT
be its eigenvalue decomposition with PPT = I, see Proposition 8.1.
Then, for every positive semidefinite B € S;I,

(A, B) = (PAAPT,B) = (PA4, BP) = (Ay, PTBP)

=) M(A)NP)'BP. >0,
i=1

since \;(4) > 0 and (P,)" BP. > 0. Thus, A € Si".

St D S The square matrix zz” of rank one is positive semidef-
inite all z € R". If A € St* then 27 Az = (A, z2") > 0, and hence,
Ae St O

Given two convex sets F' and C with F' C (', the set I is called a
face of C ifz,y € C,a €]0,1,ax + (1 — o)y € F = x,y € F. The
cone S;" has the following faces.

Theorem 8.10. Each face F of S, is one of the sets 0, {0} or { PWPT |
W e S,j} for some k, 1 <k <n and some P € R** with PTP = I,.

Every positive semidefinite matrix can be expressed as Z?:l P
with A; > 0 according to Proposition 8.2. For each x € R" the set
{Azz™ | X > 0} is a face of S}. None of these faces can be expressed as
the convex combination of smaller faces of S;. Hence, {X = zz" | ||z]| =
1,z € R”} is a minimal generating system of S/ (strictly speaking, a
restriction like “the first nonzero coordinate of each x is positive” has to be

polar cone

self-polar

face
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D*B(n)

E(m,n)

added). This implies that the cone S is not polyhedral, i.e., S} cannot
be described as the intersection of finitely many hyperplanes for n > 1.
Since the faces of S;F have dimension (k;’I) for some k, there are gaps of
more than one between the dimensions of nested faces.

Let A;, i = 1,...,m, be symmetric matrices from S,,, then a linear
operator A: S, — R™ is defined via,

<A17X>
X—AX = :
(Am, X)

The adjoint operator AT: R™ — S, of Ais given by y — > y;4;, and

(X, ATy) = (AX,y) = ZyZAZ,X ZyZAZ,X

The following three simple results are used in Section 8.4.

Observation 8.11. Let X € S, m > n, and J C {1,...,m} with
|J| = n. There exists a matriz X € SF such that X = XJJ

Proof. Let X be the identity matrix I, with the submatrix I, replaced
by X. (Il

Notice that if X is positive definite, then the constructed matrix X
is also positive definite.

In the course of our further calculations, matrices of a particular struc-
ture are of importance. Let D*#(n) denote the symmetric square matrix
of order n > 1 with all entries on the principal diagonal equal to a and
all other entries equal to 8. Let E(m,n)e R™" be the matrix with all
entries equal to 1. The following properties of D*?(n) are easily observed.

Proposition 8.12. For n > 1, the determinant of D%P(n) is given by
det(D*(n)) = (a = B)" " (e + (n — 1)8).

For 8 & {=%,a} the matriz D*F(n) is regular and its inverse is

1
" (@B (atm-1n5)

D*B(n) is positive semidefinite if and only if o > 8 > > =% it is positive
definite if and only if strict inequality holds in both cases (In casen =1,
D% (n) = [04} and 3 is assumed to be 0 in the above formulas. Moreover,
the condition “8 > =% becomes void.)

Da,ﬂ(n)_l Detn=28.-8(p), (8.1)



8 SEMIDEFINITE RELAXATION OF MINIMUM k-PARTITION

175

We are interested under which conditions on «, 3, 7, 4, and & the
matrix

_[Do(s) yE(s,1)
A= LE(m Déﬁ(t)] 8.2)

is positive semidefinite. They can be derived by means of the Schur
Complement, see Theorem 8.7.

Proposition 8.13. Given integers s,t > 1, the matriz

_ [D%P(s) ~E(s,t)
A= [VE(t7 5) 7D‘S’g(t)]

is posilive semidefinite if and only if D?(s), D% (t) are both posilive
semidefinite and (o + (s — 1)B8) (6 + (t — 1)) > stv* holds.

Proof. Clearly, the composite matrix cannot be positive semidefinite un-
less D%?(s) and D%(t) are both positive semidefinite.

We first deal with the case of D®?(s) being positive definite. By the
Schur Complement Theorem 8.7, A is positive semidefinite if and only
if DO(t) = ~ E(t,s) D%8(s)" v E(s,t). We compute the expression on
the right-hand side of this inequality:

v E(t,s) Dot(=28:-8(s) E(s,t)
(a—B)(a+(s—1)8)

— 72 (04_6) E(tas) E(‘S?t)
(a—B)(a+ (s—1)8)

__ s

Ca+(s—1)8 B, 1)

v E(t,5) D*(s)" v E(s,1) =

For w = —-w, DI@==e(t) = DP(t)—y E(t,s) D*?(s)" v E(t, s). By
Proposmon 8.12, this matrix is positive semidefinite if and only if § > |¢]

and e —w > —(0- “’). After resubstituting for w, the latter condition reads

=
s (a+(s—1)8 )(5—|—(t— 1)e) > sty
Finally, let D*#(s) be positive semidefinite. Then D**%?(s) is pos-
itive definite for all # > 0. Let A(f) denote the matrix A with « being
replaced by « + 6. From what is proven so far, A(f) is positive semidefi-
nite if and only if (a4 6+ (s — 1)8) (6 + (£ — 1)g) > sty for all 6 > 0.

The claim now follows from the fact that S(+ ) is closed. O
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primal
semidefinite
program

8.2 Semidefinite Programming

In a semidefinite program a linear objective function is minimized (or
maximized) over the cone of positive semidefinite matrices subject to
linear constraints. This cone is closed and convex but not polyhedral.
The duality theory for semidefinite programming is not as smooth as
that of linear programming. A gap between the optimal primal and dual
objective function value is possible. This gap vanishes under a simple
condition, which holds for the MINIMUM K-PARTITION relaxation.

We give a brief introduction to semidefinite programming here. More
comprehensive treatments of this topic are, for example, given by Al-
izadeh [1995], Helmberg [2000], and can be found in the book edited
by Wolkowicz, Saigal, and Vandenberghe [2000].

The generic primal semidefinite program reads as follows:

min(C, X) s.t. AX-beK X >0 (P-SDP)

K is one of the following convex cones: {0}™, R, or {0}™ x R}*.
This formulation is not entirely standard but has been used before. The
appearance of the cone K may seem awkward at first. In the cases
K ={0}", K =R7, and K = {0}™ x R} the corresponding semidefi-
nite programs have equality constraints, inequality constraints, or a mix-
ture of both. Hence, all cases of linear constraints can be represented
adequately. Moreover, we will also have a nice formulation when turning
to the dual program.

If the inner product in the objective function is spelled out and the
effect of the operator A of X is written explicitly, then it is obvious that
the objective and all restrictions are indeed linear. The only nonlinear
ingredient is the condition “X > 0.”

What constraints does X > 0 impose on the entries of X7 We give
some examples. Straight from the definition of positive semidefiniteness
follows that all diagonal elements have to be nonnegative. Moreover, the
absolute value of each off-diagonal element is bounded from above by the
maximum of the diagonal elements in its row and column. A strength-
ening of this constraint is obtained by considering the determinant of
2 x 2 principal submatrices. Let J = {4, j} with 1 <4, j < n, then the

Xii X } is itself positive semidefinite, and a short

submatrix X;; = [X,_ X
¥ 27

computation yields
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Hence, |X;;| < 4/X;iX;; has to hold for all ¢ and j.

In order for a real, symmetric, 3 X 3-matrix to be positive semidefinite,
it is necessary but not sufficient that all principal 2 x 2 submatrices are
positive semidefinite, recall Proposition 8.3. We give an example for the
insufficiency. The parameterized matrix

1
a
c

S =R
= o0

has the determinant 14 2abc— a? — b? — c2. Hence, this matrix is positive
semidefinite if and only if —1 < a,b,¢ < 1 and 1+ 2abc —a® — % —¢? > 0.
If we set a = b =1 and ¢ = 0, then all three 2 X 2 principal submatrices
are positive semidefinite, but the determinant is —1 and the matrix itself
is thus not in S3". Similarly, the positive semidefiniteness of a matrix
in S can generally not be solely guaranteed by the fact that all its
(n — 1) x (n — 1) principal submatrices are in S;_;. We do not pursue
this further and turn to the duality theory of semidefinite programming
instead.

The dual semidefinite program is obtained by a standard Lagrangian
approach:

inf (C, X) s.t. AX—-be€ K= inf sup{(C,X)+(b—AX,y)

X>0 XeST ye K~

> sup inf (C,X)+{(b— AX,y)

yeK* Xe8;

=sup inf (b,y) + (C — ATy, X)

yeK* XES;T

=sup(b,y) s.t. C—ATyes
yeK*

Using that ST is self-dual, i.e., (S:[)* = S, we may define the generic
dual semidefinite program as follows:

max(b,y) s.t. C—ATy>=0,ye K* (D-SDP)

The dual cones of K = {0}, K = R}, and K = {0} x R} are R™,
R?, and R™ x RT?, respectively. In other words, a dual variable asso-
ciated to an equality constraint is unrestricted, whereas a dual variable
associated to an inequality constraint has to be nonnegative. This is in
perfect accordance with what we know from linear programming.
Notice that in the same fashion as above, a more general optimization
problem can be “dualized.” One may replace the condition “X > 0” (or,

dual semidefinite
program
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equivalently, “X € ST”) by the condition X € L for any convex cone
L, see Ben-Israel, Charnes, and Kortanek [1971], for example. Instead
of the self-dual cone of semidefinite matrices, the polar cone L* then
appears in the constraint section of the dual program. Take L = R? and
K = {0}™, for example, then the primal program is a linear program
with equality constraints and nonnegative variables. The corresponding
dual program has inequality constraints and its variables are unrestricted.
Thus, classical weak LP-duality appears as special case.

Although (D-SDP) does not look like a semidefinite program at first,
it is one nevertheless. The feasible sets of the primal and of the dual
program are both intersections of an affine subspace with the semidefinite
cone, see Nesterov and Nemirovskii [1994)].

Weak duality holds as explained above.

Proposition 8.14 (Weak duality). For a semidefinite program and its
dual the following holds:

sup{(b,y) | C — A"y = 0,y € K*} <inf{{C,X) | AX —be K,X = 0}
with inf() = +oo and sup® = —occ.

Strong duality does not always hold. Here is an example with a
duality gap, taken from Vandenberghe and Boyd [1996].

Example 8.15 (Missing strong duality). Consider

010
min(|3 0 0|,X) st AX=[10 0 0], X>0
0 00
with
0 _71 0 1 00 0 01 0 00
A= _71 0 0f,A2=1(0 0 0],A43=1]0 0 O0f,A,=1(0 0 1
0 0 1 0 00 100 010
The corresponding dual semidefinite program s
4 —Y2 leH —Y3
maxy, S. L. Z=C—ZyiAi: leH 0 —ys| =0.
i=1 —Ys —Ys —h
Since the diagonal element Zsy is zero, the elements Z1o = 912—“ and
Z3g = —1ys tn the corresponding row and column have to be zero as well.
Consequently, y1 = —1, and the maximum of —1 is achieved by y =

[—1 0 0 O}T. The optimal value of the primal semidefinite program is
0. Hence, there is o duality gap of 1.
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Conditions are known under which a duality gap does not occur.

Definition 8.16 (strictly feasible). (P-SDP) is strictly feasible if there strictly feasible
1s a solution which is positive definite, i. e., if the interior of the set of

solutions is nonempty. Analogously, (D-SDP) is strictly feasible if the

interior of the set of dual solutions is nonempty.

Recall that K is one of the convex cones K = {0}", K = R7, or
K = {0}™ xRI”. In these cases strong duality holds if the dual program
is strictly feasible, see, e. g., Helmberg [2000]. Stoer and Witzgall [1970],
for example, describe more general results on strong duality.

Theorem 8.17 (Strong duality). Assume (D-SDP) is strictly feasible,
then

inf{{C,X)| X = 0,AX —be K} =sup{{(b,y) |y € K*,C — A"y = 0}.

If this value is finite, that is, in case the primal problem is feasible, then
the optimal value is attained for some X = 0 with AX —b € K.

The strict feasibility in the theorem is indeed necessary. Here is a
folklore example to illustrate this.

Example 8.18. Consider

. _ Xll 1
min X;; s.t. X = [ 1 ng]

and its dual

1 —In
. L. = 0.
max2y; .1 [_yl 0 ] =0

The primal problem is strictly feasible, e. g., X »= 0 for X13 = X9y = 2.
The dual optimal solution 0 is attained for y, = 0, which is, in fact, the
only feasible solution. Due to the condition X > 0, X11 and Xoy must
satisfy X11,Xoo > 0 and X113 Xoo > 1. Consequently, X1, > X%z For
Xo9 — 00, the right-hand side tends to 0. The primal optimum value is
nol attained.

Assume that we want to solve

mina(C, X)+ 4 st. AX—-be K X *0, (8.3)
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where «, 5 are real numbers, o > 0, then we may as well solve
min(C,X) s.t. AX-be K, X =0, (8.4)

multiply the optimal value by « and add 3. The optimal solutions them-
selves are the same in both cases. A minor technical difference concerns
the dual programs. In the former case, the dual is

max{(b,y) + 8 s.t. aC—Aly>=0,ye K*,

whereas scaling and shifting the objective function of the dual to (8.4)
yields
maxa(b,g) + 3 s.t. C—ATg=0,5€ K*.

Those programs are equivalent. This can be seen by substituting ay for
y in the first dual and canceling « in the constraints. (Recall that oo > 0
and that S is a cone.)

Hence, in order to obtain a lower bound on the optimal value of the
primal program (8.3), we may try to find a feasible solution to

max(b,7) s.t. C—AT5>07¢€ K*.

If § is such a feasible solution, then a(b, ) + § is a lower bound. This
procedure is applied a number of times in Section 8.4, and we summarize
it for reference.

Observation 8.19. Let y be a feasible solution to
max{(b,7) s.t. C—ATg>=0,9€ K*.
Then afb,y) + B is a lower bound for
mina(C,X)+ 5 s.t. AX—-be K, X > 0.

Finally, we turn to the computational complexity of solving semidefi-
nite programs. Such programs can in general not be solved in polynomial
time. One reason is that the feasible set is not generally contained in a
sufficiently bounded area around the origin. In fact, it is not even known
whether testing the solution set for nonemptiness is in AP in the Turing
model of computation, see Ramana [1997] and the references contained
therein. If, however, the feasible set of the semidefinite program is known

to be contained in the hypercube [—1, 1](@1), for example, then an opti-
mal solution can be approximated with arbitrary precision in polynomial
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time. This is a consequence of the general theory on optimization over
circumscribed convex bodies developed by Grétschel et al. [1988].

In order to make this more precise, let us recall what the weak opti-
mization problem is. The definition relies on the following two notions.
Given a convex set K C R™ and a real number £ > 0, the e-ball around
K is defined by

B(K,e) ={z € R" | ||z — y|| < & for some y € K },

where ||z — y|| = v/(z — y,x — y) is the Euclidean norm in R", and the
interior £-ball is defined as

B(K,—¢) ={z € K| B({z},e) CK}.

Definition 8.20 (Grotschel et al. [1988]). An instance of the weak
optimization problem consists of a compact and convexr set K, a vector
c € Q", and a rational number € > 0. The task is to either

e find a vector y € Q™ such that y € B(K, ) and {c,z) < {c,y) +¢
for all x € B(K, —8), or

e assert that B(K, —8) is empty.

A simple adaptation of the proof of Theorem 9.3.30 by Groétschel et al.
|1988] shows that for every fixed £ > 0 the weak optimization problem for
a semidefinite program is solvable in a running time which is polynomially
bounded in the two parameters n and K. Here, n is the dimension of the
space, and R is the radius of a ball around the origin which is known to
contain an optimal solution.

The hypercube [—1, 1](71;1) is contained in B({O}, n), and the Corol-
lary 4.2.7 of Grotschel et al. [1988], concerning the use of a weak separa-
tion oracle for efficiently solving the weak optimization problem, imme-
diately yields the following.

Proposition 8.21. Let F C [—1, 1](11;1) be the feasible set of a semidef-
inite program with m linear constraints. Then, for every fired ¢ > 0, the
weak optimization problem over F' can be solved in polynomial time in m
and n.

If € is considered part of the input, then the running time of the
ellipsoid method, used for the proof of Corollary 4.2.7 by Grétschel et al.
|1988], depends exponentially on the coding length of .

In the above mentioned counterexample for the general solvability of
semidefinite programs in polynomial time the radius R grows exponen-
tially in the size of the problem formulation.

e-ball around K

interior g-ball

weak optimization
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8.3 The Minimum k-Partition Relaxation

In Section 6.2.2, the program (6.4) is stated as an alternative formula-
tion of the MINIMUM K-PARTITION problem and the program (6.5) is its
semidefinite relaxation. After having elaborated on the basics of semidef-
inite programming, we now come back to this relaxation. We study the
semidefinite program (6.5) from a particular point of view. Namely, we
relate the set of feasible solutions to the semidefinite program to the k-
partition polytope P« (K,) as defined through (6.4) in Section 6.2.2, see
also (7.1) in Section 7.1.

We briefly recall how the semidefinite program (6.5) is obtained.
Given are a complete graph K,, on n vertices together with an edge
weighting w: F(K,) — R and an integer &k, 2 < k < n. We assume for
notational convenience that the vertex set of K,, is {1,...,n} and that
the edge set is {ij |1 <i<j< n} According to Lemma 6.4, we may
pick a set U of k unit vectors uy, ..., u; € R"™ such that (u;, u;) = k_—_ll for
all pairs of distinct vectors. Let T : R — R be the affine transformation
T — %x + L mapping 1 onto 1 and ,;Tl onto 0. With the vectors as

k’ 1
labels, the MINIMUM K-PARTITION problem can be stated as follows:

¢}§1/13U Z wi Ty (D3, 95)) (8.5)
The weight of an edge is accounted for if and only if its endpoints have the
same label. Every such labeling of the vertex set defines a matrix X =
[<¢i’¢j>]1§i,j§n € R™™with the following properties: (i) X is positive
semidefinite; (ii) all entries on the principal diagonal of X are equal to
1; (iii) all off-diagonal entries of X are equal to 7= or 1; and (iv) X has
rank at most k.

In case the last property is not enforced and the second last is relaxed

to the request that all off-diagonal entries are between k_—_ll and 1, an
optimal matrix X can be found by solving the semidefinite program:
k—1 1
i W, X)+—W E
s. t.
(E% X) =1 Vi=1,...,n (8.6)
g -1
<EU7X>ZF Vi,jE{l,...,n},i<j
X=0

This is the same semidefinite program as (6.5) in Section 6.2.2, only stated
in a different way. Here, W denotes the symmetric matrix obtained
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n
2

from the vector w € R(3) by letting Wy; = 0 and W,; = w;; for all
1 <1 < j < n. Moreover, E¥(n) denotes the symmetric n x n-matrix
with an l-entry at positions (i, 7) and (j,¢) and zeros elsewhere. If the
dimension is clear from the context we simply write E%. Let

—1
denote the set of feasible solutions of (8.6), then this semidefinite program
can be rewritten as

1
minE(VV,Tk(X)) s.t. X € Uy,

Since all the diagonal elements of elements X € ¥ ,, are equal to 1, all off-
diagonal elements are confined to take values between k_—_ll and 1. Thus,
Wy, , is contained in the hypercube in S, with vertex coordinates from
{—1,1}, and Proposition 8.21 implies that the semidefinite program (8.6)
is e-approximately solvable in polynomial time.

In the case of k = 2, Uy, is the elliptope

For £ > 2, ¥y, is obtained by intersecting the elliptope &, with the
half-spaces defined by X;; > k_—_ll for all 4,5 € {1,...,n}. Projections
of the elliptope &3 and the truncated elliptope W33 on the set of upper
triangular matrix entries are depicted in Figure 8.1. The elliptope is
studied extensively in the literature in terms of the following notions.

A boundary point Ay of the nonpolyhedral, but convex &, is an ez-
treme point if {Ag} is a face of &,; it is called a vertex if the cone of nor-
mal vectors to the hyperplanes supporting &, at Ag is full-dimensional.
Moreover, we denote the smallest face of £, containing A by Fg, (A). The
following characterizations are taken from Deza and Laurent [1997], but

most of them are originally due to Laurent and Poljak [1995, 1996b].
Theorem 8.22. The elliptope &£, has the following properties.
(i) The vertices of &, are the malrices vz’ for x € {£1}". There are

2"~ many of them.

(i) Let A be a boundary point of &, with rank(A) = r and let | =
dim(Fg, (A)), then

max (0, (T‘QH) —n) << (;)

Furthermore, for all integers r,1 > 0 satisfying the above inequality,
a boundary point A of &, with rank r and | = dim(Fg, (A)) exists.

EY

polynomial time

elliptope

extreme point
vertex
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balanced vector
gap of a vector

A “\*‘
yA“‘\‘\-- 0.5
X LU \ .

&

Figure 8.1: & and Uy 4

(111) Let F be a polyhedral face of &, with dimension k, then (kgl) <
n — 1. Conwversely, for every integer k > 1 satisfying (k;rl) <n-1
exists a k-dimensional polyhedral face of £,.

(iv) Given b € R™, the optimal value of the mazimization problem
max(hb’, X) s.t. X €6,

1s attained at a vertex of the elliptope if and only if

® Mingcqi,.m}|Dies bi = Dojesbil =0 and b < 32,,0b; for all

1=1,...,n; or

o |b;] > zj#]bj\ for some i€ {1,...,n}.

A vector b € R™ satisfying [b;| < . ;|b;| forall i =1,...,n is called
balanced, and the quantity mingci,  n}|> ;e bi — ZjeS‘ b;| is also known
as the gap v(b) of b in the literature.

The next section deals with the relation between the positive semidef-
inite relaxation (8.6) of the MINIMUM K-PARTITION problem and the
integer linear programming formulation (6.2) given in Section 6.2.2, see
also (7.1) in Section 7.1. For this purpose, the set of feasible solutions
to (8.6) is mapped injectively from R("?") to R(3) in such a way that
the objective function values are preserved. The image of this injection
is called O ,. We study relations between Oy, and P, (K,).
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The affine transformation 7}, is extended from R to S,, (which is iso-
morphic to R(ngl)) by letting
k—1 1
(Recall that E(n,n) is the n X n matrix with all entries being equal to
one.) Which dimension applies will be clear from the context. Let
Cin: Sn = RE), X1 Goa(X) =2 with 2y = (T(X)),, fori <,
and consider Ok,n
Ok = CGon(Thn) = {Gen(X) | X € Uy, ). (8.8)
The restriction of (4, onto ¥y, is one-to-one and Ck:n“l‘k,n: Wyn = Opn
is an affine bijection. Moreover, for any given X € ¥, and any given
w € R(3) the identity
1
5 (W T(X)) = (w, Gn(X))
holds,where W is again the symmetric matrix obtained from w by letting
Wi =0and W;; = w;; forall 1 <7 < j < n.
A direct consequence of our definitions is as follows.
Observation 8.23. The optimization problems
1
min §<T/V, T(X)) s.t. X € Uy, and min{w,2) s.t. 2 € O,
are equivalent.
The affine image ©y, of the truncated elliptope ¥y, contains the
polytope P<j(K,) and is itself contained in the hypercube [0, 1](3)
Proposition 8.24. For every k > 2 and n > 3 with k < n, the set Oy,
s convex, and
Per(Kn) € Opn € [0,1]5).
We call O , a semidefinite relazation of P<i(K,). A related connec- semidefinite
tion between the MAXIMUM CUT polytope and the elliptope is observed relaxation

by Laurent and Poljak [1995, Lemma 4.1]. See also their Theorem 2.5,
which characterizes the vertices of the elliptope.
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Proof of Proposition 8.24. The set ©y , is obtained by projecting the pre-
viously scaled and translated convex set Wy, ,. As such, it is itself convex.

Let Vi,..., V] be a partition of the vertex set V(K,) into [ < k many
sets, and let z € R (%) be the characteristic vector of this partition, i.e.,
zij = 1if¢ and j are in the same class and z;; = 0 otherwise. Moreover, let

U = {uy,...,ux} be aset of k unit vectors such that the scalar product for
every pair of vectors is k_—_ll, see Lemma 6.4. Finally, let ¢: V(K,) - U

be the mapping that assigns each vertex in V| to uy, each vertex in V5
to us, and so on. The matrix X = [(@, ¢j>} 1<ij<n is then contained in
Uy and ((X) = 2. Consequently, P<yx(K;) C Gon(Vipn) = Op .
Finally, we observe that every matrix X € Uy, satisfies k__—ll <X <
1 for all (off-diagonal) entries. The left-hand side is explicitly enforced by
the corresponding conditions. The right-hand side is implicitly enforced
by fixing the entries on the principal diagonal to 1. (Recall that the
absolute value of every off-diagonal element in a positive semidefinite
matrix is bounded from above by the maximum of the diagonal elements
in its row and column.) Hence, (3, S, — R(3) maps every X € Uy,
onto a vector z with 0 < z; < 1 for all ij € E(K,). Thus, Oy, =

Gen(Tin) € [0,1]0). O
Moreover, Oy, contains only integral points from P, (K,).

Proposition 8.25. Giwen integers k, n with 2 < k < n, then O, and
P<i(Ky) contain the same integral points.

Proof. Let Z be an integral (binary) vector in Oy,. If at all, z vio-
lates triangle constraints (7.1a) or clique constraints (7.1b) by an integral
amount. Let X denote the preimage of zZ under the mapping (.. All
entries of the positive semidefinite matrix X are either k__—ll or +1.

No triangle constraint (7.1a) is violated either, because such a viola-

tion would imply that X has one of the matrices
-1 -1
_11 ] 1 1 =
res i
1 1

1
1, 1
-1

1 = 11 s

as a principal submatrix. In any case, the determinant is —(%)2 < 0.

Hence, none of these matrices appears as a principal submatrix of X.

According to Lemma 6.4, no subset ) of size larger than k can induce

a submatrix Xgq with all its off-diagonal elements equal to . Thus,

at least one off-diagonal element in Xgq equals 1 for each set Q of size
k+1, and, consequently, no clique constraint (7.1b) is violated by z. O
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The following observation is used in some of the following proofs.

Observation 8.26. For every matriz C' € S, the semidefinite programs

min Z Cini]' 8. 1.

1<i,j<n
g iy -1 .. .. (89
<E”,X¢Z‘> = ]_, <E”,X@'j> > m, V’L,j S {1,...,n},z<] ( )
Xes)H
and
. Yij

maXZyii — Z T_1 s. t.

-1 1<i<j<n (8.10)
C - Z yijEij € S:Lr, yiiER, yij€R+

1<i<j<n

are dual to each other and are both strictly feasible.

The dual variable associated to the primal constraint (E%, X) =1 is
ys;; and that associated to the primal constraint (E¥, X) > k__—ll is ;.

Proof. The two programs are simply (P-SDP) and (D-SDP), see Sec-
tion 8.2, specialized with particular constraints.

The identity matrix I, is positive definite and fulfills all inequality
constraints of (8.9) with strict inequality. Hence, it is in the relative
interior of the solution space, and the first program is strictly feasible.

The vector y € R(3) with g;; = — > 5 1|Cij|—n for all i and y;; = 1 for
all i < j is a feasible dual solution. All sign restrictions on y are strictly
met, and the matrix C' — 37, ;i o, ¥ij E"Y is positive definite, because
it is strictly diagonally dominant (see Proposition 8.5). Therefore, the
program (8.10) is strictly feasible, too. O

8.4 The semidefinite relaxation ©;, and P<,(K,)

As reported in Section 6.3, a nontrivial lower bound on the optimal value
of MINIMUM K-PARTITION problem can often be obtained from solving
the positive semidefinite relaxation (6.5)/(8.6). In search of an explana-
tion of this, our approach is to bound the maximal possible violation of
facet-defining inequalities for P<j(K,) by points in ©,. The results pre-
sented here are obtained in this context. We also show that neither the
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solution set of the LP relaxation of the MINIMUM K-PARTITION prob-
lem’s ILP formulation (7.1) is generally contained in ©y , nor vice versa.

While writing down this material, we became aware of the strong
connection to the elliptope and the related work of Laurent and Poljak
[1995, 1996a,b] as well as Laurent, Poljak, and Rendl [1997]. With their
results in mind, some of our findings are more easily stated and sometimes
also more easily proved. We also discovered that some of the results had
been known before, in particular, Proposition 8.28. We give our original
proofs, nevertheless. Sometimes, we indicate an alternative proof as well.

A close connection between the elliptope &€, and the polytope P<x(K,,)
is given by the following result, which characterizes &£, in terms of hyper-
metric inequalities, compare with Laurent and Poljak [1995].

Lemma 8.27.
En={X€S, | Xu=1fori=1,..

2 > bibXy > — Zzﬁ for allb e Z"}

1<i<j<n

If X is positive semidefinite, then, in particular, b Xb > 0 for all
b € Z". The inequality in Lemma 8.27 is merely a reformulation of this.
Conversely, b¥ Xb > 0 for all b € Z™ implies that this also holds for all
b € Q™. Because Q" is dense in R™, the latter implies that b Xb > 0 for
all b € R™, i.e., X is positive semidefinite.

Recall from Section 7.3 that the hypermetric inequalities (7.12) are
valid for P« (K,) and that they are also facet-defining under certain
conditions. If those inequalities are “shifted a little,” they become valid
for ©;,. The shift is obtained by changing the constant on the right-
hand side of the inequalities. The necessary change is bounded by %, see
Figure 8.2. Later, we state conditions under which this bound is tight
and others under which the bound can be improved.

Proposition 8.28. Given an integral k > 2 and an integral weight b; for
every vertez i € V(K,). The inequality

N bibzy > ( > ow) -k > 8 (8.11)
iJEE(I) i€V(Ky) i€V (Ky)
i valid for Oy 4.

Proof. Let b be the edges weighting obtained by setting I;ij = b;b; for
integral vertex weights b;. Moreover, let B denote the symmetric matrix
with b on its off-diagonal positions and zeros on the principal diagonal.
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Figure 8.2: Shifting the hypermetric inequalities (7.12) for the k-partition
polytope P<x(K,) by § < £ yields a valid inequality for ©y_.

Recall that solving

1 -
min Y bibjzi;s.t. 2 € O, and minE(B,Tk(X)) s.t. X € Uy,

ijEE(Ky)

is equivalent. We argue that the optimal value of the minimization prob-
lem on the right is bounded from below by the right-hand side of (8.11).
To this end, we show that y € R(3) with y; = —b7 and y;; = 0if i # j is
feasible for the dual program (8.10) with B in place of C. The claim then
follows from the fact that the objective function value of 4 scaled by
and shifted by o 2 > ijeE(K,) bibj matches the right-hand side of (8. 11)
recall Remark 8 19

First, the vector  as defined above is feasible: B — Y7 | (—b?) B —
> i<icj<n 0 E¥ =0b" = 0. Second, we have

(5 e s w

iEV(Ky) ZJEE (Kr)
_ (Z B4+2 3 bbi—k Y b2)
1€V (Ky) ij€E(Ky) 1€V(Ky)
- ( S on)-k Y b2>
€V (Ky) iEV(KR)

as desired. This completes the proof. [l
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The preceding proof uses a feasible solution to the dual program (8.10)
in order to give lower bound on the optimal value of (8.9) with the
primal cost matrix C = bb?, b € Z". This dual solution y is zero in
all entries corresponding to the constraints restricting the off-diagonal
values. Hence, the obtained bound also holds without those restrictions,
and, in fact, the same bound is obtained from Lemma (8.27) as follows.

The function (3, maps any matrix X € Wy, to a vector z € O,
such that X;; = k—il(k zi; — 1) holds for every 1 < i < j < n. Plugging
this into the inequality given in Lemma (8.27) yields

kaj—1 2%
2 S biby Zfl == > bz — s D bib = - Zb2

1<i<j<n 1<i<j<n 1<1<]<n

This is equivalent to the inequality given in Proposition 8.28.

The difference between the right-hand side of the hypermetric inequal-
ities (7.12) and the right-hand side of (8.11) is bounded by a term that
depends on the relation between the sum of the vertex weights b; and k.

Proposition 8.29. Given an integer k > 2 and an integral weight b;
for every vertex i € V(K,). Then the difference between the right-hand
side of the hypermetric inequality (7.12) for the polytope P<y(K,) and
the right-hand side of the hypermetric inequality (8.11) for Oy, is

k— : b;) mod &
Z b)) mod k) (Z’EV(;‘IZ) ) .

This expression is bounded from above by . The bound is attained if
(ZzeV(Kn) b;) mod k = 5

Proof. Let p = “Zzev ) )/kJ and r = (ZieV(Kn) bi) mod k, then
simply plugging these parameters into the right-hand side of (7.12) yields

k— (ZieV(Kn) b;) mod k
Snm( Z bi, k) + Z b;) mod k) o
i€V (Ky) iEV(K,)
T

k—
= fam(pk k
= fp (p + 7, )+?“ %




8 SEMIDEFINITE RELAXATION OF MINIMUM k-PARTITION

191

We expand this expression as follows:

k—r

frm(pk + 1, k) +r %

kp* k°p® r r? roor?
S _I_ k T r_-
( p T TR PTHEPTT St 9%

1
= —k(—k2p2+k3 pP—kr—2kpr+2°pr+kr’+kr—r?)

:2k (B*p* + 2 pr+kr* —k*p> —2kpr — 1r?)
_ (k—l)(pk—i—r)
B 2k

The right-hand side of (8.11) is

Zb—k2b2>

i€V (Kn) WEV(Ky,)
1 2
=%(2k S onb—k( Y ) (X B)Y)
iJEE(Kr) €V (Kn) 1€V(Kn)

_ Z b, b - 1) (ZiEV(Kn) bi)2

2k
JEE(Ky)
= D bibi—fam( X bik)
EB(Kp) 1€V (Kn)
k— 4 b;) mod k
Z b;) modk (ZZEV(K") )
2k
1€V(Ky)

The first part of the claim follows from this. As far as the second part

is concerned, we observe that 7"2—]; is a quadratic polynomial in r. Its

maximum of & s is attained for r = 5. This completes the proof. O

Other than the constraints on the variables to be binary, the integer
linear programming formulation (7.1) linked to P<(K,) contains only
constraints on triangles and on cliques of size k¥ + 1. Both classes of
constraints are facet-defining hypermetric inequalities for P<x(K,). Re-
call from Section 7.4 that the class of triangle inequalities (7.1a) can
be separated in running time O(n®) and that separating violated clique
inequalities (7.1b) is AN'P-hard if k is considered as part of the input.
Recall also from Section 7.3 that every inequality separating the origin
and the polytope P, (K,) has a support of size at least k(k; Y. With
this in mind, we observe the following.
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Proposition 8.30. Given the complete graph K,, and an integer k with
4 <k <n, then for every z € O,

zgtzyp—zy < 1+

V2(k—2)(k—1)— (k—2) [< \/5] (8.12)
holds for every triangle and
k—1 1
S oa oz 1-— > 5] (8.13)

holds for every clique Q) of size k + 1 in K,,. Both bounds are tight.

In other words, all triangle inequalities (7.1a) and all clique con-
straints (7.1b) are “more than half satisfied” by every point in ©y,, in
the sense that the violation is bounded by % rather than by 1, which
is worst possible. Both bounds are special cases of results to follow. A
direct proof can be given by considering a principal 3 x 3-submatrix of
X € Uy, in the first case and by applying Lemma 6.4 in the second case.

Before we continue investigating the relation between the polytope
P<r(K,) and its semidefinite relaxation ©y,, we look at the relation
between Oy, and the solution set of the LP relaxation of the ILP for-
mulation (7.1) to which P<g(K,) is associated. From Proposition 8.30
follows that ©j,, contains points which are infeasible for the LP relax-
ation of (7.1). Hence, Oy, is not contained in the solution set of the
LP relaxation. In general, the reverse inclusion does not hold either. In
order to see this, we fix integers k£ and n such that 4 < k < /n. Let
7 € R(3) be the vector with all coordinates equal to kLH Then Z is
feasible for the LP relaxation of (7.1) because 0 < Z;; < 1 for all i and
Z satisfies all triangle inequalities (7.1a) as well as all clique inequali-
ties (7.1b). The vector Z is, however, not contained in Oy ,, because the

valid inequality (8.11), with b; = 1 for every vertex i, is violated by Z:

. _fn\ 1  n(n-1) nin—k) 1
2 Zij_(z)kﬂ_z(kﬂ) s T AL

ijEB(KR)

This follows from k(n — 1) < (k+1)(n — k) < 0 <n —k?* and our
assumption y/n > k. In summary, the following holds.

Proposition 8.31. Given two integers k and n with 4 < k < /n, then
neither Oy, is contained in the solution set of the LP relazation of (7.1)
nor is the converse true.
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This is interesting, since the weak optimization problem over Oy, ,, can
be solved in polynomial time, see Proposition 8.21, whereas solving the
LP relaxation of (7.1) is A"P-hard, see Proposition 7.31.

We now turn back to studying relations between Py (K,) and Oy p.
The left-hand side of the inequality dealt with in the next proposi-
tion matches that of the general clique inequality (7.13), which is facet-
defining for P (K,) if the size of the clique is larger than & but not an
integer multiple of k.

Proposition 8.32. Given the complete graph K, and an integer k with
2<k<n. Let Q be a clique in K, of size larger than k. Then

> zw > ‘Q| (1Q| — &) (8.14)

iIfEE(Q
s valid for O, and there is a point Z € Oy, satisfying the inequal-
ity (8.14) at equality.

A proof using Lemma 6.4 is possible, but we give a more constructive
argument using SDP duality theory.

Proof. The inequality (8.14) is obtained from (8.11) by setting b; = 1 for
all © € Q and b; = 0 otherwise. Hence, it is valid for ©,.

Let ¢ = |@Q|. We show that there exists a feasible solution to the
optimization problem

1
mini(DO’l(q),Tk(X» s.t. X e,

with objective function value 2L(q — k). (See Proposition 8.12 for the
definition of D%!(q).) The claim then follows from Observation 8.11.
The matrix Dl’q_—_ll(q) is primal feasible, because all its entries on the
principal diagonal are equal to 1 and it is positive semidefinite, see Propo-
sition 8.12. The corresponding objective function value is as desired:

Lo (), T (DM (g))

2
= "5 (DM@, D @) + (0" a), Bla,)
_hlzalel) Loy

2%  gq-—1 2%k

1
= 2k( kg+q+q>—q)

q
= op(a—Fk)
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Under certain conditions on the relation among k, |S|, and |T|, a
“shifted 2-partition inequality” is tight for Oy,,.

Proposition 8.33. Given the complete graph K,,, n > 3, and an inte-
ger k with 2 < k <n. Let S and T be two nonempty, disjoint subsets of
V(K,) with |S| < |T|. Then

AB(S)) +2(B(T) - 2((5,T) > o (71 = 81) = k(T +15) (815)

is valid for ©y,,. Furthermore, there is a point Z € Oy, satisfying the
inequality (8.15) at equality if one of the following conditions holds:

(i) 1S =1 and |T| > k — 1;

(i1) |S| > 2, |S| + |T| < k and either |T| < [S|?, or |T| > |S|* together

: T—|S|?
with k < TASCER

Proof. The inequality (8.15) is obtained from (8.11) by setting

+1, 1€T,
bi=<¢ -1, i€ S,

0, otherwise,

and is thus valid for ©y,.
Let s = |S|, ¢ = |T, and let C** be the following symmetric matrix
of dimension (s + 1) x (s+):

Crs,t_ D0’+1(8) _E(Sat)
T |=E(t,s) D%i(t)

(See Proposition 8.12 for the notation.) We show that feasible solutions
exist to the optimization problem

1
min §(Cs’t,Tk(X)> s.t. X € Uy o0
with objective function value (=8P —k(t+s)  The claim then follows from
Observation 8.11. We give different primal feasible solutions for the cases
s=1and s > 2.
In case s = 1, we assume £ > &k — 1(> 2) and let

1 TE(1,1)

X = A :
1E(t,1) DY)
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The matrix X has only 1-entries on its principal diagonal and all of its off-
diagonal elements are no less than — . Moreover, X is positive semidef-
inite. This is verified by checking the condltlons of Proposition 8.13:

1> -

o+ | =

-1 -1 1 1\2
> 2L eeopZodond)
—t-1 an ( ) t 4 4
Consequently, X € ¥, .. For later reference, we state that (Cf X) =
2(—t) i +2()F=—2-(t-1)=—(t+1)=—(t+ ).

Now, the case s > 2 is considered. We assume that & > s+1{ and that

either t < 52, ort > s together with k < t:__:; holds. Let a = %,
¢

ﬁzk_—_ll,'yzs(’,‘;—__l),andset

v = |DPMs) vE(s 1)
~ [VE(t,s) DA(1)

We check the conditions given in Propositions 8.12 and 8.13 in order to
prove that X is positive semidefinite. First, D1%(s) is positive semidefi-
nite if 1 > o > —ﬁ, that is:

1 > o > - 1
- - s—1
— s(s=1)k-1) > tk-t)—sk—1) > —sk—-1)
= s(k-1) > k-1 > 0
£>2 9 k—1
> e >
& s > tk—l > 0

Both of the latter inequalities hold due to the conditions on the relations
among s, ¢, and k. (This can be verified by case distinction.) Second,
DY (t) is positive semidefinite if 1 > 8 > -1 e, 1 > =5 > t_ll,
which holds because 2 <t < k. Finally,

(14 (s =De)(1+(t=1)8)
stk—1)+tk—t)—s(k—1) k—1—-t+1
s(k—1) k-1
tk—1t) k—t B
stk—1) k—17"" s2(k—1)2

also holds due to s,¢ > 2. Thus, X is positive semidefinite. Next, we
show that X € W, by checking that the off-diagonal entries of X are no
less than k_—_ll This is obviously true for g and ~. For «, we distinguish
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the cases t = s and ¢t > s. If t = 5, then a = k_—_ll If £ > s, then:

Wk—t) —s(k—1) _ —1
GoDk—1) = k-1

oy =
= tk—-t)—s(k—-1)> —s(s—1)
= k{t-s)>t*-¢
— k>t+s

This holds by assumption.
Again, evaluating (C*!, X) yields:

<Cs’t,X>
:2<;>a+2(;>6—25t7
_ tk—1t)—s(k—1) -1 E—1t
= s(s — 1) Y +t(t—1)m—25t—s(k_1)
Ctk=t)—s(k—1) tt-1) 2t(k—1)
B k—1 k-1 k-1
_th—1—sk+s—1>+t—2k+20°
B k—1
= —(s+1)

Thus, in both cases the corresponding solution X yields (C**, X) =
—(s+1), and the resulting objective function values are:

k—1 . 1

LR X _ s,tE
5 (C*, )+2k<0 JE(s+1,5+1))
k-1 t(t—1)+s(s — 1) — 2st
= 5% (s+1)+ ok

—ks—kt+s+t+t?—t+s>—s5—2st
2%k

_(t—s)—k(t+s)
2k

This concludes the proof. [l

The treatment of the case |S| = 1 in Proposition 8.33 is not fully
satisfactory, because the most prominent representative of the 2-partition
inequality, namely, the triangle inequality, is not covered. The case of
|S| =1 and 2 < |T'| <k — 2 is therefore considered separately.
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Proposition 8.34. Given the complete graph K, and an integer k with
4<k<n. Let S and T be two disjoint subsets of V(K,) with 1 = |S| <
|T| <k —2. Then

2(B(5)) + 2(E(T)) - 2([S,T])

tk—0)k—1)— (k—1t (8.16)

Vik =tk -1) = (k=1 [>_\/q
k

is valid for O, and a point Z € Oy, fulfills (8.16) at equality.

>—1-

In the proof, we again exhibit primal and dual solutions with matching
objective function values. For the first time, however, the dual variables
y;; linked to the primal constraints (E%, X) > —1/(k — 1) are positive.

Proof. We give solutions X and y to the dual programs (8.9) and (8.10),
respectively, with matching objective function values for the primal cost
matrix C (see the proof of Proposition 8.33 for notation). We then
compute £L(CV XY+ - (CH, E(1 4+ t,1+ 1)) and show that this is the
desired value.

We first construct a solution y to the maximization problem (8.10).
Let a = % A short computation reveals that 0 < a < 1 provided
1<t<k—2 Letyy=-L yy=—afori=2,...,14t y; =91 =0
forallj=2,...1+¢t andy; =1—aforalleje{2,...,14+t},i <.
The vector y is a feasible solution because y;; > 0 for all ¢ < 7 and

1t i | /e —E(1,%)
CH = >, wBY = [—E(t,l) pea(r) | =

1<i<j<n

The latter is a direct consequence of Proposition 8.13.
The objective function evaluates to:

m

1
21 Y — m E Yij
1=

i#]
kb — ! k— ( _ ) k-
- (_ t(k:—lt)> (- t(k—1t)>_t1:—11 (- t(k—1t)>

B tk—t) tk—1)—t{t—-1) [ k=1 t{t—1)
TV k-1 k—1 tlk—t) k-1

N S

- - ()
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Next, we argue that the matrix

N B BLD|

| /i B 1) D) |

X =

is a primal feasible solution. Given that 1 < t < k — 2, all off-diagonal

entries are at least as large as k_—_ll By Proposition 8.13, X is positive

semidefinite. We check the only condition that is not trivially fulfilled:

Mwaaufm=ﬂfﬁi(££%)

The corresponding objective function value is

= R N =

Furthermore, we obtain the following for the dual transformed objec-
tive function value:

IR () - g

k=1 [ftlk—1t) (N1 t [(t\1
Tk k-1 _(2>E_E+(2>E
L VHE-DE-D - (k-1)

k
The claims concerning the validity and tightness of the inequality (8.16)
is thereby proven, compare Proposition 8.11 and Remark 8.19.

Finally, we show that —/# bounds the above term from below. A
straightforward application of I’Hospital’s rule yields that the expression
-1~ t(k_t)(kk_l)_(k_t) converges to —/t as k goes to infinity. It remains
to check that the value of the expression is bounded from below by —t:

tk—0)k-1)—(k—t
V<1 YEZDED -
= kVi—1>\ilk—1)(k—1)

L 2k VI P> (k= 1) (k= 1) [= k> — t(t + 1)k + 7]

E _okvi> —t(t+ Dk
1
=N P

2
The last inequality holds for all ¢ > 2. This completes the proof. O
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8.5 Summary and Outlook

The semidefinite program (8.6) is a relaxation of the combinatorial MIN-
IMUM K-PARTITION problem. It is known for more than a decade that
such a semidefinite program is, in principle, solvable in polynomial time.
Merely within the last one or two years, however, SDP solvers have ma-
tured to the point, where the semidefinite programs associated to graphs
of sizes in the order of a few hundred vertices become computationally
tractable in practice. We are now in the position to solve our large
semidefinite relaxations with a sufficient degree of accuracy in tolerable
running times.

The lower bounds obtained in Section 6.3 on the optimal value of a
minimal k-partition are higher than we had expected. The previously
known computational studies on related problems like the MAXIMUM
CuT problem (with k& = 2) or the graph partition problem with given
sizes for the partite sets and with values for k& up to 4, see Wolkowicz
and Zhao [1999], can hardly give an indication of what to expect for the
MINIMUM K-PARTITION problem for values of k& between 39 and 76.

We attribute the strength of the bound to a large extent to the “shifted
hypermetric inequalities” (8.11), which are implicit in the semidefinite
relaxation. Consequently, the solutions to the semidefinite relaxation
always fulfill at least partially every single valid (and often facet-defining)
hypermetric inequality (7.12) for the polytope P<y(K,). In particular,
with respect to the ILP formulation (7.1) of the MINIMUM K-PARTITION
problem, all triangle constraints (7.1a) are violated by at most v/2 — 1,
and all clique constraints (7.1b) are violated less than % Hence, in the
LP relaxation obtained from the ILP (7.1) by dropping the integrality
constraints, this corresponds to the simultaneous partial fulfillment of all
(exponentially many) constraints.

The semidefinite relaxation (8.6) of the MINIMUM K-PARTITION prob-
lem thus appears as an intriguing alternative to the classical LP relax-
ation. Due to the enormous amount of constraints the latter seems to
be hardly solvable in practice. If this bottleneck is to be by-passed by
adding the triangle and clique constraints as model cuts, then the sepa-
ration problem for the clique inequalities, in particular, has to be solved
effectively.

As an alternative to developing a traditional branch-and-cut algo-
rithm for solving MINIMUM K-PARTITION problems with guaranteed
quality, we may as well consider a branch-and-cut algorithm on the basis
of the semidefinite relaxation and an SDP solver. Successful applications
of this kind are reported by Helmberg [1995]; Helmberg, Rendl, Vander-
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bei, and Wolkowicz [1996]; Helmberg and Rendl [1998]; Helmberg and
Weismantel [1998]; Karisch, Rendl, and Clausen [1998], for example. In
their conclusion, Karisch et al. [1998] state: “Our results compare fa-
vorably to previously published ones [for graph bisection], which were
obtained with cutting plane methods based on linear programming re-
laxations.” As pointed out before, it is not even clear how competitive
lower bounds an LP-based branch-and-cut algorithm for the MINIMUM
K-PARTITION problem could provide for the instances we are interested
in, see Section 6.3.

In the context of an SDP-based branch-and-cut algorithm for the
MINIMUM K-PARTITION problem, the following points deserve consider-
ation.

e Further investigations concerning the relation between the polytope
P<r(K,) and its semidefinite relaxation ©, in order to give a
better theoretical underpinning of our empirically observed lower
bounds.

e A computational study of the strength of the semidefinite relaxation
on a larger set of MINIMUM K-PARTITION instances with known
optimal solution.

e For which classes of valid inequalities for P<,(K,,) is the separation
problem (heuristically) well solvable in practice and what is the
effect on the strength of the corresponding relaxation?

Another interesting issue is the generation of good k-partitions on the
basis of the solution for the semidefinite relaxation (8.6). How well, for
example, does randomized rounding perform? Which other heuristics are
of practical use?



APPENDIX A

Notation

The following survey on basic notation and facts from linear algebra,
linear programming, and graph theory is primarily intended to serve as
a glossary. For comprehensive introductions see, for example, Chvatal
[1983] or Padberg [1995] for linear programming; Schrijver [1986] or Nem-
hauser and Wolsey [1988] for integer linear programming; Schrijver [1986]
or Ziegler [1994| for polyhedral theory; Wolkowicz et al. [2000] for semidefi-
nite programming; West [1996] or Diestel [1997] for graph theory; Cormen
et al. [1990] for algorithms and data structures; and Garey and Johnson
[1979] as well as Ausiello et al. [1999] for computational complexity.

Basics

The cardinality of the set A is denoted by |A|. The Cartesian product
of two sets A and B is written as A x B. The set difference of A and B
is A\ B. The intersection and union of A and B are denoted by AN B
and A U B, respectively. The symbols C and C denote set inclusion and
proper set inclusion, respectively.

The sets of real, rational, and integer numbers are denoted by R, Q,
and Z, respectively. Their restrictions to the nonnegative numbers are
denoted by R, , Q,, and Z . The symbol K is used to represent Q and R
in cases where the definition or property applies to both fields. The set
of all column vectors with n components, n > 1, and entries from some
set B is denoted by B", in particular, R", Q", Z".

Let k£, n be a nonnegative integers. Then k! is equal to 1 if £ = 0
and equal to 1-... -k otherwise. Moreover, (Z) is equal to (n_”—k'),k, if
0 < k < n and equal to 0 otherwise. The expression n mod & stands for
the remainder of the integer division of n divided by k.

For z € K, the ceiling [z] of x is the smallest integer larger than or
equal to z, and the floor || of z is the largest integer less or equal to z.

For z,y € R, [z,y] and |z, y| denote the closed and open interval of
real numbers between x and y, respectively. Analogously, [z,y]g and
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|A]
Ax B, A\B
ANB,AUB
ACB,ACB

R, Q,Z

Ry, Q,Zy
K

R",Q",Z"
k!
(%)

n mod k
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incidence vector
support

3,V

<

Ay, A, Ay Apg

det(A)
tr(A)
singular
regular
AL I,
AT

('7')

(ABC)={A,CBT)
(A, zzT) = 2T Ax

scalar product

positive
(semi-)definite

+ gt
STL7STL

eigenvalue

eigenvector

|z, y[p denote the closed and open interval between the rational num-
bers x and y.

For a finite set E, the function z: E — K is identified with an |E|-
dimensional column vector z € K/, Given a finite set E and a subset
F C FE, the incidence vector of F in E is the |E|-dimensional vector
xF € {0,1}F with x(e) = 1 if e € F and x¥(e) = 0 otherwise. The
support of a function f: X — Y is the set {3: € X | flz) # O}. The
expression f, is used as an alternative to f(z).

The symbols 3 and V stand for the universal and existential quantifier.

Linear Algebra

The set K™*" consists of all (m x n)-matrices with entries from K. The
n-dimensional column vectors are identified with K**!. For a matrix
A € K™ ", the entry in row ¢ and column j is referenced by A;;, the 7th
row by A;., the jth column by A, and the submatrix consisting of the
elements in the rows contained in set / and the columns contained in set
J is referenced by A;;. If I = J, then Ay is principal submatriz of A.

The determinant of a square matrix A € K**" is denoted by det(A),
and its trace, i. e, the sum of its diagonal elements, is denoted by tr(A4). A
square matrix A is singular if its determinant is zero, and it is nonsingular
or regular otherwise. The multiplicative inverse of a regular matrix A is
denoted by A™!, and I,, denotes the identity matriz in K™,

The transpose of a matrix A € K™ is the matrix AT € K™™
with the columns of A forming the rows of AZ. In particular, the trans-
pose of a column vector is a row vector. The inner product on K™*" is
-,y K™ x K™ — K with (A, B) — (A,B) =Y, Z?:l Ai;jBij =
tr(BT A). The identity (AB,C) = (A,CBT) holds for all matrices with
compatible dimensions. Furthermore, the identity (A4,zzT) = 2T Az
holds for every vector x € K" and every matrix A € K**”. The in-
ner product of two (column) vectors is also called scalar product. The
Euclidean norm of a vector x € K" is ||z|| = /{z, ).

A matrix A € K™ is symmetric if A = AT. A symmetric matrix
is positive semidefinite (A = 0) if 27 Az > 0 for all vectors x € K. If,
furthermore, 7 Az = 0 implies z = 0, then A is positive definite (A = 0).
The sets of n x n-dimensional positive semidefinite and positive definite
matrices are denoted by S and S;'", respectively.

A scalar A € K is an eigenvalue of a matrix A € K**" if Az = Az for
some x € K" z # 0. If A is an eigenvalue of A, then all vectors z € K"
satisfying Ax = Az are eigenvectors of A associated to the eigenvalue A.
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The determinant of a matrix A is the product of all its eigenvalues, and
the trace is the sum of all its eigenvalues.

A vector z € K" is a linear combination of vectors in X C K" if a
finite number of vectors z!,..., 2% € X and scalars Aj,..., \; € K exist
such that x = Zﬁzl \; 2. The vector z is a conic combination of the z's
if, in addition, A; > 0 for all 7. Tt is an affine combination if Zle A=1,
and a convexr combination if Zle A; =1 as well as A; > 0 for all . The
linear, affine, and convex hull as well as the cone of X, denoted by lin(X),
aff(X), conv(X), and cone(X), are the sets of all linear, affine, convex,
and conic combinations, respectively. A set X is convez if X = conv(X).
A set X satisfying X = cone(X) is a cone. A cone X is pointed if z € X
implies —z ¢ X for every nonzero vector .

A set X C K" of vectors is linearly independent if only one linear
combination of vectors in X is equal to the zero-vector in K". The
dimension dim X of X is maximal number of linearly independent vectors
from X, that is, the dimension of the linear hull of X as a subspace of K.

Polyhedral Theory

Given a vector a € K" \ {0} and a scalar ay € K, then the set {z € K |
alr = ao} is a hyperplane, and {x €K | alx < ao} is the half-space
delimited by the hyperplane. The finite intersection of half-spaces, given
by {:E ek | Az < b} with A € K™*" b € K™, is a polyhedron. A set
S C K" is bounded if it is contained in a set {z € K" | ||z|| < 7} for
some r € K. A bounded polyhedron is a polytope.

The inequality e’z < ay for a € K* \ {0}, ap € K is valid for a
polyhedron P if P is contained in the half-space {x ek |alz < ao} and
it is tight for P if it is valid for P and the hyperplane {:c eK® |alx = a}
contains at least one point in P.

The set PN{z € K" | a”z = ao} is the face of P induced by a”z < aq.
A zero-dimensional face is a vertex. A face F' C P of a polyhedron P is a
facet of P if it is a maximal face with respect to inclusion. An inequality
alz < ag is facet-defining for P if it is valid for P and F = {:c € P |
al'y = ao} is a facet of P. An equivalent characterization of a facet is

that dim ¥ =dim P — 1.

Linear Programming

A polyhedron P = {x ek | Ax < b} C K", a vector ¢ € K", and an
objective define a linear program or LP, for short. The minimization and

affine, conic,
convex, linear
combination

convex
(pointed) cone

linearly
independent

dim X

hyperplane
half-space
polyhedron

polytope
valid

tight for P
face of P
vertex

facet of P
facet-defining

linear program
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optimal solution
dual program

binary/integer
linear program

LP relaxation

(simple) graph
vertex/edge set

incident, adjacent
neighborhood
degree

isolated vertex
graph complement
subgraph

maximization versions are

max{c’z |z € P} and min{c"z |z € P}. (A1)

A vector Z € P attaining the maximum (minimum) in (A.1), provided
this exists, is an optimal solution. In case P is a nonempty polytope, at
least one vertex of P is an optimal solution. The dual program to a linear
program max{cTa: | Ax < b,z > 0} is min{bTy ATy > ¢,y > 0}.

Theorem A.1 (Duality of linear programming). Let A € K™*",
be K™, and c € K*. In case

{xEK”\A:ESb,xZO}#@ and {yEKm\ATyzc,yEO}#@
the optimal solution values of
max{ch | Az < bz > 0} and min{bTy ATy >y > O} (A.2)
are finite, and
ze{zeK |Az <bz >0} and §€ {yec K™ | ATy >c,y>0}

exist such that ¢’z = b1'y.

A linear program turns into an integer linear program (ILP) if all
variables are required to take integer values. In the special case of a
binary linear program the values of the variables are restricted to 0 and 1.
The LP relazation of an integer linear program is obtained by dropping
the integrality constraints.

Graph Theory

Our graph theoretic nomenclature is mostly taken from West [1996].

A simple graph G with n vertices and m edges consists of a verter set
V(G) = {v1,...,v,} and an edge set E(G) = {e1,...,en}. Each edge is
an unordered pair of distinct vertices. The edge {v,w} is also written as
vw. If e = vw € E(G), then e is incident to v and w, the vertices v and
w are the endpoints of e, and v and w are adjacent. The neighborhood of
a vertex are its adjacent vertices. The degree of a vertex is the number
of incident edges. A vertex in a graph is isolated if its degree is zero.

The graph complement G of a graph G is a graph on the same vertex
set as G with vw € E(G) if and only if vw € E(G). A subgraph of a
graph G is a graph H such that V(H) C V(G) and E(H) C E(G). The
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subgraph H of G is an induced subgraph if every edge in E(G) with both
endpoints in V(H) is in E(H). If H is an induced subgraph of G with
vertex set S, then this is written as H = G[S].

A nonempty subset () of the vertices of V(@) is a clique in G if every
pair of vertices in ) is an edge in E(G). A set S C V(QG) is an independent
set if G[S] contains no edge. A clique (independent set) is mazimal if
no larger clique (independent set) contains it, and it is mazimum if no
clique (independent set) of larger size exists. The size of a maximum
clique in a graph G is its cliqgue number, denoted by w(G), and the size
of a maximum independent set is its independence or stability number,
denote by o(G).

A graph is complete if its vertex set is a clique. K, is complete graph
on n vertices. A vertex is simplicial if its neighborhood is a clique.

A wverter labeling of a graph G (with elements from a set Y) is a
function f: V(G) — Y. Analogously, an edge labeling is a function
g: E(G) =Y.

A graph is bipartite if its vertex set can be partitioned into at most
two independent sets; it is k-partite if its vertex set may be partitioned
into k£ or fewer independent sets. A k-partite graph is k-colorable, and
a k-coloring of a graph is a vertex labeling f: V(G) — {1,...,k}. The
coloring is proper if f(v) # f(w) for every pair of adjacent vertices. The
minimum number &£ such that a graph G is properly k-colorable is its
chromatic number, denoted by x(G).

A walk of length k in a graph is a sequence vy, e1, V1, €2, ..., €,
vy of vertices and edges such that e; = v;_jv; for all ¢+ = 1,..., k. The
endpoints of the walk are vy and v,. A path is a walk containing no vertex
more than once. A Hamiltonian path contains every vertex of the graph.
A cycle or tour is a walk with both endpoints being the same vertex and
no repeated vertex otherwise. A cycle of length 3 is also called a triangle.
The graph C,, contains n vertices and its edge set is a cycle. An edge vw
is a (I-)chord with respect to a walk if v = v; and w = v; |, for some i.

A graph is connected if a path exists between any two vertices. A
tree is a connected graph which does not contain a cycle. A component
of a graph is a maximal induced subgraph that is connected. A shortest
path between two vertices v and w is a path with endpoints v and w
of shortest length. In a connected graph, the diameter is the maximal
length of a shortest path; otherwise, the diameter is infinite. An (edge)
cut in a graph is a subset of the edges for which its removal disconnects
the graph. For a partition of the vertex set into two nonempty, disjoint
sets S and 7', the cut [S, T] contains all edges with one endpoint in S and
the other endpoint in 7. A graph is 2-(edge) connected if every cut has

induced subgraph

GS]

clique

independent set

clique number
independence
number

complete graph, K,
simplicial vertex
vertex labeling
edge labeling

bipartite
k-partite
k-colorable

chromatic number
walk

Hamiltonian path

cycle, tour
triangle

Cn

(I-)chord
connected, tree
component

shortest path
diameter

(edge) cut

2-connected
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Spanning

(simple) digraph
vertex/arc set

head, tail
acyclic
orientation

size at least 2. A subgraph H of a graph G is spanning if V(H) = V(QG)
and H is connected.

A simple directed graph D with n vertices and m arcs consists of a
vertex set V(D) = {vi,...,v,} and an arc set A(D) = {a1,...,am},
where each arc is an ordered pair of distinct vertices. We write vw for
the arc (v, w). The vertex v is the head and the vertex w the tail of the
arc vw. A digraph not containing any directed cycle is acyclic. A digraph
D is an orientation of a graph G if V(G) = V(D) and vw € E(G) if and
only if either vw € E(D) or wv € E(D).

Asymptotic Function Growths

Given a function f: Z, — Z., let

Of)={9:Zy - Z,|3c,a,ng € Z,Vn > ng:g(n) <cf(n)+a}
and

Qf)={9:Zy > Zy|3c,a,ng €Ly Vn>ng:cg(n)+a> f(n)}

Every function g € O(f) grows asymptotically no more than f, whereas
every g € Q(f) grows asymptotically at least as much as f.
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Zusammenfassung

Eine Schliisseltechnologie im Informationszeitalter ist die mobile Telekommunikation.
Diese kann durch Interferenz empfindlich gestort werden. Fiir GSM-Mobilfunknetze
untersucht die Dissertation wie sich Interferenz moglichst weitgehend vermeiden 14£t,
indem die verfiigharen Frequenzen geeignet an die Basisstationen zugewiesen werden.
Mathematisch wird dieses Ziel als Minimierung der Gesamtinterferenz aufgefaft.

Heuristische Methoden zur Lésung des Frequenzzuweisungsproblems werden ent-
wickelt und anhand der Laufzeiten und Ergebnisse fiir Planungsfille, die der Praxis
entstammen, verglichen. Der Grofteil der Methoden eignet sich aufgrund des guten
Laufzeitverhaltens fiir den interaktiven Einsatz bei der Netzplanung. Die Resultate
sind im Vergleich mit denen des besten derzeit bekannten (aber deutlich langsame-
ren) Verfahrens durchaus akzeptabel. Eine Auswahl der Methoden ist heute bei der
E-Plus Mobilfunk GmbH & Co. KG erfolgreich im Einsatz.

Weiterhin wird in der Dissertation der Frage nachgegangen, wieviel Interferenz in
einem gegebenen Netz bei der Frequenzzuweisung unvermeidbar ist. Die FErgebnisse
entsprechender Berechnungen werden verwendet, um (im mathematischen Sinne)
Qualitatsgarantien fiir Frequenzzuweisungen hinsichtlich der Interferenzvermeidung
zu geben. Im besten betrachteten Fall verursacht eine Frequenzzuweisung nur doppelt
soviel Interferenz wie nachweislich unvermeidbar.

Das Frequenzzuweisungsproblem 1ift sich zu einem k-Partitionierungsproblem
eines vollstandigen Graphen relaxieren. Dem k-Partitionierungsproblem ist (ausge-
hend von einer Formulierung als ganzzahliges lineares Programm) eine Polyederklasse
zugeordnet, wobei die Ecken der Polyeder jeweils die k-Partitionierungen des zuge-
horigen Graphen darstellen. Anstelle der sonst iiblichen polyedrischen Relaxierungen
wird eine nichtpolyedrische Umschreibung des Polyeders analysiert, die sich als Lo-
sungsmenge eines semidefiniten Programmes ergibt. Dieses Programm lifst sich fiir
festes £ > 0 in Polynomialzeit e-optimal losen (im Gegensatz zur linearen Relaxie-
rung des ganzzahligen Programmes — P # NP vorausgesetzt).

Die Losung der semidefiniten Programme fiihrt zu den derzeit mit Abstand be-
sten unteren Abschitzungen der unvermeidbaren (Gleichkanal-)Interferenz. Zudem
handelt es sich um eine der ersten Anwendungen von semidefiniter Programmierung
bei groken industriellen Problemen mit kombinatorischem Hintergrund.

Schliisselworter: GSM, Frequenzzuweisung, Minimale k-Partitionierung, Heuristi-
ken, Semidefinite Programmierung, Ganzzahlige Programmierung, Polyeder.
Mathematics Subject Classification (MSC 2000): 90C27 90C35 90B18 90C22
90C57 995
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