Optimal Vehicle Scheduling in Public Transit

vorgelegt von
Diplom-Wirtschaftsmathematiker
Andreas Lobel

aus Berlin

Vom Fachbereich 3 Mathematik
der Technischen Universitat Berlin
zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften
genehmigte Dissertation

Promotionsausschuf:
Vorsitzender: Prof. Dr. Jean-Dominique Deuschel
Berichter: Prof. Dr. Martin Grotschel
Berichter: Prof. Dr. Giinter M. Ziegler

Tag der wissenschaftlichen Aussprache: 13. November 1997

Berlin 1997
D 83

Zusammenfassung

Die vorliegende Dissertation beschaftigt sich mit der Optimierung der Fahrzeugeinsatzplanung
im offentlichen Personennahverkehr. Dieses Problem ist fiir die meisten praxisrelevanten Fille
schwierig (NP-schwer). In dieser Arbeit prasentieren wir Methoden der ganzzahligen linearen
Programmierung zur Losung dieses Planungsproblems. “Verniinftige” mathematische Formu-
lierungen des Fahrzeugeinsatzplanungsproblems basieren auf Netzwerkflufi-Modellen und ent-
sprechenden ganzzahligen linearen Programmen (LP). Dies sind sogenannte bogenorientierte
Mehrgiterfluf-Modelle bzw. pfadorientierte Set- Partitioning-Modelle. Wir beschaftigen uns mit
beiden Ansitzen, der Schwerpunkt liegt aber auf dem bogenorientierte Mehrgiiterflufi-Modell.

Mathematisch bearbeiten wir diese Modelle mit Branch-und-Cut- bzw. Branch-und-Cut-und-
Price-Methoden. Reale Anwendungen fithren zu riesigen LPs mit einigen Millionen ganzzahligen
Variablen. Die Behandlung solcher LPs erfordert Spalten-FErzeugungs- Verfahren (auch Column-
Generation- Verfahren genannt). Basierend auf Lagrange-Relaxationen entwickeln wir hierzu
neue Verfahren zur Auswahl der zu erzeugenden Spalten, die wir Lagrange-Pricing nennen.
Lagrange-Pricing-Techniken haben es erstmalig erméglicht, LPs dieser Art mit rund 70 Millionen
Variablen zu losen.

Fiir den bogenorientierten (Mehrgiiter-)FluB-Zugang beschreiben wir ausfiihrlich, wie Lagrange-
Relaxationen sowie die LP-Relaxation effizient gelost werden. Zusitzlich schlagen wir eine
Heuristik vor, die schnell gute Lésungen erzeugt. Diese Heuristik beruht auf einem sog. Schedule-
First-Cluster-Second-Ansatz. Eine zentrale Aufgabe bei der Losung dieser primalen und dualen
Probleme ist dabei die effiziente Behandlung von Problemen mit einem Depot. Wir zeigen, dafl
das bogenorientierte Mehrgiiterflu-Modell durch eine geeignete Anwendung der Dantzig-Wolfe-
Dekomposition in ein pfadorientiertes Set-Partitioning-Modell iiberfiihrt werden kann.

Der zweite Teil dieser Arbeit priasentiert die Rechenergebnisse zu den von uns entwickelten und
implementierten Verfahren. Diese Untersuchungen basieren auf realen Testdaten von drei grofien
deutschen Nahverkehrsunternehmen.

Die implementierten Codes arbeiten zuverlissig und stabil. Die mit diesen Verfahren durchge-
fithrten Testlaufe lieferten hervorragende Ergebnisse: Bis auf ein Problem kénnen alle Beispiele
optimal gelost werden. Die Losungen des Branch-and-Cut-Verfahrens wurden auch mit den Pla-
nungsergebnissen der in der Praxis gegenwirtig eingesetzten Verfahren verglichen: Wir konnten
zusétzlich mehrere Fahrzeuge einsparen sowie eine Kostenreduktion von bis zu 10 % aufzeigen.

Der mogliche Nutzen dieser Methoden ist enorm. Beispielsweise rechnet die BVG damit, den
Planungsprozefl mit den von uns entwickelten Softwaretools deutlich straffen und jihrlich Ein-
sparungen in Hohe von rund 100 Millionen Mark erzielen zu konnen, siehe den Artikel Auf
Sparkurs zum Ziel im Rheinischer Merkur, Nummer 39, von Schmidt [1997].

Teile der vorgestellten Methoden wurden bereits in die Planungssysteme BERTA (der Berliner
Verkehrsbetriebe (BVG)) und MICROBUS 1T (der TVU Gesellschaft fiir Informatik, Verkehrs-
und Umweltplanung mbH, Berlin) integriert. Dariiber hinaus hat auch die Forschungsabteilung
der SIEMENS AG in Miinchen dieses System erworben.

Mathematics Subject Classification (1991): 90B06, 90B10, 90C05. 90C06.

Abstract

This thesis deals with integer linear programming approaches for the NP-hard
Multiple-Depot Vehicle Scheduling Problem (MDVSP) in public mass transit.
“Reasonable” formulations of the MDVSP are based on network flow models and
their integer linear programming analogues. In particular, arc-orienled multi-
commodity flow models and path-oriented sel partitioning models (derived by
Dantzig-Wolfe decomposition) are two customary models for this kind of prob-
lem. In this thesis, we investigate both approaches. The main emphasis is on the
solution of the multicommodity flow formulation.

The solution methods applied for the two models are branch-and-cut and branch-
and-cut-and-price, respectively. Additionally, column generation techniques seem
indispensable for both approaches. We have developed new column generation
rules that make it possible to solve the huge linear programs with up to 70 million
integer variables that come up here. These rules for selecting new columns are
based on Lagrangean relaxations and, therefore, called Lagrangean pricing.

For the arc-oriented multicommodity flow approach, we describe the efficient so-
lution of single-depot instances, Lagrangean relaxations, and the LP relaxation.
In addition, we propose a heuristic that quickly generates good solutions. This
heuristic is based on a schedule first — cluster second approach. For the path-
oriented set partitioning approach, we describe its relation to the arc-oriented
model.

The second part of this thesis presents the computational investigations of the
solution methods that we have developed and implemented. These investigations
are based on test data of three large German public transportation companies.

The computational results are excellent: Except for one problem, all encountered
test instances can be solved to proven optimality. Compared with the results
obtained with the best planning system currently available in practice, our test
runs indicate savings of several vehicles and a cost reduction, on the average, of
about 10 %.

The possible profit from using this optimization software is immense. For instance,
BVG reckons on savings of about DM 100 million per year, see the newspaper
article Auf Sparkurs zum Ziel in Schmidt [1997].

Parts of the presented methods are already integrated in the BERTA system
of the Berliner Verkehrsbetriecbe (BVG) and in the MICROBUS II system of
the TVU Gesellschaft fur Informatik, Verkehrs- und Umweltplanung mbH, Berlin.
Moreover, this system has also been purchased by the research department of the
SIEMENS AG, Munich.

Mathematics Subject Classification (1991): 90B06, 90B10, 90C05. 90C06.

Acknowledgements

There are good friends, persons, and institutions whose support and cooperation were
essential for the successful work presented in my thesis. First of all, I wish to thank my
supervisor Martin Grotschel for the opportunity to graduate. He has introduced me into
the field of optimization and operations research and supported me during my time at
the Konrad-Zuse-Zentrum fiir Informationstechnik (ZIB). I wish also to thank Giinter
M. Ziegler for his support. I wish to thank my friends and colleagues Ralf Borndérfer,
Alexander Martin, and Riidiger Schultz for their helpful discussions. The same thanks are
devoted to Robert Bixby (Rice University, Houston, TX, and ILOG CPLEX Division).
I enjoyed the times with him whenever he visited Berlin and gave me insight into many
important numerical aspects of linear programming. My special thanks are due to our
group’s secretary, Sybille Mattrisch, for her patient proof-reading.

I am grateful to ILOG CPLEX Division (formerly: CPLEX Optimization, Inc.), for reg-
ularly providing access to the latest beta versions of CPLEX and the CPLEX Callable
Library. I am also grateful to Beguelin, Dongarra, Geist, Jiang, Manchek, and Sunderam
[1994] for providing PVM - Parallel Virtual Machine.

The industrial partners also play an important role: T am grateful to Manfred Volker and
Anna Neufeld of HanseCom GmbH for their support to model the MDVSP and providing
real-world data of the Hamburger Hochbahn AG and the Verkehrsbetriebe Hamburg-
Holstein AG. T am grateful to Uwe Strubbe of IVU GmbH for providing real-world data of
the Berliner Verkehrsbetriebe (BVG). I am also grateful to the Berliner Verkehrsbetriebe,
the Hamburger Hochbahn AG, and the Verkehrsbetriebe Hamburg-Holstein AG for their
kind permission to use and publish their data.

Last but not least, I am grateful to the German Federal Ministry of Education, Science,
Research, and Technology for the financial support in the scientific program Anwendung-
sorientierte Verbundprojekte auf dem Gebiet der Mathematik (Application-Oriented Joint
Projects in Mathematics), grant no. 03-GR7ZIB -7.

Berlin, November 1997 Andreas Lobel

Contents

Introduction

1

Notation and Preliminaries

1.1 Sets, Vector Spaces, and Matrices,

1.2 Polyhedra o

1.3 Linear and Integer Linear Programs
1.3.1 Linear Programming and Duality
1.3.2 Integer Linear Programming
1.3.3 Lagrangean Relaxation

1.4 Graphs o

1.5 Network Flows o
1.5.1 The Minimum-Cost Flow Problem
1.5.2 Flow Decomposition L.
1.5.3 The Multicommodity Minimum-Cost Flow Problem

Multiple-Depot Vehicle Scheduling

2.1 Problem Description L L
2.2 Mathematical Models L oL
2.3 Discussion of the Model

The Complexity of the MDVSP
3.1 The Single-Depot Case L
3.2 The Multiple-Depot Case

A Literature Overview

4.1 Computer-Aided planning systems
4.2 Some SUIVEYS o o it e e
4.3 The Single Depot Case L
4.4 The Multiple Depot Case

Solving the Single-Depot Case

5.1 The Primal Network Simplex Algorithm
5.2 Implementation Detailso oo oo oo
5.3 Applying the Network Simplex Code to SDVSP

17
17
21
27

31
31
34

45
46
46
o0
ol

ii CONTENTS

6 Solving Lagrangean relaxations 65
6.1 Relaxation of the Flow Conservations 66
6.2 Relaxation of the Flow Conditions 67
6.3 Subgradient Methods oo oo 68

7 Solving the LP Relaxation 73
7.1 TImplementation Details 74

7.1.1 Column Generation 75
7.1.2 Lagrangean pricingo oo 76
7.1.3 The Basic Ingredients L0000 77
7.2 Approximation Algorithmso oo 78

8 Primal Heuristics 81
8.1 Cluster First — Schedule Second 81
8.2 Schedule — Cluster — Reschedule 82
83 LP-Plunging 85
8.4 Vehicle Scheduling in HOT IT —

Hamburger Optimization Technique 86

9 Polyhedral investigations 89
9.1 The MDVSP Polytope 90
9.2 Trivial inequalities Lo oL 91
9.3 2-cut and Extended 2-cut Inequalitieso 92
9.4 1-path Inequalitieso 94
9.5 Extended Cover Inequalities for the Capacitated MDVSP 95

10 Solving the MDVSP exactly 97
10.1 Branch-and-Cut e 97
10.2 Approximation Guarantee 98
10.3 Implementation Details 98

11 Dantzig-Wolfe Decomposition 103
11.1 The Master Problem 104
11.2 Relation between the Master Problem and the LP Relaxation 106
11.3 The Pricing Problem o0 oo 107
11.4 Solving the Master Problem 0000 .. 108
11.5 Solving the Integer Master Problem 109

11.5.1 Branch-and-Price 0. 109
11.5.2 Branch-and-Cut-and-Price 110

12 Computational Results 113
12.1 Real-World Data Specifications o000 114
12.2 The Test Instances 117

12.3 Solving the Single-Depot Instances 118

CONTENTS

12.4 Solving the Multiple-Depot Instances
12.5 Subgradient Method oL
12.6 LP Relaxation e
12.7 Dantzig-Wolfe Decompositiono

Conclusions
List of Figures
List of Tables
Bibliography

Index

iii

153

158

159

161

169

v

CONTENTS

Introduction

Solving transportation problems was and still is one of the driving forces behind the de-
velopment of mathematical disciplines such as optimization and operations research, see
Borndérfer, Grétschel, and Lébel [1995]. Truly large transportation problems have to be
solved, for instance, in airline traffic (airline and crew scheduling) and public mass transit
(vehicle and duty scheduling). In the past, the corresponding transportation markets have
often been protected by monopolistic structures. However, deregulation of such monopo-
listic markets has led to world-wide competition. It is therefore obvious that competitive
participants in these markets must use computer-aided tools for their operational plan-
ning process to employ their resources as efficiently as possible. Modern and sophisticated
mathematical optimization techniques can help to solve such planning problems.

For instance, public transportation in the European Community is subject to such market
deregulation. Monopolistic markets have become more liberal or will soon be broken up.
In order to prevent their complete extinction from the market, monopolistic transportation
companies will therefore have to change from deficit-oriented monopolies to competitive
market players. One important factor in facing the challenges of a competitive market is,
of course, cost reduction, which can be obtained by making intelligent use of the latest
mathematical knowhow, see Bohmig and Wolter [1997] and Kretschmann and Lawerentz
[1997].

Over the last few decades, planning large systems in public transit has been subdivided
into a hierarchical process: line planning, timetable planning, vehicle scheduling, and
duty scheduling and rostering. Solving each of these single steps is still a hard task. This
thesis deals with one of these steps: vehicle scheduling.

The Multiple-Depot Vehicle Scheduling Problem (MDVSP) is to assign a fleet of vehi-
cles, possibly stationed at several garages, to a given set of (timetabled or passenger)
trips such that operational, company-specific, technical, and further side constraints are
satisfied and the available resources are employed as efficiently as possible. In the last
three decades, considerable research has gone into the development of academic as well as
practice-oriented solution techniques for the A/P-hard MDVSP and special, often poly-
nomially solvable, cases of it. Review articles on this topic are, for instance, Desrosiers,
Dumas, Solomon, and Soumis [1995], Daduna and Paixao [1995], and Bussieck, Winter,
and Zimmermann [1997].

2 INTRODUCTION

The most successful solution approaches for the MDVSP are based on network flow models
and their integer programming analogues. In the literature, there are two basic mathemat-
ical models of this type: First, a direct arc-oriented model leading to a multicommodity
flow problem and, second, a path-oriented model leading to a set partitioning problem. The
latter can also be derived from Dantzig-Wolfe (DW) decomposition applied to the first.
Both approaches lead to large-scale integer programs, and column generation techniques
are required to solve their LP relaxations. We shall explicitly discuss these two models
in our literature overview. This thesis investigates both approaches. However, the main
emphasis is on the solution of the multicommodity flow formulation.

To the best of our knowledge, only relatively small (artificially generated and real-world)
MDVSPs have by now been solved to proven optimality: Forbes, Holt, and Watts [1994]
report on numerical investigations with up to 3 depots. Mesquita and Paixao [1997], a
recent publication on this topic, still solve problems just with up to 4 depots and 352
timetabled trips.

Practice-oriented heuristics are often based on a single-commodity network flow relaxation.
We will show that solutions generated by methods based on network flow do not necessarily
attain the optimum since, in general, they do not use all degrees of freedom. Moreover,
these methods do not provide tight lower bounds or do not provide lower bounds at all.

The contribution of this thesis is the efficient and optimal solution of the integer linear
program (ILP) derived from the multicommodity flow formulation. Column generation
seems indispensable to solve large problems of this kind. In particular, we present a new
technique, called Lagrangean pricing, that is based on two Lagrangean relaxations of the
multicommodity flow model.

Our computational investigations are performed on large-scale data from three German
public transportation companies: the Berliner Verkehrsbetriebe (BVG), the Hamburger
Hochbahn AG (HHA), and the Verkehrsbetriebe Hamburg-Holstein AG (VHH). These
instances involve problems with up to 49 depots, about 25 thousand timetabled trips, and
about 70 million integer decision variables. These test instances have been provided by
our partners HanseCom GmbH, Hamburg, and IVU Gesellschaft fiir Informatik, Verkehrs-
und Umweltplanung mbH (IVU), Berlin. Test runs on this test set show that our method
is able to solve problems of this size optimally. These problems are orders of magnitude
larger than the instances successfully solved with other approaches, as far as we know.

The interested reader can find further information about the involved companies BVG,
HanseCom, HHA, IVU, and VHH (in alphabetical order) via WWW at www.bvg.de,
www.hansecom.com, www.hochbahn.com, www.ivu-berlin.de, and www.oepnv.de/vhh,
respectively.

Our research has been supported by the German Federal Ministry of Education, Science,
Research, and Technology in the program Anwendungsorientierte Verbundprojekte auf
dem Gebiet der Mathematik (Application-Oriented Joint Projects in Mathematics). This
program aimed at giving financial support to joint projects of academic institutions and
partners from industry. It was the goal to improve available or to develop new mathe-

http://www.bvg.de
http://www.hansecom.com
http://www.hochbahn.com
http://www.ivu-berlin.de
http://www.oepnv.de/vhh

matical techniques and to transfer the resulting software tools into practice. And indeed,
parts of our software have already been integrated in the planning systems BERTA of
the Berliner Verkehrsbetriebe and MICROBUS II of the IVU GmbH. Additionally, the
research department of the SIEMENS AG, Munich, has also purchased our system. With
our software, the Berliner Verkehrsbetriebe expects to save about DM 100 million per
year, see the article Auf Sparkurs zum Ziel by V. A. Schmidt [1997].

This thesis contains 12 chapters and is divided into five parts: basics (Chapter 1), the
problem (Chapters 2-4), lower and upper bounds (Chapters 5-9), exact methods (Chapters
10-11), and computations (Chapter 12).

Basics: In Chapter 1, we give an introduction to some basics concerning notation, linear
algebra, polyhedral theory, (integer) linear programming, graph theory, and network flows.

The Problem: This part is divided into three chapters: a problem description, complex-
ity investigations, and a literature overview.

The MDVSP is introduced in Chapter 2, and we present a multicommodity flow formu-
lation with its integer programming analogue. We also distinguish our multicommodity
flow formulation from some other (arc-oriented) models that have been presented in the
literature.

The complexity of the MDVSP is investigated in Chapter 3, which is divided into one
section for the polynomially solvable single-depot case and another for the A/P-hard
multiple-depot case.

Chapter 4 contains a detailed literature overview. In addition, we discuss the arc-oriented
multicommodity flow and the path-oriented set partitioning formulations.

Lower and Upper Bounds: In this part, we present the algorithmic tools that we have
used to solve large problem instances with our branch-and-cut method.

It starts with the solution technique for single-depot instances in Chapter 5. Such prob-
lems are solved with a network simplex algorithm combined with column generation.

Chapter 6 deals with two Lagrangean relaxations of the ILP and presents the subgradient
methods which we apply for their solution. The occurring inner minimization problems
of the Lagrangean duals are solved by the network simplex code presented in the chapter
before. In particular, Lagrangean relaxations are used to compute fast and tight lower
bounds.

In Chapter 7, we will describe in detail the basic ingredients of our LP method that are
indispensable to solve the LP relaxation of large problems. In particular, we introduce
Lagrangean pricing. We have also investigated certain recent approximation approaches
for the solution of the LP relaxation. We do not believe that such algorithms can sub-
stantially help solving the LP relaxation that we investigate here.

Chapter 8 deals with some heuristics. It starts with two opening heuristics: the well-
known cluster first — schedule second approach (CF-SS) and a schedule — cluster — resched-
ule algorithm, which is a composition of (the other well-known) schedule first — cluster

4 INTRODUCTION

second approach and CF-SS. The chapter continues with LP-plunging, which is an LP-
based iteratively rounding heuristic and used within our branch-and-cut algorithm. Last
but not least, we give a short introduction to the vehicle scheduling of HOT.

Chapter 9 presents some results of our polyhedral investigations of the MDVSP.

Exact Methods: This part presents exact branch-and-bound and branch-and-cut-and-
price approaches for the multicommodity flow and the DW set, partitioning formulations,
respectively.

Chapter 10 give a composition of the concepts presented in the previous part resulting in
an efficient method to solve MDVSP instances.

In Chapter 11, we show how the DW decomposition formulation is derived from the mul-
ticommodity ILP formulation, discuss the relation between the arc-oriented multicom-
modity flow and the path-oriented set partitioning formulations, and provide a branch-
and-cut-and-price algorithm for the solution of the DW decomposition.

Computations: The methods of the Parts II and IV have been tested on real-world
data of BVG, HHA, and VHH. In Chapter 12, we summarize the results of our computa-
tional tests for single-depot instances (solved with our network simplex implementation)
and multiple-depot instances (solved with branch-and-cut and decomposition approaches,
respectively).

Chapter 1

Notation and Preliminaries

This chapter introduces some basics concerning notation, linear algebra, polyhedral the-
ory, (integer) linear programming, graph theory, and network flows. Readers who are
familiar with the basics of these fields may wish to continue with Chap. 2. In what fol-
lows, the accent is rather on collecting prerequisites than on completeness. Parts of the
exposition follow Grétschel, Lovész, and Schrijver [1988]. For more detailed information,
we recommend

e Bazaraa, Jarvis, and Sherali [1990], Chvatal [1980], Grétschel, Lovasz, and Schrijver
[1988], Luenberger [1989], Nemhauser and Wolsey [1988], and Schrijver [1989] for
polyhedral theory and (integer) linear programming,

e Berge [1973] and Grétschel, Lovasz, and Schrijver [1988] for graph theory,

e Ahuja, Magnanti, and Orlin [1993,1995] and Bazaraa, Jarvis, and Sherali [1990] for
network flows, and

e Garey and Johnson [1979] and Papadimitriou and Steiglitz [1982] for complexity
theory.

1.1 Sets, Vector Spaces, and Matrices

By N, Z, Q, and R we denote the sets of natural, integer, rational, and real numbers,
respectively. Z,, Q,, and R, are the subsets of nonnegative elements. We assume that
0 ¢ N and denote Ny := NU {0}. The symbols N*, Z" Q", and R" are used for the sets
of vectors with n components and entries in N, Z, , and R. R" is understood as the
usual n-dimensional Euclidean vector space with an inner product z"y := Y " x;y;
for z,y € R™. The superscript “T” denotes transposition, and, unless stated otherwise,
r € R” is always a column vector. 1 € R” denotes the n-vector with all entries equal to
one, and e/ € R™ is the j-th canonical unit vector.

k
A vector z =)/ | Az, is called linear combination of the vectors 1, z,..., 2, € R”

6 CHAPTER 1. NOTATION AND PRELIMINARIES

if \; € Rfori=1,...k If, in addition,

A =20 Ve conic
ATl=1 we call z a(n) affine combination
AN=20Vi, ATl=1 convex
of the vectors z1, xs,...,2;. These combinations are called proper if neither A = 0 nor

A= ¢’ for some j € {1,2,...,k}. For a nonempty subset S C R" we denote by

lin(.5) linear
;(EEIEGS()S) the ;?ﬁnriz hull of the elements of S,
conv(S) convex

that is the set of all vectors that are linear (conic, affine, convex) combinations of finitely
many vectors of S. For the empty set, we define lin(f}) := cone(#) := {0} and aff(§)) :=
conv(@)) := 0.

A subset S C R” is called a(n)

linear subspace lin(S)
cone o9 cone(S)
affine subspace aff(S)
convex set conv(S)

A subset S C R" is called linearly (affinely) independent if none of its members
is a proper linear (affine) combination of elements of S; otherwise S is called linearly
(affinely) dependent. It is well known that a linearly (affinely) independent subset of
R™ contains at most n elements (n + 1 elements). For any set S C R”, the rank of
S (affine rank of S), denoted by rank(S) (arank(S)), is the cardinality of the largest
linearly (affinely) independent subset of S. For any subset S C R”, the dimension of
S, denoted by dim(S), is the cardinality of the largest affinely independent subset of
S minus one, i.e., dim(S) = arank(S) — 1. A set S C R" with dim(S) = n is called
full-dimensional.

If £ and R are sets, then RY is the set of mappings from E to R. If E is finite, it is
very convenient to consider the elements of R” as |F|-dimensional vectors where each
component of a vector x € R¥ is indexed by an element of E, i.e., = (Z.)ecr. For
F C F, the vector x € R” defined by I =1ife€ F and xI' =0ife € E\ F is called
the incidence vector of F. For a set G (not necessarily G C F) z(G) € R is defined as

z(G) = Z Ze-

e€EGNE

For a real number «, |a] denotes the largest integer not larger than « (the floor or lower
integer part of «), [a]| denotes the smallest integer not smaller than « (the ceiling or
upper integer part of «), and [« := [a — 3] denotes the integer nearest to .

1.2. POLYHEDRA 7

For any set R, R™" denotes the set of mxn-matrices with entries in R. For a matrix
A € R™ we usually assume that the row index set of A is {1,...,m} and that the
column index set is {1,...,n}. Unless specified otherwise, the elements or entries of
A € R™ are denoted by a;;, 1 <i<m, 1< j < n; we write A = (a;;). Vectors with n
components are also considered as nx1-matrices.

If I is a subset of the row index set M of a matrix A and J is a subset of the column index
set N of A, then A;; denotes the submatrix of A induced by those rows and columns of A
whose indices belong to I and J, respectively. Instead of Ay (Agn, resp.) we frequently
write A.; (Ar., resp.). A, is the i-th row of A (so it is a row vector), and A.; is the j-th
column of A.

Whenever we operate with vectors and matrices, but do not explicitly specify their di-
mensions, we always assume that their dimensions are compatible.

The identity matrix is denoted by I or, if we want to stress its dimension, by I,,. The
symbol 0 stands for any appropriately sized matrix, which has all entries equal to zero,
and similarly for any zero vector. If A € R™ and B € R™? then (A, B) (or just (AB) if
this does not lead to confusion) denotes the matrix in R™®*% whose first p columns are
the columns of A and whose other ¢ columns are those of B. Analogously, if C' € R™ and

C ..
D € R* then D denotes the matrix in R whose first r rows are the rows of C

and whose other s rows are those of D. The inverse matrix of a nonsingular nxn-matrix
A is denoted by A1

The rank of a matrix A (notation: rank(A)) is the rank of the set of its column vectors.
This is known to be equal to the rank of the set of its row vectors. An mxn-matrix A is
said to have full row rank (full column rank) if rank(A) = m (rank(A) = n).

1.2 Polyhedra

If A is a real mxn-matrix and b € R™, then Az < b is called a system of (lin-
ear) inequalities and Az = b a system of (linear) equations. The solution set
P :={x € R"| Ax < b} of a system of inequalities is called a polyhedron. A polyhedron
P that is bounded is called a polytope. A polyhedral cone is a cone that is also a
polyhedron.

If « € R*\ {0} and ay € R, then {z € R"| a"z < qp} is called a halfspace, and
{z € R”| 0"z = ap} a hyperplane. To shorten notation, we shall sometimes speak of the
hyperplane "z = ay and the halfspace a"z < ay. Every polyhedron is the intersection of
finitely many halfspaces.

We call an inequality «"z < aq valid with respect to P if P C {x € R"| a"z < ap}. A set
F C P is called a face of P if there exists a valid inequality a"x < ag for P such that
F ={z € P|a"z = ap}. We say that F is the face defined (or induced) by o™z < ay.
The subset eq(F) := {i € M| A,z =b; ¥V € F} of the row index set of A is called the

8 CHAPTER 1. NOTATION AND PRELIMINARIES

equality set of F.

If z is a point in a polyhedron P such that {z} is a face of P, then z is called a vertex of
P. A facet of P is a maximal face F of P := {x € R"| Az < b} with § # F # P. Facet
defining conditions are given by the following theorem:

(1.1) Theorem. Let P:={x € R"| Az < b} be a polyhedron and F, induced by the
inequality a"z < ag, be a nontrivial face of P. Then the following are equivalent:

i. Fis a facet of P.
ii. dim(F) =dim(P) — 1.
iii. For each valid inequality d"z < dy satisfying FF C {& € P| d'z = dy}, there
exists some vector u© € RUP) and 0 € v € R such that dy = vag + 1" beq(py and
d* = va® + u' Aeq(py.-

1.3 Linear and Integer Linear Programs

1.3.1 Linear Programming and Duality

Given an mxn-matrix A, a vector b, and a vector c. A linear programming problem
(LP), we also just say linear program, is the task to find a vector 2* € P = {z| Az =
b, x > 0} minimizing the linear function ¢z over P. We will usually write an LP in one
of the following forms:

min c'z,

Az =b
xz 20

min{c’z| Az =b, x > 0},
minc'z, Az =5, x >0,

or minc'z, x € P.

A vector x € P is called a feasible solution of the LP, and a feasible solution z* is called
an optimal solution if ¢"z* < ¢"x for all feasible x € P. The linear function ¢"z is
called the objective function of the LP. The same terminology applies if minimization
is replaced by maximization.

With every LP min{c"z| Ax = b, > 0}, we associate the dual LP max{y"b| y"A < ¢"}
referring to the original LP as the primal one. Both problems are interrelated by the
following duality theorem of linear programming:

(1.2) Theorem. If both the linear program (P) min{c"z| Az = b, z > 0} and its
dual linear program (D) max{u"b| u"A < ¢"} have feasible solutions then both LPs have
optimal solutions yielding the same (optimal) objective value. If one of (P) or (D) has no

1.3. LINEAR AND INTEGER LINEAR PROGRAMS 9

feasible solution then the other is either unbounded or has also no feasible solution, and
if one of (P) or (D) is unbounded then the other has no feasible solution.

If the polyhedron P is given by an arbitrary collection of linear inequality and equality
constraints, the following corollary displays the general scheme for forming the dual to a
primal LP.

(1.3) Corollary. The primal LP

(1.4a) mind z + e’y
subject to

(1.4Db) Az + By = aq,
(1.4¢) Czx + Dy = b
(1.4d) EFrx + Fy < ¢
(1.4e) z = 0,

and its dual LP

(1.5a) maxu'a+v'b+w'c
subject to

(1.5b) uTA + v°C + w'E < d7,
(1.5¢) u'B + v'D + w'F = e,
(1.5d) v o2 0, w < 0,

yield the same optimal value provided that both linear programs are nonempty.
The following results provide some useful optimality conditions for linear programs.

(1.6) Theorem. Weak complementary slackness theorem. Consider the primal
LP (1.4) and its dual LP (1.5). Let (z*,y*")" and (u*", v*", w*")" denote some optimal
solutions for (1.4) and (1.5), respectively. Then

v; >0 = Ciz" + Dyy* =b;,

wi <0 = E2" + Fy = a;,
>0 = u"A; + 0vC; + wTF; =d;.

N

xT

(1.7) Theorem. Strong complementary slackness theorem. If the primal LP (P)

min{c"z| Az = b, x > 0} and its dual LP (D) max{u"b| 4" A < "} have feasible solutions

then there exists optimal solutions z* and u* such that for each column j of A holds
;>0 = uTAj=g¢,

*T *
Ay < = ZEj—U.

10 CHAPTER 1. NOTATION AND PRELIMINARIES

1.3.2 Integer Linear Programming

Given an mxn-matrix A, a vector b, and a vector c¢. An integer linear programming
problem (ILP), we also just say integer linear program, is the task of finding a vector
€ X ={z| Az =b, z > 0, x integral} minimizing the linear function ¢"z over X.

Let X := {x| Az = b, x > 0} denote the continuous relaxation of X. Given an ILP

min{cz| z € X}, then min{c"z|x € X} is called its LP relaxation. It is easy to see
that the following inequalities hold provided that all LPs and ILPs are feasible:

. . Theorem 1.2
min ¢z > min ¢z = max c¢'z > max c'z
Az =0» Az =0 wTa T wTageT

x 20 20 = %

= integral ¥ integral

1.3.3 Lagrangean Relaxation

Another possible relaxation of an ILP is Lagrangean relaxation. Its general approach is
outlined in Schrijver [1989] and, especially for network flow problems, in Ahuja, Magnanti,
and Orlin [1993]. The basic idea is the following. Let X denote some nonempty polytope;
for simplicity and for the sake of illustration assume X := {3:\ Ax=b220, 2 integral}.

Let X := {m\ Ax=0b 2> 0} denote the continuous relaxation of X. Suppose we consider
the ILP

(1.8) min{c"z| Dz =d, v € X}

and its LP relaxation

(1.9) min{c"z| Dz =d, z € X}.
A Lagrangean relaxation of (1.8) with respect to Dz = d is the optimization problem

(1.10) max [min{c% — w(Dz— d)}].

U zeX

The inner minimization problem leads to a concave and piecewise linear function

(1.11) L(u,X) = u"d + Lréi)l(l{(cT —u"D)x}

whose maximization problem max, L(u, X) is called the Lagrangean dual. The com-
ponents of v are called the Lagrange multipliers.

If we apply Lagrangean relaxation to the LP relaxation (1.9), we end up with some
counterpart L(u, X). All together, we have the following theorem.

1.3. LINEAR AND INTEGER LINEAR PROGRAMS 11

(1.12) Theorem.

min ¢’z > maxL{u,X) > maxL(u,X) = min ¢’z
Dx=d u u Dgz=d
z € X zeX

Proof: Let z* and u* denote some optimal solutions of (1.8) and (1.10), respectively.
Then

. T* opt. Dx=d
min ¢z T = ¢zt = Taf+ (u*Td — u*Td) =" "+ u"d—vw"Dr =
Dz =d
x € X
. u* opt.
wd+(c"—u" D)z > u*Td—l-ml)r(l (c"—u"D)z = L{,X) = maxL(y,X)
xe U

proves the first inequality. The second inequality holds since for each u

XCX
L{u, X)) —u'd= mi)r(l(cT —u'D)x 2 min(c" —u'D)x = L(u, X) —u'd.

The third inequality is proved by

max L(u, X) = max [qu + mlp{ (CT _ UTD) SC}:| Theorém 1.2

u reX
Theorem 1.2 .
max |u'd + max v'h| = max u'd+v"h = min ¢’z
w vTALT—uTD uT D+oT ALT Dz=d
ze X
|

(1.13) Remark. Lagrangean relaxation aims at problems L(u, X) that are easier to solve
than the original problem (1.8). In particular, subproblems may benefit from separability
or the convex hull of the set X may coincide with its continuous relaxation X. The latter
is often the case in network optimization. Then the Lagrangean relaxation (1.10) and
the LP relaxation (1.9) yield the same optimal objective value, and direct LP techniques
can be applied to solve the Lagrangean relaxation. Moreover, it follows directly from
the proof of Theorem 1.12 that the Lagrange multipliers simply correspond to the dual
multipliers of Dz = d.

(1.14) Remark. Typically, X is chosen such that L(u, X) (1.11) can be evaluated in
(pseudo-)polynomial time for any given u. For those cases, the Lagrangean dual can be
theoretically solved in (pseudo-)polynomial time, see Schrijver [1989].

(1.15) Remark. If there is no danger of confusion with the considered polytopes X and
X, we shall also write L(u) instead of L(u, X) and L(u, X), respectively.

12 CHAPTER 1. NOTATION AND PRELIMINARIES

Since the Lagrangean dual is a concave maximization problem, subgradient methods from
non-smooth optimization are employed for its solution. An overview about such methods
is given in Hiriart-Urruty and Lemaréchal [1993].

1.4 Graphs

Our terminology for graph theory is an extended version of the terminology introduced by
Grotschel, Lovdsz, and Schrijver [1988]. They themselves use a mixture of Berge [1973],
Bollobés [1978], Bondy and Murty [1976], and Lawler [1976].

A directed graph (or digraph) D = (V, A) consists of a finite nonempty node set V'
and a finite arc set A. For each arc a € A, we associate an ordered pair (,j) of nodes,
called endnodes, at which ¢ is the initial endnode (or tail) and j is the terminal
endnode (or head) of a. We say that an arc ¢ = (4,j) goes from i to j, that a is
incident from : and incident to j, and that ¢ leaves ¢ and enters j. If there is an arc
going from ¢ to j, we say that ¢ is a predecessor of j and that j is a successor of i.

An isolated node has no incident arc, and a loop is an arc (i,4). We consider only graphs
without isolated nodes and without loops. Parallel arcs are possible, i.e., two different
arcs ¢ and a' can have the same tail i and the same head j. If there is no danger of
confusion, (i,7) denotes the arc having tail 7 and head j. Whenever parallel arcs occur,
we will handle them carefully.

For subsets W C V and B C A, V(B) denotes the set of nodes incident to some arc in
B, and A(WW) is the set of arcs with head and tail in W.

If ; € V then the set of arcs having 7 as initial (terminal) node is denoted by &% (i)
(6=(4)); we set 6(i) := 67(i) U0~ (i). The numbers |67(i)|, |67 (4)|, and |5(¢)| are called
the outdegree, indegree, and degree of 7, respectively. For any set W C V, we set
SYW):={(@G,j)€eAlieWand j g W}, 6~ (W) :=6"(V\W), and (W) := 6T (W)U
§~(W). The symbols 67(-), 6~ (-), and 6(-) always belong to the digraph represented by
D = (V, A). If there is a danger of confusion, we write §5(-), 6,(+), and dp(-). For two
subsets U, W C V, we set (U — W) =6t (U)Nd(W).

A path in D is a finite sequence P = iy, a1, 11, Go, to, - .., 0, i, k > 0, that begins and
ends with a node and contains mutually distinct nodes (with a possible exception for i,
and i;). The nodes 4; and the arcs a; of P appear alternately such that i,_; and ¢, are
the endnodes of a;, for [l = 1,2,..., k. The nodes ¢y and 7, are called the origin and the
terminus, respectively, or the endnodes of P. If a node s is the origin and a node ¢ is
the terminus of P, P is called an [s, t]-path. The nodes i1, ...,i,_1 are called the internal
nodes of P. The number £ is the length of the path. A directed path or dipath in
D is a path in which all arcs a; = (i;—1,%,), for l = 1,2,..., k. The directed version of an
[s,t]-path is denoted by (s, t)-dipath.

Two nodes s,t of a digraph D are said to be connected if D contains an [s, t]-path. D
is called connected if every two nodes of D are connected. A path is called closed if

1.5. NETWORK FLOWS 13

it has nonzero length and its origin and terminus are identical. A closed path (dipath)
in which the origin and all internal nodes are different is called a circuit (dicycle or
directed cycle). An arc set T C A is called a tree if T' does not, contain a circuit and if
the digraph (T'(V),T) is connected. A tree is called a spanning tree if 7(V) = V.

We shall also use the words “path”, “circuit”, or “tree” to denote the arc set of a path,
circuit, or tree, e.g., the incidence vector of a path is the incidence vector of the path’s
arc set.

1.5 Network Flows

Network flow problems and algorithms have been profoundly investigated during the last
decades. Veldhorst [1993] has compiled a bibliography containing 370 references to single-,
multicommodity, and other classes of flow papers published by 1993.

1.5.1 The Minimum-Cost Flow Problem

One of the most extensively studied and best understood problems in operations research
is the minimum-cost flow problem. To formulate this problem, we start from some con-
nected digraph D = (V, A) together with some linear cost function ¢ € Q4, upper bounds
u € @ﬁ, and node imbalances b € Q" fulfilling 1'6 = 0. The minimum-cost flow
problem is to find a vector z* € Q“ such that 2* is an optimal solution to the linear
program

(1.16a) min Z Cala
acA
subject to
(1.16b) z(6T@) - z(67(@) = b, VieV,
(116C) 0 < Tij < Ui, Y (Z,j) € A.

The equations (1.16b) are called flow conservation constraints and the inequalities
(1.16¢) are the flow capacities on z. A flow z is called feasible if it satisfies the flow
conservation constraints and the flow capacities. A node i is called supply, demand, or
transshipment node depending upon whether b; is larger than, smaller than, or equal
to zero. With A/ denoting the node-arc incidence matrix of D, (1.16) reads

(1.17) min{c’z| No =b, 0 < z < u}.

It is well known that A and, thus, the constraint matrix of (1.17) are totally unimodular.
For integer vectors u and b, there always exists an integer optimal flow, see Grotschel,
Lovész, and Schrijver [1988].

14 CHAPTER 1. NOTATION AND PRELIMINARIES

Let 7 € QY (the node potentials) and n € Q* be the dual multipliers for the flow
conservation constraints (1.16b) and the upper bounds in (1.16¢). The dual problem of
(1.17) is

(1.18) max{7"h — nTu| TN —n" < %, n = 0},
which is
(119&) max szbz — Z i U5
i€V (i,5)eA
subject to
(1.19b) o= W= My < ¢y, V(i) €A,

Note that our model (1.17) imposes a zero lower bound for the flow on each arc « € A. This
is no loss of generality since lower bounds [€ Q* (with / < u) can easily be transformed
to 0 by substituting the flow vector = by 2’ + [, ' € Q*. Then, the system [< 2 < u
transforms to 0 < ' < u—1[, and Nz = b transforms to Nz’ = b— N, which is equivalent
to decrease b; and to increase b; by /;; for all (7, j) € A. The objective min ¢"z transforms
to ¢"l + min ¢"2'. Figure 1.1, which is taken from Ahuja, Magnanti, and Orlin [1993],
displays such a lower bound transformation.

b.i (i, 1ag) ol (0 “w lij) PR
O—% Q — X @

Figure 1.1: Transformation to zero lower bounds.

1.5.2 Flow Decomposition

Up to now, we have only considered flows that are defined on arcs. Whenever we talk
about a flow, we mean such an arc flow. It is also possible, however, to define flows on
dipaths and dicycles. For those cases, we explicitly refer to them by dipath or dicycle
flow, and we sometimes write only path or cycle flow.

Let P denote all possible dipaths between any pair of nodes in D, and let W denote all
dicycles in D. We set P := {x®| R € P} and W := {x°| S € W}. For each p € P and
each w € W, let f, > 0 and f,, > 0 denote the flow values on p and w, respectively, and
let z(p) := f,p €]RA and z(w) := f,w € R denote the flow vectors corresponding to
arc flows. Then every path and cycle flow uniquely determines an arc flow z € R* by

x = Zx(p) + Z z(w).

pcP wcW

1.5. NETWORK FLOWS 15

The following theorem shows how arc flows can be decomposed into path and cycle flows.

(1.20) Theorem. Every path and cycle flow has a unique representation as a nonnegative
arc flow. Conversely, every nonnegative arc flow x can be represented as a path and cycle
flow — though not necessarily uniquely — with the following two properties:

(a) Every dipath with positive flow connects a source node to a demand node.

(b) At most |V|+ |A| dipaths and dicycles have nonzero flow; out of these, at most | A|
dicycles have nonzero flow.

Proof: Flow Decomposition Theorem of Ahuja, Magnanti, and Orlin [1993], page 80, or
Ahuja, Magnanti, and Orlin [1989], page 237. -

(1.21) Lemma. If b; = 0, for all i € V, each nonnegative flow x can be represented as a
cycle flow along at most |A| directed cycles.

1.5.3 The Multicommodity Minimum-Cost Flow Problem

Minimum-cost flows are always considered for a single commodity. Therefore, those prob-
lems are also called single-commodity flow problems. It is also possible to consider
flow problems with different commodities, called multicommodity flow problems. For
example, several vehicles, each defining a commodity, share the same or parts of the same
network and each is governed by its own flow conservation constraints. If there is no inter-
action between the different commodities, the multicommodity flow problem decomposes
into independent single-commodity flow problems. In general, however, the commodities
share common resources and facilities (e.g., common flow capacities as in our case) and
do interact such that a decomposition is impossible.

We shall give a formulation of the multicommodity flow problem that is tailor-made
for our purposes. We are given a digraph D = (V, A) and K commodities denoted by
1,2,..., K. For each commodity d there is an arc set A; C A such that A is equal to the
disjoint union | J,44. Moreover, there are a linear cost function c¢ € Q4, upper bounds
u? € Q1, and node imbalances 5% € Q¥ (such that 1°5¢ = 0). A flow vector z% € Q%
is associated with each commodity d € {1,..., K} such that each z? is a feasible flow,
i.e., z¢ satisfies (1.16b) and (1.16¢) with respect to b and u?. The flow vector for A is
denoted by z := (29)4=1... k. Individual lower bounds /¢ € Q“¢ can also be considered by
a transformation for each commodity as described in Fig. 1.1.

There are common flow capacities defined as follows: For each two nodes ¢,j € V, let I;;
and u;; denote the common lower and upper bound for the total flow of all commodities
from node ¢ to node j, i.e.,

(1.22) by < z({iy = {}) < wy

16 CHAPTER 1. NOTATION AND PRELIMINARIES

l;; and u;; are set to zero if there exist no arc (2, j) € A.

Let Dy := (V, Ag) denote the digraph of commodity d. The multicommodity minimum-
cost flow problem reads

K
(1.23a) min Z Z cdzd

d=1 a€Ay
subject to
(1.23b) ly < z({iy=1{}) < wy VieVVjeV,
(1.23¢) 24(67()) - 2%0°()) = b, ViegV,
(1.23d) 0 < 2¢ < W, Vaeed;Vdell,... K}

The integrality theorem for optimal minimum-cost flows does no longer hold for multi-
commodity flows: Consider three different commodities a, b, and ¢, each defined on a copy
of the digraph from Fig. 1.2 consisting of 3 nodes and 6 arcs. For each commodity, the
arc costs are set to 0 for the arcs {(1,3);(3,2); (2,1)} and are set to M > 0 for the arcs
{(1, 2);(2,3); (3, 1)} The individual and common arc upper bounds are set to 1, i.e., u,
u®, u®, and u¢ are all set to 1. The task is to send for each commodity one unit of flow
as follows: for commodity ¢ from node 1 to 2, for commodity b from node 2 to 3, and for
commodity ¢ from node 3 to 1. It is easy to check that the optimal solution value is %,
and each commodity sends half a unit of low on one of the arcs having cost A/ and half
a unit of flow on the path that includes its transshipment node and has zero costs.

M

Figure 1.2: Multicommodity minimum-cost flow digraph that yields a fractional optimal
solution.

Chapter 2

Multiple-Depot Vehicle Scheduling

2.1 Problem Description

We will now give a formal description of the Multiple-Depot Vehicle Scheduling Problem
(MDVSP) in public mass transportation. Our terminology follows Hartley [1981] to a
large extent.

A garage (or maintenance and storage facility) is a location where vehicles are parked
and serviced. The term fleet denotes the set of vehicles of a transportation company. The
fleet is divided among the garages, and it is known which vehicle types and how many
vehicles of each type are stationed at each garage. A depot is a nonempty set of vehicles
that need not be distinguished for the scheduling process. The set of all depots is denoted
by D. With each depot d € D. we associate a start point d* and an end point d~ where
its vehicles begin and terminate their daily scheduled run or duty. Let

D™ :={d"|deD} and D':={d"|deD}

denote the set of all such start and end points, respectively. It is the task of the operator
to subdivide the fleet into an appropriate set of depots. It is possible to define a depot for
each individual vehicle or to define only one depot for all vehicles. In general, however,
depots do not contain vehicles of different garages. Typically, all vehicles of the same type
stationed at the same garage are combined in a depot.

We assume that the lines have been defined and their service frequencies have been cho-
sen, i.e., a timetable has been determined. This timetable defines a set of so-called
timetabled trips (or passenger trips), denoted by 7. We associate with each trip
t € T a first stop ¢~ together with a departure time s; and a last stop ¢+ together with
an arrival time e,. Let

T-:={t7|teT} and TH:={tT|teT}

denote the set of all first and last stops, respectively. For each individual trip t € T,
there is given a nonempty set of valid depots, which we call depot group of ¢ and denote

17

18 CHAPTER 2. MULTIPLE-DEPOT VEHICLE SCHEDULING

by G(t) C D. Only the vehicles of the trip’s depot group are allowed to service a trip
t. Such restrictions are necessary if, e.g., a double-decker bus would be too high for
an underpass, an articulated bus would be too long for some narrow bend, the vehicle’s
capacity would not meet the trip’s demand, etc. Normally, all timetabled trips of a line
have the same basic depot group, but within the peak hours, depot groups are enlarged
by further depots. Let

Ta:={teT|de G}
denote all those timetabled trips that can be serviced by the vehicles of depot d and
T, ={t"|teTq} and T :={tT|te Ty}

the set of all first and last stops thereof.

Figure 2.1 shows three different lines in the plane. Each line is serviced in both directions.
Figure 2.2 illustrates a small timetable with five chronologically ordered trips on these
three lines. Each trip is uniquely assigned to some line as given in Fig. 2.3. In this figure,
the lines and their service frequencies are combined to a set of timetabled trips. The
depot group of each timetabled trip is shown by the different colours of the first and last
stops.

There are further types of trips, which do not carry passengers. These trips are used to
link timetabled trips: A pull-out trip connects a start point d™ with a first stop ¢,
a pull-in trip connects a last stop t* with an end point d~, and a dead-head trip
(or dead running trip) connects a last stop ¢* with a succeeding first stop ¢~. For
notational simplicity, we call them all unloaded trips.

Many publications on vehicle scheduling abbreviate “timetabled trip” by “trip”. We
will not follow this use to avoid possible misunderstanding between timetabled trips and
unloaded trips. Thus, whenever there is a danger of confusion, we explicitly use timetabled
trips and unloaded trips, respectively.

For two timetabled trips ¢t and ¢ € T, let A,y > 0 be given. In the literature, Ay
denotes the duration (travel plus layover time) from the location of the last stop of ¢ to the
location of the first stop of ¢, e. g., see Daduna and Paixao [1995], Dell’Amico, Fischetti,
and Toth [1993], and Ribeiro and Soumis [1994]. However, our operating partners use
such a definition of A,y only for those dead-head trips for which the idle time or the
difference sy — e; does not exceed a predefined maximum ranging from 40 to 120 minutes.
Otherwise, A, is set to infinity. Dead-head trips exceeding this maximum are currently
not considered for various reasons, e. g, the driver’s idle time or break would become too
long etc. We will show that such a restriction in the degree of freedom can lead to a
higher vehicle demand and, therefore, to suboptimal solutions. To make it possible to use
such links in spite of this, we set Ay := sy — e, whenever it is possible to park a vehicle
between ¢ and t' at the depot. We call these special dead-head trips also pull-in-pull-
out trips. Our pull-in-pull-out trips are never given by the user and must be implicitly

2.1. PROBLEM DESCRIPTION

. last / first stop

s line

X
Figure 2.1: Lines.

b d
>0 06>0 06>0 >0 >0

departure arrival

Figure 2.2: Timetable.

timetable _ lines/ V

Figure 2.3: Timetabled trips for two depots.

19

20 CHAPTER 2. MULTIPLE-DEPOT VEHICLE SCHEDULING

defined by our system. We therefore call the short and explicitly defined dead-head trips
also user-defined dead-head trips. When we talk about user-defined unloaded trips, we
mean user-defined dead-head trips and pull-out and pull-in trips.

Whenever e, + A,y < sy is satisfied, the corresponding dead-head trip is called compat-
ible. Pull-in and pull-out trips are always considered to be compatible, i.e., we assume
that for each d € D and each t € 7; the pull-out and pull-in trip exist and can be used.
Figure 2.4 illustrates possible unloaded trips for our small example.

dead-head trips

pull-out {;’ M

| pull-in trip
trips || Y

time

Figure 2.4: Unloaded trips.

The unloaded trips are used to interconnect the timetabled trips to vehicle schedules,
each being a chain of trips such that the first trip is a pull-out trip, the last trip is a
pull-in trip, and the timetabled and unloaded trips occur alternately. A vehicle schedule
is feasible if there exists a depot that can service all its trips. All trips of a vehicle schedule
have to be serviced by the same vehicle. If no dead-head trip is a pull-in-pull-out trip,
the vehicle schedule is also called a block (or a rotation). A block that contains only
one single timetabled trip is also called a tripper. Figure 2.5 shows a solution with two
vehicle schedules for the small example presented in the last four figures.

For each trip we consider depot specific weights (or costs) depending on the trip’s type,
duration, distance, etc. The weight of an unloaded trip may in addition depend on the
idle time of the vehicle and the driver etc. The exact definition of the weights must be
quantified properly depending on operational interests. The weight of a vehicle schedule
is the sum of the weights of all its trips.

The task of the MDVSP is to provide a set of vehicle schedules, which cover each trip
t € T exactly once and minimize a given linear objective function. There are different
objectives possible, strongly depending on operational interests: The main objective —
especially of large companies — is to use as few vehicles as possible and, subordinate, with
minimum operational costs among all minimal fleet solutions. The motivation of this
objective is to reduce the large capital costs for investment and maintenance of vehicles; a
permanent and significant reduction in the number of vehicles does also reduce related fix
costs (e. g., for garages, maintenance plants, or drivers). Another objective — especially of
smaller transportation companies — is to schedule a given fleet with minimum operational
costs. In the following, we concentrate our investigations on the first objective function.

2.2. MATHEMATICAL MODELS 21

Figure 2.5: Two vehicle schedules.

2.2 Mathematical Models

We introduce a mathematical model that is based on a multicommodity flow formulation.
For this formulation, we give an integer linear programming formulation.

An Integer Multicommodity Flow Model.

In the following, we define for each d € D the following sets:

AP = {4 t € Ta)
A = (@) t € Ta)

(timetabled trips),
(
AR = f(1F d7) | t € Ty} (pull-in trips),
(
(

pull-out trips),

AT = (07, q7)| P g € Tahep + Ay < 55}

u-trip ,__ 4 pull-out pull-in d-trip
Autrie . gpullout | gpullin) 4d

dead-head trips),

unloaded trips).

Let (d~,d") denote a backward arc from the depot’s end to start point. Backward arcs
are used for the vehicle return and to control depot capacities. Let

Vi={dt,dJUT; UT;} and A, := AT"P y AV U {(d,d")}

22 CHAPTER 2. MULTIPLE-DEPOT VEHICLE SCHEDULING

denote the node and arc set, respectively, of the digraph D} := (V}, A)). We define a
large digraph

(2.1) D' = (V' A")

with node set V/:=DTUD-UT1TUT~ and arc set A’ := UdeDA;.

Figure 2.6 gives an illustration of D’ for our small example from Sect. 2.1. The node set
V' consists of the start and end points of all depots and the first and last stops of all
timetabled trips. The arc set A’ is the disjoint union of the arcs of all timetabled and
unloaded trips. Note that the arc set A includes parallel arcs. Addressing an arc (¢, ¢")
without knowing its depot d € G(t) may lead to confusion. If necessary, we explicitly
distinguish such arcs by their corresponding depots.

Figure 2.6: Digraphs (V', A") and (V}, A)), d € D, with D = {r,g} and 7 = {a,b,c,d,e}.

An Integer Linear Programming Formulation.

We will now present an integer linear programming model for the MDVSP. For each d € D
and each a € A/, we introduce an integer variable z¢ that denotes a decision variable
indicating whether a vehicle of depot d runs trip ¢ or not, unless a denotes the backward
arc. In this case, 2% counts all employed vehicles of the depot d. The variables x? are
combined into vectors z¢ := (£4)ac 4, € R4, d € D, and these into z := (2%)gep € RY.

Our two stage cost function is realized as follows: With each unloaded trip a € Ag'trip, we
associate a weight c¢? € Q representing its operational costs. In addition, we add to the
weight of each pull-out trip a sufficiently large M representing the capital costs and being
larger than the operational costs of any feasible solution. We deliberately do neither define
weights for the timetabled trips nor for the backward arcs explicitly in our mathematical

2.2. MATHEMATICAL MODELS 23

model, i.e., we assume them to be zero. If such weights are considered nevertheless, we
apply the following simple transformation: Whenever a trip ¢ € 7 is serviced by the depot
d € G(t), it is clear that exactly one unloaded trip of A, incident from the last stop node
tT must be used. Thus, we can easily shift the depot dependent costs of a trip t € T; to
each arc of Ay that is incident from t*. A similar transformation — shifting costs via the
depot end point d~ — can be performed for nonzero costs of a backward arc.

For each d € D, let A; denote the depot lower and x4 denote the depot upper capacity.
These capacities define the (individual arc) lower and upper bounds of the backward arc.
The (individual) lower and upper bound of all the other arcs is set to zero and one,
respectively. For each ¢t € T, the common lower and upper bound of the arcs going from
the first stop node ¢t~ to the last stop node ¢t are both set to 1. All the other arcs are not
restricted by a common flow capacity, i.e., all these common lower and upper capacities
are set to sufficiently small and large numbers, respectively, such that conditions (1.23b)
are never tight and can therefore be neglected.

To describe a feasible vehicle schedule (and multicommodity flow vector, respectively),
an integer vector z € R must satisfy the conditions from (1.23):

1. The common lower and upper capacities (1.23b), both together define the equations

(2.2) dwh ey =1, VteT.

deG(t)
2. The flow conservation constraints (1.23¢) defining

(2.3) (65, (v)) — 24 (0 (v)) = 0, VweV,VdeD,

which in detail read

(2.3a) (0 t7) —af- ey = 0, VteT; VdeD,
(2.3b) 2l vy — 24 (05, (t7) 0, VteT,VdeD,
(2.3¢) 2 (85, (dY)) — xfi- 4v 0, VdenD,
(2.3d) 2l gy — (65 (d7)) = 0, VdeD.

3. The individual flow capacities (1.23d) defining
(2.5) M < wlgy < ke, YdeD,

and

(2.6) 0 < ¢ <1, VaeA"™uAl"™ vdeD,

24 CHAPTER 2. MULTIPLE-DEPOT VEHICLE SCHEDULING

The equalities (2.2), the so-called flow conditions, ensure that each timetabled trip ¢ is
serviced exactly once. With respect to our multicommodity flow model, the ILP reads

(2.7a) minz Z cd

deD u-trip
€0 acA ’

subject to
(2.7b) dah e = 1, VteT,
deG(t)
(2.7¢) 2465 (v)) — 2% (6, (v)) = O, YoeV, VdeD,
(2.7d) Mo < zlpgy < ke, VdeD,
(2.7¢) 0 < ¢ < 1, Vae AS"™ U AT™ v deD,
(2.71) x integral.

The ILP (2.7) is a special integer multicommodity minimum-cost flow problem. Consid-
ering every depot d on its own, the solution vector 2 describes vehicle duties that depart
from the depot’s start point, flow through the digraph (Vj, A), arrive at the depot’s end
point, and return on the backward arc (d~,d") to the start point. It is easy to see that
z? is a circulation of the “commodity” d through (V}, A,). The difficulty is that the cir-
culations z? are connected by the flow conditions (2.2): Exactly one of the |G(¢)| parallel
arcs (t7, %) must be used by some circulation z¢, d € G(¢).

From a computational point of view, the ILP (2.7) includes many redundant constraints
that can be eliminated by the following preprocessing steps:

1. If we consider a fixed ¢t € 7 and insert all flow conservation constraints from (2.3a)
into the flow condition from (2.2), we get new (equivalent) flow conditions

S5 = 1 VieT,

dEG(1)

which, because z¢ (67, (¢*)) = z4(0) = 0 for all d ¢ G(2), is equivalent to

Y25 () = 1, ViteT,
dcD

or

(2.8) z(6h,¢7)) = 1, VteT.

2. Combining (2.3a) and (2.3b) for each fixed d € D and each fixed ¢ € 7; yields new
equations

(2.9) 2 (65,@)) =265 (t7)) = 0, VteTy VdeD.

2.2. MATHEMATICAL MODELS 25

Substituting the flow conditions (2.2) by the new ones (2.8) and the flow conser-
vations (2.3a) by (2.9) implies that the variables x‘(it_ ++) (and thus the equations
(2.3b)) can be eliminated. In graph-theoretical terms, this variable elimination cor-
responds to a contraction of the two trip nodes ¢~ and ¢t to one single node, which
we simply denote by ¢. Each arc of A" for all d € D, will be removed; each arc
incident to ¢~ gets the new head node t and, analogously, each arc incident from ¢
gets the new tail node £.

3. Consider for each fixed depot d € D the flow conservation constraints (2.3¢), (2.3d),
and (2.9): The left-hand side of this system describes a node-arc incidence matrix
of a network flow problem. It is well known (see, e.g., in Ahuja, Magnanti, and
Orlin [1989], page 213) that each equation of such a system is linearly dependent
on all the others. We can therefore eliminate the equation (2.3d) for each d € D.
The variables a:?d_’ 4+) are also unnecessary and can be eliminated by inserting the
equation (2.3¢) into the appropriate bound constraints (2.5) of the backward arc
(d=,d") € Al,. As in the contraction described above for the timetabled trips, we
contract the two depot nodes d~ and d* to one new node d and remove the backward
arc (d~,d") from the arc set AJ.

With these variable eliminations, we get reduced digraphs

(2.10) D= (V, A)

and Dy := (V, Ag'mp), d € D, with a new arc set A := U deDAg'mp and new node sets
Vy:={d}UTy, deD, and V.=DUT.

The contracted digraph (V, A) is displayed in Fig. 2.7. We rewrite (2.8) and (2.9) with
respect to D as

(2.11) z(6T(@) = 1, VteT,
and
(2.12) 24 (5T(@) —2%(6~ () = 0, VteT;VdeD.

The ILP (2.7) reduces with respect to D = (V, A) to

(2.13a) minz Z cd 74

dcD aeA;—trip

subject to

(2.13b) z(6T(@) = 1, VteT,

(2.13¢) 24 (5t () — 2% (6~ (1)) = 0, VteT; VdeD,
(2.13d) AN < 26T (d) < Ka VdeD,

(2.13e) 0 < ¢ < 1, Vaec AY"™ vdeD,
(2.131) r € {01}

26 CHAPTER 2. MULTIPLE-DEPOT VEHICLE SCHEDULING

Figure 2.7: Contracted digraph D = (V, A).

A last simplification can be obtained from (2.11):
1 = z(67@) > 4 Vaedt(t) VdeD.

a?

A similar result holds for z(6~(¢)) = 1, which is a linear combination of equations from
(2.11) and (2.12). Thus, the upper bound constraint from (2.6) is, for each arc a € A,
a linear combination of (2.11) and (2.12) plus an affine combination of —z < 0, i.e., the
upper bounds are redundant and can be neglected. The final ILP formulation reads:

(2.14a) minz Z ¢ 4

deD u-trip
€L acA 4

subject to

(2.14b) z(6t(@) = 1, VieT,

(2.14c) (6% (@) — 267 (1)) = O, VteT; VdeD,
(2.14d) A < 2%6T(d) < ka vdenD,

(2.14e) z = 0,

(2.14f) z € {0,1}A

(2.15) Remark. A feasible vector x of (2.14) may be considered as the incidence vector
of some feasible solution.

2.3. DISCUSSION OF THE MODEL 27

(2.16) Lemma. The linear system (2.11) and (2.12) is nonredundant.

Proof: We assume that D := {1,...,|D|}. Since all pull-out and pull-in trips exist per
definition, we can consider the submatrix that is defined by all columns of

U{td) e A" d=minG(1)} U [J{(d, 1) € AT t € Ta}.

tcT dcD

It is easy to check that, arranging the columns in the right way, this submatrix is lower
triangular and nonsingular, which implies the full rank of the system. a

2.3 Discussion of the Model

Applied to vehicle scheduling problems from practice, the integer linear programming
formulation (2.14) leads to ILPs with up to 70 million integer variables and 125 thousand
constraints. In this sections, we will distinguish our multicommodity flow formulation
from some other models that have been presented in the literature.

Practice-oriented solution methods are in most cases based on a single-commodity mini-
mum-cost flow relaxation within a schedule first — cluster second (SF-CS) approach,
see Chap. 8 or Daduna and Paixédo [1995] for a detailed description of this approach. This
means that the multiple-depot formulation is reduced to a single-depot relaxation. Un-
like multicommodity flow formulations, however, those single-depot relaxation approaches
have two significant drawbacks:

Depot groups and flow conservation: It is only possible to consider a single (depot
independent) dead-head trip — we better call it link — between two timetabled trips. Such
a link (¢,1') is considered to be feasible with respect to the depot groups if G(t)NG(t') # 0.
But if depot groups must only be satisfied locally between two trips, the intersection of
the depot groups of a generated vehicle schedule (or block) may be empty. In other words,
the solution would be infeasible, see, e. g., Fig. 2.8. Splitting such infeasible block into its
feasible parts can lead to suboptimal solutions.

—_»_

Figure 2.8: Invalid block.

To avoid falling in such traps, the MDVSP should be modelled as a (special) multicom-
modity flow problem. Many research groups have considered the MDVSP as a multicom-
modity flow problem long before we started our investigations. The requirement of many
real-world applications to consider different depot groups, however, was just realized in
the last years, e.g., by Lamatsch [1988] or Forbes, Holt, and Watts [1994]. Obviously,
multicommodity flow formulations are natural for this kind of scheduling problems. This

28 CHAPTER 2. MULTIPLE-DEPOT VEHICLE SCHEDULING

is also reflected by the fact that we independently came up with the same ILP model as
Forbes, Holt, and Watts [1994].

Limited duration for dead-head trips: It is often the case that single-depot relax-
ations consider dead-head trips with a limited duration, see, e.g., Daduna and Mojsilovic
[1988] and Daduna, Mojsilovic, and Schiitze [1993]. It is therefore only possible to gen-
erate blocks that must be linked to vehicle schedules in a succeeding step. Based on
heuristic ideas, the main objective is to use as many dead-head trips as possible and, sub-
ordinate, to minimize operational costs. Obviously, this objective function does indeed
minimize the number of blocks if depot groups are handled correctly. At the same time, it
is assumed that a block minimal solution provides also a minimal fleet solution. It can be
shown, however, that this is not true in general, see Figs. 2.9 and 2.10. The blocks, which
have been determined by this strategy are subdivided to the depots and depot-wise linked
to vehicle schedules. These links correspond to pull-in-pull-out trips. It is clear that such
a problem decomposition into two successive steps can lead to suboptimal solutions.

I a 7:05-7:20 I e 9:01 -9:20

d 7:50 - 8:00

b 7:05-7:20 c 7:36 - 7:46 f 9:01 - 9:20

Figure 2.9: A single-depot instance (using limited durations for dead-head trips) for which
a block minimal solution does not provide a minimal fleet solution.

Figure 2.9 displays such a single-depot instance: The maximum allowed duration of a
dead-head trip is set to 60 minutes such that only the displayed dead-head trips (arrows)
can be used. If we assume that the operational weight of (a,d) is significantly smaller
than the weight of (¢, d), it is easy to check that the blocks including the trips {a, d},
{b,c}, {e}, and {f} define the unique block minimal solution with minimum operational
weight. If we further assume that it is not possible to use a pull-in-pull-out trip to link “c”
or “d” with “e” or “f”, the block minimal solution requires four vehicle schedules. A fleet
minimal solution, however, needs three vehicle schedules (e.g., including the timetabled
trips {a,e}, {b, f}, and {c,d}), but has five blocks (including the timetabled trips {a},

{0}, {c,d}, {e}, and {f}).

d 10:40 - 11:10
b 8:15-9:05 ¢ 9:55-10:45
a 7:50 - 8:20

Figure 2.10: A multiple-depot instance (using limited durations for dead-head trips) for
which a block minimal solution does not provide a minimal fleet solution.

Figure 2.10 displays a multiple-depot instance with two depots for which the minimal
fleet solution cannot be obtained with a block minimal solution: The first depot can

2.3. DISCUSSION OF THE MODEL 29

service trips “b, “c”, and “d”, and the second depot can service “a”’, “b”, and “c”. Two
timetabled trips may be linked by a pull-in-pull-out trip if the depot groups are satisfied
and if the two timetabled trips do not overlap. The maximum allowed duration of a dead-
head trip is set to 60 minutes such that for both depots just the dead-head trip between
“b” and “c” is possible. The block minimal number is three (“d” is assigned to the first
depot, “a” is assigned to the second depot, and “b—c” is assigned either to the first or
to the second depot) and requires three vehicles, but two vehicles are optimal ({a,c} and
{b,d}) if each timetabled trip defines its own block.

We have shown in Figs. 2.9 and 2.10 that it is insufficient to generate a minimal fleet
solution in such a two step approach. Linking blocks optimally and selecting user-defined
unloaded trips must be done simultaneously. Pull-in-pull-out trips translate the decision
of linking blocks into the terminology of dead-head trips. Therefore, using pull-in-pull-
out trips makes it possible to generate a minimal fleet solution with minimum operational
costs in one step.

Each pull-in-pull-out trip stands for a pull-in trip followed by a pull-out trip. The set of all
pull-in-pull-out trips represents all feasible possibilities to link blocks to vehicle schedules.
If we enlarge the user-defined unloaded trips by the pull-in-pull-out trips, the number
of necessary vehicles is nothing but the number of used pull-out trips (or, equivalently,
pull-in trips). Vice versa, if we replace each pull-in-pull-out trip of a vehicle schedule by
the corresponding pull-in and pull-out trip, it is always possible to assign all resulting
blocks of this vehicle schedule to a single vehicle.

The concept of pull-in-pull-out trips was first described by Bokinge and Hasselstrom
[1980] and Desrochers, Desrosiers, and Soumis [1985]. Since the number of pull-in-pull-
out trips grows in the order of #D x (#7)?, they claimed that numerical investigations
with pull-in-pull-out trips are unacceptable for the computers they used. Such a prob-
lem formulation needed too much main memory at this time. Therefore, Bokinge and
Hasselstrom [1980] and Desrochers, Desrosiers, and Soumis [1985] give an alternative for-
mulation for the single-depot case without pull-in-pull-out trips. Lamatsch [1988,1992]
extends this formulation to the multiple-depot case. Compared to our formulation without
pull-in-pull-out trips, his formulation results in a mathematical model with O(#D x #7T)
additional flow conservation constraints and O(#D x #7) additional variables. At first
glance, such a problem formulation with a linear instead of a quadratic number of vari-
ables seems to be advantageous. Nevertheless, we have decided in favour of the problem
formulation with pull-in-pull-out trips resulting in a mathematical model with a quadratic
number of variables. The reasons for our decision are:

1. For the alternative formulation, it is not obvious to tell the beginning of a simple
block from the beginning of a new vehicle schedule, i.e., it is impossible to count
the number of necessary vehicles easily. In our formulation, each used pull-out trip
defines a new vehicle schedule, i.e., a further vehicle must be provided.

2. The model with pull-in-pull-out trips is more flexible since, from an operational
point of view, the weight of a pull-in-pull-out trip can differ from the sum of the

30

CHAPTER 2. MULTIPLE-DEPOT VEHICLE SCHEDULING

weights of its pull-in and pull-out trip.

. Real-world problems with one depot can be solved efficiently with the computer

generation of our days, even if we use million pull-in-pull-out trips. Truly large-
scale instances, which are solved as subproblems within our solution process for
MDVSPs, with up to 25 thousand timetabled trips and 70 million unloaded trips
can be optimally solved within some minutes (see Chap. 5).

. Although the use of pull-in-pull-out trips increases the problem size enormously,

especially the number of variables of an integer linear programming formulation,
the number of constraints remains constant. This does not hold for the formulation
of Lamatsch, whose ILP includes O(#D x #7) more flow conservation constraints.
For our largest problem instance, however, this may induce about 200 thousand
flow conservation constraints that must be added to the 125 thousand original flow
conditions and flow conservations. Currently, there is no LP solver available that
could solve systems of this scale — even with a reduced variable set.

We have seen that arc-oriented multicommodity flow formulations and their integer pro-
gramming analogues are proper models for the MDVSP. With such formulations, it is
possible to consider most practical requirements. Only restrictions on the length or the
durations of blocks or vehicle schedules, however, cannot be handled efficiently with such
arc-oriented formulations. Even the SDVSP is ANP-hard if such restrictions must be
considered, see, e.g., Freling and Paixao [1995]. For those problems, we suggest to use
path-oriented set partitioning models. We will differentiate arc-oriented models from
path-oriented models in the next chapter and describe a set partitioning approach for the
MDVSP in Chap. 11.

Chapter 3

The Complexity of the MDVSP

The complexity of an MDVSP instance depends on |D|. The single-depot case (/D] =1)
with up to several thousand trips can be solved efficiently with polynomial time minimum-
cost flow algorithms. For the other cases (|D| > 2), even the uncapacitated MDVSP is
NP-hard. Bertossi, Carraresi, and Gallo [1987] proved that the multicommodity matching
relaxation of the MDVSP is already NP-hard for problems with two depots, no depot
capacities, and no depot groups. Their proof is based on a special satisfiability problem,
the ONE-IN-THREE 3SAT with unnegated literals.

We will give a new proof for their result. This new proof is based on our multicommodity
flow formulation. In addition, we show that the MDVSP is AN"P-hard in the strong sense.
We will also prove the new result that the feasibility version of the MDVSP with depot
capacities is already N P-complete.

From now on, “MDVSP” always refers to the multiple-depot case |D| > 2, whereas the
Single-Depot Vehicle Scheduling Problem (SDVSP) refers to the single-depot case |D| = 1.
In the following of this thesis, we will consider the MDVSP and explicitly mention it when
we consider the SDVSP.

For our complexity investigations in this chapter, we will use the terminology introduced
in Garey and Johnson [1979].

3.1 The Single-Depot Case

Consider a SDVSP assuming D := {d} and G(t) = D, for all t € T. Figure 3.1 illustrates
a single-depot case digraph D' = (V' A').

For the SDVSP we can neglect the index d. The ILP (2.7) of the “singlecommodity” flow
model with a detailed list of its flow conservations (2.3) reads:

(3.1a) min Z Ca Ta

aeAu—trip

31

32 CHAPTER 3. THE COMPLEXITY OF THE MDVSP

subject to

(Slb) x(t_,t"‘) 1, v t e 7"

(31C) x(5+(t+)) — x(t—,t+) O, v t [= T’

(3.1d) T(t—1+) — 13(5_(75_) = 0, VieT,

(316) $(5+(d_)) — x(d_,d"‘) = 0,

(3.1f) T(d—a+) — x(é_(d_) 0,

(3.1g) A< Tg-gany <K

(31h) 0 < T < 1’ Vace At-trip U Au-trip,
(3.11) x integral.

As before, we apply to (3.1) some preprocessing steps to get a more concise ILP formu-
lation:

e One of the flow conservations (3.1¢)—(3.1f) is redundant; we eliminate (3.1e).

e Inserting (3.1b) into (3.1c) and (3.1d) yields new equations

z(6T(t7) = +1, VieT,
—z(6~(t7)) = -1, VteT,

and we can eliminate the equations and variables of (3.1b). Figure 3.2 shows the
transformed digraph for all these variable eliminations.

e Each inequality z, < 1 is a linear combination of some equation (3.2) or (3.3),
respectively, plus an affine combination of —x < 0. We can neglect them.

e It is easy to check that the left-hand side of the remaining equation system (3.1f),
(3.3), and (3.2) describes a nonredundant node-arc incidence matrix of a network
flow problem. Since all bounds and the right-hand side are integral, the integrality
condition (3.11) is automatically satisfied for each basic solution.

The reduced ILP (3.1) reads

(3.4a) min Z Ca Tq

ac Au-trip

subject to

3.4b z(6t(tT)) = 1, VieT,

3.4¢ —z(6~(t7)) = -1, VieT,
)) =)

A< Z(d-ah

WA

Lq

3.1. THE SINGLE-DEPOT CASE 33

Figure 3.1: SDVSP digraph (V’, A’) with 7 = {a,b,c}.

End point is a
transshipment
node

Start po
transshipment

node

First stops are Last stops are
demand nodes supply nodes

Figure 3.2: SDVSP digraph after variable elimination.

34 CHAPTER 3. THE COMPLEXITY OF THE MDVSP

which is the LP formulation of a minimum-cost flow problem. The difference to the
MDVSP is that the flow conditions (3.1b) in combination with the flow conservations
(3.1¢) and (3.1d) can be transformed to real node demands and supplies such that (3.1)
reduces to a polynomially solvable minimum-cost flow problem.

(3.5) Theorem. The SDVSP can be solved in polynomial time.

Various polynomial and pseudo-polynomial time solution approaches for minimum-cost
flow problems can be found, e.g., in Ahuja, Magnanti, and Orlin [1993]. We use a net-
work simplex algorithm to solve the SDVSP. The implementation of this network simplex
algorithm is described in Chap. 5.

3.2 The Multiple-Depot Case

To show the NP-hardness of the MDVSP, we have to show the N'P-completeness of its
decision problem, which is defined as follows: Given an instance (2.14) of the MDVSP
and a number L € Q; is there a feasible solution z that satisfies all conditions of (2.14)
and has an objective value not larger than L?

(3.6) Theorem. The MDVS-decision-P is NP-complete in the strong sense.

Proof: See page 35. 4

(3.7) Corollary. There exists no pseudo-polynomial time algorithm for the MDVSP
unless P = NP.

Proof: Garey and Johnson [1979], Chap. 4, page 95. -

The answer to the question whether there exists a polynomial approximation scheme for
the MDVSP is most probably “no”:

(3.8) Theorem. The e-approximation MDVSP is AN"P-hard.

Proof: See page 309. a

(3.9) Remark. The objective function in the proof of Theorem 3.8 does not sat-
isfy the triangle inequalities. It is still open whether there exists a polynomial time
g-approximation algorithm for the MDVSP when the triangle inequalities are satisfied.
For practical applications, however, we do not believe that this has any relevance since
the arc costs are seldom distances and usually do not satisfy the triangle inequalities.

Our above complexity investigations are focused on uncapacitated problem instances.
For capacitated instances, however, it is not only AP-hard to optimize, but already
NP-complete to find a feasible solution.

3.2. THE MULTIPLE-DEPOT CASE 35

(3.10) Theorem. The feasibility problem of the capacitated MDVSP is A'P-complete.

Proof: See page 40. 4

(3.11) Remark. Complexity theory tells us that it is N/P-hard to find a feasible solution
if depot capacities are considered. However, it turned out that depot capacities are not
always hard constraints and can thus sometimes be violated since vehicles can often be
shifted from one garage (or depot) to another.

In the following, we give the proofs of the last three theorems. To prove the complexity
results for the MDVSP, we use the ONE-IN-THREE 3SAT with unnegated literals,
which we briefly write OIT-3SAT-UL. This special satisfiability problem is as follows:
Given two integer numbers ¢ > 3 and p > 1, a set U = {uy,...,u,} of Boolean variables,
and a collection C = {&,, ..., &,} of clauses over U such that each clause € € C has |€| =3
and that no € contains a negated literal; is there a truth assignment ¢r : 4 — {T,F}, T
stands for “True” and F stands for “False”, such that each clause € € C has exactly one
true literal? The OIT-3SAT-UL is known to be N'P-complete in the strong sense (see
Garey and Johnson [1979]).

Proof of Theorem 3.6: We show that the theorem is already true for uncapacitated
problems with two depots (|D| = 2) and identical depot groups G = D (the lower and
the upper capacities are set to 0 and oo, respectively). Given such a two depot instance
of the MDVSP and a number L € Q. Obviously, the decision problem of the MDVSP
is in AP since given a solution z, a nondeterministic algorithm can check all conditions
of (2.14), compute the objective value ¢"z, and compare it with the given bound L in
polynomial time. We transform the OIT-3SAT-UL to the decision problem of the MDVSP.
Let g >3, p>21 4={w,...,u,}, and C = {&,...,&,} make up an arbitrary instance
of the OIT-3SAT-UL.

The construction of an MDVSP instance for the OIT-3SAT-UL instance will be based on
a two depot problem: The first depot is denoted by true (T) and the second depot by
false (F), i.e., D = {T,F}. Let uy denote an artificial Boolean variable. Every Boolean
variable and each literal of each clause define a timetabled trip, i.e.,

p
To=Tr:=T:={w}uuul Je.
=1

The definition of the dead-head trips is slightly complicated. First, we introduce some
help sets:

L4 gO = ﬂa
e G :=¢;, forallie{l,...,p}, and
o H;:={u;}U{ce [, cisaliteral of u;}, for all j € {1,...,q}.

36 CHAPTER 3. THE COMPLEXITY OF THE MDVSP

Let “<,” denote an order on H; such that for {z,y} C H,;:
r=<jy=dm<n:2 €0y Ay €y,

“<;” is well-defined because each H; contains at most one element from each G;. y € H;
is called the successor “succ(x)” of x € H; if <; y and if there exists no z € H; such
that x <; 2z <; y. The arc sets of the dead-head trips are set to

A%—trip = ({'Ll()} — gl) U ij(gz’_l — gz)

=2

and

Ag‘-trip — U (U ((t, SUCC@)))) :

teH;:
t;émaxﬁ H;

The lower bounds At and Ag are set to 0, the upper bounds st and kg are set to oco. The
costs of the following arcs are set to zero:

e all defined dead-head trips AT™™® and AL"™,
o the pull-out trips ({T+} = (Go U {uo})) C A2 and ({F+} — Gy) AR,

o the pull-in trips ((Go UG,) — {T~}) € AR"™ and
(U?Zl{max<j %j} — {F_}) C A%ull-ln.

The costs of all the other arcs are set to 1. Finally, we set L := 0. The arcs, which
can only be used by a feasible solution satisfying ¢z < 0 = L, are those whose cost
coefficients are 0, i.e.,

(3.12) if (¢"z =0 and z, = 1) then ¢, = 0.

It is easy to see that the above transformation can be performed in O(p + ¢) time.

Figure 3.3 shows the digraph D' = (V' A’) of a transformed OIT-3SAT-UL problem
instance with 4 := {u;,ug,u3,us} and € := {{u;,up,us}, {u11,u2,u4}}. Only the arcs
satisfying ¢, = 0 are displayed. The task is to find a truth assignment ¢r : 4 — D
satisfying (u; VuaVus) A (uVuaViy).

To prove that the given transformation is indeed a transformation from OIT-3SAT-UL to

MDVSP, we have to show that an instance of OIT-3SAT-UL is satisfiable if and only if
the transformed problem is feasible.

Assume that we know a truth assignment satisfying the clauses of €. We will construct a
feasible scheduling, whose incidence vector z is feasible. For each u; assigned to false, we
define an F-vehicle schedule

(3.13)
(F*,u;), (¢,succ(t)) Vi€ H;:t#maxy, H;, and (maxy, H;, F7).

3.2. THE MULTIPLE-DEPOT CASE 37

T i aal T asar T
L4 N N2
P P P
F+ %j _/61/3 ~_ 7 F_
o P
R - Rl
Uy a Cp,3‘
b <Al N2
Go G G,

Figure 3.3: MDVSP digraph D' = (V’, A’) of a OIT-3SAT-UL.

This covers all timetabled trips of |

)—r H;. For each u; assigned to true, we define
a T-vehicle schedule

gz tru;

(3.14) (T*,u;) and (u;,T7).

This covers all (by F-vehicle schedules uncovered) nodes of Gy. The node uy and the
“true” literal node of each clause group G;, i = 1,...,p, are still uncovered. Let ¢, € G,
i = {1,...,p}, denote these uncovered literal nodes. To complete the scheduling, we
define a last T-vehicle schedule

(3.15) (T7,u0), (uo,¢t), (¢1,¢5), ---, (€hy,¢p), and (e, T7).

Obviously, the constructed solution uses only defined dead-head trips and only unloaded
trips with zero cost coefficients. It is easy to check that all conditions of (2.14) are satisfied
and that the objective value does not exceed L = 0. Figure 3.4 shows the transformation
of two feasible truth assignments for the example of Fig. 3.3; only arcs with z, = 1, for
all @ € AP are displayed.

Conversely, consider a feasible solution x satisfying ¢'z = 0:

O Since z must follow (3.12), a feasible solution z can only use the pull-out trips (T —
(Go U {ug})) € AR™°" and (F*+ — Gy, F) € AR™™. Since 6~ (u9) = (T, 1) and
5=(t) = (TT,¢) U (F*,¢), for all ¢ € Gy, each timetabled trip ¢ € Go U {uo} must be

38 CHAPTER 3. THE COMPLEXITY OF THE MDVSP

Uy
-4
T+ N auz 4 \ S~y C11 £ Cp 1 T
-l Al LAl
P e P
F+ \/uj \/cw S~ F_
aa el
~_ S~
P e al
N .
Go G, G,

Figure 3.4: Two feasible truth assignments for the instance of Fig. 3.3.

3.2. THE MULTIPLE-DEPOT CASE 39

serviced with some pull-out trip. Therefore, £ must describe exactly ¢ 4+ 1 vehicle
schedules.

® In particular, uy can only be serviced by a vehicle schedule of T. Applying the flow
conservation constraints (2.12), this T-vehicle schedule must also service exactly one
literal node of each G;, i € {1,...,p}, and is defined like (3.15). By the way, all
these literal nodes serviced by this T-vehicle schedule will become the true literals
of the truth assignment.

© 5t (u) N AP = (u;, T7), for all j € {1,...,q}, implies that the shape of all
remaining T-vehicle schedules is like (3.14).

O All timetabled trips, which are not covered by one of the above described T-vehicle
schedules, must be serviced by some F-vehicle schedule. Each set G;, 7 € {1,...,p},
includes exactly two such nodes. Since A(G;) = 0, for all ¢ € {0,...,p}, there
exist at least two literal nodes (from G;) which are both covered by some F-vehicle
schedule. Consider any literal node ¢ € | J/_, G; that is serviced by some F-vehicle
schedule: the flow condition (2.11), the flow conservation (2.12), and @ allow only
F-vehicle schedules like (3.13), whereas j must be chosen such that ¢ € H;.

© We can conclude from @ that for a Boolean variable u; either all their nodes in H;
together build the nodes of some F-vehicle schedule or every node in #H; is a node
of some T-vehicle schedule, and we can also conclude from @ that there exists at
least one T-vehicle schedule like 3.14) as described in ©.

® The fact that all variable nodes u, j € {1,..., ¢}, are serviced follows from the flow
condition (2.11).

The points @ — @ imply that the truth assignment

1 + 5. = + .. pull-out
(3.16) tr(u;) = {T if 2(T%u;) =1, (T7u;) € AR,

Fifz(Fru) =1, (Fru) e A2,

for all ¢ € {1,...,q}, is satisfiable for the given OIT-3SAT-UL problem instance.

The N'P-completeness proof is done, the NP-completeness in the strong sense immedi-
ately follows from the fact that the given transformation generates only the numbers 0
and 1 (see Garey and Johnson [1979], Chap. 4). -

Proof of Theorem 3.8: For an arbitrary problem instance of the MDVSP, let S, and
¢(Sopt) denote some optimal scheduling and its objective value, respectively. Given an
¢ > 0 and a polynomial time algorithm A that generates for every instance of the MDVSP
a scheduling S 4 satisfying ¢(S4) < (1 +€)c(Sopt). Similarly to the proof of Theorem 3.6,
we transform the OIT-3SAT-UL to the decision problem of the e-approximation MDVSP.
Consider some 6 > 0. In difference to the proof of Theorem 3.6, L is set to 1 + &,
each arc’s cost coefficient that was set to 1 is increased by ¢ + ¢, and C(TT++,u0) is set
to 1. Everything else remains unchanged. We leave it to the reader to prove that an
OIT-3SAT-UL instance is satisfiable if and only if the transformed problem has a feasible

40 CHAPTER 3. THE COMPLEXITY OF THE MDVSP

solution satisfying ¢"r = 1 < 1 4 ¢ and that an OIT-3SAT-UL instance is unsatisfiable
if and only if the objective of any feasible solution for the transformed problem satisfies
c'r>1+e. a

Proof of Theorem 3.10: This proof is similar to the proof of Theorem 3.6. The theorem
is already true for |D| = 2 and G = D. Given such a capacitated instance of the MDVSP.
The feasibility problem of the capacitated MDVSP is in NP since the additional work to
the decision problem is to check the depot capacities, which can be done in polynomial
time.

We transform the OIT-3SAT-UL to the capacitated feasibility problem of the MDVSP.
Let ¢ 23, p>1, U= {w,...,u,}, and C = {&,...,&,} make up an arbitrary instance
of the OIT-3SAT-UL.

The depots are D = {T, F}, the timetabled trips are

p
T o= {u} VLU i, ..., T s} UG U{up}u{uf, ... 0}
=1

({1, - - -, ug—3} are dummy nodes and {uy}U{uj, ..., u} are copies of the nodes {uy}U),
and Tr =T =7T.
For the definition of the dead-head trips, we first introduce some help sets:

o Gy =4l

e Gi:=¢C, forallie{l,... p},

® Gp1:={uj,...,u}, and

o H;:={u}U{ce U, & :cisaliteral of u;} U {u}}, for all j € {1,...,q}.
Let “<,” denote an order on #; such that for {z,y} C H,; :
r=<jy=3dm<n:2 €0y Ay €y,

y € M, is called the successor “succ(z)” of z € H; if <; y and if there exists no element
z € H; such that x <; 2z <; y. The arc set of the dead-head trips are set to
. P q
AdT'mp = ({w} = G1) U U(gi—l —Gi) U (G — {uy}) U

=2 J

(g, 1))
1

and

AP U (U (t, succ(t))) .

teH;:
t;éma.x<j H
For both depots, the lower bounds At and Ar are set to 2 and the upper bounds st and

Kr are set to ¢ — 1, respectively. All arc costs are set to zero. It is easy to see that the
above transformation can be performed in O(p + ¢) time.

3.2. THE MULTIPLE-DEPOT CASE 41

Figure 3.5 shows the same OIT-3SAT-UL problem instance as Fig. 3.3: the Boolean
variables are {u;,us,us,us} and the clauses are {{uy,uz,u3}, {us, us, us}}, respectively.
The task is to find a truth assignment #r : 4 — D satisfying (u; VuaVus) A (U VusVauy).

gU gl gp gp+1

T

Figure 3.5: Capacitated MDVSP digraph D' = (V', A’) of a OIT-3SAT-UL.

Assume that we know a truth assignment satisfying the clauses of €. We will construct a
feasible scheduling, whose incidence vector z is feasible. For each u; assigned to false, we
define an F-vehicle schedule

(3.17)
(F*,u;), (¢, succ(t)) VieH;:t# maxy, H;, and (maxy H;, F).

This covers all timetabled trips of |
a T-vehicle schedule

j: tr(uy)—F 115~ For each u; assigned to true, we define

(3.18) (T*,uy), (uj,u;-), and (u;-,T_).

This covers all (by F-vehicle schedules uncovered) nodes of Gy and G,41. Let ¢, € G;
denote the still uncovered literal node from each G;, for all i € {1,...,p}, (note: exactly
two nodes of each G; are covered by some F-vehicle schedule). To cover the nodes ug, 1,
and all these ¢, we define a T-vehicle schedule

(3.19)
(T*, 1), (wo,¢h), (ch,¢5)), .-, (ch_yr€h), (€5, up), and (ug,T7).

42 CHAPTER 3. THE COMPLEXITY OF THE MDVSP

Until now, all nodes except {uy,...,u;,_3} are covered. Since we defined exactly ¢ + 1
vehicle schedules, there is a total free capacity of ¢ — 3 vehicle schedules left for both
depots together. For each node u € {uy,..., 1,3}, we define either a T-vehicle schedule

(3.20) (T*,w) and (%, T7)
or an I-vehicle schedule
(3.21) (F*,u) and (W,F7)

depending on the free depot capacities. Figure 3.6 shows the transformation of two feasible
truth assignments for the example of Fig. 3.5; only arcs with z, = 1, for all ¢ € AP,
are displayed.

Conversely, consider a feasible solution x:

@ Since 67 (t) = (TF,¢) U (FT,¢t) for all t € ({uo} UGo U {H1, ..., Ug_3}), x describes
at least [{up} UGo U {uy,..., U3} =1+ ¢+ (¢ — 3) = 2¢ — 2 vehicle schedules.
This number of vehicle schedules is equal to the maximal capacity of both depots
together. Therefore, some pull-out trip is used to service a timetabled trip node ¢ if
and only if { € ({uo} UGoU{uy,... ,ﬁq_g}).

@ The trip node uy must be serviced with some T-vehicle schedule because @ and
the flow condition (2.11) imply that z(T*,uf) = z(F*,uj) = 0 and, therefore,
z(67(up) N ATTP) = z(B) = 0 or z(6~(up) N A$™P) = 1. Tracing this vehicle
schedule forward and tracing it backward with respect to the flow condition (2.11)
and the flow conservation (2.12), the shape of the T-vehicle schedule is like (3.19).

® Forallt € {T,..., T3} : 6(t) N (AT"PUAF™™) = (. This implies that the vehicle
schedule that services ¢ looks like (3.20) or (3.21).

@ Consider the vehicle schedule of some timetabled trip node ' € G,y: tracing it
forward and backward with respect to @, to the flow conservation (2.12), and to
67 (w) = (v, T7) U (W, F~) results either in a T-vehicle schedule like (3.18) or in
an F-vehicle schedule like (3.17); these are precisely the vehicle schedules that also
service all nodes from G,.

® From @ follows that a feasible solution x must make use of the maximal depot
capacities, which is ¢ — 1 in both cases. First, we can conclude that there exists at
least one T-vehicle schedule of type (3.18) because one T-vehicle schedule is used
as described in @ and there exist at most ¢ — 3 T-vehicle schedules of type (3.18).
Second, there exist at least two F-vehicle schedules of type (3.17) because uq is
serviced from depot T and there exist at most ¢ — 3 F-vehicle schedules of type
(3.21).

© Whenever a (literal) timetabled trip node ¢ € (J/_, G; is serviced from a T-vehicle
schedule, the flow conservation (2.12) implies that this is the T-vehicle schedule
from @. It is also known from @, that for each G;, i € {1,...,p}, exactly two nodes

3.2. THE MULTIPLE-DEPOT CASE

— Uy :Cm :Cg/l uj
N \ S -4 / . \
U, ;CLZ acgz u
T S 4 WY wrw v e ’« T
$ Us 1,3 15 *
+ i
F N - e F
u, [ul
e T w2 bl
go gl gp g;1+1
@ 0=y
T

Figure 3.6: Two feasible truth assignments for the instance of Fig. 3.5.

43

44 CHAPTER 3. THE COMPLEXITY OF THE MDVSP

cannot be serviced by this T-vehicle schedule. These two nodes can only be serviced
by an F-vehicle schedule. But for the same reasons as for the nodes in G, 4, this
F-vehicle schedule can only be of type (3.17).

@ The fact that all variable nodes 1, j € {1,..., ¢}, are serviced follows from the flow
condition (2.11).

Points ® — @ imply that the truth assignment

522) i) = 4 8 () =
. ;) = F ifx(F+,uj) —]_7 (F+,Uj) c qu‘ull-out7

for all i € {1,...,q}, is satisfiable for the given OIT-3SAT-UL problem instance. a

Chapter 4

A Literature Overview

In this chapter, we give an overview on the literature dealing with the MDVSP and
variants on it.

Arc-oriented multicommodity flow (as presented in Chap. 2) and path-oriented Dantzig-
Wolfe (DW) set partitioning formulations (see Chap. 11) are usually used to model the
MDVSP. Applied to vehicle scheduling problems from practice, their corresponding ILP
formulations provide several million integer variables. Solving such large ILPs requires
column generation techniques.

For the arc-oriented model, column generation can be seen as an implicit pricing technique
(see Schrijver [1989]): one works on restricted subsets of active arcs that are generated
and eliminated in a dynamic process. For the DW decomposition, column generation
usually leads to pricing problems in the form of constraint shortest path problems. Many
researchers automatically associate the term “column generation” with the solution pro-
cess used in a DW decomposition (e. g., see Soumis [1997]). To distinguish this use of the
term “column generation” from those as a general LP pricing technique in the sense of
Schrijver, DW column generation is also called delayed column generation as proposed in
Chvétal [1980]. To avoid misunderstandings, we will use in this paper the term “column
generation” as a general LP pricing technique in the sense of Schrijver.

Dantzig-Wolfe decomposition models are needed for problems that involve path con-
straints. They apply not only to vehicle scheduling problems, but also to applications
of similar flavour, e.g., to crew and airline scheduling. For a survey on set partitioning
approaches to such problems, we refer the reader to Desrosiers, Dumas, Solomon, and
Soumis [1995), Barnhart, Hane, and Vance [1996], Barnhart, Johnson, Nemhauser, and
Vance [1997], and Soumis [1997].

Direct approaches to the multicommodity flow formulation can be used if all side con-
straints can be formulated solely in terms of the arcs of the network. This is the case for
the MDVSP considered here.

All the models presented in the literature use natural flow formulation with their (self-
suggesting) integer linear programming analogous. Depot groups and depot capacities are

45

46 CHAPTER 4. A LITERATURE OVERVIEW

of course natural, but have often not been considered in the literature about the MDVSP.
Conditions of these type have often been ignored to simplify the used notation, to receive
nice results for special problem cases, or were not required by the real problem that has
been investigated. In most cases, the only difference between the models published by
now and our model presented in Chap. 2 is whether conditions of this kind have been
considered or not.

In the following, we give a collection of references to computer-aided planning systems that
are employed in practice. We continue with a survey on models and solution approaches
in vehicle routing and scheduling. Afterwards, we give an overview on the SDVSP and
the MDVSP.

4.1 Computer-Aided planning systems

From a practical point of view, there are several publications that report on experiences
with computer-aided planning systems like

e BUSMAN, see Chamberlain and Wren [1988,1992];

e BERTA (“BEtRiebseinsaTzplanung und -Auswertung”) of the Berliner Verkehrsbe-
triebe (BVG) and IVU GmbH, Berlin, see Lobel and Strubbe [1996] and Becker,
Ro8, and Schemczyk [1996];

e HASTUS, see Blais and Rousseau [1988] and Hamer and Séguin [1992];

e HOT II (“Hamburger Optimization Technique”) of the Hamburger Hochbahn AG
and HanseCom GmbH, Hamburg, see Hoffstadt [1981], Mojsilovic [1983], Daduna
and Mojsilovic [1988], Daduna, Mojsilovic, and Schiitze [1993], Schiitze and Volker
[1995], and Petzold and Schiitze [1995].

4.2 Some Surveys

Bodin and Golden.

Bodin and Golden [1981] give a “Classification in Vehicle Routing and Scheduling”. They
define the term vehicle route as an ordered sequence of pickup or delivery points traversed
by a vehicle, starting and ending at a depot. A vehicle schedule is a sequence of pickup
or delivery points together with an associated set of arrival and departure times, which
a vehicle traverses in the designated order at the specified times. When arrival times
at nodes or arcs are fixed in advance, this is called a scheduling problem. Problems
with unspecified arrival times are referred to as straightforward routing problems. When
time windows or precedence relationships exist such that routing and scheduling functions
need to be performed, the authors view such problems as combined vehicle routing and
scheduling problems.

4.2. SOME SURVEYS 47

Bodin and Golden discuss several variations of vehicle routing and scheduling problems
and provide a taxonomy for these problems, e.g., a classification in a homogeneous or a
heterogeneous vehicle fleet, one or more than one depot, time restriction on particular
arcs or nodes, etc. This taxonomy is followed by a classification of solution strategies for
routing problems, e.g., cluster first — route second, route first — cluster second, saving
approaches, etc. up to exact procedures. Finally, a short description of three combined
routing and scheduling problems is given.

The interesting part of Bodin and Golden, from our point of view, is the hierarchy clas-
sification of vehicle scheduling problems: They start with a simple version of an SDVSP
having the task to minimize the fleet size (or capital costs) only. Those problems are
solved using flow algorithms. If, in addition, operational costs must be considered, they
first solve the simple SDVSP, which computes the minimum fleet size, fix the minimum
fleet size value, and minimize the total operational costs for all minimal fleet solutions.
This problem is solved using a minimum-cost flow algorithm. We will show in Chap. 5
how this two stage approach can be composed to a single-stage approach. The next
straightforward extension of the SDVSP is to allow multiple depots, which the authors
solve either by a cluster first — schedule second or by a schedule first — cluster second
approach. Depot groups are not considered, but the authors discuss restrictions on path
lengths, time windows, etc.

Assad, Ball, Bodin, and Golden.

The survey of Assad, Ball, Bodin, and Golden [1983] gives a comprehensive overview about
vehicle routing and scheduling approaches. The methods presented in Bodin and Golden
[1981] seem to be a compact version of the techniques of Assad et al [1983]. Both articles
give a taxonomy followed by some characteristics of routing, scheduling, and mixtures of
both problems. Although Assad et al. devote a chapter to each of routing, scheduling,
and combined routing and scheduling problems, we will concentrate our summary on their
survey on scheduling problems.

The authors formulate SDVSPs as
(4.1a) min Z Co Ta

aeAu—trip
subject to
(4.1b) z(6t(@t)) = 1, VteT,
(4.1¢) z(6T() —z(6~() = 0, VteT,
(4.1d) ., > 0, Vae AP

which can be transformed to (3.4) without depot capacities and with an eliminated x4~ 4+)
variable. The weights of the arcs are defined by capital costs (for a minimization of the
fleet size) and operating cost. They describe two solution approaches. As in the case

48 CHAPTER 4. A LITERATURE OVERVIEW

of Bodin and Golden [1981], they always consider either capital costs or operating costs
(with a fixed fleet size) and apply a two stage approach to optimize such a problem. They
also present a single stage approach as we will present in Chap. 5.

Although the authors are aware of the problem with limited durations of dead-head trips
(see the model discussion in Chap. 2.3), they do not use trips like our pull-in-pull-out
trips because there are O(Jtimetabled trips|?) many of them.

SDVSPs with path restrictions are known to be ANP-hard (e.g., see Freling and Paixdo
[1995]). Assad et al. give an ILP formulation for such problems, but do not describe how
such problems can be solved efficiently.

MDVSPs are formulated as multicommodity flow problems with the following ILP formu-
lation, which is equivalent to (2.13) without depot groups:

(4.2a) minz Z cd ¢

D u-trip
de aeAd

subject to

(4.2b) z(6t() = 1, VieT,

(4.2¢) 24 (67T(t) —2%(67(1)) = 0, ViteT VdeD,
(4.2d) AN < 24 (6T(d) < ke vdenD,

(4.2¢) 0 < 2¢ < 1, Vae AP v deD,
(4.21) r € {0,1}A

Assad et al. describe heuristics like a concurrent scheduler, an interchange method (similar
to the 2-opt heuristic for travelling salesman problems), a cluster first — schedule second
method, and a schedule first — cluster second method, but no exact method to solve the
MDVSP.

Carraresi and Gallo.

Carraresi and Gallo [1984] give a review on solving vehicle and crew scheduling problems
in public mass transit. They formulate the SDVSP as an assignment problem, which can
be solved by assignment or general purpose minimum-cost flow algorithms, and discuss
the different possibilities how the cost function can be used to minimize capital costs or
operational costs or a mixture of both.

The MDVSP is considered without depot groups and without lower depot capacities. It
is formulated as a multicommodity flow problem based on the assignment model for the
single-depot case. In our notation, their formulation reads

(4.3a) min Z Z cd

deD acA,

4.2. SOME SURVEYS 49

subject to
(4.3b) Sl = 1 VteT,

deD
(4.3¢) (07 (Y) —af- 1y = 0, VteT VdeD,
(4.3d) zl- iy — 2t (67(t7)) = 0, VteT YdeD,
(4.3¢) 24 (67(dh) < ke VdenD,
(4.3f) ¢ > 0, Vae A" VdeD,
(4.3g) ¢ e {0,1}, VaeA"™ VdeD.

This formulation is similar to our multicommodity flow formulation (2.7). The authors
propose the two heuristics cluster first — schedule second and schedule first — cluster second
and give a note on a Lagrangean relaxation approach to solve the MDVSP.

Desrosiers et al.

Desrosiers, Dumas, Solomon, and Soumis [1995] give a survey on various vehicle scheduling
and routing problems, we just summarize their “Fixed Schedule Problems”.

Their MDVSP formulation does neither consider depot groups nor lower bounds for the
depot capacities. The formulation is taken from Ribeiro and Soumis [1994] and reads

(4.4a) minz Z Cq 7

deD aeA;—trip

subject to

(4.4b) (6t (@) = 1, vteT,

(4.4¢) 24 (6T(1) —2*(6~ (1) = 0, Vite Tu{d} VdeD,
(4.4d) 4 (61(d) < &g, VdeD,

(4.4e) x = 0,

(4.41) r € {01},

This problem formulation is very close to (4.2) of Assad et al. and to our formulation
(2.14). For the single-depot case, (4.4) reads
(

4.5a) min Z Ca Tq

subject to

(4.5D) (7)) = 1, VteT,
(4.5¢) z(6t@®) —z(6-() = 0, VteTu{d},
(4.5d) (6*(@) < &

(4.5€) r = 0

50 CHAPTER 4. A LITERATURE OVERVIEW

To apply some minimum-cost flow algorithm to (4.5), the authors transform the problem
into an equivalent LP formulation of a minimum-cost flow problem similarly to (3.1).

In addition to the general minimum-cost flow formulation, the authors discuss how the
SDVSP can be solved using a transportation or an assignment formulation. They also
mention that the assignment formulation cannot handle depot capacities.

The authors are also aware of the problem with limited durations of dead-head trips. To
avoid the use of a quadratic number of variables, they give references to the articles of
Bokinge and Hasselstrém [1980], Desrochers, Desrosiers, and Soumis [1985], and Lamatsch
[1988,1992] who give a problem formulation with a linear number of variables. We have
discussed such approaches in Chap. 2.

Desrosiers et al. give a list of articles describing some heuristic algorithms for the MDVSP.
The branch-and-bound approach of Carpaneto, Dell’Amico, Fischetti, and Toth [1989]
and the Lagrangean relaxation approach of Lamatsch [1988,1992] are shortly described.
A very detailed description is given for the Dantzig-Wolfe decomposition approach of
Ribeiro and Soumis [1994].

Daduna and Paixao.

The problem classification and the SDVSP description in Daduna and Paixdo [1995]
closely follows Assad, Ball, Bodin, and Golden [1983] with some additional extensions
to the SDVSP. Daduna and Paixao give illustrative description of

e assignment approaches (e.g., Mojsilovic [1983)),
e quasi-assignment approaches (e.g., Branco and Paixao (1987,1988)),
e matching approaches (e. g., Bertossi, Carraresi, and Gallo [1987]),

e transportation approaches (e.g., Gavish, Schweitzer, and Shlifer [1978] and Gavish
and Shlifer [1978]),

e and minimum-cost flow approaches (e. g., Carraresi and Gallo [1984]).

The authors formulate the MDVSP as a multicommodity flow problem, but do not con-
sider depot groups. Some practical requirements, however, as multiple vehicle types, path
restrictions, timetable sensitivity analysis (e. g., see Ceder and Stern [1981], Fuchs [1992],
or Daduna, Mojsilovic, and Schiitze [1993]), etc. are discussed separately.

4.3 The Single Depot Case

We consider the single-depot case to be important since SDVSP instances occur not only
as pure vehicle scheduling problems. They have to be solved repeatedly as subproblems
of

4.4. THE MULTIPLE DEPOT CASE ol

e cluster first — schedule second approaches,
e schedule first — cluster second approaches,
e schedule — cluster — reschedule approaches,
e Lagrangean relaxations of MDVSPs resulting in SDVSP instances, and

e timetable sensitivity analysis, i.e., shifting some timetabled trips by few minutes
may improve the vehicle schedule (see Schiitze and Volker [1995], Daduna, Mo-
jsilovic, and Schiitze [1993], Daduna and Mojsilovic [1988], Mojsilovic [1983], Hoff-
stadt [1981], and Bokinge and Hasselstrém [1980]).

Lobel [1996a] describes a network simplex implementation in C, which solves very large
real-world SDVSP instances from practice efficiently. With this code, it is possible to
solve problem instances with up to 50 thousand of nodes and 70 million of unloaded trips,
see also Chap. 5 and Chap. 12. This network simplex code, called MCF, is available
for academic use free of charge via WWW at URL http://www.zib.de/Optimization, see
Lébel [1997D).

For academic use, there are also other efficient codes available free of charge as, for
instance, the relaxation code RELAX4 of Bertsekas and Tseng [1994] or the cost scaling
code CS2 of Goldberg [1992].

Further articles reporting on the SDVSP are Fuchs [1992], Branco and Paixéao [1987,1988],
Desrochers, Desrosiers, and Soumis [1985], and Bokinge and Hasselstrom [1980]. The
computational investigations of all these publications are on rather small instances and
became therefore obsolete. Nevertheless, the current basic solution approaches are still
the same.

4.4 The Multiple Depot Case
The list of publications about the MDVSP can be classified by the following attributes:

Size of the solved test instances. By now, only heuristics have been successfully ap-
plied to solve large instances. In most cases, exact methods and Lagrangean relax-
ation approaches have only been applied to rather small instances.

Multicommodity flow formulations. Are the used models based on multicommodity
flow formulations or not? This question is important since depot groups cannot be
considered exactly in single-commodity flow formulations. Only some special cases
of the MDVSP reduce to the single-depot case, e. g., problems considering no depot
groups and having depot-independent weights of the pull-out and pull-in trips, see
Carpaneto, Dell’Amico, Fischetti, and Toth [1989].

Publications that use multicommodity flow formulations are, e. g., Grotschel, Lobel,
and Volker [1997], Lobel [1997a,1997¢,1996b], and Mesquita and Paixdo [1997],

htt//www.zibe/Otiizatio

52

CHAPTER 4. A LITERATURE OVERVIEW

Larsen and Madsen [1997], Kokott and Lobel [1996], Branco, Costa, and Paixdo
[1995], Forbes, Holt, and Watts [1994], Ribeiro and Soumis [1994], Dell’ Amico,
Fischetti, and Toth [1993], Mesquita and Paixao [1992], Lamatsch [1988,1992],
Carpaneto, Dell’Amico, Fischetti, and Toth [1989], Bertossi, Carraresi, and Gallo
[1987], Carraresi and Gallo [1984], Gavish, Schweitzer, and Shlifer [1978], Gavish
and Shlifer [1978],

Publications that do not use multicommodity flow formulations are, for instance,
Daduna and Vélker [1997], Petzold and Schiitze [1995], Schiitze and Vélker [1995],
Daduna, Mojsilovic, and Schiitze [1993], Daduna and Mojsilovic [1988], Mojsilovic
[1983], and Hoffstadt [1981].

Consideration of depot groups. Depot groups are used in Larsen and Madsen [1997],

Branco, Costa, and Paixdo [1995], Forbes, Holt, and Watts [1994], and Lamatsch
[1988,1992] as well as Grotschel, Lobel, and Vélker [1997], Kokott and Lobel [1996],
and Lobel [1997a,1997¢,1996b]. In addition, Branco, Costa, and Paixdo [1995] and
Forbes, Holt, and Watts [1994] use the ILP formulation

(4.6a) minz Z cd ¢

deD aeAlt.il—trip

subject to

(4.6b) (6T (@) = 1, VieT,

(4.6¢) (6T (@) — 267 (1) = 0, Vte T, VdeD,
(4.6d) 24(67(d)) < ke VdeD,

(4.6¢) z = 0,

(4.6f) r € {0,114,

which is exactly the same formulation as our ILP (2.14) without depot lower capac-
ities.

Lagrangean Relaxations.

Grotschel, Lobel, and Volker [1997], Larsen and Madsen [1997], Kokott and Lébel [1996],
Branco, Costa, and Paixao [1995], Lamatsch [1988,1992], Mesquita and Paix&o [1992]),

and Bertossi, Carraresi, and Gallo [1987] discuss Lagrangean relaxation approaches for
the MDVSP.

Basically, the MDVSP is described by the flow condition and the flow conservation con-
straints. Hence, two Lagrangean relaxation approaches are reasonable: First, a relaxation
with respect to the flow conditions resulting in subproblems that decompose into inde-
pendently solvable minimum-cost flow problems, see Grotschel, Lébel, and Volker [1997],
Larsen and Madsen [1997], Kokott and Ldbel [1996], and Bertossi, Carraresi, and Gallo

4.4. THE MULTIPLE DEPOT CASE 03

[1987]. Second, a relaxation with respect to the flow conservations resulting in subprob-
lems that are polynomially solvable SDVSP instances, see Grotschel, Lobel, and Volker
[1997], Kokott and Lobel [1996], Branco, Costa, and Paixao [1995], Mesquita and Paixao
[1992], and Lamatsch[1988,1992).

These two relaxation approaches have the following features:

1. In Kokott and Lébel [1996], we show that these two Lagrangean relaxations together
with a subgradient method can be used for efficient computation of tight lower
bounds for substantial problems from practice.

2. A popular method for finding feasible solutions of truly large-scale MDVSPs are
certainly schedule first — cluster second approaches, which are sometimes followed
by a reschedule method, see below and in Chap. 8. With respect to the flow conser-
vations, the Lagrangean relaxation together with some primal (interchange and/or
greedy) heuristic can be viewed as such a schedule first — cluster second approach.
A similar idea as above can be applied to the Lagrangean relaxation with respect
to the flow conditions resulting in a cluster first — schedule second approach. The
latter is, however, less popular than the first approach.

3. In Grotschel, Lobel, and Vélker [1997] and Lébel (1997d), we describe these La-
grangean relaxation techniques as new column generation strategies for the LP re-
laxation of the MDVSP, see Chap. 7.

Except of Grétschel, Lobel, and Vélker [1997] and Kokott and Lébel [1996], the computa-
tional investigations of the mentioned articles on Lagrangean relaxation are based on test
instances with at most 600 timetabled trips for a 10-depot-problem and 1791 timetabled
tripsfor a 3-depot-problem.

Heuristics.

Bodin, Kydes, and Rosenfield [1978] propose a concurrent scheduler heuristic: Timetabled
trips are considered according to their increasing starting times; let t; € 7 denote the
j-th timetabled trip with respect to the starting time order. Let H := § denote the
set of vehicles that are currently in use. The following steps are performed for each
j=1,...,|T|: If there exists at least one vehicle h € H such that the last timetabled trip
t; assigned to h can be connected to ¢; by an unloaded trip (¢;,¢;), select among them the
cheapest unloaded trip and assign ?; to the corresponding vehicle. If this is not possible,
a new vehicle h is used and inserted to H. This new vehicle is selected from some depot
d € D that still has a free capacity and minimizes the pullout costs.

Some other heuristics are the schedule first — cluster second approach (see Lobel [1997¢,
Grotschel, Lobel, and Vélker [1997], Daduna, Mojsilovic, and Schiitze [1993], Dell’ Amico,
Fischetti, and Toth [1993], Daduna and Mojsilovic [1988], Carraresi and Gallo [1984],
Mojsilovic [1983], Assad, Ball, Bodin, and Golden [1983], Hoffstadt [1981], Bodin and
Golden [1981], Gavish and Shlifer [1978], and Gavish, Schweitzer, and Shlifer [1978]), the

o4 CHAPTER 4. A LITERATURE OVERVIEW

cluster first — schedule second approach (see Lobel [1997c], Larsen and Madsen [1997],
Grotschel, Lobel, and Vélker [1997], Dell’Amico, Fischetti, and Toth [1993], Mesquita and
Paixao [1992], Carraresi and Gallo [1984]), and reschedule procedures (see Lobel [1997¢],
Grotschel, Lobel, and Volker [1997], and Dell’Amico, Fischetti, and Toth [1993]). We
shall describe this kind of approach in Chap. 8.

Branco, Costa, and Paixao [1995] propose an LP-based rounding heuristic: The optimal
(nonintegral) solution of the ILP relaxation is rounded to some integral feasible solution.
Afterwards, they apply a saving heuristic similar to the 2-opt heuristic for the travel-
ling salesman problem. In Ldbel [1997¢c], we also describe an LP based heuristic, which
iteratively rounds components of a fractional LP solution to zero and one, respectively,
reoptimize the enlarged LP, and proceeds until the problems becomes infeasible or an
integer solution is found. This iterative rounding heuristic is called LP-plunging, for more
details see Chap. 8.

Set Partitioning Approaches.

Lébel [1997a], Desrosiers, Dumas, Solomon, and Soumis [1995], Branco, Costa, and
Paixao [1995], Bianco, Mingozzi, and Ricciardelli [1994], Ribeiro and Soumis [1994], and
Lamatsch [1988] discuss set partitioning approaches (based on Dantzig-Wolfe decomposi-
tion) for the MDVSP. The rows and columns of the set partitioning problem correspond
to the timetabled trips and to all possible vehicle schedules. A comprehensive description
of the Dantzig-Wolfe decomposition scheme applied to the MDVSP is given in Desrosiers
et al.

Lamatsch [1988] applies the Dantzig-Wolfe decomposition principle to his ILP formulation
and gives a set partitioning formulation of the MDVSP without depot capacities. Since
this approach was not suitable for the computers of that time, it is rejected by the author.

The first article, to the best of our knowledge, reporting about a decomposition approach
and computational investigations (with up to 10 depots and 300 timetabled trips) is
published by Ribeiro and Soumis [1994]. Applying the Dantzig-Wolfe decomposition
principle to the MDVSP, they reformulate the MDVSP as a set partitioning problem with
additional side constraints for the depot capacities.

A delayed column generation approach for the general pickup and delivery problem re-
sulting in a set partitioning approach with additional side constraints can be found in the
PhD thesis of Sol [1994]. Barnhart, Johnson, Nemhauser, Savelsbergh, and Vance [1994]
discuss delayed column generation approaches for various problem classes and give an in-
sight into branch-and-price approaches. Barnhart, Hane, and Vance [1996] report about
computational investigations of a branch-and-price approach for the integer multicom-
modity flow problem. Although they claim that they solve large integer test instances,
their two largest integer problems do not have more than 91 nodes, 203 arcs, and 18
commodities and 50 nodes, 130 arcs, and 585 commodities. Moreover, only the smallest
integer problem with 50 nodes, 97 arcs, and 15 commodities could be solved to optimality;

4.4. THE MULTIPLE DEPOT CASE)

for all the other integer test instances they stopped the run after one hour cpu time with
a positive gap between the best integral solution and the branch-and-price lower bound.

Branch-and-Bound Approaches.

Up to now, only relatively small real-world MDVSPs have been solved to optimality:
Forbes, Holt, and Watts [1994] solve their ILP formulation in three stages: First, they re-
lax the problem resulting in a SDVSP that can be solved by a network simplex algorithm.
Second, the optimal solution of the relaxed problem is used to construct a dual feasible
basis for the LP relaxation. The corresponding basis solution satisfies the flow conditions
that each timetabled trip has to be serviced exactly by one vehicle, but some flow con-
servations may be violated. The dual simplex algorithm is then applied to resolve the LP
relaxation to optimality. Third, a branch-and-bound approach is used to find an optimal
integral solution. The authors report on numerical investigations with up to 3 depots and
600 timetabled trips, some of these instances are taken from real-world problems.

Carpaneto, Dell’Amico, Fischetti, and Toth [1989] describe a different ILP formulation for
the MDVSP based on an assignment formulation with additional cycle (or path) oriented
flow conservation constraints. They apply a so-called “additive lower bounding” procedure
proposed by Fischetti and Toth [1988] to receive a lower bound of their ILP formulation
and apply a branch-and-bound approach to solve the MDVSP. Carpaneto et al. report on
computational investigations for artificially generated problems with up to 3 depots and
70 timetabled trips. Ribeiro and Soumis [1994] show that this additive lower bounding
is nothing but a special application of a Lagrangean relaxation and its corresponding
subgradient method. Therefore, the lower bound of Carpaneto et al. is never better than
the lower bound provided by the Lagrangean dual of the LP or the ILP formulation for a
multicommodity flow model.

Computational Investigations.

Considering the presented computational investigations, most of the mentioned references
in this literature overview put either academic or practice-oriented accents. The first
describe mathematical background and methods, but do not tell how large-scale real-
world problems can be solved. The computational results, if reported at all, are based on
investigations with small, mostly randomly generated test instances having less than one
thousand timetabled trips. This is different for practice-oriented publications:

e In Lobel [1997c], Grotschel, Lobel, and Vélker [1997], Lébel (1997d), and Kokott
and Lobel [1996], we have reported on solving practical MDVSPs to optimality.

e The heuristic vehicle scheduling approach of the HOT II system is reported by
Schiitze and Vélker [1995], Daduna, Mojsilovic, and Schiitze [1993], Mojsilovic
[1983], Daduna and Mojsilovic [1988], and Hoffstadt [1981], all previously or cur-
rently employees of the Hamburger Hochbahn AG or its subsidiary HanseCom

a6

CHAPTER 4. A LITERATURE OVERVIEW

GmbH. Although they do not explicitly report their computational results, their
solutions are known to be of a high quality. Grotschel, Lobel, and Vélker [1997]
compared the optimal solutions of our exact branch-and-cut approach with the so-
lutions of HOT 1I and find out that, on the average, a 3% vehicle reduction and a
10 % cost saving are possible. From a practical point of view, the HOT system gen-
erates quite good solutions. The reason why the HOT system does not necessarily
provide an optimal solution will be discussed in Chap 8.4.

Forbes, Holt, and Watts [1994] report about real-world problems “of an actual bus
operator”. 'The full timetabled trip set of the bus operator consists of more than
6500 timetabled trips and three depots. On the average, 72 % of the trips can be
serviced by only one depot, 25 % by two depots, and 3% by all three depots. From
this test set, which probably was too large for the used personal computer, several
randomly extracted problems with up to 600 timetabled trips are considered. Since
the average depot group size G = 1.31, the considered test instances are not too
difficult. This is also reflected by the fact that for 22 of all the 30 extracted test
instances the optimal solution of the LP relaxation was already integral. For the
other 8 test problems, the gap between the optimal value of the LP relaxation and
the optimal value of a feasible integer solution is at most 0.003 %.

Gavish, Schweitzer, and Shlifer [1978] report already in 1978 about a system that
can solve problems with up to 2500 timetabled trips. Depot groups, however, are
not considered such that MDVSPs can be reduced to SDVSPs with a schedule first
— cluster second approach. With their system, parts of a manually generated set
of vehicle schedules of a bus company operating more than 4500 timetabled trips,
could be refined significantly.

Chapter 5

Solving the Single-Depot Case

SDVSPs occur not only in a pure form, but also as subproblems within heuristics or
Lagrangean duals of MDVSPs. We will show in this thesis that solving the MDVSP
requires at several steps the efficient and exact solution of SDVSPs. Although the SDVSP
can be formulated as a polynomially solvable minimum-cost flow problem and it is well
known how such flow problems can be solved efficiently, we devote an own chapter to the
solution techniques for SDVSPs.

We present an efficient solution method based on the network simplex implementation
MCEF, see Lobel [1997b]. This code is able to solve SDVSPs of any relevant size. We
start with a short summary of the network simplex algorithm and continue with some
implementation details of our network simplex code. We assume the reader to be familiar
with the network simplex algorithm. The last section describes how MCF is used to solve
SDVSP instances.

5.1 The Primal Network Simplex Algorithm

The network simplex algorithm with upper bound technique is a specialized revised sim-
plex algorithm, see Dantzig [1963] or Chvétal [1980], that exploits the structure of network
flow problems. The linear algebra of the simplex algorithm is replaced by simple network
operations. Helgason and Kennington [1995] and Ahuja, Magnanti, and Orlin [1989,1993]
describe the (primal) network simplex algorithm and give pseudocodes, implementation
hints, etc.

To apply the simplex algorithm to (1.17) min{c*z| Nz = b, 0 < = < u}, we need a
full rank constraint matrix. For a connected network D, the rank of the flow conserva-
tion constraints (1.16b) is equal to [V| — 1, and the flow conservation constraint for one
designated node, the so-called root node, can be eliminated. We will assume that we
have chosen such a root node and have eliminated its flow conservation constraint, i.e.,
the reduced node-arc incidence matrix has full rank. For notational simplification, we
also denote the reduced node-arc incidence matrix by N. It is well known that every

57

58 CHAPTER 5. SOLVING THE SINGLE-DEPOT CASE

nonsingular basis matrix B of A/ corresponds to a spanning tree of A in D and vice versa.
Let 7" C A be a spanning tree in D. The variables x5, (¢,§) € T, are called the basic
variables corresponding to the basis matrix B := M.p. Let L and U denote the arcs
that correspond to the nonbasic variables whose values are set to the lower and upper
bound, respectively. The triple (7, L, U) is called a basis structure. For given nonbasic
arc sets L and U, the right hand side b transforms to

b i=b— Z N ijuij.

(1.4)€U

The associated basic solution is the solution of the system Bxzy = ', the values of the
node potentials are determined by the system 7#*B = c;. Let ¢; := ¢;; — m; + 7; denote
the reduced costs of an arc (i, j) € A. The dual multipliers n of the bounds = < u are
determined by

—ci; if (4,5) € U,
5.1 i = g ’ ’
(5.1) This { 0 otherwise.

A basis structure (7, L,U) is called primal feasible if the associated basic solution x
satisfies the flow bounds (1.16¢) and is called dual feasible if for all (4, j) € A:

(52&) Ez’j >0 = (Z,j) € L,
(5.2b) ;<0 = (i,5) e,

A basis structure is called optimal if it is both primal and dual feasible. For further
information about the primal network simplex, especially flow charts and pseudo codes,
see Helgason and Kennington [1995].

5.2 Implementation Details

Many network flow textbooks contain (relatively similar) pseudocodes of network flow
algorithms. We started our implementation with the pseudocode given by Ahuja, Mag-
nanti, and Orlin [1989] and tried to improve important algorithmic details to make it
more robust and efficient such that even truly large-scale problems can be solved rou-
tinely. We describe the key ingredients of our modifications. Most of our computational
improvements result, in fact, from very efficient pricing strategies. The importance of
pricing follows from our experimental observations that our implementation still spends,
on the average, more than 80 percent of the cpu time on pricing.

In the description of the primal network simplex algorithm, we have assumed the input
network to be connected, which we ensure by the following procedure: Given an arbitrary

5.2. IMPLEMENTATION DETAILS 09

(not necessarily connected) network D = (V, A), we add to V' one artificial root node,
denoted by ”70”. Each original node ¢ of V' is then connected to the root node 0 either
by the artificially generated arc (¢,0) if 7 is a supply or transshipment node or by the
artificially generated arc (0,7) if ¢ is a demand node. Let D' := (V U {0}, A’) denote the
network obtained by adding the artificial root node 0 to V and adding the artificial slack
arcs (i,0), for each supply and transshipment node, and (0,4), for each demand node, to
A. Each artificial slack arc has a lower bound of 0, an upper bound of infinity, and a
sufficiently large cost coefficient M.

Computer Language and Data Structures.

Lustig [1990] investigates the influence of the computer languages C and FORTRAN
on an implementation of a primal network simplex code. He finds out that, for both
languages, an address-based implementation (linked lists and pointers) is more efficient
than a cursor-based implementation (vectors and indices) and that the performances of
cursor-based implementations in C and Fortran are essentially the same. Our MCF code
is implemented in C with address-based data structures.

Over the last three decades, the basis tree representation and data structures for the net-
work simplex algorithm have been investigated profoundly. Most of the network simplex
implementations use similar data structures. We describe our version. All node and arc
information, respectively, are stored in the following data structures:

Node information: Let 7 C A be a spanning tree in DD, and consider some node v €
V'\ {0}. There is a unique (undirected) path in 7', denoted by P(v), leading from
v to the root node 0. The arc in P(v), which is incident to v, is called the basic
arc of v. The other terminal node u of this basic arc is called the predecessor
(node) of v. The basic arc of v is called upward (downward) oriented if v is the
tail (head) node of its basic arc. If u is the predecessor of some other node v, we
call v a child (node) of u. Suppose there is some order of the children of v, and
let v and w be two different children of v. If u is smaller than w with respect to
the given order, we call u the left sibling of w and w the right sibling of u. If
there is no child u that is smaller (greater) than a given child w, then w has no left
(right) sibling. Each node has at most one child reference, the other children of a
node can be reached by traversing the sibling links. The number of nodes in P(V)
is called the subtree size of v.

The subtree size and predecessor variables are used by the ratio test. The orienta-
tion, child, and sibling variables are used for the computation of the node potentials.

Arc information: For each arc we store information about its tail and head node, its
upper bound value, its costs, and whether it is a basic arc of 7" or a nonbasic arc of
LorU.

Figure 5.1 shows a small example of a rooted basis tree for our data structures (the
underlying network is a copy from Ahuja, Magnanti, and Orlin [1993]). Our technique to

60 CHAPTER 5. SOLVING THE SINGLE-DEPOT CASE

» nil

nil N nil
left sibling

—- basic arc i Chiild right sibling
node 0 1 2 3 4 5 6 71 8
subtree size | 9 8 5 2 1 1 1 2 |1
predecessor | nil 0 1 2 3 3 2 1|7
child 1 2 3 4 nil nil nil 8 | nil
right sibling | nil | nil 7 6) nil nil | nil | nil
left sibling | nil | il nil | nil [nil 4 3 2 | nil
orientation - | down | down | up | down | down | down | up | up

Figure 5.1: Rooted basis tree.

store the rooted basis tree results from personal discussions with R. E. Bixby.

Pricing.

Based on our computational experience, the pricing rule has the most significant influ-
ence on the performance of a network simplex implementation. Ahuja, Magnanti, and

5.2. IMPLEMENTATION DETAILS 61

Orlin [1993] describe some pricing rules such as Dantzig’s rule, first eligible arc rule, and
a candidate list rule. We have implemented and tested these pricing rules in slightly
modified ways. It turned out that our by far fastest rules are special candidate list rules,
called multiple partial pricing ,e.g., see Bixby[1992,1994].

Given two natural numbers K and J. The arc set A is divided into f%] candidate lists,
each of size at most K. If the arcs are indexed from 1 to |A|, the £* candidate list
includes all arcs ¢ satisfying (¢ — 1) modulo K = (k — 1). There is a hot-list of at most
J + K arcs, which is initially empty. The candidate list number next, which defines the
first to be examined candidate list in the initial pricing call, is set to 1. The candidate
lists are always examined in a wraparound fashion. For a pricing call, the following steps
are performed: First, the reduced costs of the arcs being currently in the hot-list are
recomputed. If the new reduced costs of such an arc becomes nonnegative, this arc is
immediately removed from the hot-list. Second, as long as the hot-list can be filled with
at least K additional arcs and not all candidate lists have been examined in this pricing
call, we price out all arcs of the next candidate list, add all nonbasic arcs of this list having
negative reduced costs to the hot-list, and increment the next variable by 1 (if next < K,
otherwise we reset mext to 1). Third, if all candidate lists have been examined, but the
hot-list is still empty, the current basis structure is optimal. Otherwise, some arc of the
hot-list that most violates the reduced cost criterion is selected as the basis entering arc.
The last step of a pricing call is the preparation of the hot-list for the next call: The basis
entering arc leaves the hot-list. At most J arcs with most invalid reduced costs enter the
new list.

Multiple partial pricing is very sensitive to the number of arcs which makes a fine tuning
for every problem class necessary. We use the following default values for K and J
depending on the number of arcs:

Number of arcs K |J

|A| < 10,000 30 | 5
10,000 < |A] € 100,000 | 50 | 10
|A| > 100,000 200 | 20

Compared with the multiple partial pricing (with the default values of K and J as above),
pricing rules such as first eligible arc rule or Dantzig’s rule are about 14 to 75 times slower,
see Lobel [1996a].

Initial Basis Structure.

The easiest way to find an initial primal feasible basis structure, is as follows: The initial
basis tree consist of all artificial slack arcs and each original arc becomes nonbasic at its
lower bound. Note, that no arc is at its upper bound. Such an initial basis structure
is called artificial basis structure. Obviously, this artificial basis structure is primal

62 CHAPTER 5. SOLVING THE SINGLE-DEPOT CASE

feasible for D', and the original network D is feasible if the network D’ has a feasible
solution where no artificial arc has a positive flow value.

The use of an artificial basis tree has several advantages. First, it has a simple structure
and can be generated quickly. Second, the ratio test and the basis update are quite fast
for the first iterations. We have also tried to generate an initial basis structure using
a crash procedure. The performance, however, was always slower than starting with an
artificial basis tree. The only exceptions occur for special applications where a particular
problem knowledge can be exploited, for instance, if we apply a column generation.

Sensitivity Analysis and Column Generation.

For large-scale networks, the performance often benefits from a column generation ap-
proach: In a first step, only a restricted subset A C A’ is considered, and the flow value
of each arc a € A"\ A is fixed to zero. A contains all artificial arcs to ensure the existence
of a primal feasible basis structure.

When the restricted network (V, A) has been solved to optimality, all fixings of the ignored
arcs are removed, and the reduced costs according to the last node potentials are computed
for all arcs (sensitivity analysis). As long as there exist arcs that violate the optimality
conditions, we add at least one and at most a (parameter controlled) maximum number
of such arcs to the restricted arc set A (column generation), reoptimize for the new
enlarged arc set A, and iterate until optimality can be proved for the complete arc set A.
Note that the original problem without artificial arcs has been solved to optimality if no
artificial arc has a positive flow value. To avoid that A grows too much, some nonbasic
arcs of L, i.e., arcs whose flow values are set to 0, may also (parameter controlled) be
removed from A, e. g., when the reduced costs are greater than some predefined threshold.

The initial subproblem (V, A) is optimized using an artificial basis structure. The new
generated arcs become all nonbasic in L. Each subsequent restricted problem restarts
with the optimal basis structure of its previous subnetwork.

Strongly feasible bases.

With the concept of strongly feasible bases, see Cunningham [1976], and a combinatorial
version of perturbation, one can prove that the network simplex algorithm theoretically
runs in pseudo-polynomial time, see Ahuja, Magnanti, and Orlin [1989], pages 305-310.

Our computational experiments show always a good “polynomial” behaviour of our net-
work simplex implementation MCF. Even truly large-scale test instances are quickly solv-
able such that, on the average, a low-order polynomial in the number of arcs and nodes
can be assumed for the complexity.

5.3. APPLYING THE NETWORK SIMPLEX CODE TO SDVSP 63

5.3 Applying the Network Simplex Code to SDVSP

For SDVSPs (3.4) we have designed the following algorithm that is based on the above
described network simplex code in combination with sensitivity analysis and column gen-
eration.

The depot’s starting point d* was chosen as the root node. A positive depot lower bound
A is transformed to zero (as shown in Fig. 1.1) by the variable substitution z(4- 4+) =
x’(d_ 4+ T A, which results in

(5.3a) min Z Ca Za

aeAu—trip
subject to
(5.3b) z(6t(th)) = 1, VieT,
(5.3¢) —z(6~(t7)) = -1, VteT,
(5.3d) T4 gty — (67 (d7)) =,
(5.3¢) 0 < Zig-gny < K=
(5.3f) T, =2 0, Va € AvtP,

Note that in the case of a fixed fleet size, i.e., kK = A, the variable x’(d- q+) Can be eliminated
(since it is set to zero), the depot’s starting point and end point contract to one single
depot node, and (5.3) reduces to

(5.4a) C(d-,a+)A + min Z Ca Ta
aeAu—trip

subject to

(5.4b) z(6T(@h) = 1, VteT,

(5.4¢) —z(6~(t7)) = -1, VteT,

(5.4d) —z(67(d7)) = =A

(5.4e) o, = 0, Vae AVHP,

All constructed artificial arcs together with the user-defined unloaded trips define the
initial restricted arc set A. Between two subsequent subproblems, the column generation
(of currently fixed pull-in-pull-out trips) is limited to a number ranging between 30 and
50 thousand arcs. To keep the restricted subnetworks small enough, it is also possible
to remove “bad” arcs corresponding to a reduced cost criterion from A. The parameter
control for the column generation and elimination depends on the problem type, the
available main memory, etc.

64 CHAPTER 5. SOLVING THE SINGLE-DEPOT CASE

The choice of the M for the artificial slack arcs has to be done very carefully since the
objective coefficients of the pull-out trips can already contain a M value (see Chap. 2).
Therefore, the cost coefficients of the artificial slack arcs are set to a sufficiently large
MM that also dominates the M of the pull-out trips.

The column generation is nothing but a special pricing strategy. Our proposed method
for solving SDVSPs runs in pseudo-polynomial time since we use strongly feasible bases.
Of course, there exist several even strongly polynomial time algorithms for minimum-cost
flow problems (e.g., see Ahuja, Magnanti, and Orlin [1993], page 395), but our network
simplex code with column generation performs, on the average, always better than very
efficient implementations (with default configuration) of such polynomial time algorithms
for our test data (see Lobel [1996a]). Even our largest SDVSPs instances (derived by
Lagrangean relaxation) with 70 million arcs can be solved to optimality within less than
15 minutes cpu time. Pure real-world SDVSP with up to several thousand timetabled
trips and several million unloaded trips can be solved to optimality within few minutes.

Chapter 6

Solving Lagrangean relaxations

We describe in this chapter the two basic ideas how the Lagrangean relaxation approach
can be applied to the MDVSP such that the resulting Lagrangean duals become efficiently
solvable. The techniques presented here have already been presented in Kokott and Lobel
[1996].

In this chapter, the considered model are based on the digraph D' (2.1). Based thereon,
we give a somewhat blown up ILP formulation of the MDVSP including redundant con-
straints:

(6.1a) minz Z cd ¢

deD gAY P

subject to
(6.1b) Ty = L VteT,
deG(t)
(6.1¢) z(67(t1)) 1, VteT,
(6.1d) —z(6 (t)) = -1, VteT,
(6.1e) z(6T(™)) —2*(6 (7)) = 0O, VteT, VdeD,
(6.1f) 2 (07 (tY)) —al- ey = 0, VteT, VdeD,
(6.1g) 2l iy — 2467 (1)) 0, VteT, VdeD,
(6.1h) Tl gry — (0 (d7)) = 0, VdeD,
(6.11) A < xfd_’dﬂ < Ky, VdeD,
(6.1j) ol 4y <1, V(¢ ,t7) € AP YV d e D,
(6.1k) ¢ > 0, Vae AP U AT v d e D,
(6.11) x integral.

The flow conditions are given three times by the equivalent constraints (6.1b), (6.1¢), and
(6.1d). Moreover, (6.1) includes the additional (redundant) flow conservations (6.1e). For

65

66 CHAPTER 6. SOLVING LAGRANGEAN RELAXATIONS

each of the two Lagrangean relaxation approaches presented below, we shall select those
constraints of (6.1) that give a sufficient problem description, but that are necessary to
formulate each relaxation properly.

6.1 Relaxation of the Flow Conservations

The first relaxation is to put the flow conservations into the objective function. As we will
see, the resulting inner minimization problem of the Lagrangean dual is a large SDVSP
problem. However, to receive such a nice problem structure, we have to neglect the
individual depot lower and upper capacities for this relaxation. This does not matter
since depot capacities are often soft constraints, see Rem. 3.11, and we consider here
a relaxation anyway (for most of our problems, we are unable to solve the following
Lagrangean dual to optimality — with or without depot capacities). Hence, the variables
x? 4~ 4+ and the constraints (6.1h) and (6.11) are ignored. The underlying ILP formulation
for the first Lagrangean relaxation reads

(6.2a) minz Z ct ¢

dED ge gu-trip

subject to

(6.2b) (67@) = 1, VteT,

(6.2¢) —z(6(¢t) = -1, VteT,

(6.2d) 2 (0TT)) -2 () = 0, VteT, VdeD,
(6.2¢) ¢ > 0, Vaec AT"™ YdeD,
(6.21) x integral.

Note that the formulation (6.2) does not contain variables for the timetabled trips and
the backward arcs. Since (6.2¢) is a linear combination of (6.2b) and (6.2d), it is easy to
see that (6.2) is equivalent to (2.14) without depot capacities.

Let 7 := (¢ € R74),.p denote the Lagrange multipliers associated with the flow conserva-
tions (6.2d). Let the subscript “fcs” of Lgs and LRy (defined below) be an abbreviation
for Flow-ConServation. Let LRgs denote the following Lagrangean relaxation: With
respect to (6.2d), the Lagrangean dual of (6.2) is

(6.3) max Lies (7).

with inner minimization problem

(6.4)

Lies () ::wronhilggral Z(chmg - wa(md(6+(t+)) —xd(d(t)))>.

satisfying aeD agA;'trip teTy
(6.2b) and (6.2¢)

6.2. RELAXATION OF THE FLOW CONDITIONS 67

The equations (6.2b) and (6.2¢) are exactly the side constraints of the ILP (3.4) of a
SDVSP without depot capacities. Hence, Lggs(7) corresponds to a large minimum-cost
flow problem, and it follows from Remark 1.13 that LRy and the LP relaxation of (6.1)
(without depot capacities) yield the same optimal value.

Any optimal solution z := z(n) attaining the value of Le(m) describes a set of vehicle
schedules covering each timetabled trip exactly once. Some of these vehicle schedule,
however, may violate flow conservations (6.2d) if its trips belong to different depots.

6.2 Relaxation of the Flow Conditions

The second relaxation is obtained by putting the flow conditions into the objective func-
tion. Its underlying ILP formulation reads

(6.5a) minz Z cd g

deD aeAg-trip

subject to
(6.5b) S oathia = L VieT,
deG(t)
(6.5¢) e (0Y(tY)) —al- ey = 0, VteT, VdeD,
(6.5d) Tl oy — (0 () = 0, VteT, VdeD,
(6.5¢) z'(67(dY)) -2l 4y = 0O, VdeD,
6.5f) xly gy —2?(0(d)) = 0, VdeD,
(6.5g) M < ah g < kg,
(6.5h) oy <1, V(t,t7) € AP v d € D,
(6.51) w2 > 0, Vae AS"PUAYTP v d e D,
(6.5)) x integral.

Let v := (v;);c7 € R denote the Lagrange multipliers associated with the flow conditions
(6.5b). Let the subscript “fed” of Lgq and LRgq be an abbreviation for Flow-ConDition.
Let LRgq denote the following Lagrangean relaxation: With respect to (6.5b), the La-
grangean dual of (6.5) is

(6.6) max Liea(v).

68 CHAPTER 6. SOLVING LAGRANGEAN RELAXATIONS

with inner minimization problem

(6.7)

Liw() = min (z Y gt - Zyt(zxgt_m_l)).

© satisfies

(6.5¢)-(6.53) deD aeA;-t!‘ip teT dEG(t)

Since L4 is equivalent to

- d,d
(6.8) vl + E min (E s — E l/tx‘(it_ﬁ)),
d .
deD (g% csffzgﬁsesj) acAytP teTy

it decomposes into a constant part #1 and into |D| independently solvable minimum-cost
flow problems. Note that each of these minimum-cost flow subproblem is equivalent to
its continuous relaxation. It follows from Remark 1.13 that LRsq and the LP relaxation
of (6.1) yield the same optimal value.

It is easy to see that a feasible solution of each subproblem

(6.9) min (Z gt — ZthC((it—,ﬁ))a

(o e N g qutsip teTs

corresponds to a set of vehicle schedules satisfying the depot specific capacities. The
additional inequalities (6.5h) ensure that the vehicle schedules of a depot cover each
timetabled trip at most once. The Lagrange multipliers correspond to the shadow prices
of the timetabled trips and measure their attractivity. It is easy to see that the objective of
(6.8) is to find those vehicle schedules that give the most objective progress for the given
shadow prices. Considering all vehicle schedules of all depots together, some timetabled
trip may not be serviced at all or may be serviced by more than one depot, i.e., some
flow conditions may be violated. In those cases, the associated Lagrange multipliers are
increased or decreased to make the timetabled trips cheaper or more expensive.

6.3 Subgradient Methods

We solve the Lagrangean relaxations LR and LRgq using a subgradient method. The
general idea is the following: Let L denote one of the two concave functions L¢ and Lgeyg.
A subgradient for L in u is a vector g that satisfies L(u + z) < L(u) + ¢"z for each z.
For a given u”, let 2{9 denote some optimal solution of L(u(®)). This solution can be
used to easily generate a subgradient by the following well known lemma.

(6.10) Lemma. ¢ :=d — D2 is a subgradient for L in u(®),

It follows from Lemma (6.10) that any u* attaining the maximum value of L yields
(u* —u)Tg® > L(u*) — L(u?) > 0. The optimal value of the Lagrangean dual may be

6.3. SUBGRADIENT METHODS 69

approximated by the following procedure: Start with some arbitrary u(*) and recursively
create a sequence ¢9 v u® . . of new points, each depending on its previous points
and the computed subgradients hitherto. Note that each L(u*)) is a lower bound on the
maximum value of L, i.e., it is also a lower bound for the value of the ILP (2.14) and
(6.1), respectively. Our basic method is as follows:

(6.11) Algorithm. Basic Subgradient Method for the MDVSP.
Input: L.

Output: Lower bound for ILP (2.14) and (6.1), respectively.

1. Choose initial Lagrange multiplier v(®) and set &k := 0.
Evaluate L(u®)).

Compute subgradient g*) := g (4,(#)),

If the iteration limit NNV, is reached or ¢*) = 0 then STOP; otherwise continue.
Compute new step length o),

Compute new step direction §* € conv{g®,...,g®}.

Set ubtD) .= 4 4 5k gk,

Increment £ and go to 2.

i B e

Here follow the details of our subgradient algorithm (6.11):

Step 1. Choose initial Lagrange multiplier.

For LR, the initial 7(% is set to zero. Initializing »(¥ for LRgq: It turned out from
computational investigations that the following initialization of the Lagrange multipliers
v© performs best concerning the maximal achieved objective value L4 and concerning
the number of iterations of the subgradient method. Solve Lg(0) of the Lagrangean
relaxation LRs. Let vt and v~ denote the optimal dual multipliers of the constraints
(6.2b) and (6.2c), respectively. The estimation of (%) by v+ — v~ defines a good starting
point since L (4?) and L, (0) yield the same value.

Here is the proof of this statement: For each d € D, let v] := v, := 0 denote the
node potential of the contracted depot node. With respect to Lis(0), we know that
the reduced costs €; := ¢f; — v;" + v; are nonnegative for each unloaded trip. Since

Tl iy = 2467 (t7)) = 2*(67 (1)), it follows straightforwardly by inserting v and v~
that (6.9) is equivalent to

min E C%—V;_-i-l/;.

z? satisfies ~tri
(65c)-(6.55) (L.j)eAy P

Since this objective function is nonnegative for each d and z¢ describes a circulation in this
case, it is easy to see that x¢ = 0 is optimal. Thus, Liq(v™—v) = 1"vT —1"v~ = Lg(0).

70 CHAPTER 6. SOLVING LAGRANGEAN RELAXATIONS

Step 2. Evaluate L.

The core of our Lagrangean relaxation codes is the network simplex implementation MCF,
described in Chap. 5, together with a column generation for the single-depot case and,
therefore, also for LRy (6.3). We use a modified version of this implementation to solve
the minimum-cost flow problems Ly (6.6). The initial restricted arc set consists for both
relaxations of the user-defined unloaded trips.

Step 3. Compute subgradient.

First, let 7 denote the k'™ Lagrange multiplier for LR, and let) denote some
optimal solution attaining the value of Ly (W(k)). If follows from Theorem 6.10 that

g = g®)(x®) .= (((wd)(k) (6 @) - @™ (5+(t+)))teﬁ>

deD

is a subgradient for Ly, at 7%). Tt easy to see that (gf)* € {~1,0,1}. The interpretation
of ¢®) is as follows:

o If (gf)(k) =0, % is valid for the corresponding flow conservation.

o If (gf)(k) = +1, some vehicle of depot d enters the timetabled trip ¢t € 7;, but none
leaves it.

o If (gf)(k) = —1, some vehicle of depot d leaves the timetabled trip ¢ € 74, but none
enters it.

If ¢*) is used as the step direction then

o if (gf)(k) = 0, the Lagrange multiplier 7¢ remains unchanged, i.e., (Wf)(k—i—l) =
ay (k).
(ﬂ-t) 9

o if (gf)(k) = +1, the Lagrange multiplier 7{ is increased, the objective coefficients of

each arc entering ¢~ is increased, and the objective coefficient of each arc leaving t™
is decreased;

o if (gf)(k) = —1, the Lagrange multiplier 7¢ is decreased, the objective coefficients of

each arc entering ¢~ is decreased, and the objective coefficient of each arc leaving
t* is increased.

Second, let v(%) denote the k*" Lagrange multiplier for LR¢q, and let 2% denote some
optimal solution attaining the value of Lfcd(l/(k)). It also follows from Theorem 6.10 that

g® = g® (M) =1 - (x(m (5+(f)))

is a subgradient for Leq at #®). Tt is also easy to see that gt(k) e{...,—2,-1,0,1}. The
interpretation of ¢®) is as follows:

tcT

6.3. SUBGRADIENT METHODS 71

o If ggk) = 0, the timetabled trip ¢ is serviced exactly once and z(®* is valid for the

corresponding flow condition.

o If ggk)

o If ggk)

=1, the timetabled trip ¢ is not serviced at all.

< 0, the timetabled trip ¢ is serviced by exactly ggk) vehicle schedules.

If ¢*) is used as the step direction then

o if ggk) = 0, the Lagrange multiplier v; and, thus, the objective coefficient of each arc

in (¢~ — ¢7) remains unchanged,;

o if gt(k) = 1, the Lagrange multiplier 1, is increased and the objective coefficient of

each arc in (¢~ — t1) is decreased;

o if ggk) < 0, the Lagrange multiplier v; is decreased and the objective coefficient of

each arc in (¢~ — t*) is increased.

Step 4. Stopping criteria.

First, we check whether ¢*) = 0. If this condition is satisfied, the corresponding z(*)
is feasible as well as optimal, and we can STOP. Second, we check our iteration limit,
denoted by Ny, i.e., if £k > N; we STOP. Our standard value for /N; is 100.

Step 5. Compute new step length.

Polyak [1967] shows how the step length can be chosen such that the sequence L(u(o)),
L(uM), ... converges to the optimum of the Lagrangean dual. However, our goal was
rather to compute good lower bounds quickly than on satisfying some convergence cri-
terion. Therefore, we focused our efforts only on performance improvements within our
given iteration limit. The step length and the step direction play a key role here. Based
on the parameter setting, we use one of the following step length rules:

A)

2 ’

(k1)

oH) = oD if I declines for Ny consecutive iteration(s),
o , else

with 0@ := 10 and a maximum failure parameter N, := 2.
B)
k-1 if L declines for Ny

) (T, — (k)
(L L(u)) with o® .= 2 7 consecutive iteration(s),
Rl o

(e%
ok .—

, else,

with o{®) such that o' becomes 10, a maximum failure parameter N, := 2, and
an upper bound L for L provided our schedule — cluster — reschedule heuristic, see
Chap. 8.

72 CHAPTER 6. SOLVING LAGRANGEAN RELAXATIONS

Remember our two-stage objective: minimize the fleet size and, subordinate, the opera-
tional costs. For almost all of our test instances, the initial Lagrangean function Ly (0)
and Lfcd(l/(o)) provide already the exact value for the fleet size. Therefore, we concentrate
our efforts to find an initial 6(°) that improves the operational costs.

It turned out that the initial step length is the only sensitive parameter of our subgradient
methods. For each of our test instances, we have made several test runs to find out good
starting values for o{®). We are, however, not able to provide any reasonable rule for a
good starting configuration. Thus, we have decided to use 0(® = 10 as default for our
presentation. For our complete test set, this value was one of the best among all that we
have tried out. We refer the reader to Kokott [1996] for a detailed description of these
tests.

Step 6. Compute new step direction.

Following the key idea of bundle methods, e. g., see Crowder [1976], we use the following
step direction:

g% = 0.6g%) +0.2g% Y 4+ 0.19g%2 4 0.1g*
(we set g{= := g2 ;= g(=3) .= ¢(0), This turned out to be a robust choice.

Chapter 7

Solving the LP Relaxation

We will describe in this chapter how the LP relaxation of (2.14) can be solved to optimality
by means of column generation techniques. The standard column generation approach
in the literature is based on generating and eliminating columns based on the reduced
cost criterion. We propose here a new technique that is based on Lagrangean relaxations
of the multicommodity flow model. The method, which we call Lagrangean pricing,
activates the arcs of complete paths and not only individual arcs. In particular, it is
not only possible, but essential that columns with positive reduced costs are generated.
Lagrangean pricing has been developed independently at the same time by Fischetti and
Toth [1996] and Fischetti and Vigo [1996] for solving the Asymmetric Traveling Salesman
Problem and the Resource-Constrained Arborescence Problem, respectively.

Solving an MDVSP instance to optimality using LP based approaches requires to solve
the LP relaxation to optimality. With Lagrangean pricing, it becomes possible to solve
the huge linear programs that come up here. Therefore, we propose Lagrangean pricing
as one of the basic ingredients of an effective method to solve this kind of problems to
proven optimality.

In this chapter, the underlying ILP formulation is based on the contracted digraph D
(2.10). Remember, the considered LP relaxation reads

(7.1a) minz Z cd ¢

subject to

(7.1b) z(67(t) = 1, VteT,

(7.1c) (67 (t) — 26 (1) = 0, VteT, VdeD,
(7.1d) 24 (6%(d)) = N, VdeD,

(7.1e) 24(67(d)) < kg, VdeD,

(7.1f) z = 0.

73

74 CHAPTER 7. SOLVING THE LP RELAXATION

Let v € R7, 7 := (7% € R™)4ep, 0 < 3 € RP, and 0 < v € R? denote the dual multipliers
associated with the constraints (7.1b), (7.1¢), (7.1d), and (7.1e), respectively.

In the recent years, considerable research has gone into the design of pseudo-polynomial
time approximation algorithms for multicommodity flow feasibility problems. Several pa-
pers have been written about this topic as, for instance, Leighton, Makedon, Plotkin,
Stein, Tardos, and Tragoudas [1991], Plotkin, Shmoys, and Tardos [1991], and Klein,
Plotkin, Stein, and Tardos [1994]. However, there are too few papers describing imple-
mentations of such algorithms and reporting about computational results thereof. More-
over, the results reported in Leong, Shor, and Stein [1993] and Borger, Kang, and Klein
[1993] on rather small problem instances do not look encouraging from a computational
point of view. It is therefore not clear whether approximation algorithms could substan-
tially help solving the optimization problems that we investigate here. We will discuss
such approximation algorithms in the last section.

7.1 Implementation Details

The instances of the MDVSP we encountered in practice have up to 70 million variables
and 125 thousand equations. Ignoring the integrality stipulation, we obtain linear pro-
grams, which are way out of reach for even the best LP codes currently available, not
to mention the fact that it is impossible to explicitly store such a large LP in todays
computers.

We will show in this section how the LP relaxation (7.1) can be solved to optimality using
Lagrangean pricing techniques. In particular, our implementation combines robust LP
software, a minimum-cost flow code, and parts of the Lagrangean relaxations codes for
the MDVSP. In our case, we use the CPLEX Callable Library (CPLEX [1995]) and our

network simplex code MCF.

In a first try, we have tried to apply a standard column generation and elimination tech-
nique based on the reduced cost criterion, see Sect. 7.1.1. With such a standard approach,
however, only rather small instances have been solved successfully. Stalling in the objec-
tive value occurred for larger instances. Within the column generation process, many new
columns have been generated, but none of them could help to improve the objective value.
Moreover, almost all active columns have reduced costs near to zero and, therefore, none
of them could be eliminated resulting in too large RLPs.

The new Lagrangean pricing techniques can help to improve the column generation pro-
cess. We will describe Lagrangean pricing in Sect. 7.1.2. The right composition of all
employed ingredients is given in Sect. 7.1.3.

7.1. IMPLEMENTATION DETAILS 75

7.1.1 Column Generation

The basic idea of a column generation is to provide only a relatively small subset of the
columns, which includes some optimal basis, and to ignore all the other ones. One starts
with a subset of columns that, in addition, includes at least some primal feasible basis.
The reduced LP, defined by this subset of columns, is called restricted LP (RLP). It is the
task to solve a sequence of RLPs until it is proved that the last RLP contains the columns
of some basis, which is optimal for the complete LP. The global optimality condition of
an RLP is described below.

An exact description of the column generation is as follows. Assume that we have already
determined a subset A C A such that A includes some (primal) feasible solution. Consider
the RLP including only the columns according to this subset A. In addition, assume that a
primal feasible starting basis is determined. In general, the RLP is resolved to optimality,
but it is sufficient to perform only some (primal) simplex iterations. Let 7, 7, and ¥
denote the value of the dual multipliers associated with the last basis of the current RLP.
For notational simplicity, let 3 := 0 and 74 := 0, for all d € D, denote artificial variables.
We compute for each variable the reduced costs

(7.2)
—~d d = ~d | ~d 0 - ¢
Chi=Ch — U — A4+ =S 5 . V (i,7) € A such that 4 c D.

Note that ¢, > 0 for all active columns a € A if the last RLP was solved to optimality.
If ¢, > 0 for all @ € A, the global optimality of the current basis is proved and we can
stop. Otherwise, we search for some (inactive) variables a € A\ A and generate their
corresponding columns.

Standard column generation schemes generate only those columns that violate the reduced
cost criterion ¢ > 0, i.e., variables with negative reduced costs. But, as we will see
below, it turned out that adding also columns with nonnegative reduced costs may be
advantageous. Having selected the variables that become active, A and the corresponding
RLP are redefined appropriately. The enlarged LP is reoptimized or a limited number of
simplex iterations is performed, and we iterate until we prove optimality, i.e., ¢, > 0.

Obviously, to achieve any progress, at least one variable having negative reduced cost
must be activated between two consecutive RLPs. Tests in practice have shown that it
is impossible to generate all inactive columns with negative reduced costs since the next
RLP gets far too large and cannot be handled at all. Therefore, we restrict the number of
new arcs to some parameter controlled limit. This limit ranges from 200 to 3000 variables
for each depot, depending on the problem size.

For the standard column generation scheme, we use the original pricing rule due to Dantzig
[1963]. We select the variables with most invalid reduced costs as candidates to become
activated. With this approach, it is also possible to prove the global optimality of some
RLP, provided that the last RLP has been solved to optimality and includes some optimal

76 CHAPTER 7. SOLVING THE LP RELAXATION

basis. We have also tried to use more advanced pricing rules such as Devex pricing
proposed by Harris [1973] and steepest-edge pricing proposed by Goldfarb and Reid [1977].
Similar to Dantzig’s rule, these rules generate only columns with negative reduced costs,
but we could not observe better computational results. Therefore, we have rejected those
advanced pricing rules and apply only Dantzig’s rule. Lagrangean pricing.

To avoid that the RLPs become too large, we must also remove obsolete columns in each
iteration of the column generation process. All columns whose reduced costs exceed some
predefined parameter controlled positive threshold are therefore eliminated.

7.1.2 Lagrangean pricing

In a first version, we have tried to solve large MDVSP instances using only standard
column generation and elimination schemes. But this approach failed. One main obstacle
is the completely degenerate LP relaxation. A second reason for the difficulties is as
follows: The standard column generation scheme activates only variables with negative
reduced cost. These variables can locally promise some progress in the objective value,
but it is not clear whether they may have any influence on the solution and the objective
value without an interaction with some other related nonactive variables. Therefore, we
came up with the idea that the nonactive variables should be not only evaluated alone by
its reduced costs, but also in interaction with all the other active and inactive variables.
However, how can this be done efficiently? We have to find a method that determines good
(nonactive) variables that may give progress in the objective value as best as possible.
To use the information already compiled within the previous RLPs, this method should
also use dual information as pricing methods do. It may also be a good idea to invoke
also Lagrangean relaxation techniques that turned out to give good approximations of
our hard solvable LP relaxations.

The answer to these questions is Lagrangean pricing: The inner minimization problems
L (6.4) and Lgq (6.7) of the presented Lagrangean relaxations LRgs and LRgq4 can be
solved efficiently, even for the complete variable set, and give excellent approximations of
the LP relaxation. So, we evaluate the inner minimization problems Ly (7) and Lygq (7).
Remember, 7 and 7@ denote the value of the dual multipliers associated with the flow
conditions (7.1b) and the flow conservations (7.1c) of the last basis of the current RLP.

Obviously, both relaxations approximate the LP relaxation with all active and inactive
variables, use dual information given by the last RLP, are based on good relaxations of
the LP relaxation, and can be evaluated efficiently. We still have to show how good
nonactive variables can be determined. The solution of each inner minimization problem
can be interpreted as a set of vehicle schedules that seem to be advantageous for the given
shadow prices of the current RLP relaxation. In the case of the Lagrangean relaxation
Lgeq, these vehicle schedules may include unloaded trips of different depots. Consider all
the vehicle schedules defined by the optimal solutions attaining the values of Ly (7) and
Lgq (7). Each still nonactive variable according to some unloaded trip of some of these
vehicle schedules determines a candidate to become active.

7.1. IMPLEMENTATION DETAILS 77

7.1.3 The Basic Ingredients

We have made many computational experiments to find out the right mixture of the
techniques presented above. The basic ingredients, each being indispensable to solve
large-scale instances at all, are as follows:

Initial RLP relaxation: The initial RLP should contain at least some primal feasible
solution yielding a value as close to the LP optimum as possible. A very efficient
way to heuristically determine some solution is a schedule — cluster — reschedule
heuristic (SCR). A faster method is a nearest depot heuristic (ND), which assigns
each timetabled trip to some depot with the smallest sum of the pull-out and pull-in
costs. This kind of opening heuristic, however, yields rather poor starting points
and, theoretically, can produce arbitrarily bad solutions, see Chap. 8. Nonetheless,
we will see in Chap. 12 that the performance results are, on the average, comparable
regardless whether we start with the ND or the more sophisticated SCR heuristic.

As soon as each timetabled trip is assigned to some depot, the problem decomposes
into |D| independently solvable single-depot subproblems. We solve for each depot
its single-depot instances according to all its heuristically assigned timetabled trips.
Each unloaded trip that corresponds to some basic variable becomes active and its
column is generated for the initial RLP. Thus, the first RLP includes at least the
feasible solution defined by the union of the solutions of all subproblems together.
A further idea is to use the union of all columns generated by any primal (opening
heuristic) and dual (Lagrangean relaxation) method. Unfortunately, we have not
tested such a combination of different heuristics.

The Workhorses: Minimum-Cost Flow and LP Solving the LP relaxation with our
approach exactly, requires the efficient solution of minimum-cost flow problems and
linear programs at several steps: The minimum-cost flow problems stem from single-
depot subproblems and Lagrangean relaxations, the LPs are RLPs. All minimum-
cost flow problems have been solved with MCF. The linear programs have been
solved with the primal as well as the dual simplex solver of the CPLEX Callable
Library, version 4.0.9. CPLEX turned out to be a reliable and robust method for
our degenerate (R)LP problems.

For our computations, an important feature of CPLEX 4.0 is the new and more gen-
tle perturbation method. In previous version of CPLEX, the bounds of all variables
have been relaxed when perturbing a problem. This perturbation approach led often
to numerical problems when we have solved our test instances. With the current
version of CPLEX, only all basic variables are perturbed whenever the perturba-
tion starts. As soon as some nonbasic variable has been selected to become basic it
will also be perturbed if not already done in some previous iteration. This simple
alteration of the perturbation strategy has significantly improved the efficiency of
our implementation for large MDVSPs.

78 CHAPTER 7. SOLVING THE LP RELAXATION

The column generation is divided into two phases: First, a Lagrangean phase where we
apply standard and Lagrangean pricing, and, second, a standard phase in which we apply
only the standard column generation approach.

Lagrangean phase: This phase precedes always the standard phase and is applied as
long as the objective value declines between two consecutive RLPs at least by some
predefined parameter controlled threshold (10.0 is used as default). The last basis
of the last RLP is always neglected, and each RLP is reduced by LP preprocessing.
The columns of each RLP obtained in this phase are, at least for large MDVSPs, far
too many for the primal simplex solver. We use here the dual simplex solver. We
have also tried to use CPLEX’s primal-dual logarithmic barrier solver. It turned out,
however, that numerical problems often prevent the barrier solver from proceeding.

As long as there is a sufficiently large gap between the optimal LP value and the
value of the current RLP, the Lagrangean phase works well. However, stalling
occurs when the current RLP value approaches the LP optimum. This phase is
unable to converge to an optimal variable set: Although the objective has been
become almost optimal, the standard column generation between two consecutive
RLPs finds always thousands up to millions of unloaded trips that do not satisfy
the reduced cost criterion. This effect is maybe a result of neglecting always the
last basis (i.e., all dual information) of the previous RLP, but we cannot provide
any other reasonable explanation.

Thus, we came up with the idea to use at this point only the standard column
generation scheme: We switch to the standard phase when the objective progress
becomes too small and, therefore, some “approximation of optimality” has been
reached.

Standard phase: When we start this phase, we believe that our current RLP contains
some almost optimal basis of the complete LP relaxation. The occurring RLPs are
now solved with the primal simplex solver and each RLP starts with the last basis
of the preceding RLP. This approach iterates until the (global) optimality of some
RLP can be proved with the reduced cost criterion.

7.2 Approximation Algorithms

First of all, one has to realize that the term “approximation” stands for an approximation
of feasibility problems, i.e., it is the task to ask whether there exists some feasible or
almost feasible solution or not. But we consider a minimization problem that can only
be solved by such approximation algorithms if we add an extra inequality bounding the
maximum allowed objective value that has to be adopted within a binary search procedure.

Let the commodities of an approximation problem be indexed by k. The basic idea
of approximation algorithms for multicommodity flow problems is closely related to La-
grangean relaxation, see Plotkin, Shmoys, and Tardos [1991]: At first, some initial flow

7.2. APPROXIMATION ALGORITHMS 79

is arbitrarily determined such that each single-commodity flow z*, for all commodities &,
satisfies at least the individual flow conservation constraints and individual flow bounds.
The coupling constraints — the flow conditions and the upper bound on the objective value
as in our case — will be most probably violated. Then some optimization problems over the
individual constraints are repeatedly solved to find directions in which the violation of the
coupling constraints can be decreased. To do this, penalties for the coupling constraints
corresponding to Lagrange multipliers are defined. Constraints being more violated get
larger penalties than constraints being less violated. The coupling constraints are relaxed
by a Lagrangean relaxation approach and the subproblem L is evaluated for the given
penalties. The heuristical idea here is that large penalties tend to imply that the resulting
optimal point Z (attaining the value of L) improves the corresponding invalid constraints.
For a properly small number o, the new flow vector is set to x := (1 — o)z 4+ oZ. This
procedure is repeated until some given degree of approximation is reached or the problem
is determined to be infeasible.

Plotkin et al. remark that Lagrangean relaxation approaches are often used to obtain
empirically good algorithms for solving linear programs. For instance, our Lagrangean
relaxation are such approaches. Unlike those methods, they give a rule for adjusting the
Lagrange multipliers such that a run time analysis proves a very favourable theoretical
performance. The interesting result for approximation algorithms is that the run time
is not as sensitive to the number of commodities as one might expect: O(k - logk) for a
randomized version and O(k? - log k) for a deterministic version.

Leong, Shor, and Stein [1993] and Borger, Kang, and Klein [1993] report on computational
investigations and comparisons for the concurrent multicommodity flow problem, the
latter for problems with unit commodity demands and unit edge capacities. Their results
provide support for the theoretical run time behaviour. These investigations are based
on randomly generated test sets, all with less than 1000 nodes and less than 3480 edges.
Only one relatively small real-world test problem having 49 nodes, 260 arcs, and 585
commodities is presented in Leong et al. For problems with a small number of commodities
(up to 40 — 50), the approximation codes are outperformed by a special purpose simplex
code. Moreover, the same clearly holds for the interesting real-world problem. Leong
et al. call this behaviour “an anomaly”.

Unfortunately, these computational results did not encouraged us to use such approxima-
tion algorithms: First, for problems with a small number of commodities and especially
for the interesting real-world problem, the approximation code was clearly outperformed.
This is very important to us since the number of commodities (resp., depots) is small for
our problems, and we are more interested in the empirical than in the worst case per-
formance. Second, none of the inventors of approximation algorithms has computation-
ally attacked minimum-cost multicommodity flow problems with this kind of approach.
There are also some further obstacles that put us off from approximation algorithms:

e MDVSPs have no source and sink nodes. If we consider only the flow conserva-
tions and the individual lower and upper bounds for a nonnegative cost function,

80

CHAPTER 7. SOLVING THE LP RELAXATION

the optimal solution is obviously zero. However, the flow is enforced by the flow
conservations for each timetabled trip. It seems to be an open problem how the
approximation method can be adopted to equations avoiding numerical difficulties
and convergence problems.

In each main iteration of the approximation method, the flow is always partly
rerouted. At last, the solution might have significantly more nonzero values than
the solution of the LP relaxation. This may badly influence the performance of a
branch-and-cut approach.

Our minimization problem must be solved by binary search. Although we can apply
quite good methods to compute a lower bound ¢z and an upper bound ¢y efficiently
(see Chaps. 6, 8, and 12), we believe that O(In(cy — ¢z)) approximation problems
that have to be solved are still far too much since, for our test instances, the number
of approximation problems can easily grow up to more than 20.

Chapter 8

Primal Heuristics

All methods in the literature about solving large real-world MDVSP systems are, to
the best of our knowledge, heuristics. The core of our thesis, however, is to solve large
MDVSPs exactly. Nonetheless, the exact branch-and-cut method presented here requires
primal opening and improvement heuristics that help to reduce the branch-and-bound
tree and, hence, accelerate the solution process significantly. We have implemented three
heuristics that we will explain in this section. First, a cluster first — schedule second
heuristic that is based on nearest depot approach, denoted by ND. Second, a schedule
— cluster — reschedule heuristic based on the Lagrangean relaxation LRy, denoted by
SCR. Third, an LP based iterative rounding heuristic, called LP-plunging, that exploits
information compiled in an (R)LP and its optimal solution. In addition, we briefly describe
the mathematical ingredients of the assignment approach implemented in HOT II.

Because it is NP-hard to find feasible solutions for capacitated problems, see Theo-
rem 3.10, Remark 3.11 gives some justification that our opening heuristics ND and SCR
as well as the assignment approach of HOT II consider depot capacities only heuristically.

8.1 Cluster First — Schedule Second

The idea of cluster first — schedule second approaches (CF-SS) is as follows: First, each
timetabled trip is assigned to exactly one depot (cluster part) decomposing the problem
into |D| independently solvable single-depot instances. Second, each of these single-depot
problems is efficiently solved to optimality (schedule part) with a network flow algorithm.

We have implemented a simple version based on a nearest depot heuristic that consid-
ers depot capacities heuristically. Of course, the following procedure could be further
improved, but this is not our goal.

81

82 CHAPTER 8. PRIMAL HEURISTICS

(8.1) Algorithm. ND heuristic for the MDVSP.
Input: MDVSP instance with depot lower and upper capacities.
Output: Set of vehicle schedules that possible violate depot capacities.

1. Assign each trip t € T to the depot argmin{cl;, + cf, 5| d € G(t)} and solve
each resulting single-depot problem to optimality using MCF. Let all depots be
unexamined.

2. If all depot capacities are satisfied, we have generated a feasible solution and stop.

3. If there exist unexamined depots with violated lower or upper capacities, select some
depot [with this property. Otherwise, we stop with an infeasible solution violating
some depot capacities.

4. If the upper capacity of [is exceeded by the amount of %;, we heuristically select &;
vehicle schedules whose timetabled trips can be assigned to other depots with free
capacity as cheaply as possible. If at least one circulation has been shifted to a free
depot, we let all depots be unexamined and continue with 6. Otherwise, we go to 3.

5. If the lower capacity of [is violated by the amount of J\;, we heuristically search for
vehicle schedules or blocks that have been assigned to other depots, but could also
be serviced by [. If at least one circulation has been shifted to the depot [, we let
all depots be unexamined and continue with 6. Otherwise, we go to 3.

6. The new resulting assignment of timetabled trips to depots is depot wise scheduled
to optimality, and we go to 2.

In the worst case, ND may theoretically produce arbitrary bad solutions. Consider the
following small uncapacitated instance with D := {r,g}, T #), and Agte . — A‘é‘trip =
{(i,1+1)| 0 < i < |T|}; the weight of each unloaded trip is set to zero, except the weights
of {(r,4),(i,r)| i odd} € AT™P and {(g,4), (i,g)| 7 even} C Adg'"ip that are all set to 1.
ND assigns each timetabled trip with an even number to the depot g and with an odd
number to r. The scheduling part cannot use any of the possible dead-head trips for this
assignment and comes up with a solution using exactly |7 | vehicle schedules. The worst
case ratio, however, is |—f1r‘ since the optimal solution is exactly one vehicle schedule if all

timetabled trips are serviced either by g or r.

8.2 Schedule — Cluster — Reschedule

The heuristic that we describe in this section is currently installed in BERTA of the
Berliner Verkehrsbetriebe (BVG) and is used in Berlin for bus and tram scheduling. It is
also installed in MICROBUS 2 of the IVU GmbH, Berlin.

The schedule — cluster — reschedule approach is based on the following idea: There is a
natural composition of schedule first — cluster second (SF-CS) and CF-SS heuristics since
the output from the first one can obviously be used as the input for the second resulting
in a schedule — cluster — reschedule heuristic (SCR).

8.2. SCHEDULE — CLUSTER -~ RESCHEDULE 83

Our version of SCR considers depot upper capacities heuristically, but considers no depot
lower bounds. It is based on the function Ly (7), which was presented in Chap. 6 for the
Lagrangean relaxation with respect to the flow conservations and can be applied to any
arbitrarily chosen Lagrange multipliers 7. Currently, we apply SCR always with 7 := 0.
However, it is also possible to embed SCR. in the subgradient method for LRy. Let m be
given, we perform the following procedures:

Scheduling.

We start by evaluating Lgs(m) with the network simplex code MCF. Let x be some
optimal solution for Lg(n) provided by MCF, and let S(z) C 2# denote the set of all
vehicle schedules defined by z. Note that each S € S(z) represents all unloaded trips of
its corresponding vehicle schedule.

Vehicle demand estimation.

In the following, we try to give an estimation of the necessary fleet size for x: Consider
a fixed vehicle schedule S € S(z). Let S C A denote all arcs with zero reduced costs
connecting two subsequent timetabled trips of S, being a pull-out trip that enters the
first timetabled trip of S, or being a pull-in trip that leaves the last timetabled trip of
S. Depending on our parameter settings, we allow, in addition, also to consider arcs in
S with positive reduced costs being smaller than a predefined small value. Let G(S) :=
{d € D| max;ep |S N 4| =|5N Ay|} denote those depots fitting best for S.

All vehicle schedules of S(z) are heuristically subdivided to the depots such that the
depot capacity constraints are satisfied as much as possible. We construct the following
minimum-cost flow problem as shown in Fig. 8.1 and solve it with MCF. The node set is
defined by DU S(x) U {p, g} with source node p, sink node ¢, and transshipment nodes
D U S(x). The arc set consists of the arcs (p,d) connecting the source node p with each
depot node d € D, (S, q) connecting each vehicle schedules S € §(x) with the sink node g,
an arc connecting the sink with the source node, and all arcs (J¢. s G(S) x {S} connecting
each vehicle schedule with its fitting depots. The arc costs and upper capacities are
given as shown in Fig. 8.1. The weights c% := (\S\ — 15N A;’tripo -M + ZaegnA;—trip cd
approximate the costs if the timetabled trips of the vehicle schedule S (or a proper subset
thereof) are assigned to depot d. M denotes our used capital costs of a vehicle, and the
term |S| — |S N AY™P| tries to measure those parts of S that cannot be assigned to the
depot d and, should this situation arise, must (expensively) be assigned to other depots
using possibly more vehicles.

The interpretation of this minimum-cost flow problem is as follows: It is the task to send
exactly |S(x)| units of flow from the source to the sink node as cheaply as possible. Since
the costs of the arc (p, ¢) dominate the sum of all the other arcs together, as much flow as
possible is routed through the transshipment nodes D UGS, i. e., as many vehicle schedules

84 CHAPTER 8. PRIMAL HEURISTICS

Source

+|S ()]

Depots are Vehicle schedules
transshipment nodes are transshipment nodes

(MM /|8(=))

%(cost/capacity) of an arc. kg is set to oo for uncapacitated depots. MM denotes a huge number
dominating the sum of all the other objective coeflicients.

Figure 8.1: Minimum-cost flow problem for vehicle demand estimation

S as possible will be assigned to one of its depots G(S). This assignment, however, must
consider the given depot capacities in any case since only x4 units of flow can be routed
through each node d € D. On the other side, at most one unit of flow can be routed on
each node S € §(z), i.e., it can only be assigned at most once. It is easy to see that the
maximum flow through DN S(zx) is routed as cheaply as possible with respect to the cost
coefficients cg.

With the optimal solution of this minimum-cost flow problem, we receive an estimation
of the necessary fleet size for each depot according to z. Moreover, the flow value of
(p,q) gives some estimation of the quality of x by the number of vehicle schedules that
presumable cannot be assigned to depots without violating depot capacities. Last, but
not least, it helps us to derive a clustering from x as described in the next two procedures.

Minimization of violated flow conservations.

We invoke a heuristic that tries to modify each vehicle schedule S € S(z) by exchanging
arcs such that the modified solution satisfies the depot capacities as much as possible
and violates fewer flow conservations. It is motivated by the fact that we presumable can
preserve more vehicle schedules of the modified solution than of the original one when the
timetabled trips will be serviced by one of its fitting depots.

8.3. LP-PLUNGING 85

For each S € S(z), we determine its favourite depot, denoted by dep(S) and defined by
d, if the flow value of the arc (d, S) was set to one, or defined by arg maxgep |S N A5 ™|
in the case that S was not assigned to any depot. By exchanging unloaded trip a € S by
existing counterparts @ € S, we heuristically try to determine parts of or complete blocks
or better vehicle schedules whose timetabled trips can together be assigned to the same
depot. It is the task to perform these exchanges such that

e the resulting blocks and vehicle schedules are as large as possible and violate there-
fore as few flow conservations as possible,

e the objective value is declined minimally, and

e as much blocks and vehicle schedules stemming from S have been assigned to its
favourite depot dep(S) as possible.

Clustering and rescheduling.

Each trip t € T is now assigned to that depot providing the unloaded trip that services ¢
in our modified solution, and the CF-SS heuristic applies.

Tabu Search.

Whenever not all timetabled trips of a modified vehicle schedule can be completely as-
signed to the same depot, we forbid the use of those user-defined dead-head trip that
connect two timetabled trips that are serviced in sequence by some S € S(z), but have
been assigned to two different depots. As long as new arcs have been forbidden, we restart
with the scheduling procedure using the smaller network without the forbidden arcs.

8.3 LP-Plunging

Our real-world MDVSP instances exhibit in practice a nice “almost-integrality property”:
solutions z of the LP relaxation (7.1) or an RLP include few fractional variables. It is often
the case that x is already integral or there exists some integral solution yielding (almost)
the same objective value. Moreover, the gap between the optimal LP or RLP value and
its optimal integer value is often small or zero. This property of real-world problems was
also observed and described by Forbes, Holt, and Watts [1994]. LP-plunging makes use
of this property by iteratively rounding up and fixing components of the LP solution and
reoptimizing the enlarged LP.

Given an LP relaxation or an RLP and a nonintegral feasible vector z. Let A € (0.5, 1.0)
denote some threshold value for which all fractional variables having a value within (A, 1)
are rounded up and fixed to one, and let o € (0.5, 1.0) denote some shrink factor for A.
The standard values for A and « are 0.95 and 0.9. As long as the current z is nonintegral
and the current (R)LP is primal feasible, the following steps are performed:

86 CHAPTER 8. PRIMAL HEURISTICS

1. All variables 22 € (A, 1) are rounded up and fixed to 1.

2. If no variable was fixed to 1 and if aA is still greater than 0.5, we reset A := aA
and go to 1. Otherwise, the value of every fractional variable is not larger than 0.5,
and we fix the first variable to 1 yielding the largest fractional value.

3. Logical implications are performed, i. e., for each variable xfj being fixed to one, we
fix the variables of all arcs (87 (i) Ud~(5)) N AY™™ and (6(3) U &(5)) \ A5 to zero.

4. The LP enlarged by the variable fixings is reoptimized with the dual simplex algo-
rithm.

If the LP-plunging succeeds, the clustering defined by the last (integral) z is depot-wise
rescheduled to optimality using all possible unloaded trips of each depot. From this point
of view, LP-plunging can also be viewed as a SCR heuristic that is based on the LP
relaxation.

Since the restricted column set of an RLP generally includes only a small part of A%%P,
the LP-plunging generates in many cases only poor or infeasible integer solutions. If this
is the case, we enlarge the current RLP parameter controlled by inactive columns (such
that the probability to find a better integer solution is presumably increased, but the dual
feasibility of the optimal basis of the RLP is not destroyed and the main memory limit of
the workstation is not exceeded) and apply the LP-plunging a second time.

8.4 Vehicle Scheduling in HOT II —
Hamburger Optimization Technique

We shall now describe another SF-CS approach that has been developed, implemented,
and successfully employed in practice at several German and international transporta-
tion companies: the sensitivity analysis module (SAM) and the vehicle scheduling module
(VSM) of the HOT II system of the Hamburger Hochbahn AG and the HanseCom GmbH,
Hamburg. This section is only focused on the mathematical details, the advantages, and
the weakpoints of the vehicle scheduling in HOT. For a complete description of the HOT
system, we refer the reader to the articles of Daduna, Mojsilovic, and Schiitze [1993] and
Daduna and Mojsilovic [1988].

It is an important property of HOT that only dead-head trips having a maximum pre-
defined duration ranging between 40 and 120 minutes are considered. The concept of
pull-in-pull-out trips is not used. Therefore, SAM is designed to build blocks, but not
complete vehicle schedules. It includes procedures that, for a given set of timetabled trips,
build blocks heuristically without considering pull-out and pull-in trips and interactively
try to modify iteratively the timetable data such that the current solution can be im-
proved with respect to the number of blocks. The output of SAM is used as the starting
point for VSM. Its main mathematical part consists of distributing the blocks to depots

8.4. VEHICLE SCHEDULING IN HOT II 87

such that operational costs are minimized and depot capacities are satisfied as good as
possible.

SAM includes the scheduling part of SF-CS: It is formulated as a depot-independent
assignment problem being based on the cost matrix with coefficients

€ [0,< M) if it is possible to link the timetabled
trips 4 and j within some maximum pre-

defined turning time,
=M otherwise,

Cij

with a sufficiently large M dominating the sum of all cost coefficients of feasible links.

We have already discussed in Chap 2.1 that a problem formulation like in HOT cannot
handle depot groups correctly. Therefore, before the cluster part in VSM can be applied,
the resulting blocks of SAM must be splitted into smaller parts such that each component
becomes feasible with respect to the depot groups.

The assignment problem is solved with the Hungarian method (for a description see, e. g.,
Ahuja, Magnanti, and Orlin [1993], page 471). The heuristic idea here is to minimize the
number of blocks, and one hopes that the number of vehicle schedules is simultaneously
minimized. We have also shown in Chap 2.1 that, in general, these two objectives do
not exactly coincide: A solution with the minimum number of blocks does not imply a
solution with the minimum number of vehicle schedules, and vice versa

The somewhat incorrect handling of depot groups together with the fact that blocks are
generated without a consideration of all pull-in-pull-out trips are the reasons why the
assignment approach of HOT does not necessarily produce optimal solutions.

The scheduling part is followed by a so-called sensitivity analysis. For critical time periods
as rush hours, the system interactively tries to modify the timetable data within reasonable
bounds such that the number of blocks can be further reduced, but the level of service
keeps constant. More precisely, the system iteratively offers parameter controlled possible
modifications of the departure times of timetabled trips and the delay buffers of dead-
head trips such that inadmissible links become feasible and, in each step, two existing
blocks can be merged together. The heuristic motivation to reduce the number of blocks
is the same as above: Such a reduction may also possibly reduce the number of vehicle
schedules. This approach, however, can also fail because the number of vehicle schedules
can increase: Figure 8.2 shows a similar counterexample as given in Fig. 2.10, but with a
modified end time of block“b” and a modified starting time of “c”.

d 10:40 - 11:10
l b 8:15-9:35 L - ¢ 9:40 - 10:45 1
I

a 7:50 - 8:20

Figure 8.2: Counterexample to the heuristic motivation of sensitivity analysis.

88 CHAPTER 8. PRIMAL HEURISTICS

Let us assume that the link between the blocks “b” and “¢” is inadmissible as long as
the timetable data keep unchanged. Obviously, the blocks “a” and “c” in sequence as
well as the blocks “b” and “d” in sequence can each be serviced by one vehicle, i.e., two
vehicles can service all blocks and thus all timetabled trips. But if the linking conditions
are somewhat relaxed such that it becomes feasible to link “b” with “c” to a new block
“b—c”, an additional vehicle becomes obviously necessary. Nevertheless, the sensitivity
analysis seems to work very well in practice as indicated by the vehicle given in Daduna,
Mojsilovic, and Schiitze [1993].

At last, clustering in done in VSM. First, it is checked whether each block can be assigned
to some depot or whether there are infeasible combinations of depot groups. In the latter
case, such a block has to be splitted such that each part can be assigned to some depot.
In the worst case, an additional vehicle becomes necessary. Considering depot capacities
heuristically, each block is assigned to some valid depot such that the costs for the pull-out
and pull-in trips are as small as possible.

Although some parts of the vehicle scheduling in HOT do not model the real problem
exactly, all weakpoints can be repaired heuristically. On the other side, some degrees of
freedom get lost resulting in suboptimal solutions. In Grétschel, Lébel, and Vélker [1997],
we have already obtained savings compared to the solutions of HOT that indicate, on the
average, reductions of the fleet size of about 3% and of the operational costs of about
10%. From a practical point of view, the scheduling in HOT is nevertheless an efficient
primal heuristic with a quite satisfiable solution quality.

Chapter 9

Polyhedral investigations

In this chapter, we give some results concerning our polyhedral investigations of the
MDVSP. Readers who are orientated practically rather than theoretically may possibly
wish to continue with the next chapter.

Polyhedral investigations play a basic role in solving many combinatorial optimization
problems as, for instance, the travelling salesman problem. The thesis of Thienel [1995]
gives a computational study for various problems that are solved with a polyhedral cutting
plane approach.

Our early theoretical investigations of the MDVSP started with a characterization of the
facial structure of its 0/1-polytope. In the course of our algorithmic developments and
computational investigations in solving the MDVSP, however, it turned out soon that we
are faced with completely different obstacles than finding (violated) inequalities of the
integer polytope. For the few problems of our test set that could not be solved to proven
integer optimality using only our column generation together with LP-plunging, we could
not successfully apply a cutting plane approach. Our separators are able to determine
violated inequalities for fractional LP solutions, but using them as cutting planes gives
rise to the following two problems: First, the enlarged LP relaxations become harder
such that they could often not be resolved to optimality for large instances. Second,
if reoptimization succeeds, the flow is always completely rerouted with the same costs.
Finally, when no more new violated cuts could be determined, we must start branch-and-
bound with much harder LPs. It turned out that it is for our test set better to use only
branch-and-bound without cutting planes.

Although cutting planes do not contribute to the solution of our problems, we will, for the
sake of completeness, at least give the theoretical results of our polyhedral investigations,
but do not describe the separation routines that we have implemented. We start by
defining the polytope associated with the MDVSP and give the results concerning the
polytope’s dimension. We continue with the results concerning trivial inequalities z¢ > 0
and introduce new kinds of valid inequalities for the uncapacitated case. Last but not
least, we give an extended version of minimum cover inequalities that are valid for the
capacitated version of the MDVSP polytope.

89

90 CHAPTER 9. POLYHEDRAL INVESTIGATIONS

9.1 The MDVSP Polytope

By Pypvsp := conv {z € R*| z satisfies (2.14b) — (2.14f)} we denote the 0/1-polytope
associated with the incidence vectors of feasible solutions of the MDVSP. Without lost of
generality, we assume in this chapter D := {1,...,|D|}.

Since the feasibility problem of the (capacitated) MDVSP is N'P-complete, see Theo-
rem 3.10, it is also N'P-complete to determine the dimension of Pypysp and impossible
to make any statements on its facial structure. Therefore, our polyhedral investigations
have been mainly concentrated on the uncapacitated case. Our first result is about the
equality set of Pypysp for uncapacitated problems.

(9.1) Lemma. The equality set eq(Pypvsp) for uncapacitated problems is given by the
flow conditions (2.14b) and the flow conservations (2.14c).

Proof: We have to show that each valid equation e"z = f is a linear combination of
(2.14b) and (2.14c¢). For convenience of notation, we define for each d € D artificial scalars
74 and 7¢ and set them to zero. Given some valid equation ez = f, we have to show that
there exists vectors 7 € R” and 7 := (7¢ € R7) ,_ such that &); := ef; =7, —7f + 7§ = 0,
for all (4, 7) € Ag'mp and alld € D,and f:= f—7"1=0. Weset n¢ := —e?, foralli € T,
and all d € D, and we set 7; := €%, + €2, for d :== min G(7) and for all i € 7. Inserting 7

and 7 into € proves

(9.2a) e = 0, VieT;VdeD,
e, = 0, d=minG() VieT.

Using z}; := !, := 1, | = min G(3) for all s € T, and 22 := 0, otherwise, we can prove

(9.3) f = €z = 0.

For each i € T we consider zj; := =z, for all d € G(i) \ {minG(4)}, }; := 2%, := 1,
I =minG(j) for all j € T\ {i}, and z¢ := 0, otherwise, which proves

(9.4) gl B gy @
For each d € D and each arc (3,5) € A7, consider 24, := 2% := 2%, := 1 and 2}, :=

=1, =minG(¢) for all t € T\ {4, j}, which proves

(9.5) gl = gz = 0.

9.2. TRIVIAL INEQUALITIES 91

Note, the equality set of Pypysp is determined alone by the existence of all pull-out and
pull-in trips. Knowing eq(Pypvsp), the dimension dim(Pypysp) is:

(9.6) Lemma. The dimension of the uncapacitated MDVSP polytope is

Au tl‘lp‘ Z ‘% _

deD

Proof: Lemmata 2.16 and 9.1. |

Our polyhedral investigations benefit from the program package PORTA written by
Thomas Christof. PORTA is an abbreviation for POlyhedron Representation Transfor-
mation Algorithm. Tt provides tools with which a polyhedron given by a convex set of
vertices and (possibly) a cone of extremal rays can be transformed into a representation
given by a set of linear equations and inequalities, and vice versa. PORTA is available
via WWW, see Christof [1994].

We have used PORTA to enumerate all facets of small problems for which we assume that
G(t) = D, for all t € T, and each subset, of timetabled trips can be serviced in sequence
by one vehicle. Table 9.1 displays the number of facets for problems with 3 timetabled
trips and problems with 4 timetabled trips up to 4 depots. For 3 trips, there are exactly 7
trivial facets z¢ > 0 per depot, see Lemma 9.7, and 2/P/ —2 nontrivial 2-cut or, for |7| = 3
equivalently, 1- path inequalities, see Lemma 9.9 and Lemma 9.14. The number of facets
of larger problems could not be determined, but one can easily guess their combinatorial
explosion.

T 15T D|

3 16| 27| 427D +2P -2
4 |50 (264 | 1658 ?
5 1 7 7 ? ?

Table 9.1: Number of facets for complete instances.

Although we have determined different kinds of valid inequalities (and facets for the above
kind of complete problems), almost nothing is actually known about the facial structure

of Pypvsp-

9.2 Trivial inequalities

For arbitrary uncapacitated problems, the next lemma gives sufficient conditions when
trivial inequalities are facet defining.

92 CHAPTER 9. POLYHEDRAL INVESTIGATIONS

(9.7) Lemma. (i) z¢ > 0 is facet defining for each a € AS™™ and each d € D.
ii) z¢, > 0 is facet defining for ¢ € T, and d € D if [§T(¢) N ASP| > 3
(i) 2y g d
iii) 24, > 0 is facet defining for t € Ty and d € D if |6~ (t) N AT™P| > 3.
dt d

Proof: Obviously, these inequalities are valid. We show (i): Let F be the face induced
by z¢ > 0. F defines the same set of feasible solutions as the problem without the dead-
head trip a € AS"™. Hence, the statement follows straightforwardly by Theorem 9.6 and
Theorem 1.1. Showing (ii) requires a quite long technical proof whose length would not
be justified by its contents. The idea is to prove condition iii of Theorem 1.1. Last but
not least, (iii) follows immediately from (ii) by symmetrical reasons. a

(9.8) Remark. If [67(¢) N Ad'"ip\ < 3, the inequality z¢, > 0 is valid, but not always
facet defining. For instance, z¢, > 0 is facet defining if

o 5T(t) N AT = and 6= (t) N AT™™ = or
o 5T(t) NAT™P = (t,7), 6(5) \ Ag # 0, and §(t) \ Ag # 0,

but not if

o ST(H)NAT™ =@ and 6= () N AT™P % @ or
o ST(H)NAT™P = (1,4), 6(5) \ Ay # 0, and §(¢) \ Ay =0

Equivalent results hold for 24, > 0 if [§~(£) N AT"®| < 3,

9.3 2-cut and Extended 2-cut Inequalities

The facial structure for the following inequalities was investigated for the case where
G(t) = D, for all t € T, and each subset of timetabled trips can be serviced in sequence
by one vehicle. In general, they define only valid inequalities.

(9.9) Lemma. 2-cut inequalities. Given some number p € {3,...,|7|}. Let U :=
[t1,...,up] C T denote an ordered set of timetabled trips such that their starting times
satisfy s,, < ... < $,,. Additionally, let D be partitioned into p—1 sets Iy,...,[,_; € 2P
such that their disjoint union equals D and at least I; and I,_; are nonempty. Then the
inequality

'z = z(6(U)) + z_:z.rd ({ui} = {ui1}) = 2,

i=1 del;

called 2-cut inequality, is valid for Pypvsp.

9.3. 2-CUT AND EXTENDED 2-CUT INEQUALITIES 93

Proof: Since all coefficients of the vector a are nonnegative, each integer feasible solution
covering U with at least two vehicle schedules satisfies ¢"x > x (67 (U)) > 2. Otherwise,
if x (6= (U)) = 1, the trips of U are serviced by exactly one vehicle, say of depot d € D.

Then for i satisfying d € I; holds «f,,. =1,1i.e,a"z = 2. a
(9.10) Lemma. Extended 2-cut inequalities. Given some number ¢ € {3,...,|T|}.

Let U := [t,...,Uy € T denote an ordered set of timetabled trips such that their
starting times satisfy sz < ... < sg,. For each d € D, let Uy C U be given with
U = NgepUas = [t1,...,up] and p > 3. Additionally, let D be partitioned into p — 1
sets Iy, ..., I,_; € 27 such that their disjoint union equals D and at least I; and I,_; are
nonempty. Then the inequality

b'x = z(67(0)) + sz (Ug — {u2}) + Z 2% ({up1} = Ug) +

pz—é LEH [l‘d ({ui} = {vita}) + Z { “eigiir” iz E%}}: {Eﬁ; H

|

1=

w
u; << Uil

N [T U) N (UN\U)) — 2 (TO)N6TO\TD))] > 2,

deD

called eztended 2-cut inequality, is valid for Pypvsp.

Proof: The idea of this proof is as follows: For each arbitrary, but fixed integer feasible
solution z, we iteratively eliminate nodes u € U\U and shrink paths including such nodes,
respectively, until we receive an extended 2-cut inequality that is known to be valid for
the shrunken z.

Assume that z¢ (§7(U) N6~ (U\Uy)) = 0, for all d € D, i.e., x uses only arcs having
a nonnegative coefficient in b*. Obviously, bz > z (6~ (U)) > =z (6-({u.})) = 1. If z
covers U with two or more vehicle schedules it is easy to see that bz > x_((S‘(U)) = 2.

Otherwise, = uses exactly one vehicle schedule, say of depot d € D, to cover UU. Then there
exists an unique i satisfying d € I;, and either ¢ (Uy — {u2}) = Lor 2% ({u,_1} — Ug) =1

SR D DRNE (R i B

and, thus, b"r > 14+ 1= 2.

Conversely, assume that there exists some [€ D and some u € U \ U, such that
zt (07(U) N 6T ({u})) = 1. Using the flow conservation of u, it follows that

1 = 4 (5_({u})) = 7 (5_([]) N 5_({u})) + 2t (U — {u}) + = ((U \U) = {u})

Let bz denote the extended 2-cut inequality de;ivgd from " x without u. For the consid-
ered (fixed) z, it is easy to see that (b%)Tz¢ = (b%) z%, for all d # I. So, we have to show

94 CHAPTER 9. POLYHEDRAL INVESTIGATIONS

that the same holds for I: If z! (5~ (U) N6~ ({u})) + ' (Ui — {u}) = 1, it is easy to
verify that 0"zt =

(Bl)Tml + (5_([7) N 6‘({u})) + 24U, — {u}) — 2 (5+([7) N 6+({u})) = (Bl)Tacl

If 2t (U\U) — {u}) = 1, there exists exactly one v € U \ U, such that z!, = 1. Since

bhyat, = 0, but B,zl, = —1, it follows that ¥"a! = (¥') 2. So, we have shown that
b*z = b'z and, thus, by induction over the nodes in U \ U follows that at some step
2 (Y (U) N6+ (U \ Uy)) =0, i.e., the extended 2-cut inequality is valid. a

(9.12) Remark. In the case of U = U, b™z reduces to a 2-cut inequality.

9.4 1-path Inequalities

The 1-path inequalities, which we present in the next lemma, have been investigated by
Alexander Martin.

(9.13) Definition. Given some (with respect to the starting times) ordered set V :=
[u1,...,u,] € T and some partition of V in sets U and U. Then we say U dominates
Uif [UN{1,...,i}| > |Un{L,...,4}], foralli=1,...,p — 1; we say U subdominates
Uif |UnN {i,...,p}‘ > |Un{i,. ..,p}], for all i = 2,...,p. If we replace “=” by “>”, we
say that U strictly dominates U, and U strictly subdominates U.

(9.14) Lemma. 1-path inequalities. Given some U C T such that p := U] > 3 and
odd. For each d € D, let U; and Uy be some partition of U such that

i dominates Uy,

i) U

ii) Ud subdominates Uy,

iii) (Jyep Ua strictly dominates U \ | Jyep Us, and
)

iv) Ugep Ua strictly subdominates U \ Jep Ua-

Then the inequality
e = (W) + Y a (A‘;’trip(U)\(Udﬁ Ud)) > [73],
deD

called 1-path inequality, is valid for Pypvsp.

Proof: Consider z in terms of cycle flows 2/ = > ., ptw, u* € {0,1}"4. For each
d € D and each w € Wy, let U,, C U denote the trips covered by w. It is easy to check that

9.5. EXTENDED COVER INEQUALITIES FOR THE CAPACITATED MDVSP 95

d'w > ’—Uz_w] and, thus, d"z = ZdeD Zwer uﬁ]-dTw > ZdeD Zwer Mi' ’—Uz_ﬂ Z Pﬂ
D

Note that conditions i) — iv) are not necessary to show validity of the inequality. If,
however, some of these conditions is unsatisfied, the resulting inequality can, at least in
the complete case, be strengthened. The name 1-path originates from the fact that each
vehicle schedule w € Wy entering U exactly once and having an empty intersection with
ATMP(U)\ (Uy — Uy) uses at most one arc of (Uy — Uy) C AT"P(U).

(9.15) Remark. For p = 3, 2-cut and 1-path inequalities are the same.

9.5 Extended Cover Inequalities for the Capacitated
MDVSP

We present for the capacitated MDVSP polytope a generalized version of the minimal
cover inequality, which has been first presented by Balas [1975], Hammer, Johnson, and
Peled [1975], and Wolsey [1975]. Given some depot capacity 2% (67(d)) < kq. A set
S C AP s called a cover if |S| > k4. The cover is minimal if |S| = k4 + 1. Given

.. 1l-out . .
some minimal cover S C AP"°™ the inequality

1% (S) < Ky

is called the minimal cover inequality corresponding to S. The next lemma shows how
the inequality can be strengthened.

(9.16) Lemma. Extended minimal cover inequality. Given some depot capacity #;
for depot [and some U C 7; such that |U;| = k; + 1. Then the inequality

'z = () + Z ¢ (Ag'trip(U)) < K
deD: d£l
called ezxtended minimal cover inequality, and its equivalent representation
'y = Z 4 (67 (U)) + o (A?'trip(U)) > 1
deD: d£l
are valid for the capacitated Pypvsp.

Proof: The equivalence of d"z < k; and d"z > 1 is given by subtracting the sum of the
flow conditions z (6~ (u)) = 1, for all uw € U, from d"z < k; to receive —d"z < —1. Each
integer feasible z can use at most «; vehicle schedules of depot [to service all timetabled
trips of 7; and, thus, also of U. Therefore, either at least one circulation of [covers two

96 CHAPTER 9. POLYHEDRAL INVESTIGATIONS

or more nodes of U or there exists some other depot covering at least one node of U, i.e.,
either .
Z 4 (67(U)) > 1 or ! (A?'t"p(U)) > 1.

a

(9.17) Remark. The part z! (6= (U)) of €z includes the left-hand side of the minimal
cover inequality corresponding to the pull-out trips entering U.

Chapter 10

Solving the MDVSP exactly

At first glance, it seems to be impossible to solve large-scale MDVSPs using commer-
cial or publicly available standard software, even on the newest and fastest workstations
or supercomputers. Nonetheless, with an intelligent combination of available LP and
minimum-cost flow codes together with implementations of many concepts of combina-
torial optimization and integer linear programming, it has become possible to solve such
problems on fast workstations to optimality. Hitherto, we have introduced step by step all
basic ingredients that turned out to be indispensable to solve our test instances: We solve
the integer linear programming formulation of MDVSPs by primal and dual heuristics,
column generation and elimination, and branch-and-cut. We have already discussed each
component except branch-and-cut.

We have also investigated a Dantzig-Wolfe decomposition as described in the next chapter.
It turned out that this decomposition approach is an unsuitable method to solve the
MDVSP. The major obstacle here is that the continuous master problem relaxations
become too hard to be solved efficiently. Especially for problems with more than one
thousand timetabled trips, the LU factorization in solving the restricted master problems
takes far too much time. We will discuss the computational results of our decomposition
implementation in Chap. 12.

In what follows below, we first give a brief description of the branch-and-cut approach,
show how an approximation guarantee can be determined easily using lower and upper
bound values, and describe the implementation details of our method to solve the MDVSP
exactly.

10.1 Branch-and-Cut

The basic idea of branch-and-cut is simple. Most of the valid inequalities, in general
facets, of the convex hull of feasible solutions are not used by the initial LP relaxation
since there are too much to handle them efficiently. If the optimal solution of the LP
relaxation provided by the used LP solver is not feasible, a separation problem is solved to

97

98 CHAPTER 10. SOLVING THE MDVSP EXACTLY

find violated inequalities cutting off the infeasible solution and strengthening the current
LP relaxation. This is called the cutting plane approach. The enlarged LP is reoptimized.
Separation and reoptimization alternate until either the LP solution becomes feasible or
no further violated inequality can be identified. In the latter case, a branch-and-bound
procedure starts. We assume the reader to be familiar with it. Branch-and-cut combines
branch-and-bound and cutting plane such that separation is allowed at each leave of the
branch-and-bound tree.

A comprehensive description including all important ingredients of branch-and-cut is, for
instance, given in the thesis of Thienel [1995] providing a computational study of several
optimization problems solved with the branch-and-cut system ABACUS.

Unlike expected by the experiences of many branch-and-cut applications reported in the
literature, our branch-and-cut plays only a subordinate role in solving our test problems.
The bottleneck is rather to solve the LP relaxations to optimality. This was possible for
19 out of our 20 real-world test instances. Out of these, 12 could be solved optimally using
only column generation/elimination and LP-plunging. The best integer feasible solution
for each of the other 7 problems was almost optimal, which gives rise to the assumption
that branch-and-bound may be sufficient to solve further problems to optimality. Indeed,
four of them could then be solved to the integer optimum by branch-and-bound, all with
less than 10 branching nodes. It was also possible to solve these four problems with
branch-and-cut, but, surprisingly, needing significantly longer run times. The remaining
three problems could neither be improved by branch-and-bound nor by branch-and-cut.

10.2 Approximation Guarantee

Given a problem instance with an optimal integer solution value ¢*. Assume that we have
determined a valid lower bound ¢y and an integer upper bound cy. Since 0 < ¢ < ¢* < ¢y,
the percentage deviation between cy and ¢* can be approximated by

cyg— ¢ ey —cg

0< T——<
C Cy,

From a practical point of view, it can take a long time to obtain a lower bound by the
optimal LP value or an improved one by branch-and-cut. Therefore, as long as the LP
relaxation is not solved to optimality, we use the somewhat weaker, but much “faster”
lower bound obtained by Lagrangean relaxations.

10.3 Implementation Details

The basic components of our algorithm are the following:

e Lagrangean relaxations to quickly obtain tight lower bounds for the minimum fleet

10.3. IMPLEMENTATION DETAILS 99

size and the minimum operational costs thereof as close as possible to the integer
optimum value.

e Primal opening heuristics to obtain a first integer feasible solution and a good start-
ing point for the LP relaxation.

e The LP relaxation approach with a column generation scheme including Lagrangean
pricing.

e LP-plunging to exploit the information compiled in each (R)LP and its optimal
solution.

e Branch-and-cut to solve a problem to proven optimality.

e The workhorses: MCF combined with a column generation and the LP solver
CPLEX.

Figure 10.1 gives the flow chart of our method to solve MDVSPs. We first determine
a lower bound ¢y by the Lagrangean relaxations LR¢s and LRgq4 as close to the integer
optimum value as possible. We know from Kokott and Lobel [1996] that the real-world
test instances considered here seem to be fairly well structured. Already the trivial prob-
lem relaxation Lgs(0), i.e., simply neglecting the flow conservations, provides very good
lower bounds. Second, we compute an upper bound ¢y using the opening heuristics SCR
and/or ND. Third, the LP relaxation is solved to optimality using our column genera-
tion and column elimination scheme. Besides standard reduced cost pricing, the column
generation procedure is reinforced by the new Lagrangean pricing. Within the iterative
column generation and elimination process, we optionally call the LP-plunging heuristic
to improve the current integer feasible solution. Whenever the upper bound ¢y could be
improved, we check whether E—Z is small enough from a practical point of view and stop if
this is the case.

When the LP relaxation has been solved to optimality, our method has already generated
an optimal solution by LP-plunging for many test instances. In this case, we stop. Oth-
erwise, let ¢, p denote the optimal LP value. We generate as many nonactive columns as
possible (respecting a main memory limit) that have reduced costs smaller than cy — cpp.
Note that none of the other inactive variables can have a positive value in an integer
solution yielding a smaller objective value than c¢;. The resulting RLP is then fixed and
solved by branch-and-cut. Of course, branch-and-cut is only a heuristic if not all columns
with reduced costs smaller than ¢y — ¢ p have been generated since neither an optimal
nor a feasible solution is guaranteed by such a fixed RLP.

Our network simplex code MCF as well as the CPLEX Callable Library, see CPLEX
[1995], are the workhorses of our code: Solving the MDVSP with our algorithm exactly
requires at several steps the efficient solution of minimum-cost flow problems and linear
programs. Standard tools in vehicle scheduling are network flow models and algorithms,
which have been profoundly investigated and are well understood. MCF allows to solve the
single-depot problems and subproblems to optimality in a few seconds. The Lagrangean
functions can, depending on the problem size, also be evaluated in a few seconds up to

100 CHAPTER 10. SOLVING THE MDVSP EXACTLY

(START)

Y
Compute a “fast” and “tight” lower
bound ¢;, by Lagrangean relaxation.

Y
Compute an upper bound cy
by opening heuristics.

Y

Initialize column generation.

Y

> Solve current RLP.

Y

Improve ¢y by LP-plunging (optional).

yes ~(STOP)

Column elimination by reduced cost criterion.

Y
Column generation by Lagrangean
pricing and reduced cost pricing.

RLP
globally

optimal
?

no

Branch-and-Cut on fixed RLP.

Figure 10.1: Solving MDVSPs: Flow chart.

10.3. IMPLEMENTATION DETAILS 101

a few minutes. For instance, Lgs can be exactly evaluated in about 15 minutes for our
largest the problem with 70 million of arcs, see Chap 12. The linear programs have been
solved with the primal and dual simplex solver of CPLEX, version 4.0.9.

102 CHAPTER 10. SOLVING THE MDVSP EXACTLY

Chapter 11

Dantzig-Wolfe Decomposition

In the previous chapters, we have discussed our branch-and-cut approach with column
generation to solve the MDVSP exactly. A further method to solve our problem is Dantzig-
Wolfe decomposition, which is due to Dantzig and Wolfe [1960]. This decomposition
method has often be used to solve various multicommodity flow problems in the fields of
transportation and telecommunication.

The general decomposition principle and its economic interpretation is outlined in Chvatal
[1980] and, for network multicommodity flow, in Ahuja, Magnanti, and Orlin [1993]. We
will use most of the concepts already proposed by Desrosiers, Dumas, Solomon, and
Soumis [1995] for decomposing the MDVSP .

The underlying ILP formulation is based on the contracted digraph D (2.10) reading

(11.1a) minz Z ct zd

deD g AU

subject to

(11.1b) z(6T(@) = 1, VieT,

(11.1c) 4 (6T(d) = N, VdeD,

(11.1d) 24 (6% (d)) < ke, VdAED,

(11.1e) (67 (t)) — 2?67 (1)) = 0, VteTqs YdeD,
(11.1f) r > 0

(11.11) x integral.

We will describe in this chapter how this ILP can — at least theoretically — be solved
by branch-and-cut-and-price: First, (11.1) is reformulated in terms of cycle flows, which
give rise to an integer master problem, and we compare this cycle with the original arc
formulation. Second, we describe how the linear programming relaxation of this integer
master problem can be solved by a delayed column generation giving rise to a pricing

103

104 CHAPTER 11. DANTZIG-WOLFE DECOMPOSITION

problem. Third, we describe the general principle of branch-and-price and how it can be
combined with branch-and-cut to a branch-and-cut-and-price approach, which is finally
employed to solve the integer master problem to optimality.

11.1 The Master Problem

Hitherto, we have always considered the MDVSP to be given in an arc-oriented formula-
tion with arc flows. It is also possible, however, to consider a cycle flow formulation as
follows: For all d € D, let

Au—trip

Xg:={z? e R% | 2% > 0 satisfies (11.1e)},

W, :={S C AY"™P| S is a vehicle schedule for depot d},

and
Wd = {XS| S e Wd}

(11.2) Remark. Obviously, each W, describes exactly the set of directed cycles in Dy,
and Wy describes the incidence vectors according to the dicycles in D,;. We will consider
W, also as the matrix (x°)scyy, that is defined by arranging the elements of Wy, column-
wise.

The set of all incidence vectors is denoted by W := U aepWa-

(11.3) Lemma. For each d € D holds:

*e X, <= 2% € cone(W,).

Proof: Tt is obvious that cone(W;) C X,;. Conversely, each flow 2¢ € X, can be decom-
posed with Theorem 1.20, Lemma, 1.21, and Remark 11.2 into a dicycle flow, i.e., for each

w € Wy exists a scalar f,, > 0 such that 2% =37, fuw or 2% € cone(Wy). -

(11.4) Remark. Lemma 11.3 follows as an application of the Decomposition Theorem
for Polyhedra due to Motzkin, 1936: A set of vectors in Euclidean space is a polyhedron
if and only if it can be represented as the sum of some convex set and some cone. In our
case, the convex set is {0} and the cone is X jepcone(W,)

Inserting each 24 = Wy u¢, 0 < u? € R4, into (11.1) results in an integer master problem
(IMP)

(11.5a) minz Z cd ud

deD weWy

11.1. THE MASTER PROBLEM 105

subject to

(11.5b) SN w(Et@)ud = 1, VteT,

deD weWy

(11.5¢) douh 2 A VdeD,

weWy
(11.5d) ouh < kg VdeD,

weWy
(11.5€) w o= 0,
(11.5f) po€ {0,1}%,
where each ¢ = 3 _ e c w, denotes the costs of the vehicle schedule associated

with the dicycle w € W, within the digraph D,. In the following, we will call the linear
programming relaxation of (11.5) the master problem (MP).

Per definition of each Xy, the constraints (11.1e) and (11.1f) are always satisfied by Wy u¢
and can therefore be neglected. The transformation of the objective function (11.1a) into
(11.5a), the flow condition (11.1b) into (11.5b), and the depot capacities (11.1c) and
(11.1d) into (11.5¢) and (11.5d) are validated as follows:

e For each d € D holds

dooddal = Y AW = > D dwpd). =

aeA;—trip aeA;—trip aEAu trip WEWd
E E : d d _ E d ,d
Coq Wa My - Cop Hoy-
weWy aEAS_trip weWy

e For each t € 7 holds

(6t () = Zxd(5+(t)) = Z Z ¢ =

deD aeD aEd"‘(t)ﬂA;'mp
d _ a _
> Y W, = Wo fly, =
d€D gegt(tnAy P d€D gegt(tnAY P wEWy

2.0 2w =)) w(ETO)u

deD weWy acé+ (t)ﬂA;_trip eDweWy

106 CHAPTER 11. DANTZIG-WOLFE DECOMPOSITION

e For each d € D holds

2(0%(d) = >, m = >, Wanhe =

acdt(d)nAy P acd+(dnAy P
d d
d _ 2 : j : d .
Z Z (’LU Mw)a — ’wa /j,w =
aEd""(d)ﬂA;'tﬂp wcWy weWy G:E(j"’_(d)ﬂA;_trip
E d E — E : d
(/,Lw ’LUa) - Koy
weWy aEd""(d)ﬂA;_trip wew,y

(11.6) Remark. It is easy to see that each w(é*(¢)) is equal to one if and only if the
dicycle w € W covers the timetabled trip ¢ € T, otherwise, w(d* () is zero. Therefore,
the system (11.5b) corresponds to a constraint matrix of a set partitioning problem.

11.2 Relation between the Master Problem and the
LP Relaxation

It is obvious that the ILP formulation and IMP yield the same optimal integer value. The
same holds for the LP relaxation and MP, but MP provides more fractional basic solutions.
More precisely, let P and Py denote the polytopes associated with the LP relaxation and
MP. Tt is easy to show that there exist vertices i € Pyp such that (:cd =Wy ﬂd)deD € P
is a nontrivial convex combination of vertices in Pp. For instance, we have enumerated
the vertices of Pp and Pyp for a uncapacitated problem with |[D| = 2, |7| = 3, and
G = D, and we have enumerated all facets of the integer version of P, and Pyp, which
we denote by Pip and Py These enumerations have performed with PORTA.

For this small instance, the polytopes P.r and Pyp contain exactly 22 equivalent integral
and four equivalent fractional vertices: The integral vertices of Pyp are the following
vectors

1 0 0 1 0 1 0 0 1 1
o)+ {rf+{o}, (t]+(o], [o]+[1], [1}+]0], and [1
0 0 1 0 1 1 0 1 0 1

whereas each occurring column vector can belong to any of the two depots. It is easy to
verify that there are exactly 22 combinations possible. The fractional vertices of Py are
the eight possible combinations of

1 1 0
1 1 1

(11.7) s +510)+35(1

0 1 1

11.3. THE PRICING PROBLEM 107

However, only four of them, for which the two columns (1,1,0)" and (0,1,1)" belong
to different depots, can be transformed to vertices of P p. If, for instance, all three
columns belong to the same depot, the corresponding solution in P, can be represented
as a nontrivial convex combination of the vertices in P corresponding to (1,1,1)" and
(1,0,1)" 4+ (0,1,0)" in Pyp. Based on heuristical arguments, Forbes, Holt, and Watts
[1994] claim that such cases are unusual: Either the column (1,1,1)" or the columns
(1,0,1)" + (0,1,0)" would be most probably cheaper than (11.7) such that it would be
unlikely that a solution like (11.7) is optimal. We agree with them, however, only if the
columns (1,1,0)" and (0,1,1)" of (11.7) belong to the same depot and if the optimal
solution in P;p is unique.

Based on our data we cannot guarantee that the optimal solution of P.; is unique. There-
fore, solving the MP requires either a proper perturbation of the objective function or we
cannot avoid that we obtain an optimal solution such as (11.7), which may require ad-
ditional branching steps in the branch-and-cut-and-price algorithm that we will describe
below.

11.3 The Pricing Problem

Although the master problem has significantly fewer equations than the LP relaxation,
it contains exponentially many variables. Nevertheless, we can solve MP with a delayed
column generation approach. The general column generation principle was outlined for
the LP relaxation in Chap. 7.

Let the restricted master problem (RMP) be the linear program that is defined by the
columns of MP corresponding to some W C W. We assume that RMP is primal feasible.
Let v € R7, 0 < B8 € RP, and 0 < v € RP denote the dual multipliers according to
(11.5b), (11.5¢), and (11.5d) for the optimal basis of a current RMP. The reduced costs
of the variables of MP are given by

ai::cg—yT<w(5+(t))) Bty NweWyVdeD.

tc

For convenience of notation, we define for each d € D an artificial variable v; € R and set
it to zero. It follows straightforwardly that

¢ (), = s D)) -

d — d Y 100
E Cij Wig — E : Vij Wi = E (ciy — vi) wy;

ijeALP ijeAYP ijeALP

A given basis is optimal if and only if for all w € W, and for all d € D the reduced costs

¢? are nonnegative. Therefore, a basis is optimal for RMP as well as for MP if the pricing

108 CHAPTER 11. DANTZIG-WOLFE DECOMPOSITION

problem (PP)

(11.8) min | 7 Ba +urjr61%1d z:t .p(c” Vi) w”]
ijeArt

yields a nonnegative value.

11.4 Solving the Master Problem

From a complexity theory’s point of view, it is a NP-hard problem assuming the initial
RMP to be primal feasible; however, we refer to Rem. 3.11, in which we determined depot
capacities to be often soft constraints. We initialize the first RMP with the columns
associated with a feasible set of vehicle schedules given by some primal heuristics as, for
instance, a nearest depot heuristic, see Chap. 8.

We attack the pricing problem as follows: Let PP, denote the pricing problem for a fixed
d € D. We split the depot node d into its original nodes d™ and d~ such that d* becomes
the new tail node of all pull-out trips, and d~ becomes the new head node of all pull-in
trips. Then, PPy is the problem to find the shortest path from d* to d~ according to the
arc weights ¢¢ := (cgj — ;)ijea,- Fortunately, the underlying network for each PPy with
the two new depot nodes is acyclic. The shortest paths — even if negative arc weights
occur — can therefore be computed in O(|44|) time using, e. g., the reaching algorithm as

proposed in Ahuja, Magnanti, and Orlin [1993].

The algorithm proceeds in the following way: For d € D, let ¢ denote the shortest path
for PP, If v; — B4+ & w? > 0 for all d € D, the optimal basis of the current RMP is also
optimal for MP, and we are done. Otherwise, the column of at least one %? violating the
optimality condition is generated and added to RMP, the enlarged RMP is reoptimized,
and we iterate. Between two consecutive RMPs, we generate for each depot d the column
corresponding to the shortest path @¢ if v4 — 84 + é¢ w¢ < 0.

Our computational investigations have shown that Lagrangean pricing is indispensable
to solve the LP relaxation of larger MDVSP instances. Thus, we came up with the idea
that our decomposition may also benefit from Lagrangean pricing. And indeed, it can
help to significantly accelerate the solution of MP: Consider the subproblems L¢q4 of the
Lagrangean relaxation LR¢q for which the flow conditions have been put into the objective
function. We use the value of the optimal dual multipliers v of the last RMP as estimators
of the Lagrange multipliers of the flow conditions and evaluate Lgg4 at v. In Chap. 6, we
have shown that each optimal solution of Lgq(r) corresponds to a set of vehicle schedules
that seem to be advantageous for the given Lagrange multipliers v. Thus, we generate the
columns of all these suggested vehicle schedules for which the reduced cost criterion for
MP is not satisfied and which are currently not active. In addition to the standard column
generation scheme, this Lagrangean pricing is always used between two consecutive RMPs
to generate further columns.

11.5. SOLVING THE INTEGER MASTER PROBLEM 109

11.5 Solving the Integer Master Problem

11.5.1 Branch-and-Price

Applying a branch-and-bound procedure to a fixed RMP that contains an optimal basis
according to MP, the current set of active columns will neither guarantee an optimal nor
a feasible integral solution (see, e.g., Barnhart, Johnson, Nemhauser, Savelsbergh, and
Vance [1994] or Sol [1994]). Barnhart et al. claim that, nevertheless, many decomposition
problem instances have been solved successfully, but not to proven optimality, by the
heuristic of limiting the column generation to the root node of the branch-and-bound
tree.

Incorporating column generation in each node of a branch-and-bound tree — this is called
branch-and-price — is hard: Standard branching on variables of MP may be ineffective
since fixing a variable ué to zero destroys the easy structure of PP. Moreover, there no
guarantee and it is even most likely that the pricing problem will regenerate the column
of ;4 within the branching node corresponding to ud := 0. To avoid a reactivation of
ud . we have to compute also the second shortest path, and, for a branching depth k, we
would have to compute in the worst case the k™ shortest path. For this reason, we should
use branching strategies that are compatible to PP. The following actions can be easily
performed for PP:

Fixing arc variables to zero. To fix some arc a € A}™™ to zero, we set its weight &
in PP, to infinity. Consequently, all columns p¢ satisfying w;; = 1, w € Wy, can
also be fixed to zero.

Removing depots from a depot group. To forbid that a trip ¢ € 7 is serviced by a
depot d € G(t), we can easily remove d from G(t) and fix all arcs of A5"P({t}) to
7€ero.

Contracting two timetabled trips. If for some depot d two subsequent timetabled
trips ¢ and j € 7 are serviced in sequence, we have to contract the nodes ¢ and j.
Note that each arc weight ¢ must be shifted on the node j (or 7) to each arc of

5H(7) N AFT (or 6 (1) N ATP),

It would be advantageous to have branching rules that can make use of some of these
actions: We compute the vector x := (Wd ud) gep- Obviously, « is integral if and only
if p is integral. If this is the case, MP has been solved to optimality, and we can stop.
Otherwise, we perform one of the following briefly sketched branching strategies and
iterate the branch-and-price algorithm until optimality is proved.

Standard branching on the original variables in (11.1). We select some d € D and
some arc (i, j) € A5 such that xf; is fractional. On the left branch, we set zf; := 0

and pg, := 0, for all w € Wy with w;; = 1. On the right branch, we set zf, := 1 and

110 CHAPTER 11. DANTZIG-WOLFE DECOMPOSITION

Y wewy: wi=1 pd :=1; in addition, all the other depots than d can be removed from
the depot groups G(i) and G(j).

Branching on depot groups. We select some ¢t € 7 and divide G(¢) in two subsets
Gi(t) and G,(t) such that 3 q) 24(67 (1)) and 34, 22 (67(t)) are both frac-
tional. On the left branch, we remove G,(t) from G(¢), and on the left branch, we
remove G, (1).

The branching strategy proposed by Ryan and Foster [1981]. Let ¢ and j be two
timetabled trips such that x(i — j) is fractional. On the left branch, we set z(i —
7) =0, i.e., we fix each arc a € (i — j) to zero. On the right branch, we contract
i and j and fix each arc a € (6T(i) Ud (5)) \ (i — j) to zero.

11.5.2 Branch-and-Cut-and-Price

Branch-and-cut and branch-and-price can be combined to a branch-and-cut-and-price ap-
proach. Such an approach tries to tighten MP by column generation and cutting plane
generation. The difficulty of branch-and-cut-and-price is the incompatibility of its two
parts: PP can become much harder and even impossible to be solved if we add valid cuts
(or facets) to MP since a new cut can destroy the well suited structure of PP. Vice versa,
generating new columns may also have a negative effect on separation, see Barnhart et
al.

For instance, the only facet of MP for our small example from Sect. 11.2 is the following
clique inequality (see Padberg [1973]):

(11.9) = 0 -
el O-0-0)

Tt is easy to check that there exists no vector e € R4 ™ such that e?" W, u? is equal to
the left-hand side of (11.9) for any fixed d. This means that it would be impossible to
consider (11.9) within PP.

Each inequality

(11.10) d et f

deD

being valid for the integer version of (11.1) (and for the ILP (2.14), resp.) defines a valid
inequality

(11.11) S et Wyt > f
deD

for MP. In our case, separation can be attacked similarly to the branching for branch-
and-bound: We have to separate x := (Wd ud) gep for the arc formulation and must

11.5. SOLVING THE INTEGER MASTER PROBLEM 111

transform identified violated cuts to a representation valid for MP. This strategy is capable
to separate each fractional solution of MP whose equivalent fractional representation
within the LP relaxation could be separated anyhow. Only those fractional solutions that
correspond to some nontrivial convex combinations of integral solutions within the LP
relaxation can not be attacked at all by such a separation approach. If, however, such a
degenerated case occurs, branching becomes indispensable.

This separation scheme is compatible to PP: Let us enlarge the LP relaxation (11.1) by
some valid cut (11.10) and the master problem (11.5) by the corresponding cut (11.11).
Let 0 < ¢ € R denote the dual multiplier according to (11.11). The pricing problem (11.8)
becomes

11.12 min (¢ — 3¢ + min Z oy — e ()
() dcD i g weEWy ump(©j ¢ ij 9 i
iJEAY

i.e., the arc weights ¢¢ simply become ¢ — (e?, and each cut of type (11.11) can be easily
incorporated in our pricing procedure.

To sum up, one can say that branching and separating on the original variables is a good
compromise for branch-and-cut-and-price approaches if the problem can completely be
described with an arc formulation and with a path and cycle formulation.

112 CHAPTER 11. DANTZIG-WOLFE DECOMPOSITION

Chapter 12

Computational Results

This is the largest chapter of this thesis summarizing all our computational results for
the MDVSP. With the results presented here, we want to prove the effectiveness of our
developed and implemented methods to solve large MDVSP instances from practice.

We start the presentation of our computational results in Sect. 12.1 with a description of
the individual depot data of the city of Berlin (BVG), the city of Hamburg (HHA), and
the region around Hamburg (VHH) in Tabs. 12.1-12.3. This data are the basis of our
single-depot and multiple-depot test instances, which are in detail presented in Sect. 12.2.

The solution statistics of the single-depot instances obtained by the individual depot data
and single-depot relaxations are illustrated in Tabs. 12.5-12.8 in Sect. 12.3. The central
results of the investigated multiple-depot instances such as the objective values (of the
lower bounds, the optimal integer value, and the upper bounds) and the run times are
given in Tabs. 12.9-12.12 in Sect. 12.4. Detailed results of the subgradient methods for
the Lagrangean relaxations are given in Sect. 12.5. Some specific results of solving the
LP relaxation without LP-plunging is presented in Sect. 12.6. We close this chapter with
the results obtained for the Dantzig-Wolfe decomposition method in Sect. 12.7.

Admittedly, all our computational tests have been performed without a consideration
of depot capacities for two reasons: First, HanseCom has not provided depot capacities
for HHA and VHH. Second, each BVG test instance is just based on a subset of all its
timetabled trips and /or depots making it pointless to consider the given capacities. It also
speaks well for ignoring depot capacities that they can be considered as soft constraints,
see Rem. 3.11, and none of our partners has ever complained about the necessary fleet
sizes of our solutions.

All computational tests have been performed on a SUN Model 170 UltraSPARC with
512 MByte main memory and 1.7 MByte virtual memory. We were the only user on
this machine during our test runs. All linear programs have been solved with the CPLEX
Callable Library, version 4.0.7 and 4.0.9, all minimum-cost flow problems and single-depot
subproblems have been solved with the callable library of our network simplex code MCF
combined with a column generation.

113

114 CHAPTER 12. COMPUTATIONAL RESULTS

12.1 Real-World Data Specifications

Currently, BVG maintains 9 garages and runs 10 different vehicle types (2 double-decker
types, 6 single-decker types, and 3 articulated bus types). Combining the garages with
their available vehicle types results in 44 depots, see Tab. 12.1. For a normal weekday,
about 28,000 timetabled trips have to be serviced. Since BVG outsources some trips to
third-party companies, this number reduces to 24,906. Using all degrees of freedom, these
25 thousand timetabled trips can be linked with about 70 million unloaded trips.

| Au—tr1p| | Au—tr1p|
Depots 7] User-def. | Total Depots 7] User-def. | Total
B-Depot 1 2139 15156 | 1,309,598 B-Depot 23 || 2403 16201 | 1,917,649
B-Depot 2 2468 22631 | 1,610,588 B-Depot 24 || 2370 15666 | 1,706,145
B-Depot 3 1872 12813 849,007 B-Depot 25 || 2143 14850 | 1,516,896
B-Depot 4 2223 15898 | 1,444,077 B-Depot 26 || 4225 28243 | 3,036,693
B-Depot 5 2386 17117 | 1,498,079 B-Depot 27 || 3349 20741 | 3,027,439
B-Depot 6 2623 19800 | 1,775,719 B-Depot 28 || 2764 17518 | 2,205,739
B-Depot 7 1771 13264 821,797 B-Depot 29 || 2920 18112 | 2,343,428
B-Depot 8 1867 13612 904,995 B-Depot 30 || 2665 17287 | 2,015,129
B-Depot 9 1664 12586 346,470 B-Depot 31 || 2981 18582 | 2,415,834
B-Depot 10 940 8922 117,164 B-Depot 32 || 2340 16617 | 1,360,858
B-Depot 11 || 1513 11421 363,965 B-Depot 33 || 2812 18995 | 1,949,709
B-Depot 12 867 8631 109,722 B-Depot 34 || 2179 16270 | 1,021,680
B-Depot 13 || 2396 23897 | 1,756,254 B-Depot 35 || 2772 19897 | 1,769,839
B-Depot 14 || 2218 27201 | 1,713,144 B-Depot 36 || 2577 17969 | 1,487,242
B-Depot 15 || 1741 20797 | 1,009,292 B-Depot 37 || 2202 12811 | 1,572,817
B-Depot 16 || 1644 20352 824,190 B-Depot 38 || 1965 13634 | 1,496,895
B-Depot 17 || 3464 27543 | 2,981,149 B-Depot 39 || 2049 11948 | 1,499,119
B-Depot 18 || 2738 22784 | 1,733,559 B-Depot 40 || 1369 9320 813,746
B-Depot 19 || 2186 16758 | 1,395,188 B-Depot 41 || 1565 10110 977,644
B-Depot 20 || 2751 23428 | 1,855,240 B-Depot 42 || 2500 14781 | 2,094,639
B-Depot 21 || 2964 21279 | 2,740,790 B-Depot 43 || 1720 10938 | 1,141,457
B-Depot 22 || 2631 19156 | 2,148,047 B-Depot 44 || 1369 9320 813,746

Table 12.1: BVG depots.

HHA together with some other transportation companies maintain 14 garages with 9
different vehicle types resulting in 40 depots, see Tab. 12.2. More than 16,000 daily trips
must be scheduled with about 15.1 million unloaded trips. This problem decomposes into
seven multiple-depot and nine single-depot instances.

VHH currently plans 10 garages with 9 different vehicle types. The garage-vehicle combi-
nations define 19 depots, see Tab. 12.3. The 5,447 timetabled trips of VHH can be linked
with about 10 million unloaded trips.

12.1.

REAL-WORLD DATA SPECIFICATIONS

’Au—trlp’
Depots 7] User-def. | Total
Hamburg 1 - Depot 1 2,900 399,601 | 2,170,962
Hamburg 1 - Depot 2 2,277 143,146 | 2,285,501
Hamburg 1 - Depot 3 1,716 116,142 850,828
Hamburg 1 - Depot 4 1,065 31,520 488,655
Hamburg 1 - Depot 5 1,413 48,374 339,891
Hamburg 1 - Depot 6 1,076 45,723 318,626
Hamburg 1 - Depot 7 728 13,654 233,010
Hamburg 1 - Depot 8 2,288 257,733 | 1,360,544
Hamburg 1 - Depot 9 1,882 102,764 | 1,579,315
Hamburg 1 - Depot 10 || 1,588 79,955 404,016
Hamburg 1 - Depot 11 || 1,296 77,201 459,468
Hamburg 1 - Depot 12 892 25,100 348,230
Hamburg 2 - Depot 1 4 9 12
Hamburg 2 - Depot 2 214 2,059 18,700
Hamburg 2 - Depot 3 21 195 225
Hamburg 2 - Depot 4 211 2,651 16,854
Hamburg 2 - Depot 5 648 14,136 180,554
Hamburg 2 - Depot 6 55 468 1,430
Hamburg 2 - Depot 7 695 16,526 186,863
Hamburg 2 - Depot 8 493 8,322 104,153
Hamburg 2 - Depot 9 1,365 56,988 475,533
Hamburg 3 - Depot 1 521 19,003 65,650
Hamburg 3 - Depot 2 521 10,745 122,692
Hamburg 4 - Depot 1 230 1,858 22,151
Hamburg 4 - Depot 2 17 54 152
Hamburg 5 - Depot 1 986 56,760 211,153
Hamburg 5 - Depot 2 930 27,452 368,242
Hamburg 6 - Depot 1 1,345 102,253 322,546
Hamburg 6 - Depot 2 1,693 72,882 | 1,233,766
Hamburg 7 - Depot 1 232 3,922 12,510
Hamburg 7 - Depot 2 220 2,348 21,315
Hamburg 8 20 66 147
Hamburg 9 10 29 54
Hamburg 10 126 442 3,322
Hamburg 11 14 53 68
Hamburg 12 1 2 2
Hamburg 13 71 353 2,388
Hamburg 14 109 617 5,241
Hamburg 15 183 1,025 14,347
Hamburg 16 194 1,943 15,419
Table 12.2: HHA depots.

115

116

CHAPTER 12. COMPUTATIONAL RESULTS

| Au—tr1p|
Depots 7] User-def. | Total
Hamburg-Holstein - Depot 1 10 29 50
Hamburg-Holstein - Depot 2 1508 137,965 158,607
Hamburg-Holstein - Depot 3 2920 241,720 787,772
Hamburg-Holstein - Depot 4 2355 158,053 | 2,501,906
Hamburg-Holstein - Depot 5 14 36 90
Hamburg-Holstein - Depot 6 700 12,705 207,772
Hamburg-Holstein - Depot 7 2351 145,095 688.574
Hamburg-Holstein - Depot 8 1665 79,404 | 1,262,356
Hamburg-Holstein - Depot 9 2 4 4
Hamburg-Holstein - Depot 10 758 19,138 54,345
Hamburg-Holstein - Depot 11 602 12,059 160,374
Hamburg-Holstein - Depot 12 373 5,063 57,451
Hamburg-Holstein - Depot 13 1 2 2
Hamburg-Holstein - Depot 14 953 25,334 64,447
Hamburg-Holstein - Depot 15 799 18,641 283,643
Hamburg-Holstein - Depot 16 417 5,095 73,045
Hamburg-Holstein - Depot 17 || 2451 150,944 | 2,637,754
Hamburg-Holstein - Depot 18 || 1213 28,594 188,124
Hamburg-Holstein - Depot 19 795 13,037 272,893

Table 12.3: VHH depots.

12.2. THE TEST INSTANCES 117

12.2 The Test Instances

Multiple-depot problems.

Different parameter settings and optimization aspects yielded in the test instances that
are displayed in Tab. 12.4. Besides the total number of arcs in A*™P we also give the
number of user-defined unloaded trips without pull-in-pull-out trips. The term @G :=
Y7 G(t)/|T| denotes the average depot group size. Note that the number of equations
of (2.14) is equal to the number of flow conditions and flow conservations.

Multiple-depot | Awtie] /1000 number of
test sets D 7] User-def. | All oG equations
Berlin 1 44 124,906 846 | 69,700 | 4.03 125,255
Berlin 2 49 | 24,906 304 (13,200 | 1.56 63,641
Berlin 3 3 1,313 77| 2,300 | 2.33 4,370
Berlin-Spandau 1 9 2,424 164 | 3,700 | 4.94 14,418
Berlin-Spandau 2 9 3,308 327 | 8,800 |5.49 21,470
Berlin-Spandau 3 13 2,424 39 590 | 1.92 7,103
Berlin-Spandau 4 13 3,308 72| 1,530 |2.25 10,753
Berlin-Spandau 5 13 3,331 75| 1,550 | 2.25 10,834
Berlin-Spandau 6 13 1,998 28 380 | 1.90 5,798
Berlin-Spandau 7 7 2,424 145 | 3,300 | 4.16 12,506
Berlin-Spandau 8 7 3,308 283 | 7,800 5.02 18,376
Hamburg 1 12 8,563 1,322 {10,900 | 2.23 27,696
Hamburg 2 9 1,834 99 | 1,000 | 2.02 5,549
Hamburg 3 2 791 30 200 | 1.32 1,835
Hamburg 4 2 238 2 23| 1.04 487
Hamburg 5 2 1,461 85 580 | 1.31 3,379
Hamburg 6 2 2,283 176 | 1,600 | 1.33 5,323
Hamburg 7 2 341 6 34 1.32 795
Hamburg-Holstein 1 4 3,413 230 | 4,000 1.68 9,167
Hamburg-Holstein 2 19 5,447 1,054 | 9,400 | 3.65 25,334

Table 12.4: Real-world multiple-depot test instances.

There are no depots containing vehicles of different garages for each of these multiple-
depot test instances.

Berlin 1: This is the complete BVG problem with all possible degrees of freedom.

Berlin 2: This problem is based on the timetabled trip set of Berlin 1, but the depots
and the dead-head trips are generated with different rules resulting in fewer degrees of
freedom.

118 CHAPTER 12. COMPUTATIONAL RESULTS

Berlin 3: This is a small test instance including 9 lines from the south of Berlin and 3
depots from one single garage.

Berlin-Spandau 1 — 8: All the test sets denoted by Berlin-Spandau are defined on the
data of the district of Spandau for different weekdays and different depot generation rules.

Hamburg 1 — 7: Here we consider the multiple-depot subproblems of HHA.
Hamburg-Holstein 1: This is a subset of VHH containing not all its depots and trips.
Hamburg-Holstein 2: This test set is based on the complete data of VHH.

Single-depot problems.

The single-depot instances are obtained by the individual depot data of BVG and HHA,
assuming that each depot must service all its possible timetabled trips, and by the single-
depot relaxations LRy(0) of each multiple-depot instance.

12.3 Solving the Single-Depot Instances

Single-depot instances can be modelled as minimum-cost flow problems. Hence, real-
world SDVSPs of any size can be efficiently solvable as shown in Tables 12.5-12.8. These
tables give for the single-depot problems information about the run times and performed
simplex iterations for the default version of MCF and MCF with column generation. For
the column generation, there are also given the number of generated columns and the
number of restricted minimum-cost flow problems that have been solved until optimality
has been proved.

With the default version of MCF, all BVG depots together can be solved in less than
80 minutes. The solution time can be accelerated to less than 10 minutes with column
generation. For the HHA problems, these two times are 19 and 3 minutes. Reinforcing
the default version of MCF with column generation, the run times could be decreased, on
the average, by about 89 % and the performed simplex iterations by about 83 %.

Table 12.8 shows the results for truly large-scale instances obtained by Lagrangean re-
laxation. Even the largest problem with 25 thousand timetabled trips and 70 million
unloaded trips, which results in a minimum-cost flow problem with 50 thousand nodes
and 70 million arcs, can be solved in about 15 minutes to optimality using MCF with
column generation. MCF needs about 25 minutes to solve all single-depot relaxations
together to optimality.

These results support the conclusion that each real-world single-depot problem can be
scheduled optimally in a few minutes. In particular, clustered multiple-depot problems
can be solved efficiently for every public transportation company in the world.

12.3. SOLVING THE SINGLE-DEPOT INSTANCES 119

MCF default MCF with column generation

Depots \4 |A| Simplex | CPU || CPU | Simplex | # Gener. | # Restr.
iterations | time® || time® | iterations | columns” problems®

Berlin-Depot 1 4,279 | 1,309,598 129,125 68 9 25,773 97,050 4
Berlin-Depot 2 4,937 | 1,610,588 161,791 117 13 31,390 126,723 5
Berlin-Depot 3 3,745 849,007 65,867 40 4 19,307 48,911 3
Berlin-Depot 4 4,447 | 1,444,077 193,945 119 6 24,380 54,639 3
Berlin-Depot 5 4,773 | 1,498,079 175,840 124 6 24,577 56,660 3
Berlin-Depot 6 5,247 | 1,775,719 261,205 151 10 31,160 89,384 4
Berlin-Depot 7 3,543 821,797 63,988 38 4 19,653 49,044 3
Berlin-Depot 8 3,735 904,995 72,084 49 4 20,381 50,612 3
Berlin-Depot 9 3,329 346,470 16,163 13 3 17,563 63,524 3
Berlin-Depot 10 || 1,881 117,164 4,613 2 1 10,654 28,618 2
Berlin-Depot 11 || 3,027 363,965 19,531 13 3 17,454 48,209 3
Berlin-Depot 12 || 1,735 109,722 4,133 3 1 10,380 26,233 2
Berlin-Depot 13 || 4,793 | 1,756,254 215,499 119 12 38,121 98,054 4
Berlin-Depot 14 || 4,437 | 1,713,144 196,786 94 11 44,649 97,936 4
Berlin-Depot 15 || 3,483 | 1,009,292 104,520 43 8 33,791 89,195 4
Berlin-Depot 16 || 3,289 824,190 69,789 38 7 32,362 88,328 4
Berlin-Depot 17 || 6,929 | 2,981,149 365,002 276 25 47,482 158,118 6
Berlin-Depot 18 || 5,477 | 1,733,559 200,484 180 11 34,431 92,166 4
Berlin-Depot 19 || 4,373 | 1,395,188 180,030 95 9 28,150 84,142 4
Berlin-Depot 20 || 5,503 | 1,855,240 220,541 158 12 37,342 105,372 4
Berlin-Depot 21 || 5,929 | 2,740,790 386,941 284 14 34,887 91,498 4
Berlin-Depot 22 || 5,263 | 2,148,047 253,242 148 14 32,593 88,240 5

2CPU run times in seconds without reading the problems.
®Number of active columns of the last restricted arc set; note, there was no column elimination.
“Number of restricted problems that have been solved until optimality has been proved.

Table 12.5: Minimum-cost flow problems from BVG Depots 1-22.

120 CHAPTER 12. COMPUTATIONAL RESULTS

MCF default MCF with column generation

Depots V| |A| Simplex | CPU || CPU | Simplex | # Gener. | # Restr.
iterations | time® || time® | iterations | columns® problems®

Berlin-Depot 23 || 4,807 | 1,917,649 195,814 134 8 25,165 56,313 4
Berlin-Depot 24 || 4,741 | 1,706,145 162,903 128 10 25,660 83,333 5
Berlin-Depot 25 || 4,287 | 1,516,896 125,018 101 9 24,388 81,623 4
Berlin-Depot 26 || 8,451 | 3,036,693 411,807 291 39 44,244 137,002 6
Berlin-Depot 27 || 6,699 | 3,027,439 440,860 317 28 38,762 172,072 7
Berlin-Depot 28 || 5,529 | 2,205,739 286,844 164 13 30,450 86,708 4
Berlin-Depot 29 || 5,841 | 2,343,428 303,000 223 23 33,507 161,984 6
Berlin-Depot 30 || 5,331 | 2,015,129 234,430 140 12 29,578 86,147 4
Berlin-Depot 31 || 5,963 | 2,415,834 310,058 172 17 33,589 106,700 5
Berlin-Depot 32 || 4,681 | 1,360,858 137,648 67 10 27,581 128,344 5
Berlin-Depot 33 || 5,625 | 1,949,709 253,413 126 17 31,944 147,490 6
Berlin-Depot 34 || 4,359 | 1,021,680 102,569 51 10 26,833 113,194 5
Berlin-Depot 35 || 5,545 | 1,769,839 222,475 130 16 32,036 132,442 5
Berlin-Depot 36 || 5,155 | 1,487,242 181,006 98 12 30,190 127,656 5
Berlin-Depot 37 || 4,405 | 1,572,817 156,316 131 12 21,477 132,346 5
Berlin-Depot 38 || 3,931 | 1,496,895 149,545 74 12 24,254 134,701 5
Berlin-Depot 39 || 4,099 | 1,499,119 188,056 80 16 25,168 168,289 7
Berlin-Depot 40 || 2,739 813,746 79,403 33 8 15,969 108,389 5
Berlin-Depot 41 || 3,131 977,644 96,296 40 9 19,075 127,846 5
Berlin-Depot 42 || 5,001 | 2,094,639 239,039 124 16 25,985 166,107 6
Berlin-Depot 43 || 3,441 | 1,141,457 119,167 55 6 21,201 76,146 4
Berlin-Depot 44 || 2,739 813,746 79,403 33 8 15,969 108,389 5

All depots of Berlin 1 together 7,836,189 | 4,722 498 | 1,220,005

¢CPU run times in seconds without reading the problems.
"Number of active columns of the last restricted arc set; note, there was no column elimination.
“Number of restricted problems that have been solved until optimality has been proved.

Table 12.6: Minimum-cost flow problems from BVG Depots 23—44.

121

12.3. SOLVING THE SINGLE-DEPOT INSTANCES

“MOI ST} UI

$ONTeA UOALS O UOY} IO[ews sAem[e 01e Y wogy swoqoad jodop Sussiu oy Jo yord JO SOLIIUO O,
‘poaoad uooq sey Aypewdo [IUN POAJOS UDO OARY YT} SWIO[(oId POIOLIISOI JO IOQUIILN],
"UORUIWIIO UWIN[0D OU SeA OIOY) ‘DJOU {308 DI® POIOLIISOT J$R[OYf) JO SUWIN[OD OATIOR JO IOQUINN,
‘suropqoId o) Surpeol INOYHIM SPUOIOS UI SOWI) UNI) JD»

£8g'tey | LVI SCI'T | 892°6L8°T 1971930} Fanqurey jo syodap [y

€ 00% "L 000°g L L 00%'¢ 000'¢g___| 00¢ p STYIO
¢ L28T0T | TTE1T 9 ve 656651 992°¢€g'T | 288'¢ || ¢ 10de(- 9 Smquiey
g £S0°9ET | 19661] 92 £20°ST 9%8‘gee | 169°C || 1 10de(- 9 Sinquiey
4 286’8 JARANN 4 01 665GC cre'89e | 198°T || ¢ 1ode(- ¢ Smqurey
(4 68578 28T 81 g IT L0S'91 €S1°'T11g | €26°1 || 1 10doQ - ¢ Smqurey]
ré 9€6°0¢ 0'e I ¢ 09T% c69'ceT | €701 || g rodeQ - ¢ Smqurepy
e 6669 1949 I e L22'01 029°'G9 er0'T || 1 %odo(- ¢ Smqurefy
g 90789 609°61 ¥ 91 899°8¢ geg'eLy | 1eL'c || 610de(- g Smqurey
e rasall 8T8'¢ I ¢ 65E°¢ CCT70T | 286 g 1oda(T - g Smqurefy
4 L97'0% ¢0g'9 T L LG6°TT £98°981 | I6€°T || 2 tode(- g Smqurey
e 8161 gee'e I 9 868"/ ¥eC081T | 2651 || ¢ tode(- g Sinqurey
¢ £66'CC 79911 ¢ 6 09¢'8T 0£T'8%¢ | 98L°T || oI rodo - 1 Smquref]
g 8L0°60T | €TT°CE g 44 gov'ee 89767 | €6¢°C || 1T sode(- T Smqure
4 eFS LIl | 22E0% i 95 886'7C 9T0'70F | LL1°¢ || 0T j0dd(Q - T Smqurey
4 979FET | T86'CT 01 96 G29°081 eIe'6LS'T | €92°¢ || 6 10de(- T Smqurep]
¢ 628708 | 09T |14 eL1 cee'egr PHC09¢°T | 2287 || 8 tode - T Smqurefy
4 IVI'62 0879 I 9 eeeTl 010°6€e | LS¥'T || L 10de(Q - T 3mqurey
¢ 01692 eVLTT ¢ e1 Le8'a1 9z9°8TE | €81 || 9 tode(- 1 Smqureyy
g L28'6. 009%1 g I¢ 1€€'6C 168°66¢ | Lg8'c || ¢ rode(- 1 Smqurey
e 928°'LS V16l ré 91 190°Ge ¢e9‘s8y | 1€I°C || ¥ roda(- [Sunqurey
¢ 1587CT ee8'9% e1 €9 868 L. 828'088 | ge7'e || ¢ rodeQ - [Smqurepy
4 £TYCLT | 708°68 €1 102 | 99.°29¢ T0S°GRE' | 9e¢'y || ¢ rode(- T Smqurep]
g £76'L77 | 06529 g€ 01¢ | #€0°91€ $96'0L1°Z | T08'¢ || T jode(- T Smqurey
,surd[qord | sUWINO) | SUOIYRINT | ,OUIT) || ,0UNl) | STUOIYRINI

sy # | wuwep # | xoidung | NdgD || NdD | xoqdung V| Al sjoda(g

UOT)RISUSS WWN[0d YIM IO

Hnepep DN

-cost flow problems from HHA depots.

inimum

M

Table 12.7

CHAPTER 12. COMPUTATIONAL RESULTS

122

‘poaoid usoq sey ANTewndo [IIUN POA[OS UDO(SARY T} SWO[QOId PIIdIIIISSI JO JOQUINN],
'sdiry gno-[nd-ur-[[nd pojeIousd Jo wWNN,
"SuIpeaI opnOUl $19NIRIC UL S9WI) 9y, ‘SWR[qoId o) SUIped InoyYuM SpUcIdS Ul oW} und N Dy,

122628 2ICT || 1oyjeso) swspqoxd uwesdurider [y
¥ 0FF'1T | 19T L¥e #Q0°T 86519 (tor) #¢ 000°00%'6 | S68°0T || ¢ WIIS[OH-TI
g LS9 9 eey 0£2 871°0% (op) cg 0000007 | 2289 || T uwmis[oll-|I
z LT 0 6 9 A i (2) T 000'7€ £89 L Smqurefy
e 16¢ 0 A 9L1 99¢°0T1 (81) ¥1 000°009°T | 29S'% 9 Smqurepy
e 44 0 8V1 g 18¢°0T1 (or) 2 000°08¢ £T6°C ¢ Smqurep]
¢ i 0 z z LG (@) 1 000°€T L1V y Smqurey
z) 0 97 0¢ 9eH'y (%) ¢ 00000 €881 ¢ Smqureyy
z 444 0 eTT 66 £91°8 (1) 9 000°000°T | 699°C ¢ Smqurey]
g C6L'C | 8LC 162°1 4! £C6'8. (681) g7l 000°006°01 | 281°L1 [SInqurefy
i T60'T |8 978 €87 £19'%¢ (L9) 09 000°008°2 | 219'9 || 8 nepuedg-g
¢ 0v¥ e1 01¢ G 920'8 (¢g) L1 000°00¢‘s | 6%8'F || L nepuedg-g
¢ i)} 81 6 8T 79¢°6 1) ¥ 000°08¢ L66°¢ || 9 nepuedg-g
G 6£¢ 8¢ rditd 9 £76°CE (1e) ¢c 000°0S°T | €990 || ¢ nepuedg-g
i% 89¢ LT €ce cl ceglee (cz) 1¢ 000°0£S°T | 219°9 || ¥ nepuedg-g
g egT e1 60T 6¢ 0€2°0T 6) ¢ 000°06¢ 6787 || ¢ nepuedg-q
¥ cIe'T | 6 L66 128 02828 (¢6) ¥ 0000088 | 2T9'9 || ¢ nepuedg-g
g L6V LT 0¢g 791 c00'8 (L) 0t 000°004°¢ | 678'7 || T nepuedg-g
¢ 90T | T 000°C L2 I6%°€T (1) et 000°00€C | 229°C ¢ urrag
¢ LOL'T | 1% 7€8°T 70¢ 822991 (627) €1 000°00T°ST | £18°6F ¢ ulIeg
g ove'e | 0CI'y 719°C 978 86%'1LC (916) A28 000°00.°69 | £18'6F [urreyg

,sqoxd | Lqreuy | peyeurwr | poyerous§ | Ajpeniur | suornyeroy oW}
1189y # 000°1 / oy # xapdung ndo V| Al s1oda(g

UOoIRIOUSS UWN[Od YNM JOA

-cost flow problems LRyg(0).

mnimauimn

Table 12.8: M

12.4. SOLVING THE MULTIPLE-DEPOT INSTANCES 123

12.4 Solving the Multiple-Depot Instances

In this section, we summarize the computational results of our multiple-depot instances.
The following objective values (fleet sizes and operational weights) are given in Tab. 12.9:
(i) the lower bounds obtained with L¢(0) and the LP relaxations; (ii) the integer optimum
or, if the optimum is still unknown, the best integer solution values; (iii) the upper bounds
obtained by our opening heuristics as well as obtained by our branch-and-cut method
starting with SCR or ND and terminating after a maximum run time limit of 10 hours
(and 16 hours for Berlin 1 starting with ND).

The largest, problem, Berlin 1, has not been solved to optimality. Berlin 2 and Berlin-
Spandau 2 and 8 have been solved fleet minimally, but not to proven cost minimality. In
Tab. 12.10 and 12.11, we give the lower bound values in proportion to the integer optimal
values (or best known upper bound values) and the upper bound values in proportion
to the integer optimal values (or the best known lower bound values). Note that the
proportion for the operational weights is only considered for a problem if its corresponding
fleet size gap is equal to zero. The run times that have been required to solve the function
Lgs(0), the LP relaxation pure without LP-plunging, the opening heuristics SCR and
ND, and our exact method (with and without using the optional LP-plunging within the
column generation) are given in Tab. 12.12.

Lower Bounds.

For the Lagrangean relaxations, we have only considered Li(0). However, we have shown
in Chap. 6 that Lg(0) and Lgq(v™ — v7) provide the same optimal values (¢ and v~
denote the optimal values of the dual multipliers associated with the flow conditions in
Lgs(0)). The values obtained by Lgs(0) give excellent approximations. The minimum
integral fleet sizes can be approximated, on the average, by 99.94%. It is remarkable
that the trivial problem relaxation — simply neglecting the flow conservations — gives
such tight approximations. For 15 out of our 20 instances, the fleet sizes can be exactly
approximated. Ignoring for those problems the values for the fleet size, the gap between
the operational costs of Lg(0) and the optimum is at most 16 % and 5% on the average.
From our point of view, these gaps are acceptable, but we will show in the next section
that they can be significantly decreased using in addition a subgradient method.

All LP relaxations, except for Berlin 1, have been solved to optimality. To find a fleet
minimal LP value for Berlin 1, our column generation requires about 200 hours cpu time.
The values obtained by the LP relaxation give lower bounds quite close to the integer
optimal values. For 12 out of the 20 considered instances, the LP relaxation already
provides the integer optimal value, and for 3 instances, it can be obtained by rounding up
the LP value to the next integer value. For Berlin 1, we do not know the minimal number
of vehicles, but expect that the fleet size lower bound provided by the LP relaxation is
also tight. Whenever the LP relaxation provides an exact fleet size, it also provides the
minimal operational weights.

CHAPTER 12. COMPUTATIONAL RESULTS

124

(N Y4 umae)s T UIog I0] SINOY G PUR) SINOY USY JO JIWI[SWI} UNI ® Io)Je

oneA JT 9[qISed] umouy 1sog,

Sunyeuruoy pue ‘Furdun(d-JT Julsn ‘(N 10 YOS YA FunIes ‘no-pue-ypuRIq SUIPNDUL POYRW J7T INO YA POUrRIqo SHNSOY,
‘ApATIDadsar ‘(N pue NS sonsunoy Suruodo oY) YIM PauIR)qo)Moy,

0608¢ | ©9€ | 86639 | €66 | 9863¢ |29 |[00L2L | €98 || 88289 29¢ || 28L2¢ |T9¢ | ¥R0IS | 09¢ || ¢ WIS[OH-H
L%06% | 10T |2€1ee | €Tz | Lg06T | 10T | .L6¥0€ | 10T || L206% 102 || 22062 102 | 16982 | 10T || T woIS[OH-H
196 | QT | 988¢ 9T | 196% |ST | 98¢ 91 1962 a1 1962 q1 z£8¢ a1 L 8mqurery
I649T | TIT | T62ST | TTIT | T62ST | TIT |[88S9T | TIT || T62SGT ITT || T628T IIT | coleT | TTT 9 Smqurey
zogzT |29 | 1016T | <9 | ZOgeT |29 | gecer |29 z0gg1 z9 LA z9 t60g1 | 29 ¢ Smqurey
898T |9 898T |9 898T |9 8GET |9 8981 9 8281 9 8geT |9 p Smquey
0989 |68 | 6HS ¥ 098¢ |68 |8689 6¢ 098¢ 68 0989 6¢ Lge¢ | 68 ¢ Smqurey
0L09T | 80T |6F8SL |¥IL | 0209T |€0T |e6.9T |¥OL |l 0091 €0T || 02091 g0T | 9¢8Sl | €0T ¢ Sinquey
0L21L | 28F | ¥S09L | 68F |9908L | ¥eF | 1630L | 9vF || 69012 T8V || €8901L |TE€F | ¥L899 | TEF I Sanqurey
6266. | 98T | €6€€Te | L0Z | €.36L | 98T | 90¥6SZ | G8T || £606L g8T || 0°0TT6L | S8 | L¥68L | ¥81 || 8 nepuedg-g
$22¢9 | 92T | 2600L | 66T | TI9G9 | GTT | €68¢0T | STT || 11999 ggl || ¢019¢9 | gTT | <869 | geT || L nepuedg-g
gL0TOT |86 | €6G6ET | 60T | GL0TOT |86 | 099ZET | 86 gL0T0T | 86 gL0T0T | 86 60116 | 86 9 nepuedg-g
08922 | 16T | FP6.8F | 02 | 089LTT | T6T | 226868 | ¥61 || 089222 | I6T || 089422 | TI6T | IPII6L | I6T || ¢ nepueds-g
9P80ST | T6T | 20GCLF |2ge | 9PB0ET | I6T | 16896¢ | 26T || 9¥80€T | 16T || 9¥808T | 16T | #¥8S61 | I6T || ¥ nepuedg-g
QPLE6 | ATT | 6C96VI | CE1 | GPLE6 | LZT | 601CST | LTT || 9VL€6 L21 || 9PLE6 42T | ¥IS06 | 28T || € wepuedg-g
6Vcc6 | 98T | €€681c | L0% | 0SV08 | 98T | 2968 | 98T || 6S06L g8T || 001I6L | GV8L | L¥68L | ¥81 || ¢ nepueds-g
10699 | 92T | G600L | 66T |9€899 | 9TT | 98921 | 9TT || 11999 gzl || 901999 | 9oT | 9899 | g9eT || T nepuedg-g
6TIPT 69 99EF T 0L 6TIPT 69 colvl 69 6ITVIT 69 6ITVIT 69 SPOTT 69 ¢ uljeg
8C688. | HQET | I61006¢ | CC9T | T19608 | HPGET | GB0SIET | 99ET || £28LLL | BOET || 8'8I6L6L | L'ECET | €29STL | 0GET ¢ wzeg
PI6GR6 | 9GET | $LL6LEE | GLGT | L8T8ITT | CEET | 6LELIET | LPET || 089098 | 62ET || ,0°69T6SL | €281 | PILGIL | €BET T uijreg
S | 0914 | WUSM | 9991 | IUSIOM | 3991 | ISrep | 39914 wEem | 001 STM _ 10014 | JUSOM _ 1094

pPOTRT T + pend gPOR dT + p>mnd uorexedI J7 onmoﬁ e 8395 153,

onsuneay jodsp 3sereaN JNPOYPSAI — IPISN[D — J[NPIYIY UoIN[os “Jul 3seq ueafueider
spunoq reddn 10 wnwndQ Spunoq Iomory

1 integer values are in bold face).

ima

1 costs (opt

0ona

Fleet sizes and operat

Table 12.9

12.4. SOLVING THE MULTIPLE-DEPOT INSTANCES 125

Lower bounds
Optimum or Best integer solution
Lagrangean

Test Sets relaxation Lies(0) LP relaxation
Fleet | Weight | Fleet | Weight
Berlin 1 0.9954 — | 0.9954 —
Berlin 2 0.9970 — | 0.9997 —
Berlin 3 1.0000 | 0.9946 | 1.0000 | 1.0000
B-Spandau 1| 1.0000 | 0.9996 | 1.0000 | 1.0000
B-Spandau 2 || 0.9946 — | 0.9973 —

B-Spandau 3 || 1.0000 | 0.9655 | 1.0000 | 1.0000
B-Spandau 4 || 1.0000 | 0.8484 | 1.0000 | 1.0000
B-Spandau 5 || 1.0000 | 0.8399 | 1.0000 | 1.0000
B-Spandau 6 || 1.0000 | 0.9014 | 1.0000 | 1.0000
B-Spandau 7 || 1.0000 | 0.9996 | 1.0000 | 1.0000
B-Spandau 8 || 0.9946 — | 0.9973 —

Average || 0.9983| 0.9356 | 0.9991 | 1.0000
Vot || 0.0023| 0.0660| 0.0015 | 0.0000

Hamburg 1 1.0000 | 0.9410|1.0000 | 1.0000
Hamburg 2 1.0000 | 0.9556 | 1.0000 | 1.0000
Hamburg 3 1.0000 | 0.9483 | 1.0000 | 1.0000
Hamburg 4 1.0000 | 1.0000 | 1.0000 | 1.0000
Hamburg 5 1.0000 | 0.9672 | 1.0000 | 1.0000
Hamburg 6 1.0000 | 0.9946 | 1.0000 | 1.0000
Hamburg 7 1.0000 | 0.9564 | 1.0000 | 1.0000

H-Holstein 1 || 1.0000 | 0.9886 | 1.0000 | 1.0000
H-Holstein 2 || 0.9945 —11.0000 | 1.0000
Average || 0.9994 | 0.9690| 1.0000 | 1.0000
\V0r || 0.0017| 0.0211| 0.0000| 0.0000

All Average || 0.9988| 0.9534| 0.9995| 1.0000
All vor || 0.0021] 0.0505| 0.0012| 0.0000

2Standard deviation

Table 12.10: Lower bounds relative to the integer optimal values or best upper bounds.
Optimal values are in bold face.

126 CHAPTER 12. COMPUTATIONAL RESULTS

Upper bounds
Optimum or Best integer solution
Schedule — cluster — reschedule Nearest depot heuristic
Test Sets pure® + LP method? pure® + LP method®
Fleet | Weight | Fleet | Weight | Fleet | Weight | Fleet [Weight
Berlin 1 1.0181 — | 1.0091 — | 1.1851 — | 1.0249 —
Berlin 2 1.0089 — 1 1.0000 —| 1.2223 — | 1.0000 —
Berlin 3 1.0000| 1.0002|1.0000|1.0000| 1.0145 — | 1.0000 | 1.0000
B-Spandau 1 || 1.0000 | 1.9171|1.0000| 1.0034| 1.1120 — | 1.0000 | 1.0044
B-Spandau 2 || 1.0000 — [1.0000 — | 1.1189 — | 1.0000 —
B-Spandau 3 || 1.0000 | 1.6225|1.0000 | 1.0000 | 1.0630 — | 1.0000 | 1.0000
B-Spandau 4 || 1.0052 —11.0000 | 1.0000 | 1.1623 —11.0000 | 1.0000
B-Spandau 5 || 1.0157 —11.0000 | 1.0000 | 1.1518 —11.0000 | 1.0000
B-Spandau 6 || 1.0000 | 1.3124|1.0000 | 1.0000 | 1.1122 —11.0000 | 1.0000
B-Spandau 7| 1.0000 | 1.6133|1.0000 | 1.0000| 1.1120 — [1.0000| 1.0017
B-Spandau 8 || 1.0000 — [1.0000 — 1.1189 — | 1.0000 —
Average || 1.0044 — | 1.0008 | 1.0005| 1.1248 — | 1.0023| 1.0009
VR || 0.0065 — | 0.0026| 0.0012| 0.0538 — | 0.0072| 0.0016
Hamburg 1 1.0324 — | 1.0046 — 1 1.1319 —11.0000 | 1.0028
Hamburg 2 1.0097 —11.0000 | 1.0000 | 1.1068 — | 1.0000 | 1.0000
Hamburg 3 1.0000| 1.0747|1.0000 | 1.0000| 1.0513 —11.0000 | 1.0000
Hamburg 4 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
Hamburg 5 1.0000| 1.0826|1.0000 | 1.0000 | 1.0484 —11.0000 | 1.0000
Hamburg 6 1.0000 | 1.0505 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
Hamburg 7 1.0667 — | 1.0000 | 1.0000 | 1.0667 —1.0000 | 1.0000
H-Holstein 1 || 1.0000 | 1.0506 | 1.0000 [1.0000 | 1.0597 — | 1.0000 | 1.0000
H-Holstein 2 || 1.0028 — [1.0000 | 1.0038| 1.0856 — | 1.0000| 1.0057
Average || 1.0124 | 1.0517| 1.0005| 1.0005| 1.0612 — | 1.0000| 1.0009
Vo, || 0.0216| 0.02838| 0.0014 | 0.0013| 0.0414 — | 0.0000| 0.0019
All Average || 1.0080 — | 1.0007| 1.0005| 1.0962 — | 1.0012| 1.0009
All Vs || 0.0158 — | 0.0021| 0.0012| 0.0580 — | 0.0054| 0.0018

%Results obtained by the opening heuristics SCR. and ND, respectively.

YResults obtained with our LP method including branch-and-cut, starting with SCR or ND, using
LP-plunging, and terminating after a run time limit of ten hours (and 16 hours for Berlin 1 starting
with ND).

¢Standard deviation

Table 12.11: Upper bounds relative to the integer optimal values or best lower bounds.
Optimal values are in bold face.

127

12.4. SOLVING THE MULTIPLE-DEPOT INSTANCES

“Lyrewrturur 9800 usAa0Id 01 10U Ing ‘A[[RWITUTW 189]) PoA[Os Usaq set] we[qoad oy T,
"pa1Im20 Bur[els 10 [[ews 00} sem sso1301d 2a110[q0 9U) ‘©oueysur 10§ ‘Gouts L)pewnndo 0} poATos JON,
‘ST SATISS90ONS 0M) Ussm)aq J0U Nq ‘INd-pur-youriq umyim AJuc Jurdund- g7 duisn poylew (),
‘Surdunid-J7 Suisn poyremw m(Q,
‘Gurdunid-g7 moyym aind sewny J7,

¢I9S81. 76489 | OV 70974 ¢r6ge 9691 68779 | £€299% | 101 ¢ URISIOH-H
8S1¢ Svve 31 S69¢ 991¢ 661 280¢ 619¢ 0y [UIS[OH-H
T 8 I 01 IT 4 6 8 4 L Smqurey
98 ¥cl 1T 18T 84T 0¢ 78 871 81 9 SInquref]
VLT 61T g 6.¢ 88¢ 98) 89¢ 0T ¢ SInquref]
4 4 I 4 4 I & 4 4 Smqurey
8¢ 123 ¢ ¥ YAS 91 1€ 518 ¥ ¢ Snqurer]
804 926 L ¢06 sl S0t 89 ¢l8 ¢l ¢ Sinqurepy
1L6€¢ 29288 | 6€ p— p— 898¢ || 9¥c0S | p— g8l [Sunqurep
281289 | p— 9¢ 29CLT8 aV8CIV1 | 86CI 1¥0¢9 | ¥8¢c8 | L9 8 nepuedg-g
16028 018Sy |71 £6.L7¢C 9099¢ 69¢ 26997V | LILVE | €C L epuedg-g
e 88T 9 LT 11¢ L LCC 4} L1 9 nepuedg-g
9999 1¢8ET | Q1 70¢9 9689 258 819¢ ¥9¢S 1€ ¢ nepuedg-g
cevy ¢LL9 71 2209 8¢9 %38 15% 7109 4 7 nepuedg-g
862 €46 p) 066 9291 47 66 cL6 6 ¢ nepuedg-g
2GS80VC | p— 6% 2GLG8ET P 6661 870491 | LEECTT | €6 ¢ nepuedg-g
98E¥EL | L8789 | ST £e0vv LEE69 1929 10699 | LLLEY | LC [nepuedg-¢g
0gg 67¢ 2 ey 68¢ e 11§ 1EV L1 ¢ uIeyg
287CEE | 29860€ | 64 SYAIAHS P 0I8¢ || 292¢¢ | S6LVE | 6CC ¢ uIeyg
P P Hhﬁ D P mwMNH P P @ﬁ@ ! Qﬂhwm
-Jo o 2o uo .
mEmQE_E-MA amd mEm:ELnﬂH@ aand aN 05 ”:MWav@MM@H
poyjeux joexy potyjeux joexy qym Suryre)s Emw.wnfwmq 819G 1897,

orysuInoy j0dop 1soIRIN

J[NPAYDSOI — IVISND — I[NPOTDS

puoTIRXRe[oI J'7T

(wmurrydo 10) punoq reddp

SPUNOq IoMOrT

Table 12.12: Run times in seconds.

128 CHAPTER 12. COMPUTATIONAL RESULTS

We have seen that the LP values are quite tight. A similar phenomenon is observed by
Forbes, Holt, and Watts [1994]: 22 of their 30 test instances with up to 600 timetabled
trips have integral LP solutions, and the largest gap between the LP value and the integral
optimum is at most 0.003% for the remaining problems. So, this observation does not
seem to be a small scale phenomenon.

The value of the operational weights in the objective value of the lower bounds do not
necessarily define lower bounds for the integer optimal weights among all minimal fleet
solutions. To estimate the quality of the operational weights requires that the lower bound
of the fleet size is tight! For all problems that do not satisfy this condition, however, we
believe that they nevertheless give good estimated values for the minimal operational
weights.

Comparing the run times of the Lagrangean and LP relaxation, it is obvious that La-
grangean relaxations Les(0) are the faster method to obtain good lower bounds quickly.
The better lower bounds provided by the LP relaxation require long run times that are
only justified by a succeeding branch-and-cut method. The solution produced by SCR
are always significantly better than those of ND. On the average, however, SCR used as
the opening heuristic for the branch-and-cut algorithm does not provide better starting
points. It is worth mentioning that starting without any heuristically generated solution,
our LP method is unable to solve any of our larger problem instances at all.

Upper Bounds.

We will now consider the upper bounds obtained by the two opening heuristics (SCR and
ND) and obtained by the exact branch-and-bound method starting with SCR and ND,
using LP-plunging between two RLPs, and terminating after a given run time limit of 10
hours (and 16 hours for Berlin 1 starting with ND).

The trivial opening heuristic ND already delivers good results: The fleet size gap is, on
the average, about 10 % with a standard deviation of 6 %. From a practical point of view,
however, the operational costs of these solutions are unacceptable. The better results
are obtained from the SCR heuristic: The average fleet size gap is 0.8 % with a standard
deviation of 1.6 %. The operational costs of these solutions are comparable to the results
obtained by the best codes currently used in practice.

We almost always obtain optimal results if we apply our exact branch-and-cut method
with a time limit of 10 hours. The objective gaps are, on the average, less than 0.12 %.
It does not make any difference which opening heuristic we use for the exact method
since the run times are comparable for both. The run times of our exact method may
be decreased if we use both opening heuristics together to determine the first RLP. This
may be the basis for further computational tests.

Figures 12.1-12.4 display the development of the upper bound values (fleet sizes and
operational weights) obtained by the LP-plunging heuristic in proportion to the integer
optimal (or lower bound) values. Starting our method with the solution obtained with

12.4. SOLVING THE MULTIPLE-DEPOT INSTANCES 129

T Berlinl ——
Berlin 2 —---
Berlin-Spandau 1 ------
Berlin-Spandau 2
Berlin-Spandau 5 ———
Berlin-Spandau 7 -----
Berlin-Spandau 8 ------
Hamburg 1 - -
Hamburg-Holstein 2 -

Relative fleet size gaps in %.

0 3600 7200 10800 14400 18000 21600 25200 28800 32400 36000
Seconds.
Figure 12.1: Development of fleet size upper bounds of problems requiring more than
2 hours run time to obtain a minimal fleet solution; starting with the ND
heuristic.

30.00 Berlin-Spandau 1 ------]

Berlin-Spandau 5 ———
Berlin-Spandau 7 -----
Hamburg 1 -
Hamburg-Holstein 2 -

20.00

10.00

Relative cost gaps in %.

0 3600 7200 10800 14400 18000 21600 25200 28800 32400 36000
Seconds.

Figure 12.2: Development of operational weight upper bounds of problems requiring more
than 2 hours run time to obtain a minimal fleet solution and knowing the
minimum weight among all minimal fleet solutions; starting with the ND
heuristic.

130

Relative fleet size gaps in %.

CHAPTER 12.

COMPUTATIONAL RESULTS

Berlin 1
Berlin 2

Hamburg 1
Hamburg-Holstein 2

0

3600 7200 10800 14400 18000 21600
Seconds.

25200 28800 32400 36000

Figure 12.3: Development of fleet size upper bounds of problems requiring more than 2
hours run time to obtain the optimum; starting with the SCR heuristic.

Relative cost gaps in %.

30.00

20.00

10.00

Hamburg 1
Hamburg-Holstein 2

3600

7200

10800

14400

18000 21600 25200 28800 32400 36000
Seconds.

Figure 12.4: Development of operational weight upper bounds of problems requiring more
than 2 hours run time to obtain the optimum and knowing the minimum
weight among all minimal fleet solutions; starting with the SCR heuristic.

12.5. SUBGRADIENT METHOD 131

ND, the fleet sizes can be approximated in two hours with a gap less than 3%, in 4 four
hours with gap of about 1%, and in 6 hours with a gap less than 1% for all problems
except Berlin 1, see Fig. 12.1. Starting with the solution obtained with SCR, the fleet
sizes can be approximated in one hour with a gap less than 2% and in 10 hours with a
gap less than 1%, see Fig. 12.3. There is also a positive development of the operational
costs: Compared to the optimal integer costs of minimal fleet solutions, the operational
costs can be approximated with a small gap, see Figs. 12.2 and 12.4. If the run time limit
is 10 hours or more, the four figures show that it is meaningless which opening heuristic
is used, the results are in any case comparable. However, if there is a stronger time limit
of two or three hours, starting with SCR provides better results.

Optimal Solutions

Without any run time limit, each instance of our test set, with the exception of the
problem Berlin 1, can be solved to proven fleet minimality. With the exceptions of the
problems Berlin 2, Berlin-Spandau 2, and Berlin-Spandau 8, each instance can be solved
to proven fleet and cost optimality.

With the current version of our branch-and-cut method, solving really large-scale problems
to proven optimality leads to impractical run times. In particular, solving Berlin 1 with 70
million variables to optimality is still a challenge to us. Nevertheless, the results obtained
with our methods are currently the best obtainable. Solutions providing possibly a gap
of a few vehicles, but with reasonable operational weights can be computed in acceptable
run times.

12.5 Subgradient Method

In the following, we give some detailed computational results about the subgradient meth-
ods that we have applied to solve the Lagrangean relaxations. In Table 12.13 we sum-
marize the operational weight of the investigated subgradient method with different pa-
rameter settings (default and best configuration obtained in Kokott [1996]) for LRy and
LRcq in comparison with Les(0). In addition, we also give the weight gaps relative to the
integer optimum costs among all minimal fleet solutions.

The results in the column “LRg(0)” are the objective weights obtained by neglecting
the flow conservation constraints. The results in the column “Default” illustrate the
computational results for parameter settings as follows: A maximal number of iterations
N; :=100 , step length rule A with maximal number of consecutive failures N, := 2, and
a step direction §*) := 0.6¢%*) 4+ 0.2g%=1 4+ 0.1g*%=2 4 0.1¢*=3). The initial step length
parameters ¢® and (%) depend completely on the considered problem instance, and we
are not able to give any good value in advance without making test runs. Therefore,
we have decided to use o(® := 10 for the step length rule A and to use o® such that
the resulting o® is about 10 for step length rule B. On the average, B does not yield

CHAPTER 12. COMPUTATIONAL RESULTS

132

"SUOLYRIOYL (¢ J0Ye [ewndo pue O[qIseO,
‘SUOIYRION T¢ 109y Tewrydo pue O[qIsed],
"SUOLYRIOY GG I0Ye [ewndo pue O[qIseo],
"SUOIYRION Fg 109y Tewydo pue O[qIseO],
Tewydo pue O[qIsedy ApROIlY,
"SUOIYRION ¢g I0jye Tewrydo pue O[qISed],

c00 | 610 [880 |2e0 |er1 || stoez | cuesc | 9168z | 09882 | 2698z || 102 || T umeisioH-H |
000 |o000 |00 |o00 |9g¥% | ,196T |.1962 | 696 1962 | cesz || o1 ., 8mqureyy
000 | 0000 | 0000 | 0070 | %S0 T6LST | pTBLST | LT6LST | T6LST | S0L81 || TTT 9 Smqurey
000 | 090 |20T |80 |L2€ zocTT | 68¥2T | 7L€2T | ogvel | 6021 || 29 ¢ SIqurey]
000 | 0000 | 0000 | 0070 | 000 — — — — ,89¢T | 9 ¥ Simqurey
000 | 60T |91¢ |60T |21°G »098G | 968 €6L8 9628 | Lgec || 6¢ ¢ Smqurey
18T | 68T | €61 |81 | TV 69.8T | ¥I8ST | 6¢L8T | 69281 | 9¢esr || €0T g Smnqurey
69¢ | et | 69¢ | 681 |06 Lvv89 | 99z0L | L¥P89 | 82.69 | 72899 | zEw [Sanqurey
— — | = — | = — — 2L08L | 2298 | 1¥68L || ¥81 || 8 nepueds-g
— — 820 | eL0 | €00 — — 22ve9 | ce1e9 | egegy || egT || 2 nepueds-g
628 | 99T |8T6 | 678 | 986 00.26 | C6€86 | L6LT6 | 06726 | 60TT6 || 86 9 nepuedg-g
768 | ¢80T | T0°€T | 9C°F1 | 10°9T || L£320C | 98820% | 99661 | 9€¥¥61 | T¥II6L | T6T | ¢ nepuwedg-g
¢v'6 | L8°0T | 86°TT | 2&FT | 9T'ST || £2060C | 264207 | 8LTE0Z | 98LL6T | 7¥8¢6T || 16T | ¥ nepuedg-g
gg0 | ogo | ¥eT | orT | ope 7ECE6 | 19786 | 8636 | I1.26 | $1C06 | 2T | € nepuedg-g
— — | — — | — €968L | 8€06L | eveLl | v0TsL | Lv6SL || ¥ST | ¢ mepueds-g
700 | 700 | 060 | 00T | €00 98669 | 9869 | 12099 | 78679 | ¢8ge9 || gg1 | 1 nepuedg-g
900 |¢€ro [oro |1g0 [7e0 [yl | totvl | cotvl | cLovt | €vovT | 69 ¢ uIIog
— — | — — | — — — COV8TL | 2966TL | €29STL || ogeT ¢ uaeg
— — | = — | = — — 999502 | 800804 | F128T2 || g2eT [wpog
P [g1 [P [a1 | (7 [Pua1 [a1 | Pt | YT | (07
[9661] 1105031 nnepd [966T] 9105031 e WL || 1o asor.
o ut wnurtydo oy 0) sded Jysop SISO

SpoY1oW JUSIPeI3(NS 29 SUOI}exe[dd Ueosurrder|

Table 12.13: Objective values using subgradient methods (optimal integer values are bold
faced) and their operational gaps relative to the optimum.

12.5. SUBGRADIENT METHOD 133

better results for our test data. Thus, we give only the computational results for the
first strategy, which, in addition, requires no upper bound. The results in the columns
“Kokott [1996]” are the values of the best parameter configurations given in the masters
thesis of Andreas Kokott.

The most surprising result is that Les(0) almost always provides a tight lower bound for
the fleet size, and the largest gap here is at most 0.01%. Rounding up the fleet sizes
given by the LP relaxation to the next integer value, the gap to the optimal fleet size
is always zero. Hence, we consider our problems to be well conditioned in some sense,
which we see to be confirmed by the computational results of our subgradient methods.
The gap between the initial Lagrangean function value and the optimum is already less
than 16.01% for Lg(0). With an appropriate parameter configuration for the subgradient
method, these gaps can be best reduced to less than 10%.

On the average, neither LR nor LRgq yield better lower bounds for our test set. How-
ever, LRsq can be solved faster for our large problem instances, see Tab. 12.14. Addi-
tionally, Liq is decomposable and, thus, its solution can be accelerated by parallelization.

Lagrangean relaxation

Test Sets Lfcs(O) | LRfcs | LRfcd
Berlin 1 916 | 49258 | 31602
Berlin 2 229 | 11051 | 4819
Berlin 3 17 365 417
B-Spandau 1 27| 1501 | 1172
B-Spandau 2 93 | 4447 | 3834
B-Spandau 3 9 357 236
B-Spandau 4 25| 1116 858
B-Spandau 5 31| 1037 818
B-Spandau 6 17 189 142
B-Spandau 7 23 | 1367 | 1063
B-Spandau 8 67 | 3919 | 3118
Hamburg 1 185 | 6838 | 6643
Hamburg 2 12 386 415
Hamburg 3 4 52 89
Hamburg 4 2 2 2
Hamburg 5 10 221 332
Hamburg 6 18 198 267
Hamburg 7 2 7 12

| H-Holstein 1 || 40 | 1371 [1919 |

Table 12.14: Run times in seconds.

134 CHAPTER 12. COMPUTATIONAL RESULTS

Considering a fixed parameter configuration, the behaviour of the Lagrangean functions
within the subgradient methods are similar for almost all test instances. We exemplary
give the results varying single parameters of our default parameter configuration just for
the problem Hamburg 1.

Figures 12.5 and 12.6 show the influence of the number of used subgradients for the step
direction: “1 subgradient” means §*) := ¢*), “2 subgradients” means §% := 0.7¢% +
0.3¢g%~1) and “4 subgradients” means §* := 0.6¢%) + 0.2¢%=D + 0.1¢%=2 + 0.1¢g%*=3.
Using more than one subgradient leads to a faster convergence and, in general, yields
better lower bounds. As we can see from Figs. 12.7 and 12.8, both presented step size
rules perform comparable.

The last Fig. 12.9 shows the behaviour for different maximal allowed consecutive failures
Ny. As we can see, the Lagrangean function improves very fast in the first iterations for
Ns =1, but then no further significant improvements are achieved since the step length
is reduced far too fast. For N, = 3, the step lengths is reduced only once or twice such
that the subgradient method cannot converge to any optimal solution. Empirically, we
can claim that Ny = 2 is a good compromise.

Theoretically, the Lagrangean relaxations LRgs and LRgq and the LP relaxation yield
the same optimal value. Nevertheless, our subgradient methods do not attain the optimal
values for the large instances, but the resulting gaps are rather small. The outstanding
advantage of Lagrangean relaxations is that they provide lower bounds quickly. In par-
ticular, the subgradient methods provide a lower bound at every iterations. In contrast
to Lagrangean relaxations, the column generation method for the LP relaxation provides
a lower bound only if it has been solved to optimality, which can take a long time.

12.5. SUBGRADIENT METHOD

43200075000 T

43200070000
43200065000 J
43200060000 [

43200055000 H

43200050000

43200045000

43200040000

T T

1 subgradient ——
2 subgradients -----
4 subgradients ----- -

40

Tteration

60

80 100

Figure 12.5: Comparing different step directions for Hamburg 1 and LRyg4.

43200070000

43200060000

43200050000

43200040000

43200030000 |-

T T
1 subgradient ——

2 subgradients -----
4 subgradients -----

43200020000 L
0

Tteration

60

80 100

Figure 12.6: Comparing different step directions for Hamburg 1 and LRgs.

135

136 CHAPTER 12. COMPUTATIONAL RESULTS

43200070000

T
[ve]
1

43200065000 H

43200060000 H

43200055000 H

43200050000 |-

43200045000 |-

43200040000 |-

0 20 40 60 80 100
Tteration

Figure 12.7: Comparing the two step length rules for Hamburg 1 and LRyyq.

43200075000 F T T T T —

43200070000 |-

43200065000

PR E—

43200060000

43200055000 -

43200050000

43200045000
43200040000 |-

43200035000 ||

|
L | | | | |

43200030000
0 20 40 60 80 100
Tteration

Figure 12.8: Comparing the two step length rules for Hamburg 1 and LRg.

12.5. SUBGRADIENT METHOD 137

43200075000

43200070000 |- —~

e e T
TN T T
A

43200065000

oo
It Ve I
AV

43200060000

43200055000

43200050000

43200045000 |-

0 20 40 60 80 100
Tteration

43200040000

Figure 12.9: Comparing different maximum failure values N, for Hamburg 1 and LR.

138 CHAPTER 12. COMPUTATIONAL RESULTS

12.6 LP Relaxation

In the following, we report on some specific observations we made in solving the LP
relaxation without LP-plunging. Table 12.15 shows, for each test instance and for each
opening heuristic, the number of RLPs that have been solved until optimality has been
proved, the total number of CPLEX iterations that have been performed, and the number
of columns that have been generated and eliminated within the column generation process.
We shall describe some features of our column generation method with the examples of
Berlin 2 starting with SF-CS and Berlin-Spandau 8 and Hamburg 1 both starting with
ND. The behaviour of our implementation starting with SF-CS or ND is similar for all
the other problems.

We have observed the following: The dominating part of the objective values, the fleet
sizes, converge quickly to the minimum value within few iterations and a relatively small
part of the total run times. At the crossover from the Lagrangean to the standard phase,
the objective values yield always the minimal fleet size. The standard phase is necessary
to solve the lower part of the objective values, the operational costs, to optimality. For
our test set, neither the standard nor the Lagrangean phase dominates the total run time
and the number of RLPs. Figures 12.10 and 12.11 show a typical development of the fleet
size values (left pictures) and their operational weights (right pictures) in respect to the
k'™ RLP and the run time, respectively.

The number of generated and eliminated columns are almost always about the same
for each iteration of the column generation process, see the left pictures of Fig. 12.12.
Therefore, the LP sizes are relatively constant during the solution process. The right
pictures in this figure show typical developments of the number of rows, columns, and
nonzero elements of the £ RLP and of the £ RLP in the Lagrangean phase after
LP preprocessing. We can observe from these picture the importance of LP preprocessing
within the Lagrangean phase: Without this preprocessing, neither the primal nor the dual
simplex solver would not be applicable here because of intolerable long run times. But
preprocessing reduces the sizes of these RLPs significantly such that it becomes possible
to solve the occurring RLPs within acceptable run times.

The typical number of dual and primal CPLEX iterations that have been performed
for the £* RLP are given in Fig. 12.13. In the Lagrangean phase, each RLP is always
solved from scratch. In the standard phase, each RLP is always reoptimized using the
last optimal basis as the starting point. Therefore, the number of performed simplex
iterations is usually much larger in the Lagrangean phase. For the example of Berlin-
Spandau 8, however, numerical difficulties occurred for the iterations 17 — 20: the RLPs
have been reperturbed two times tribling the number of iterations and run times for these
four RLPs. Without this numerical difficulties, Berlin-Spandau 8 would behave as all the
other problems.

139

LP RELAXATION

12.6.

“uoeIoudd uwn[oo 1no ut oseyd prepuesg,
"UOIYeIoudd uwniod Ino ur aseyd uesdueiderT,

[tir Jeer [Jor [eo [ee s |8 [or [z Joer [[st [er [z6 ||z [er |og| 1 wersionn
4 g1 || T 0 T 8T |¢ Tz |8 6 T 0 T 01 |¢ ¢r || . Smqurey
6 a1 ||o I I 0 4 ¢ |l e L8 g I i 1) S ¥ ¢l || 9 Smqueg
414 9z1 ||oT |1 T ¢ v || 29 |9 g i L 61 |9 ¢z || ¢ Smqueyg
0 I 0 0 0 I 4 ¢ |lo I 0 0 0 I 4 ¢ ¥ Sinqurery
LT 61 || 1 0 I e |@ gz || L1 61 0 I I 1 |z ¢r || ¢ Smnqurery
L0T ert ||¥1 |12 cg 1 |8 0z ||ze1 |se1 |[21 |1z 8¢ T |6 9z || @ Sinqurery
€552 8% || L1e |999 |es8 |[¥L |¥¢ 86 || (e2e) | (962) || — |l91°1|— — |s¢ — || 1 Snquery
8¥e 6Lc || 168 |cLe |996 |11 |t 9z ||ose |8 |[19¢ |ere |e0TicT |e1 8z || 8 nepuedg-g
LT8G L¥g || 00z | 698 |690°T| FT |91 0¢ [[o61 |0z |[16T |0v |¥6S || ez |al v¢ || 2 nepuedg-g
a6 66 || 9 ¢1 ¥4 8T | L ¢z || €9 0L 8 g el 91 | ¥ 0g || 9 nepuedg-g
L€ 6ve ||c9 | 191 |gez |[ae | it 6v ||ote |eee |[o¢ |ger |T61 |88 |%1 Ly || ¢ nepuedg-g
443 oge ||y |oer |sir |62 | it ov || cee |spe |[av |s88r |o0gz ||gc |Zi1 0% || ¥ nepuedg-g
LLT 081 |[er | 6F 19 61 |11 0¢ |[z0c |113 |[e1 |28 0L Iz |er v¢ || ¢ nepuedg-g
44 ger |leL8 o068 |eoLT|[FT | wI 8z ||oer |ser |[@ae9 |89 |ogzT| 1T |¢1 9z || ¢ nepuedg-g
7.8 g6z || s0e | 1601 |66CT|[FT |91 0¢ || Zgz |ogz |99z |c¢r9 |188 ||1T @I ¢z || T nepuedg-g
08 ec |ler |9 81 ST |¢ gz || o2 |32 g |1 7T gz | e ¢ unIeg
8¢9 912 || 06T |18 |19¢ |[62 |2 90T || ¥e9 | 169 |[¥6T |08 |10 |[GL | Ge L6 g uIeg
— — = |— |- — |— |— || (oe8) | (296) || — |eee9 | — — |vw |— [ureg

W _ ‘uod g WIS _ o 19T _ o ™8 _ o 18T _ Wi _ ‘uo8 o I8 _ o 81 _ g M8 _ | _
0001 / “s1oD || 0001 / suonesayy 30 QNN 0001 / "s1oD || 0001 / suoryeseny 30 ToquIn N —
"wed o)) XHTdD s.d'Td "wad o)) XHTdD s.d'Td
AN Y3 Sunrelg SD-AS Y Suryrelg

LP run statistics.

Table 12.15

140 CHAPTER 12. COMPUTATIONAL RESULTS

Berlin 2 (SF-CS) Berlin 2 (SF-CS)
1366 13 Crossover] 814000 Crossover il
¢ Fleet size —+— 812000 ¢ Operational weights —«-— |
1364 4] \
g 810000 &]
1362 14] 808000 T %%%]
1360] 806000]
13ss || | 804000 |]
! 802000]
1356 & 1 |
| 800000 |]
1354 -] 798000 | e
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Iteration Iteration
Berlin-Spandau 8 (ND) Berlin-Spandau 8 (ND)
= ‘ ‘ ‘ ‘ ‘ ‘ ‘
320 ¢ Crossover] 86000 - % Crossover
300 | Fleet size —+— | 35000 - Operational weights —o— |
%0 |] 84000 |-]
260 | ¢>] 83000 1
ol | | 82000 {]
81000 |]
20t |] \
80000 - 1
200 F % 1 Mo
e 79000 e 1
180 L L L L L L L L L L
0 5 10 15 20 25 0 5 10 15 20 25
Iteration Iteration
Hamburg 1 (ND) Hamburg 1 (ND)
490 T T T T T 71700 ; T T : . .
i Crossover g Crossover
480 H Fleet size o | 71600 i Operational weights —— 1
71500 | 1]
470 |] 4
71400 t Y]
460] L
71300 %]
450 | 1 P,
| 71200 i]
| 4
440] 71100 ‘]
&
430 1 I 1 1 1 1 1 1 1 71000 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Iteration Iteration

Figure 12.10: Typical development of the fleet size values (left pictures) and the opera-
tional weights (right pictures) in respect to the £*® RLP.

12.6. LP RELAXATION

1366

1364

1362

1360

1358

1356

1354

320

300

280

260

240

220

200

180

490

480

470

460

450

440

430

Berlin 2 (SF-CS)

4

§

kS

e

Crossover
Fleet size

P

5000 10000 15000 20000 25000 30000

Running time in seconds

Berlin-Spandau 8 (ND)

p-

Crossover
Fleet size

P

f=1

10000 20000 30000 40000 50000 60000

Running time in seconds

Hamburg 1 (ND)

u

o
5
GRS S NPNDN

Crossover
Fleet size

—

0

10000

20000 30000 40000
Running time in seconds

50000

814000
812000
810000
808000
806000
804000
802000
800000
798000

86000
85000
84000
83000
82000
81000
80000
79000

71700

71600

71500

71400

71300

71200

71100

71000

Berlin 2 (SF-CS)

141

Crossover
Operational weights

boo

P

5000 10000 15000 20000 25000 30000

Running time in seconds

Berlin-Spandau 8 (ND)

4

kN
e,
e0o.

Crossover
Operational weights

P

10000 20000 30000 40000 50000 60000

Running time in seconds

Hamburg 1 (ND)

§ Crossover

\\, Operational weights

P

10000

20000 30000 40000
Running time in seconds

50000

Figure 12.11: Typical development of the fleet size values (left picture) and the opera-
tional weights (right pictures) in respect to the run time.

142
Berlin 2 (SF-CS)
80000 . , . i :
s Crossover
70000 £ e, Generated columns —o— |
S
60000 Fis W*“‘MWW
| LP columns -+
50000 i Eliminated columns -=-- |
40000 H]
30000]
20000 1
10000 1
0 ' . . ! e
0 10 20 30 40 50 60 70 80 90
Iteration
Berlin-Spandau 8 (ND)
80000 , . :
Crossover
70000 Gengrated columns -+
LP columns
60000 Eliminated columns —=— |
50000 + .]
40000 -]
30000 [AT +]
20000 ;i;]
g o
10000 | o B S |
L .
0 ' . . . e
0 5 10 15 20 25
Iteration
Hamburg 1 (ND)
45000 . , ;) :
L - Crossover]
40000 & ., Generated columns -—=—
35000 £ el " LP columns —+ |
Fonr * Eliminated columns -=
30000 A v,]
; T TR
25000]
20000 |]
15000 1
10000]
5000 &ml]

0 1 1 1 1
0 10 20 30 40 50 60 70 80 90

Iteration

CHAPTER 12. COMPUTATIONAL RESULTS

250000

200000

150000

100000

50000

140000

120000

100000

80000

60000

40000

20000

0

120000

100000

80000

60000

40000

20000

Berlin 2 (SF-CS)

Crossover
. LP rows -
r [LP columns

LP nonzeros -e-- 1
Preprocessed LP rows
Preprocessed LP columns -
Preprocessed LP nonzeros -~

T
W
0 10 20 30 40 50 60 70 80 90
Iteration
Berlin-Spandau 8 (ND)
Cros‘,sgver \
r LP rows —
LPcolumns
H P nonzeros
B Preproggssed LP rows
L “=-a, _ Preprocesséd LP columns -+ |
Préprotéssed LP nonzeros -+
r'd R S 1
0 5 10 15 20 25
Iteration
Hamburg 1 (ND)
nmﬁ%is@ 7 Crossover
L *, LProws —e— |
4 by i LP columns -+~
nonzeros -
Preprocessed LP rows
£ Preprocessed LP columns - |
e Preprocessed LP nonzeros -~
e s]
xw*‘mﬁ*wwwﬁ M“*‘tmﬂ
?yf“aﬁmm |
0 10 20 30 40 50 60 70 80 90

Iteration

Figure 12.12: Typical number of generated, eliminated, and active LP columns (left pic-
tures) and number of LP columns, rows, and nonzero elements (right pic-

tures) per iteration.

12.6. LP RELAXATION 143

Berlin 2 (SF-CS)

30000 T . . . : . . 7
H Crossover

CPLEX iterations —=—

25000

20000

15000

10000 | |

5000 ¢ &b%m

o b L e,

0 10 20 30 40 50 60 70 80 90
Tteration

Berlin-Spandau 8 (ND)

90000 [
80000
70000
60000
50000
40000
30000
20000 | |
10000 f I

Crossover
LEX iterations —e— -
ke

0 5 10 15 20 25
Tteration

Hamburg 1 (ND)

45000
40000
35000
30000
25000
20000
15000 .

10000 || ﬁfﬁ 2]
5000 ']

o U L

0 10 20 30 40 50 60 70 80 90
Tteration

Crossover
CPLEX iterations —o—

Figure 12.13: Typical number of CPLEX iterations for the £ RLP.

144 CHAPTER 12. COMPUTATIONAL RESULTS

12.7 Dantzig-Wolfe Decomposition

Actually, our main goal was to solve the IMP to optimality requiring first the optimal
solution of MP. When we started our computational decomposition tests, it turned out
soon that decomposition is an unsuitable method to solve the MDVSP. The major obstacle
is that the MPs become too hard to be solved efficiently. Especially for problems with
more than one thousand timetabled trips, the LU factorization in solving an RMP takes
far too much time.

In what follows, we describe our decomposition test runs for MP in detail and discuss the
reason why this kind of approach fails for the MDVSP. These tests are based on some
smaller and not so hard problems from HHA. We consider its 19 smallest single-depot
instances and all its multiple-depot problems except the large 12-depot instance. All
the other HHA instances are too large to be solved by decomposition. For each of the
considered problems, the optimal LP, the optimal MP, and the integer optimal values are
the same.

Table 12.16 shows some statistics of our decomposition test set such as the number of
depots (|D|), the number of timetabled trips (| 7|), the number of unloaded trips (] A%“*P|),
the average depot group size @G, the number of possible vehicle schedules, and the number
of possible blocks.

We give some general observations about our computational tests and report on specific
results for the considered problems. For each test problem, we have used a time limit,
denoted by TL, of three hours. This time limit is quite generous since the LP relaxation
of the biggest decomposition test problem, Hamburg 2, can be solved to optimality within
less than 400 seconds.

General Observations.

e For our test set, the pricing problems PP, are efficiently solvable within a small part
of the total run time, which can be neglected.

e The right-hand side of MP is equal to 1 leading to degenerate LPs. From version 4.0
on, CPLEX provides a new, less aggressive perturbation method that can handle
degenerate LPs efficiently. And indeed, we have never recognized any numerical
problems stemming from degeneracy since we have used the first beta version of
CPLEX 4.0.

e In one of the first versions of our implementation, each cost coefficient c¢? was
just the sum of M and the operational costs of the corresponding vehicle schedule
w € Wy. The naive use of this two stage objective function with a M equal to 10® has
caused numerical difficulties in proving global optimality: The optimality tolerance
of CPLEX can only be set to a value between 10~ and 10~*. This means that the
reduced costs must be at least greater than or equal to —10~* for each w € W. If
the total fleet size needs 3 digits or more and if the optimality tolerance is at least

12.7. DANTZIG-WOLFE DECOMPOSITION 145

Decomposition | Av-trip|
test set D] 7] User-def. | Total oG W1 ##blocks
Hamburg 14 109 617 52411 1.0 [2.0-1087]2.3.101°
Hamburg 15 183 1,025 14,347 | 1.0 |2.0-10%| 7.1.10°

211 2,651 16,854 | 1.0 |[3.9-10™|7.5-101
220 2,348 21,315| 1.0 |5.5-10%|7.0.-10!
232 3,922 12,510 | 1.0 |1.1-10'6|4.7.101
493 8,322 | 104,153 | 1.0 |1.6-10'|8.0-10!
521 19,003 65,650 | 1.0 |[8.8-10'|2.4.10'3
648 14,136 | 180,554 | 1.0 |3.9-10'8 [4.3. 10!
695 16,526 | 186,863 | 1.0 |1.3-10%°|6.3-103
728 13,654 | 233,010 1.0 [2.3-10%%|5.9-106
892 25,100 | 348230 | 1.0 |[3.2.-10%*|1.8.10'7
930 | 27,452 368,242 | 1.0 |5.3-10% |1.1-10%°
986 | 56,760 | 211,153 | 1.0 |1.1-10%*|1.6-108
1,065 | 31,520 | 488,655 | 1.0 |1.4-10%|1.0-10%
1,296 | 77,201 | 459,468 | 1.0 |1.3-10%7|2.3-10%°
1,345 | 102,253 | 322,546 | 1.0 |2.4-10%2|1.2-10%
1,588 | 79,955 | 404,016 | 1.0 |5.1-10%°|1.4-10"
1,693 | 72,882(1,233.766 | 1.0 |[5.0-10%8|4.1.10%
1,716 | 116,142 | 850,828 | 1.0 |5.6-10%°|1.3-10%

Hamburg 2 - Depot 4
Hamburg 7 - Depot 2
Hamburg 7 - Depot 1
Hamburg 2 - Depot 8
Hamburg 3 - Depot 1
Hamburg 2 - Depot 5
Hamburg 2 - Depot 7
Hamburg 1 - Depot 7
Hamburg 1 - Depot 12
Hamburg 5 - Depot 2
Hamburg 5 - Depot 1
Hamburg 1 - Depot 4
Hamburg 1 - Depot 11
Hamburg 6 - Depot 1
Hamburg 1 - Depot 10
Hamburg 6 - Depot 2
Hamburg 1 - Depot 3

=Y I U NCYR NCYRYNCY | [Sy Sy UGy Gy G UGG S S

Hamburg 4 238 2,000 23,000 [1.04 [1.5-10°1]2.4 .10
Hamburg 7 341 6,000 34,000 [1.32 | 5.9-10'% | 1.2.10!2
Hamburg 3 791 | 30,000 | 200,000 |1.32 |2.3-10%2|3.9.10'7
Hamburg 5 1,461 | 85,000 | 580,000 |1.31 |[5.3-10%|1.1-10%°
Hamburg 6 2,283 | 176,000 | 1,600,000 | 1.33 |5.0-10%8 | 4.2.10%
Hamburg 2 1,834 | 99,000 | 1,000,000 | 2.02 |3.3-10%' |5.3-10%

Table 12.16: Decomposition test set taken from HHA.

4 decimal places, we have to compute accurately for at least 3+8+4 digits (the fleet
size plus the operational costs plus the optimality tolerance), which is close to and
can be smaller than the machine precision. For an “almost” optimal RMP (i.e., the
value of PP (11.8) is smaller than, but close to —107*), cancellation of important
digits can occur in computing the reduced costs. Sometimes, the reduced costs of
a generated column turned out to be feasible within the next RMP, but have been
indicated to be infeasible in PP.

To avoid such numerical troubles, we scale down the objective coefficients by 102
and set the optimality tolerance to 107°. Then, we have to compute accurately for
8 digits less than before. This simple trick makes the implementation more robust.
Since then, we have never recognized any further cancellation of important digits in
solving PP.

146 CHAPTER 12. COMPUTATIONAL RESULTS

e Initializing the first RMP only with all columns corresponding with trippers leads
to quite bad starting points: Within the time limit, none of the problems could be
solved to optimality, and only the single-depot problems with up to 493 timetabled
trips and the multiple-depot problem Hamburg 7 could be solved fleet minimally
with cost gaps ranging from 14 % up to 138 %. For all the other problems, we could
not generate an (MP) solution yielding the minimum number of vehicles. Moreover,
the basis solutions of the last RMPs are completely fractional and there are almost
no variables with a value greater than or equal to 0.5, but most nonzero values
are smaller than 0.2. This may have a negative influence on the performance of a
branch-and-price algorithm.

Instead of starting with all trippers, we use the columns corresponding to the ND
solution or, to see some effects, with an integer optimal solution. Note that ND
already generates an optimal solution for single-depot instances.

e The average number of nonzero elements per column of the occurring MPs is ap-
proximated by the average number ot timetabled trips of the generated vehicle
schedules. For our decomposition test set, this number is 17.3 with a standard devi-
ation of 4.8; the lowest, average column length of our problems is 8.4 and the largest
is 35.2. These MPs are quite dense set partitioning problems. It is known that the
LU factorization becomes the bottleneck in solving such problems with more than
thousand timetabled trips. A similar observation has been made by Borndorfer
[1998], he solves set partitioning problems arising from large-scale vehicle routing
from a dial-a-ride system for handicapped people in Berlin.

e Fixing the number of timetabled trips, the investigations of Ribeiro and Soumis
[1994] indicate that the run time is linear in the number of depots. We have too
few test problems to make such a statement, but this result of Ribeiro and Soumis
sounds reasonable.

The Single-Depot Problems.

To get a feeling about the size that a problem can have to be successfully solved with a
decomposition approach, we have first investigated our single-depot instances. The results
are displayed in Fig. 12.14 showing on the axis of ordinates the run times with respect
to the number of timetabled trips, unloaded trips, and vehicle schedules, respectively.
The left pictures show the results that we have obtained without Lagrangean pricing: We
started with an optimal integral solution and always generated only the column delivered
by PP. Stopping whenever the time limit was reached, it turned out that this strategy
solves only the master problem of rather tiny problems with up to 200 timetabled trips
(which are about 20 thousand dead-head trips and 10% vehicle schedules) to optimality.
If we just want to find an RMP including a minimal fleet solution (proved via sufficiently
small negative reduced costs), it is possible to solve problems with up to 700 timetabled
trips (200 thousand dead-head trips and 10%° vehicle schedules). The right pictures show
the results that we have obtained using in addition Lagrangean pricing, which significantly

12.7. DANTZIG-WOLFE DECOMPOSITION

10000

8000

6000

4000

2000

10000

8000

6000

4000

2000

10000

8000

6000

4000

2000

r N global optimum —— 1
§ fleet minimal -+
L ++¢+ J
0 200 400 600 800 1000 1200 1400 1600 1800
Number of timetabled trips
l - ‘ ‘
i global optimum —— 1
fleet minimal —+—
b |
0 200000 400000 600000 800000 le+06
Number of unloaded trips
r global optimum —— 1
fleet minimal —+—
- /WQ/ 4
12 14 16 18 20 22 24 26 28

Number of vehicle schedules (log)

WITHOUT Lagrangean pricing.

30

147

T T T
T

global optimum —L
fleet minimal -+~

10000 |

8000

6000 r

4000 r

2000 r

0 200 400 600 800 1000 1200 1400 1600 1800

Number of timetabled trips

10000 global optfhlum ——

fleet minimal —+-—
8000
6000

4000

2000

0 200000 400000 600000 800000 1e+06

Number of unloaded trips

10000 ¥ global optimum #
fleet minimal [+
8000 -
6000 ’
4000 BEPE
2000 |
-
0r ‘ ‘ | | |

12 14 16 18 20 22 24 26 28
Number of vehicle schedules (log)

WITH Lagrangean pricing.

Figure 12.14: Decomposition run times for the single-depot instances

30

148 CHAPTER 12. COMPUTATIONAL RESULTS

accelerates the solution convergence. With this technique, we are able to solve the master
problem of problems with up to 700 timetabled trips optimally and with up to 1700
timetabled trips fleet minimally. A negative side effect of Lagrangean pricing is that
there are more columns generated between two consecutive RMPs making each single
RMP much harder to solve. It is not clear to us whether there is some break even point
where this acceleration of iteration convergence is canceled out by larger LP run times.

The Multiple-Depot Problems.

We have shown that starting from scratch (with all columns corresponding with trip-
pers) does not work at all. So, we have used the solutions obtained by ND as starting
points. The decomposition run times with and without Lagrangean pricing of these tests
are compared with the LP times. All these times are displayed in Tab. 12.17 showing
that the decomposition without Lagrangean pricing solves only the two small problems
Hamburg 4 and 7 fleet minimal, but not to global optimality. Using Lagrangean pricing
accelerates this solution times, but does not lead to further significant improvements such
as solving more problems at least fleet minimal. Compared to our direct LP method, the
decomposition implementation is completely inferior.

Decomposition
Test Set® Default? Lagr. pricing® Lp

fleet? | global® | fleet? | global® || fleet? | global®
Hamburg 4 84 TL 25 TL 2 3
Hamburg 7 || 4,210 TL | 1,663 TL 8 9
Hamburg 3 TLS — | TL/ — 18 31
Hamburg 5 || TL/ — | TL — || 135 155
Hamburg 6 TL — TL — 80 84
Hamburg 2 || TLf — | TLS — 679 685

ND generates an optimal solution for Hamburg 4 and 6.
*Without Lagrangean pricing.

‘With Lagrangean pricing.

9Time to prove that the starting solution is fleet minimal.
¢Time to prove global optimality of the last RMP and RLP.
fNo objective improvement within the time limit.

Table 12.17: Run times starting with a solution generated with the ND heuristic.

To see whether the decomposition method can at least prove the optimality of an optimal
solution, we started the decomposition and the LP method with an integer optimal so-
lution. Table 12.18 gives the run times, the number of solved RMPs and restricted LPs,
the number of generated columns, and the number of CPLEX iterations being performed
for these test runs.

First of all, the LP method is able to prove optimality for each of these problems within

12.7. DANTZIG-WOLFE DECOMPOSITION 149

Decomposition
Test Set Default® Lagr. pricing®
Ac | BY | A°| B Ac | BY

Run times
Hamburg 4 84 TL | 27 TL 2 3
Hamburg 7 || 1,031 TL | 204 TL 8 9
Hamburg 3 TL — | 656 TL 22 | 17
Hamburg 5 TL — | TL — 72| 78
Hamburg 6 TL — | TL — || 128 | 179
Hamburg 2 TL — | TL — || 388 | 397

Number of RMPs and RLPs
Hamburg 4 329 | 5,658 | 76 3,991 3 4
Hamburg 7 435 | 1,882 | 87 1,439 19 | 23

Hamburg 3 667 — | 50 301 3| 13
Hamburg 5 707 — | 61 — 19 | 23
Hamburg 6 668 — | 45 — 10| 18
Hamburg 2 353 — | 34 — 14| 18

Generated columns / 1,000

Hamburg 4 0 6 1 5 2 2
Hamburg 7 1 4 1 4 14 | 15
Hamburg 3 1 — 2 2 6| 16
Hamburg 5 1 — 3 — 57 | 62
Hamburg 6 1 — 3 — 56 | 73
Hamburg 2 2 — 4 — 95 [55
CPLEX iterations / 1,000
Hamburg 4) 487 3 332 0 0
Hamburg 7 41 203 11 210 1 1
Hamburg 3 57 — 7 54 0 1
Hamburg 5 3 — | 26 — 2 3
Hamburg 6 1 — | 12 — 4 7
Hamburg 2 38 — 1 19 — 19| 19

*Without Lagrangean pricing.

*With Lagrangean pricing.

°Time, iterations, etc. to prove that the starting solution is fleet minimal.
9Time, iterations, etc. to prove global optimality of last RMP and RLP.

Table 12.18: Starting with an integer optimal solution.

150 CHAPTER 12. COMPUTATIONAL RESULTS

less than 400 seconds run time. Within a time limit of three hours, our decomposition
implementation was unable to prove optimality of any of these problems, only the fleet
minimality could be confirmed for the problems with up to 791 timetabled trips.

The larger the number of timetabled trips of an instance is, the more time is spent within
the LU factorization. The worst case example is Hamburg 2: Applying in addition the
Lagrangean pricing, only 34 RMPs could be solved within the time limit, which are far
too less to have a chance to solve such large problems within reasonable run time.

Comparison to Ribeiro and Soumis

Already in 1991, Ribeiro and Soumis [1994] have reported about their computational
results using a Dantzig-Wolfe decomposition for the MDVSP. They solved randomly gen-
erated capacitated MDVSPs with up to 300 timetabled trips and 6 depots to optimality
using a branch-and-bound algorithm. Compared with our computational results, we won-
der how they can solve even the integer formulation of their problems to optimality while
we are unable to just solve the MP relaxations of our uncapacitated problems with a
similar number of timetabled trips using a considerably faster workstation and a more
sophisticated version of CPLEX. From our point of view, the reasons are as follows:

e They do not mention the number of dead-head trips. If this number is small, the
number of possible vehicle schedules is also relatively small. Each problem instance
of Ribeiro and Soumis includes 60 % long timetabled trips with a duration uniformly
distributed between three and five hours. The other 40 % are short timetabled trips
with a duration uniformly distributed between 5 and 40 minutes. On the average,
each timetabled trip has therefore a duration of 2 hours and 33 minutes. 70 % of the
short timetabled trips are defined between 8.00 a.m. and 5.00 p.m. The duration
of the timetabled trips given by our test set is, on the average, about 30 minutes,
the morning peak begins earlier and the afternoon peak ends later than the peaks
of their problems.

e The used depot capacities of Ribeiro and Soumis seem to be quite generous: For
each test instance, they provide one vehicle for at most two up to three timetabled
trips. In a city like Berlin, about 10 thousand buses would be necessary to run
about 25 thousand timetabled trips that have to be daily serviced in Berlin. But
BVG maintains less than 2,000 buses. Even if we assume that only one half of the
available fleet sizes are used for their problems — otherwise, a consideration of depot
capacities becomes pointless — the resulting vehicle schedules would on the average
contain five timetabled trips. In Berlin and Hamburg, this number is about 15 and
20.

e The only information provided by them is how many columns are generated until
optimality can be proved. The largest number of generated columns was 4,585 for
an instance with 5 depots and 300 timetabled trips. They give neither information
about the average length of the generated vehicle schedules nor about the vehicle

12.7. DANTZIG-WOLFE DECOMPOSITION 151

demand of the optimal solutions. For our test set, we have generated, on the average,
vehicle schedules with 17.3 timetabled trips (standard deviation was 4.8). The
problem with the smallest value was 8.4 timetabled trips and the largest value was
35.2 timetabled trips.

e For the capacitated MDVSP, it is A'P-hard to find a feasible solution. Ribeiro and
Soumis, however, do not tell how they initialize their method.

Based on the above considerations, we are unable to estimate the average length of the
vehicle schedules of their problems, which may be an indicator for the “hardness” of their
master problems. It seems to us that the combinatoric of our test set is harder than the
combinatoric of their test set. All these open questions give us rise to the suspicion that
the artificially generated problems of Ribeiro and Soumis are of a different quality and,
from a computational point of view, are far easier than our real-world problems.

152 CHAPTER 12. COMPUTATIONAL RESULTS

Conclusions

This thesis is devoted to the Multiple-Depot Vehicle Scheduling Problem (MDVSP), a
problem arising, for instance, in each city or region with a public transportation sys-
tem. Problems of this type are of very large scale. In the previous chapters, we have
presented a variety of methods for its solution. All approaches are based on techniques
from combinatorial optimization. A well-chosen combination of these methods turned
out to be able to solve (almost) all problems of practical interest in acceptable running
times. The success of the implementations, of course, benefited from the (in the recent
years drastically increased) computing power of modern workstations and sophisticated
commercial optimization software (such as the LP solver CPLEX). We summarize some
of our findings:

Single-depot instances can be solved quickly. With state of the art codes for minimum-
cost flow problems, such as our implementation MCF, and the use of column genera-
tion techniques, practical problem instances of (almost) arbitrary size can be solved
to optimality in a few minutes. For instance, we have solved a 70 million variable
problem in about 15 minutes, see Tab. 12.8.

Upper bounds that have been generated with the schedule — cluster — reschedule heuris-
tic (SCR), which employs our single-depot solver, are of high quality. Compared
with the optimal integer solutions, SCR provides solutions with a fleet size gap and
operational weight gap of less than 1.25% and 5.2 %, respectively, see Tab. 12.11.
This shows that MDVSPs can be heuristically solved in reasonable running time,
see Tab. 12.12.

Lagrangean relaxations allow to compute tight lower bounds even for large multiple-
depot instances, see Tab. 12.13. In particular, neglecting the flow conservation
constraints, lower bounds can be computed quite fast, see Tab. 12.14. Lagrangean
relaxations can be used to quickly simulate fleet and cost effects of different param-
eter settings.

Branch-and-cut is capable of solving even very large multiple-depot instances to opti-
mality, see Tab. 12.9.

Lagrangean pricing is a good idea to solve the large degenerate LPs that come up in
solving multiple-depot instances with branch-and-cut. Our initial code used the
well known standard reduced cost pricing techniques. However, this did not work at

153

154 CONCLUSIONS

all because of stalling, see Chap. 7. To cure stalling, we introduced (what we call)
Lagrangean pricing. We propose it as one of the basic ingredients of an effective
method to solve multiple-depot vehicle scheduling problems. Similar positive results
have been observed by Fischetti and Toth [1996] and Fischetti and Vigo [1996]
also dealing with large degenerate LPs. We believe that variable pricing based on
Lagrangean relaxation is a useful tool that can help to solve many combinatorial
optimization problems.

Dantzig-Wolfe decomposition seems not to be a useful approach for large MDVSPs.
We have experimented with various possibilities to employ Dantzig-Wolfe decompo-
sition for the solution of MDVSPs. At first glance, this seems to be a quite natural
and obvious approach. The computational results, however, are very disappointing,
see Tabs. 12.17 and 12.18.

Computational breakthrough: to our knowledge, at present no other implementa-
tion is able to solve MDVSPs with more than 1,000 timetabled trips to optimality.
Our code has successfully produced optimal solutions of various real-world problem
instances with up to 25 thousand timetabled trips, see Tab. 12.9. The integer multi-
commodity flow problems arising this way are orders of magnitude larger than what
other codes are able to handle. The largest real instance we encountered gave rise to
an integral multicommodity flow problem with about 125 thousand equations and
70 million integer variables. We could not produce an optimal solution, but found
a solution with a fleet size gap of less than 0.5 %.

Possible savings indicated by our test runs are immense. Compared with a manual
planning process, the SCR heuristic indicates savings of about 15% — 20 % of the
vehicles and about 10 % — 15 % of the operational costs. Compared with an assign-
ment heuristic, our branch-and-cut method indicates savings of several vehicles and
about 10% cost reduction. However, the final evaluations of the SCR generated
solutions have not been finished by BVG, HHA, and VHH yet. It still has to be
checked whether our vehicle schedules provide a useful input for duty scheduling, the
next step in the hierarchical planning process. It is therefore not clear how much of
these indicated savings can be obtained in practice. Nonetheless, our methods can
solve large problems optimally. The Berliner Verkehrsbetriebe, for instance, expect
to save about DM 100 million per year with our SCR heuristic, see Schmidt [1997].

There is a high demand within industry for efficient methods for the MDVSP. Parts of
our system have been purchased by BVG for their planning system BERTA, by IVU for
MICROBUS II, and by the research department of the SIEMENS AG in Munich.

There are further challenges in the field of vehicle scheduling in public transit. The
main bottleneck of our branch-and-cut method was the solution of the LP relaxations.
The solution process of the branch-and-cut software could be accelerated significantly by
employing faster (e.g., parallelized) LP solvers.

155

A second task is to investigate whether further savings can be obtained by flexible de-
parture times for the timetabled trips. Tests by Daduna and Volker [1997] show possible
savings of several vehicles using the heuristic assignment approach of the HOT system.

In the long term, we aim at solving vehicle and duty scheduling by an integrated approach.
Currently, the existing mathematical knowhow and the available computing power are in-
sufficient to solve vehicle and duty scheduling in one step. Since most of the available
planning systems do not include (sophisticated) mathematical methods for duty schedul-
ing, transportation companies may well benefit from duty optimization software. Together
with IVU and HanseCom, we have started a new project dealing with the optimization
of duty scheduling.

156 CONCLUSIONS

List of Figures

1.1
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

2.10

3.1
3.2
3.3
3.4
3.5
3.6

5.1

8.1
8.2

10.1

12.1

Transformation to zero lower bounds. 14
Multicommodity minimum-cost flow digraph that yields a fractional optimal

solution. L L e e 16
Lines. e e 19
Timetable. 19
Timetabled trips for two depots. L0 19
Unloaded trips. L 20
Two vehicle schedules. oo Lo 21
Digraphs (V', 4’) and (V}, A), d € D, with D = {r,g} and T = {a,b,c,d,e}. . 22
Contracted digraph D = (V,; A). 26
Invalid block. 27
A single-depot instance (using limited durations for dead-head trips) for

which a block minimal solution does not provide a minimal fleet solution. . . 28
A multiple-depot instance (using limited durations for dead-head trips) for

which a block minimal solution does not provide a minimal fleet solution. . 28
SDVSP digraph (V/; A") with T ={abc}. 33
SDVSP digraph after variable elimination. 33
MDVSP digraph D' = (V' A’) of a OIT-3SAT-UL. 37
Two feasible truth assignments for the instance of Fig. 3.3. 38
Capacitated MDVSP digraph D' = (V', A’) of a OIT-3SAT-UL. 41
Two feasible truth assignments for the instance of Fig. 3.5. 43
Rooted basis tree. Lo L L 60
Minimum-cost flow problem for vehicle demand estimation 84
Counterexample to the heuristic motivation of sensitivity analysis. 87
Solving MDVSPs: Flow chart. 100

Development, of fleet size upper bounds of problems requiring more than 2
hours run time to obtain a minimal fleet solution; starting with the ND
heuristic. e 129

157

158

12.2

12.3

12.4

12.5
12.6
12.7
12.8
12.9
12.10

12.11

12.12

12.13
12.14

LIST OF FIGURES

Development of operational weight upper bounds of problems requiring more
than 2 hours run time to obtain a minimal fleet solution and knowing the
minimum weight among all minimal fleet solutions; starting with the ND

heuristic. e e e e 129
Development of fleet size upper bounds of problems requiring more than 2
hours run time to obtain the optimum; starting with the SCR, heuristic. . . . 130

Development of operational weight upper bounds of problems requiring more
than 2 hours run time to obtain the optimum and knowing the minimum

weight among all minimal fleet solutions; starting with the SCR heuristic. . . 130
Comparing different step directions for Hamburg 1 and LRgg. 135
Comparing different step directions for Hamburg 1 and LRgs. - 135
Comparing the two step length rules for Hamburg 1 and LRgg. 136
Comparing the two step length rules for Hamburg 1 and LRg. - 136
Comparing different maximum failure values N, for Hamburg 1 and LRgs. . 137
Typical development of the fleet size values (left pictures) and the operational

weights (right pictures) in respect to the k™ RLP. 140
Typical development of the fleet size values (left picture) and the operational

weights (right pictures) in respect to the run time. 141

Typical number of generated, eliminated, and active LP columns (left pic-
tures) and number of LP columns, rows, and nonzero elements (right pic-
tures) per iteration. L Lol 142

Typical number of CPLEX iterations for the £* RLP. 143
Decomposition run times for the single-depot instances 147

List of Tables

9.1

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10

12.11

12.12
12.13

12.14
12.15
12.16
12.17
12.18

Number of facets for complete instances. 91
BVG depots. o L 114
HHA depots. o e 115
VHH depots. 116
Real-world multiple-depot test instances. 117
Minimum-cost flow problems from BVG Depots 1-22. 119
Minimum-cost flow problems from BVG Depots 23-44. 120
Minimum-cost flow problems from HHA depots. 121
Minimum-cost flow problems LRgs(0). L. 122
Fleet sizes and operational costs (optimal integer values are in bold face). . . 124
Lower bounds relative to the integer optimal values or best upper bounds.

Optimal values are in bold face. 125
Upper bounds relative to the integer optimal values or best lower bounds.

Optimal values are in bold face. 126
Run timesinseconds. 127
Objective values using subgradient methods (optimal integer values are bold

faced) and their operational gaps relative to the optimum. 132
Run timesinseconds. 133
LP run statistics. e 139
Decomposition test set taken from HHA. 145
Run times starting with a solution generated with the ND heuristic. 148
Starting with an integer optimal solution. 149

159

160 LIST OF TABLES

Bibliography

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1989). Network Flows. In Nemhauser,
Rinnooy Kan, and Todd [1989], chapter IV, pages 211-369.

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows: Theory, Algo-
rithms, and Applications. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Assad, A., Ball, M., Bodin, L., and Golden, B. (1983). Routing and scheduling of vehicles
and crews. Computers & Operations Research, 10(2):63-211.

Balas, E. (1975). Facets of the knapsack polytope. Mathematical Programming, 8:146 —
164.

Ball, M. O., Magnanti, T. L., Monma, C. L., and Nemhauser, G. L., editors (1995b).
Network Models, volume 7 of Handbooks in Operations Research and Management
Science. Flsevier Science B.V., Amsterdam.

Ball, M. O., Magnanti, T. L., Monma, C. L., and Nemhauser, G. L., editors (1995a).
Network Routing, volume 8 of Handbooks in Operations Research and Management
Science. Flsevier Science B.V., Amsterdam.

Barnhart, C., Hane, C. A., and Vance, P. H. (1996). Integer multicommodity flow prob-
lems. In Cunningham, McCormick, and Queyranne [1996], pages 58-71.

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., and Vance, P. H.
(1994). Branch-and-price: Column generation for solving huge integer programs. In
Birge, J. R. and Murty, K. G., editors, Mathematical Programming: State of the Art
1994, pages 186—-207. The University of Michigan.

Barnhart, C., Johnson, E. L., Nemhauser, G. L., and Vance, P. H. (1997). Airline crew
scheduling: A new formulation and decomposition algorithm. Operations Research,
45(2):188-200.

Bazaraa, M. S., Jarvis, J. J., and Sherali, H. D. (1990). Linear programming and network
flows. John Wiley & Sons, Inc., 2nd edition.

Becker, J., Ro8, J., and Schemczyk, O. (1996). BERTA — EDV-gestiitzte Betriebseinsatz-
planung bei den Berliner Verkehrsbetrieben, Sachstand und Ausblick. Verkehr und
Technik (V+T). Heft 2+3. In German.

Beguelin, A., Dongarra, J., Geist, A., Jiang, W., Manchek, R., and Sunderam, V. (1994).
PVM: Parallel Virtual Machine, A Users’ Guide and Tutorial for Networked Parallel
Computing. The MIT Press, Cambride, Massachusetts, London, England. Informa-
tion available via WWW at www.epm.ornl.gov/pvm/pvm_home.html.

161

http://www.epmorngov/_homehtm

162 BIBLIOGRAPHY

Berge, C. (1973). Graphs and Hypergraphs. North-Holland, Amsterdam.

Bertossi, A. A., Carraresi, P., and Gallo, G. (1987). On some matching problems arising
in vehicle scheduling models. Networks, 17:271-181.

Bertsekas, D. P. and Tseng, P. (1994). RELAX-IV: A faster version of the RELAX code
for solving minimum cost flow problems. Technical report. Available via WWW at
ftp://lids.mit.edu/pub/bertsekas/RELAX/.

Bianco, L., Mingozzi, A., and Ricciardelli, S. (1994). A set partitioning approach to
the multiple-depot vehicle scheduling problem. Optimization Methods and Software,
3:163-194.

Bixby, R. E. (1992). Implementing the simplex method: The initial basis. ORSA Journal
on Computing, 4(3):267-284.

Bixby, R. E. (1994). Progress in linear programming. ORSA Journal on Computing,
6(1):15-22.

Blais, J.-Y. and Rousseau, J.-M. (1988). Overview of HASTUS current and future ver-
sions. In Daduna and Wren [1988], pages 175-187.

Bodin, L. and Golden, B. (1981). Classification in vehicle routing and scheduling. Net-
works, 11:97-108.

Bodin, L., Kydes, A., and Rosenfield, D. (1978). UCOST: a micro approach to a trans-
portation planning problem. Urban Analysis, 5:47-69.

Béhmig, T. and Wolter, M. (1997). Kostentrigerrechnung fiir OPNV-Betriebe. Der
Nahverkehr, 1-2/97:14-19. In German.

Bokinge, U. and Hasselstrom, D. (1980). Improved vehicle scheduling in public trans-
port through systematic changes in the time-table. European Journal of Operational
Research, 5:388-395.

Bollobds, B. (1978). Extremal Graph Theory. Academic Press, London.

Bondy, J. A. and Murty, U. S. R. (1976). Graph Theory with Applications. American
Elsevier, New York, and Macmillan, London.

Borger, J. M., Kang, T. S., and Klein, P. N. (1993). Approximating concurrent flow with
unit demands and capacities: an implementation. In Johnson and McGeoch [1993].

Borndérfer, R. (1998). Packing, Partitioning, and Covering of Sets. PhD thesis, Technical
University of Berlin.

Borndérfer, R., Grotschel, M., and Lébel, A. (1995). Alcuin’s transportation problems and
integer programming. Preprint SC 95-27, Konrad-Zuse-Zentrum Berlin. Available via
WWW at www.zib.de. To appear in Butzer, P. L., Jongen, H. T., and Oberschelp,
W., editors, Charlemagne and his Heritage: 1200 Years of Civilization and Science
in Europe, Volume II: The Mathematical Arts, Brepols Publishers.

Branco, I., Costa, A., and Paixdo, J. M. P. (1995). Vehicle scheduling problem with
multiple type of vehicles and a single depot. In Daduna, Branco, and Paixao [1995],
pages 115-129.

ftp//lidsmitedbertsekas/ELX/
wwwzibde

BIBLIOGRAPHY 163

Branco, I. M. and Paixdo, J. P. (1987). A quasi-assignment algorithm for bus scheduling.
Networks, 17:249-269.

Branco, I. M. and Paixdo, J. P. (1988). Bus scheduling with a fixed number of vehicles.
In Daduna and Wren [1988], pages 28—40.

Bussieck, M., Winter, T., and Zimmermann, U. T. (1997). Discrete optimization in
public rail transport. In Liebling, T. M. and de Werra, D., editors, Mathematical
Programming: A Publication of the Mathematical Programming Society, pages 415—
444. Elsevier Science B.V.

BVG. Berliner Verkehrsbetriebe. Information available via WWW at www.bvg.de.

Carpaneto, G., Dell’Amico, M., Fischetti, M., and Toth, P. (1989). A branch and bound
algorithm for the multiple depot vehicle scheduling problem. Networks, 19:531-548.

Carraresi, P. and Gallo, G. (1984). Network models for vehicle and crew scheduling.
European Journal of Operations Research, 16:139-151.

Ceder, A. and Stern, H. 1. (1981). Deficit function bus scheduling with deadheading trip
insertions for fleet size reduction. Transportation Science, 15(4):338-363.

Chamberlain, M. and Wren, A. (1988). The development of Micro-BUSMAN: Scheduling
on micro-computers. In Daduna and Wren [1988], pages 160-174.

Chamberlain, M. and Wren, A. (1992). Developments and recent experience with the
BUSMAN and BUSMAN II systems. In Desrochers and Rousseau [1992], pages
1-15.

Christof, T. (1994). PORTA - A Polyhedron Representation Transformation Algo-
rithm, version 1.2.1. Written by T. Christof, revised by A. Lobel and M. Stoer.
PORTA source code available via WWW at www.iwr.uni-heidelberg.de/iwr/comopt
or www.zib.de.

Chvétal, V. (1980). Linear programming. W. H. Freeman and Company, New York.

CPLEX (1997). Using the CPLEX Callable Library. ILOG CPLEX Division, 889 Alder
Avenue, Suite 200, Incline Village, NV 89451, USA. Information about CPLEX
available via WWW at www.cplex.com.

Crowder, H. (1976). Computational improvements for subgradient optimization. In Sym-
posia Mathematica, volume 19. Istituto Nazionale di Alta Matematica, Academic
Press London and New York.

Cunningham, W. H. (1976). A network simplex method. Math. Programming, 11:105-116.

Cunningham, W. H., McCormick, S. T., and Queyranne, M., editors (1996). Integer
Programming and Combinatorial Optimization, 5th International TPCO Conference,
Vancouver, British Columbia, Canada.

Daduna, J. R., Branco, I., and Paixdo, J. M. P., editors (1995). Computer-Aided Transit
Scheduling, Lecture Notes in Economics and Mathematical Systems. Springer Verlag.

Daduna, J. R. and Mojsilovic, M. (1988). Computer-aided vehicle and duty scheduling
using the HOT programme system. In Daduna and Wren [1988], pages 133-146.

wwwde
wwwiwr.uni-heidebergde/iwrcomopt
wwwzibde
wwwcpexcom

164 BIBLIOGRAPHY

Daduna, J. R., Mojsilovic, M., and Schiitze, P. (1993). Practical experiences using an
interactive optimization procedure for vehicle scheduling. In Du and Pardalos [1993],
pages 37-52.

Daduna, J. R. and Paixao, J. M. P. (1995). Vehicle scheduling for public mass transit —
an overview. In Daduna, Branco, and Paixao [1995].

Daduna, J. R. and Vélker, M. (1997). Vehicle scheduling with not exactly specified
departure times. In 7th International Workshop on Computer-Aided Scheduling of
Public Transport, pages 2-12. Center for Transportation Studies, MIT, Cambridge,
USA. A German version entitled Fahrzeugumlaufbildung im OPNYV mit unscharfen
Abfahrtzeiten has been publised in Der Nahverkehr, 11/97:39-43.

Daduna, J. R. and Wren, A, editors (1988). Computer-Aided Transit Scheduling, Lecture
Notes in Economics and Mathematical Systems. Springer Verlag.

Dantzig, G. B. (1963). Linear Programming and Extensions. Princeton University Press,
Princeton.

Dantzig, G. B. and Wolfe, P. (1960). Decomposition principle for linear programs. Oper-
ations Research, 8:101-111.

Dell’Amico, M., Fischetti, M., and Toth, P. (1993). Heuristic algorithms for the multiple
depot vehicle scheduling problem. Management Science, 39(1):115-125.

Desrochers, M., Desrosiers, J., and Soumis, F. (1985). Optimal urban bus routing with
scheduling flexibilities. In Thoft, P., editor, Lecture Notes in Control and Information
Sciences, pages 155-165.

Desrochers, M. and Rousseau, J.-M., editors (1992). Computer-Aided Transit Scheduling,
Lecture Notes in Economics and Mathematical Systems. Springer Verlag.

Desrosiers, J., Dumas, Y., Solomon, M. M., and Soumis, F. (1995). Time Constrained
Routing and Scheduling. In Ball, Magnanti, Monma, and Nemhauser [1995a], chap-
ter 2, pages 35-139.

Du, D.-Z. and Pardalos, P. M., editors (1993). Network Optimization Problems: Algo-
rithms, Applications and Complexity, volume 2 of Series on Applied Mathematics,
Singapore, New York, London. World Scientific Publishing Co. Pte. Ltd.

Fischetti, M. and Toth, P. (1988). A new dominance procedure for combinatorial opti-
mization problems. Operations Research Letters, 7(4):181-187.

Fischetti, M. and Toth, P. (1996). A polyhedral approach to the asymmetric traveling
salesman problem. Technical report, University of Bologna. To appear in Manage-
ment Science.

Fischetti, M. and Vigo, D. (1996). A branch-and-cut algorithm for the resource-
constrained arborescence problem. Nelworks, 29:55-67.

Forbes, M. A., Holt, J. N., and Watts, A. M. (1994). An exact algorithm for multiple
depot bus scheduling. Furopean Journal of Operational Research, 72(1):115-124.
Freling, R. and Paixao, J. M. P. (1995). Vehicle scheduling with time constraint. In

Daduna, Branco, and Paixdo [1995].

BIBLIOGRAPHY 165

Fuchs, C. (1992). Optimization in bus scheduling — driver constraints, deadheading esti-
mation and size advantage. In Desrochers and Rousseau [1992].

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, New York.

Gavish, B., Schweitzer, P., and Shlifer, E. (1978). Assigning buses to schedules in a
metropolitan area. Computers and Operations Research, 5:129-138.

Gavish, B. and Shlifer, E. (1978). An approach for solving a class of transportation
scheduling problems. Furopean Journal of Operational Research, 3:122—134.

Goldberg, A. V. (1992). An efficient implementation of a scaling minimum-cost
flow algorithm. Report No. STAN-CS-92-1439, Department of Computer Sci-
ence, Standford University, Stanford, California 94305. Available via WWW at
www.neci.nj.nec.com/homepages/avg/soft /soft.html.

Goldfarb, D. and Reid, J. K. (1977). A practicable steepest-edge simplex algorithm.
Mathematical Programming, 12:361-371.

Grétschel, M., Lobel, A., and Vélker, M. (1997). Optimierung des Fahrzeugumlaufs
im Offentlichen Nahverkehr. In Hoffmann, K. H., Jager, W., Lohmann, T., and
Schunck, H., editors, Mathematik — Schlisseltechnologie fir die Zukunft, pages 609—
624. Springer Verlag. In German. Available as ZIB preprint SC 96-7 via WWW at
www.zib.de.

Grotschel, M., Lovasz, L., and Schrijver, A. (1988). Geometric algorithms and combina-
torial optimization. Springer Verlag, Berlin.

Hamer, N. and Séguin, L. (1992). The HASTUS system: New algorithms and modules
for the 90s. In Desrochers and Rousseau [1992], pages 17-29.

Hammer, P. L., Johnson, E. L., and Peled, U. N. (1975). Facets of regular 0-1 polytopes.
Mathemalical Programming, pages 179 — 206.

HanseCom. HanseCom GmbH. Information available via WWW at www.hansecom.com.

Harris, P. M. J. (1973). Pivot selection methods of the Devex LP code. Mathematical
Programming, 15:1-28.

Hartley, T. (1981). A glossary of terms in bus and crew scheduling. In Wren [1981], pages
353-359.

Helgason, R. V. and Kennington, J. L. (1995). Primal Simplex Algorithms for Minimum
Cost Network Flows. In Ball, Magnanti, Monma, and Nemhauser [1995b], chapter 2,
pages 85-133.

HHA. Hamburger Hochbahn AG. Information available via WWW at www.hochbahn.com.

Hiriart-Urruty, J.-B. and Lemaréchal, C. (1993). Convex Analysis and Minimization
Algorithms I: Fundamendials. Springer Verlag.

Hoffstadt, J. (1981). Computerized vehicle and driver scheduling for the Hamburger
Hochbahn Aktiengesellschaft. In Wren [1981], pages 35-52.

IVU. IVU Gesellschaft fiir Informatik, Verkehrs- und Umweltplanung mbH. Information
available via WWW at www.ivu-berlin.de.

wwwnecinjneccomhomepges/avg/of/softhtm
wwwzibde
wwwecomcom
wwwhochbhncom
w.ivuerinde

166 BIBLIOGRAPHY

Johnson, D. S. and McGeoch, C. C., editors (1993). Network Flows and Matching, vol-
ume 12 of DIMACS: Series in Discrete Mathematics and Theoretical Computer Sci-
ence. American Mathematical Society.

’

Klein, P., Plotkin, S., Stein, C., and Tardos, E. (1994). Faster approximation algorithms
for the unit capacity concurrent flow problem with applications to routing and finding
sparse cuts. SIAM J. Comput., 23(3):446-487.

Kokott, A. (1996). Lagrange-Relaxierungen fiir das Fahrzeugumlaufplanungsproblem.
Master’s thesis, Technische Universitit Berlin. In German.

Kokott, A. and Lobel, A. (1996). Lagrangean relaxations and subgradient methods
for multiple-depot vehicle scheduling problems. Preprint SC 96-22, Konrad-Zuse-
Zentrum fiir Informationstechnik Berlin. Available via WWW at www.zib.de.

Kretschmann, C. and Lawerentz, R. (1997). Produktmanagement im OPNV. Der
Nahverkehr, 1-2/97:8-13. In German.

Lamatsch, A. (1988). Wagenumlaufplanung bei begrenzten Belriebshofkapazititen. PhD
thesis, Universitit Fridericiana zu Karlsruhe (TH). In German.

Lamatsch, A. (1992). An approach to vehicle scheduling with depot capacity constraints.
In Desrochers and Rousseau [1992].

Larsen, A. and Madsen, O. B. G. (1997). Solving the multiple vehicle scheduling problem
in a major scandinavian city. Technical Report IMM-REP-1997-10, IMM Department
of Mathematical Modelling, Technical University of Denmark.

Lawler, E. L. (1976). Combinatorial Optimization: Networks and Matroids. Holt, Rinehart
and Winston, New York.

Leighton, T., Makedon, F., Plotkin, S., Stein, C., Tardos, E., and Tragoudas, S. (1991).
Fast approximation algorithms for multicommodity flow problems. In Proceedings of
the Twenty Third Annual ACM Symposium on Theory of Computing.

Leong, T., Shor, P., and Stein, C. (1993). Implementation of a combinatorial multicom-
modity flow algorithm. In Johnson and McGeoch [1993].

Lébel, A. (1996a). Solving large-scale real-world minimum-cost flow problems by a net-
work simplex method. Preprint SC 96-7, Konrad-Zuse-Zentrum fiir Informationstech-
nik Berlin. Available via WWW at www.zib.de.

Lobel, A. (1997a). Experiments with a Dantzig-Wolfe decomposition for multiple-depot
vehicle scheduling problems. Preprint SC 97-16, Konrad-Zuse-Zentrum fiir Informa-
tionstechnik Berlin. Available via WWW at www.zib.de.

Lébel, A. (1997b). MCF Version 1.0 — A network simplex implementation. Available for
academic use free of charge via WWW at www.zib.de.

Lobel, A. (1997c). Recent computational developments for large-scale multiple-depot
vehicle scheduling problems. Preprint SC 97-17, Konrad-Zuse-Zentrum fiir Informa-
tionstechnik Berlin. Available via WWW at www.zib.de.

Lobel, A. (1997d). Vehicle scheduling in public transit and Lagrangean pricing. Revised

Preprint SC 96-26, Konrad-Zuse-Zentrum fiir Informationstechnik Berlin. Available
via WWW at www.zib.de.

wwwzibde
wwwzibde
wwwzibde
wwwzibde
wwwzibde
wwwzibd

BIBLIOGRAPHY 167

Lébel, A. and Strubbe, U. (1996). Wagenumlaufoptimierung — Methodischer Ansatz und
praktische Anwendung. In Heureka ’96: Optimierung in Verkehr und Transport,
pages 341-355. Forschungsgesellschaft fiir Straflen- und Verkehrswesen, Kéln. In
German. Available as ZIB preprint SC 95-38 via WWW at www.zib.de.

Luenberger, D. G. (1989). Linear and nonlinear programming. Addison-Wesley, second
edition.

Lustig, 1. J. (1990). The influence of computer language on computational comparisons:
An example from network optimization. ORSA Journal on Computing, 2(2):152-161.

Mesquita, M. and Paixdo, J. (1992). Multiple depot vehicle scheduling problem: A new
heuristic based on quasi-assignment algorithms. In Desrochers and Rousseau [1992].

Mesquita, M. and Paixdo, J. M. P. (1997). Exact algorithms for the multi-depot vehicle
scheduling problem based on multicommodity network flow type formulations. In 7th
International Workshop on Computer-Aided Scheduling of Public Transport, pages
269-290. Center for Transportation Studies, MIT, Cambridge, USA.

Mojsilovic, M. (1983). Verfahren fiir die Bildung von Fahrzeugumldufen, Dienstpldnen
und Dienstreihenfolgeplianen. In Heureka 83 — Optimierung in Transport und Verkehr,
pages 178-191. Forschungsgesellschaft fiir Straflen- und Verkehrswesen, Kéln.

Nemhauser, G. L., Rinnooy Kan, A. H. G., and Todd, M. J., editors (1989). Optimization,
volume 1 of Handbooks in Operations Research and Management Science. Elsevier
Science B.V., Amsterdam.

Nemhauser, G. L. and Wolsey, L. A. (1988). Integer and Combinatorial Optimization.
John Wiley & Sons, Inc.

Padberg, M. W. (1973). On the facial structure of set packing polyhedra. Mathematical
Programming, 5:199-215.

Papadimitriou, C. H. and Steiglitz, K. (1982). Combinatorial Optimization: Algorithms
and Complexity. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Petzold, P. and Schiitze, P. (1995). Integrated data processing for public transport in
Hamburg. In Daduna, Branco, and Paixdo [1995].

.

Plotkin, S., Shmoys, D. B., and Tardos, E. (1991). Fast approximation algorithms for
fractional packing and covering problems. In 32nd Annual Symposium on Foundations
of Computer Science, pages 495-504. IEEE Computer Society Press.

Polyak, B. T. (1967). A general method of solving extremum problems. Sowviet Mathe-
matics Doklady, 8:593-597. English translation.

Ribeiro, C. C. and Soumis, F. (1994). A column generation approach to the multiple-depot
vehicle scheduling problem. Operations Research, 42(1):41-52.

Ryan, D. M. and Foster, B. A. (1981). An integer programming approach to scheduling.
In Wren [1981], pages 269-280.

Schmidt, V. A. (1997). Auf Sparkurs zum Ziel. Rheinischer Merkur, number 39, page 37,
26th September 1997. In German.

Schrijver, A. (1989). Theory of Linear and Integer Programming. John Wiley & Sons
Ltd., Chichester.

wwwzibde

168 BIBLIOGRAPHY

Schiitze, P. and Vélker, M. (1995). Recent developments of HOT II. In Daduna, Branco,
and Paixdo [1995].

Sol, M. (1994). Column Generation Techniques for Pickup and Delivery Problems. PhD
thesis, Technische Universiteit Eindhoven.

Soumis, F. (1997). Decomposition and Column Generation. Chapter 8 in Dell’Amico, M.,
Maffioli, F., and Martello, S., editors (1997), Annotated Bibliographies in Combina-
torial Oplimizalion. John Wiley & Sons Ltd, Chichester.

Thienel, S. (1995). ABACUS A Branch-And-CUt System. PhD thesis, Universitit zu
Koln.

VDV (1992). Das Fachwort im Verkehr: Wirtschaftliche Begriffe des OPNV, Wérterbuch
deutsch, englisch, fanzosisch. Alba Fachverlag GmbH & Co. KG, Diisseldorf, Ger-
many. Verband Deutscher Verkehrsunternehmen (VDV), Kéln.

Veldhorst, M. (1993). A bibliography on network flow problems. In Du and Pardalos
[1993], pages 301-331.

VHH. Verkehrsbetriebe Hamburg-Holstein AG. Information available via WWW at
www.oepnv.de/vhh.

Wolsey, L. A. (1975). Faces of linear inequalities in 0-1 variables. Mathematical Program-
ming, 8:165 — 178.

Wren, A., editor (1981). Computer scheduling of public transport: Urban passenger vehicle
and crew scheduling. North-Holland Publishing Company.

wwwoepnv.dehh

Index

1-path inequality, 94
2-cut, inequality, 92
3SAT, 35
ONE-IN-THREE, 35
affine
combination, 6
hull, 6
rank, 6
subspace, 6
affinely
dependent, 6
independent, 6
approximation algorithms, 74
arc, 12
backward, 21
basic, 58, 59
loop, 12
nonbasic, 58
arc flow, 14, 104
backward arc, 21
basic
solution, 58
variables, 58
basic arc, 59
basis
matrix, 58
structure, 58
artificial, 61
dual feasible, 58
initial, 61
optimal, 58
primal feasible, 58
block, 20
branch-and-bound, 109
branch-and-cut, 97

branch-and-cut-and-price, 103, 110

branch-and-price, 109
ceiling, 6
child, 59
circuit, 13
circulation, 24
closed, 12
cluster first — schedule second, 47, 51, 81
column generation, 62
column generation, 75
compatible, 20
concurrent scheduler, 53
cone, 6

polyhedral, 7
conic

combination, 6

hull, 6
connected, 12
convex

hull, 6

combination, 6
convex set, 6
cost, 20

reduced, 58
cover, 95

minimal, 95
cutting plane approach, 98
cycle flow, 14, 104
Dantzig-Wolfe decomposition, 103
dead running trips, 18
dead-head trip, 18
decision problem, 34
decomposition, 103
degree, 12
demand node, 13
dependent

affinely, 6

170

linearly, 6
depot, 17
depot group, 17
dicycle, 13
dicycle flow, 14
digraph, 12
dimension, 6
full, 6
dipath, 12
dipath flow, 14
directed
cycle, 13
graph, 12
path, 12
duty, 17
endnodes, 12
head, 12
initial, 12
tail, 12
terminal, 12
equality set, 8
extended 2-cut inequality, 93
extended minimal cover inequality, 95
face, 7
facet, 8
feasible solution, 8
fleet, 17
floor, 6
flow
arc, 14, 104
capacity, 13
conservation, 13
rank, 57
cycle, 14, 104
dicycle, 14
dipath, 14
feasible, 13
path, 14
flow condition, 24
full-dimensional, 6
garage, 17
halfspace, 7
head, 12

hull

affine, 6
conic, 6
convex, 6
linear, 6

hyperplane, 7
identity matrix, 7
incidence vector, 6
incident, 12

from, 12
to, 12

indegree, 12
independent

affinely, 6
linearly, 6

inequality

1-path, 94
2-cut, 92

extended 2-cut, 93
extended minimal cover, 95
minimal cover, 95

initial endnode, 12
inner product, 5

integer linear program, 10

INDEX

integer linear programming problem, 10

integer master problem, 104

internal node, 12
isolated node, 12
Lagrange

multipliers, 10

Lagrangean

Lagrangean pricing, 73, 76
Lagrangean phase, 78
Lagrangean relaxation, 52

dual, 10
relaxation, 10

length, 12

line

17

linear

combination, 5
hull, 6
subspace, 6

linear program, 8

INDEX

linear programming problem, 8
linear programming relaxation, 10
linearly
dependent, 6
independent, 6
loop, 12
lower integer part, 6
LP
restricted, 75
LP relaxation, 10
LP-plunging, 54, 85
maintenance and storage facility, 17
master problem, 105
restricted, 107
MCF

network simplex implementation, 51,

57, 70
MDVSP polytope, 90
minimal cover, 95
minimal cover inequality, 95
minimum-cost flow problem, 13
multicommodity flow problem, 15
network
restricted, 62
network simplex code MCF, 57, 70
network simplex algorithm, 57
basis structure, 58
artificial, 61
initial, 61
column generation, 62
data structures, 59
pricing, 60
multiple partial, 61
network simplex code MCF, 51
node, 12
child, 59
demand, 13
internal, 12
isolated, 12
potential, 14
predecessor, 59
root, 57
supply, 13

transshipment, 13
node imbalance, 13
node potential

value, 58
nonbasic variables, 58
objective function, 8
ONE-IN-THREE 3SAT, 35
optimal solution, 8
origin, 12
outdegree, 12
parallel arcs, 12
passenger trip, 17
path, 12

endnodes, 12

internal nodes, 12

length, 12

origin, 12

terminus, 12
path flow, 14
polyhedral cone, 7
polyhedron, 7

bounded, 7

cone, 7

facet, 8

halfspace, 7

hyperplane, 7

vertex, 8
polytope, 7
PORTA, 91, 106
predecessor, 12, 59
pricing, 60

Lagrangean, 73, 76

multiple partial, 61
pricing problem, 107
pull-in trip, 18
pull-in-pull-out trip, 18
pull-out trip, 18
rank, 6

affine, 6

matrix, 7
reduced cost, 58
reduced costs, 75
relaxation

171

172

Lagrangean, 10
restricted
LP, 75
master problem, 107
restricted network, 62
RLP, 75
initial, 77
root node, 57
route, 46
routing problem, 46
schedule, 46
schedule — cluster — reschedule, 51, 82
schedule first — cluster second, 47, 51, 82
scheduled run, 17
scheduling problem, 46
service frequency, 17
set partitioning, 54
single depot case, 31
single-commodity flow problem, 15
spanning tree, 13
standard phase, 78
subgradient, 68
successor, 12
supply node, 13
tail, 12
terminal endnode, 12
terminus, 12
timetable, 17
timetabled trip, 17
transposition, 5
transshipment node, 13
tree, 13
trip, 17
dead running, 18
dead-head, 18
user-defined, 20
passenger, 17
pull-in, 18
pull-in-pull-out, 18
pull-out, 18
timetabled, 17
unloaded, 18
compatible, 20

INDEX

user-defined, 20

tripper, 20
unloaded trip, 18
upper integer part, 6
user-defined dead-head trip, 20
user-defined unloaded trip, 20
valid, 7
variables

basic, 58

nonbasic, 58
vehicle

route, 46

schedule, 46
vehicle schedule, 20
vertex

polyhedron, 8
weight, 20

Curriculum Vitae

Andreas Lobel

geboren am 28. August 1967 in Memmingen.

1973-1979:
1979-1983:
Juni 1983:
1983-1985:
Juni 1985:
1985-1987:
1987-1992:

Januar 1992:
seit 1992:

Grundschule in Memmingen
Wirtschaftschule Memmingen
Mittlere Reife
Berufsoberschule Memmingen
Fachgebundene Hochschulreife
Wehrdienst

Studium der Wirtschaftsmathematik an der
Universitat Augusburg

Diplom

Wissenschaftlicher Angestellter am
Konrad-Zuse-Zentrum fiir Informationstechnik
Berlin (ZIB), Abteilung Optimierung.

