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Abstract

In this paper, we investigate the interconversion processes of the ma-
jor flame retardant — 1,2,5,6,9,10-hexabromocyclododecane (HBCD) — by
the means of statistical thermodynamics based on classical force-fields.
Three ideas will be presented. First, the application of classical hybrid
Monte-Carlo simulations for quantum mechanical processes will be justi-
fied. Second, the problem of insufficient convergence properties of hybrid
Monte-Carlo methods for the generation of low temperature canonical en-
sembles will be solved by an interpolation approach. Furthermore, it will
be shown how free energy differences can be used for a rate matrix com-
putation. The results of our numerical simulations will be compared to
experimental results.
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Introduction

Molecular dynamics simulations based on classical force fields can be used to
determine the rate of conformational changes inside the conformational space
Q) of small molecules. However, the classical description of molecular motion
fails if molecules also partially change their chirality. This is a quantum me-
chanical process. The timescale of such an interconversion process is often far
away from the step length of quantum mechanical simulations. In this paper, a
simple example for such a situation is presented. The corresponding molecule,
1,2,5,6,9,10-hexabromocyclododecane (HBCD), is shown in Figure 1. We will
mainly present three ideas in this paper:

1. It will be explained in Section 1, how classical simulation methods can be
used to investigate the interconversion processes of HBCD.

2. It will be shown in Section 4, how the trapping problem of low-temperature
molecular simulations can be solved by a reweighting approach.

3. In Section 5 it is presented, how free-energy differences and a steady state
approximation can be used for a rate matrix computation.

Our goal was to find a classical approach for the estimation of interconversion
rates making simulation as simple as possible and, therefore, reproducible. The
presented ideas may be the basis for further developments in this field. Our mo-
tivation for the use of thermodynamical methods for the investigation of HBCD
was the poor prediction results based on single-point quantum chemical calcula-
tions. For these calculations, i.e. dipole momentum, polarizability, HOMO and
LUMO, we used global minimal potential energy conformations from converging
high-temperature simulations (as described below) of the minus enantiomers of
each of the three diastereomers in Figure 1. «- and y-HBCD have the prop-
erty of ¢2 symmetry which is missing for S-HBCD. By hint of this property we
calculated optimal geometries for each diastereomer, using Gaussian03 with a
Becke3LYP/6-314+G* set of basis functions. Unfortunately, there exists no cor-
relation between the predicted water solubility (based on dipol momenta and
polarizability and confirmed by similar results of other publications [1, 32]) with
experimental results [22]. This observation leads us to the assumption that it
is hardly possible to generalize the output from a single-point calculation based
on one conformation to a whole ensemble of conformations, as it usually occurs
in reality. It is necessary to consider a molecular system as an ensemble of many
different states, each holding (slightly) different molecular properties. In this ar-
ticle, transition rates are not estimated using saddle-point energy computations,
but they are derived from classical thermodynamics simulations.

1 The isomerism of HBCD and the interconver-
sion mechanism

HBCD is one of the major flame retardant additives to plastics and it is increas-
ingly found in trace amounts in the environment, biota, and humans [6, 7, 8, 28].
Therefore, HBCD is currently one of the emerging environmental analytes of in-
terest. There is evidence for activity of HBCD as endocrine disruptor [33] and
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Figure 1: Different stereoisomers of technical HBCD. Top row from left to right:
(+)-a-HBCD, (+)-8-HBCD, (+)-v-HBCD. Bottom row from left to right: (—)-
a-HBCD, (—)-4-HBCD, (—)-+-HBCD.
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Figure 2: Interconversion mechanism for HBCD. The interconversion is only
possible if the two bromine atoms are in anti-position.

an EU risk assessment is under way. Technical HBCD consists mainly of three
diastereomeric pairs of enantiomers (Figure 1). The absolute configurations of
enantiomers were only recently correlated with their order of chromatographic
elution [27]. In the absence of a chiral environment, the (—)-enantiomers be-
have in the same way as the (+)-enantiomers. Therefore, in the followings we
only investigate the (+)-enantiomers. The results for the (—)-enantiomers (e.g.,
in Tables 5-7) can be derived by simply changing sign. We are interested in
the interconversion of the HBCD stereoisomers shown in Figure 1 because it
is important to understand their behavior in technical processes and gas chro-
matographic analysis. Furthermore, the diastereomeric and enantiomeric com-
position in biological samples differ from that of technical mixture and the bi-
ological induced interconversion of HBCD at ambient temperature is discussed
[28]. The chemical mechanism of the transition between these structures is
shown in Figure 2: Two vicinal bromine atoms change their positions with two
hydrogen atoms under inversion of absolute configurations. This is a quantum
mechanical process. The interconversion can only take place, if the bromine
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Figure 3: Possible interconversion reactions of the HBCD isomers connected to
the three sets of vicinal bromine atoms.

atoms are in anti-position. Once the bromine atoms are in anti-position, the
rate of the interconversion process can be seen as largely independent from the
structure of the rests R in Figure 2. Such a reaction has been denoted as cyclic-
concerted mechanism and was so far only investigated on variously substituted
1,2-dibromocyclohexane systems [2, 3, 4, 16, 25]. In case of HBCD there are
three sets of vicinal bromine atoms each being able to undergo the concerted
interconversion and at the same time mutually influencing the conformational
alignment of the cyclododecane ring and resulting in diastereomer-specific distri-
bution of conformers. It was shown experimentally [23, 29, 19] that a mixture
containing a-, (-, and v-HBCD in any composition interconverts towards an
equilibrium which is dominated by a-HBCD. The reaction pathways are de-
picted in Figure 3. This leads to the following idea, that classical simulation
can be used in order to characterize the interconversion processes qualitatively.
Via computer simulation and for every dihedral angle (C1C2, C5C6, C9C10)
in Figure 1, we will determine the part of the configurational space of (+)-
a-HBCD, (+)-6-HBCD, and (4)-v-HBCD for which the dihedral angle is in
anti-position compared to the part of the configurational space, where the an-
gle is in gauche-position. These results are presented in terms of free energy
differences in Tables 5-7. The more the anti-position is preferred, the faster the
conversion at the corresponding dihedral angle will occur. The basis for our
simulations will be the Boltzmann distribution (canonical ensemble) of states.
This is the most likely distribution of states at constant temperature, constant
number of particles and constant volume. Since the interconversion of neat
HBCD only takes place above its melting point at about 430 K, this will be the
temperature of interest. As an approximation, the simulations in this paper are
performed for the vacuum.

2 Experimental results

The experimental set-up is discussed in detail elsewhere [26]. In brief, pure (+)-
~v-HBCD is exposed to 160°C for different periods between two and 60 minutes
and then the concentrations of all six stereoisomers (Figure 1) are determined for
each point in time by liquid chromatography with diode array detection using
a chiral column. Since no other compound including different HBCD isomers
were detected, the sum concentration of the six HBCD stereoisomers measured
at a particular time was set to 100% for each point in time. Then, the molar
fraction of each diastereomer was calculated as mol-(%). The Mathematica 4.0
software package from Wolfram Research, Inc. (USA) was used for a param-
eter estimation of the kinetic constants. For this purpose, the time dependet
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Figure 4: Interconversion experiment starting with 100% (+4)-v-HBCD.



concentration vector z € IR® is modelled as a solution of a rate equation

da(t) T
— = t 1
10— Q7). (1)
where @ € IR%%% is the corresponding rate matrix and z is the vector of the
concentrations of the six species of Figure 1 (in the corresponding order: (+)-c,
(+)-8, (+)-7, (=)-a, (=)-B, (=)-7). The least squares fit of the experimental
data correspods to the following rate matrix result

—0.1608  0.0188 0.1420 0 0 0
0.1200 —1.3900 0 0 1.1000 0.1700
1.5000 0 —1.6460 0 0.1460 0
exp. __ .
Q = 0.001 0 0 0 —0.1608  0.0188 0.1420
0 1.1000 0.1700 0.1200  —1.3900 0
0 0.1460 0 1.5000 0 —1.6460

The corresponding time-dependend concentration plots are shown in Figure 4.

3 Hybrid Monte-Carlo simulation

In the Boltzmann distribution of states at temperature T', the probability m(q)
for a conformation g € 2 of the conformational space €2 is proportional to

7(q) o< exp(—B Vot (q)) (2)

with the inverse temperature

B =1/(T % 0.008314403

J

— ‘K):>ﬂo<1/T. (3)
In (2), Vpor : 2 — IR is the potential energy of the conformational states. For
our classical simulations, this function is given by the Merck Molecular Force
Field which has been designed for small molecules like HBCD [17, 18]. In or-
der to generate a set of states (a trajectory of states) distributed according to
(2), we applied the hybrid Monte-Carlo method (HMC) [9, 30]. This method
is a combination of a Markov Chain Monte-Carlo approach with short time (78
fs using a velocity verlet integrator [12] with a time-step of 1.3 fs) molecular
dynamics (MD) simulations. The initial momenta for the MD part of the al-
gorithm are taken from the Boltzmann-distribution of momenta at the given
temperature. Unfortunately, the HMC-method rarely overcomes high poten-
tial energy barriers [10, 11]. Only if the kinetic energy of the initial momenta
is high enough, the HMC-method is able to reach the important parts of the
conformational space. For this reason, we have simulated the three molecules
at an artificial high temperature 7' = 1500 K with Sy = 0.08018 mol/kJ. In
a first computer experiment, we compared the results of five different HMC-
samplings, each of them consisting of 10,000 steps. The proposed Gelman-
Rubin convergence indicator (convergence value = 1.1; observables = sine and
cosine of dihedral angles) was not reached after this number of sampling steps
[13, 14]. In addition, the symmetry of the ~-structure was not reflected by the
sampling data. Therefore, we performed a HMC-sampling with 100,000 steps.
In this case, the convergence indicator was reached and the symmetry of the



a— and the y—structure could also be found in the sampling data. We also
performed samplings with 5 x 100,000 steps for each of the (—)-structures and
found the same symmetries and results. The bad convergence properties lead
us to an academic question: Due to the low convergence rate, we can conclude
that there are dynamical metastabilities inside the ring structure. This may
be a reason for non-existence of stereoisomer-specific interconversion rates. In
order to write down interconversion rates from, e.g., (+)-a-HBCD to another
stereoisomer of HBCD, we have to assume, that each isomer can be seen as one
kinetic species. But each metastable subset of the conformational space of, e.g.,
(4+)-a-HBCD may have a different dynamical behavior (and may, therefore, be
an own species from the kinetic point of view). Only, if the timescale of con-
formational changes within the conformational space of the HBCD isomers is
much shorter than the timescale of interconversion, the postulation of intercon-
version rates makes sense. From experiments we can conclude that the timescale
of interconversion is in the range of seconds. This is the timescale of protein
folding. HBCD is much smaller and more flexible than a protein. This means,
that the definition of interconversion rates is reasonable. We are interested
in the thermodynamics of the molecules at low temperature T = 430 K with
B1 = 0.27971 mol/kJ. Thus, in a first step, we derive thermodynamical values
from the HMC sampling for 7" = 1500 K. In a second step, we reweight these
quantities to low temperature. One thermodynamic value is the free energy A
of the system. It is given by the partition function

A(B) = —%m (/Qexp(—ﬁ Vot (q)) dQ)~ (4)

In equation (4), the kinetic energy part of A is missing. This simplification is
possible, because we are only interested in free energy differences. Furthermore,
potential and kinetic energy are separable and the kinetic energy part is iden-
tical for the observed subsystems. The integral in (4) can not be approximated
by numerical methods. But ratios of integrals over certain subsets of 2 can be
approximated, i.e. free energy differences can be computed. For a given dihedral
angle 0, we are interested in the portion of states that can be seen as anti com-
pared to the portion of states that are gauche with respect to 6. In the present
application, we defined dihedral angles 120° > 68 > —120° as gauche. With
this separation of states, we have determined free energy differences from the
HMC-sampling by counting the different states Ny and Ngguche Tespectively
and applying

AgaA(B) ~ —51 (N—h) (5)

The results are given in Tables 1-3. The more negative AgqA the more the
gauche states are preferred. Another interesting value can be derived from the

(+)-a-HBCD (Voor) = 921
C1C2 ANgaA =17 | Aga(Vyor) =
C5C6 AgaA = -40 | Aga(Vyor) = -26
C9C10 AgeA=-40 | Agy(Vyor) =

Table 1: Free energy differences Ay, A, mean potential energy (V,o¢) and mean
potential energy differences Agq(Vpor) of (+)-a-HBCD at T=1500 K in kJ/mol.



(+)-6-HBCD (Vpot) = 931
C1C2 AgoA =14 | Ago(Vpot) = 0

C5C6 AgaA =-36 | Aga(Viot) = -20
C9C10 AgaA =-34 | Ao (Vo) = -17

Table 2: Free energy differences Ay, A, mean potential energy (V,or) and mean
potential energy differences A 3o (Vyor) of (4)-6-HBCD at T=1500 K in [kJ/mol].

(+)-v-HBCD (Vpot) = 926
C1C2 AgA =10 | Aya(Vpor) = 5
C5C6 AgaA =41 | Ago(Viyor) = -28
C9C10 AgaA =41 | Ao (Vo) = -27

Table 3: Free energy differences Ay, A, mean potential energy (Vo) and mean
potential energy differences A 4 (Vpot) of (4+)-y-HBCD at T=1500 K in [kJ/mol].

simulations: The mean potential energy value

_ exp(_ﬁ Vpot (Q))
Wi 9) = | Vaorla) o g e (©
The inner energy (Vio) of the system is the sum
<V;50t> - <vaot> + <Vk7,n> (7)

of the mean potential and the mean kinetic energy. Numerically, (Vpo:) can be
approximated by the mean of the potential energy values of the HMC-sampling.
Mean potential energy differences can also be computed if we split the set of
states into anti- and gauche-conformations. The corresponding results are also
presented in the Tables 1-3.

4 Reweighting formula

In a second step, we have to reweight the sampling data from the high-temperture
sampling with 7' = 1500 K to T' = 430 K. The term “reweighting” is mostly
used for the following method: A statistical weight is assigned to every gener-
ated data-point from the high-temperature sampling. One tries to adjust these
weights in order to approximate the low-temperature distribution of energies.
This procedure often fails: In a high temperature sampling the potential energy
values are distributed in a broader range with a higher mean value compared to
a low-temperature sampling, see Figure 5. Most of the sampling points have a
high potential energy value. If we aim at a reweighting of the sampling points
in order to get the low-temperature distribution, the low-energy points of the
high-temperature sampling are weighted up statistically. Therefore, point-wise
reweighting schemes only make use of the sampling points located in the small
overlap region of the high-temperature and the low-temperature distribution.
The occupation of this region depends on the input parameters of the algorithms
very sensitively. The common opinion is that reweighting is only possible for
sufficiently overlapping distributions. This opinion led to many sophisticated
(but not simple) sampling methods in the past. The most famous one is replica
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Figure 5: The distribution of the potential energy values for different tempera-
tures. Solid line: High temperature. Dashed line: Low temperature.

exchange [31]. Other examples can be found in modern textbooks [5]. In our
case, we will see that it is not important to approximate the complete distri-
bution of states at the lower temperature. It is sufficient to know, how the
mean value in Figure 5 depends on the temperature. Instead of a point-wise
reweighting scheme, we present a thermodynamical approach in this work. For
the purpose of simplicity we set U := (Vjot) for the mean potential energy in
the followings. As an approximation, we assume that the mean potential energy
U depends linearily on the temperature T of the system. In this case AU(S)
goes with 1/8 due to (3), i.e

(AU(Bo) — AU(o0)) Bo
B

Since the mean kinetic energy (Vi) in (7) depends linearly on the temperature,
the assumption (8) is equivalent to a linear model for the inner energy (V;,:) of
the system. Furthermore, assuming a linear model for the inner energy in reality
would mean that the heat capacity Cy is a temperature-independend constant.
This assumption is not true, but mostly according to quantum effects which are
not part of the classical model used in this work. From the classical viewpoint,
(8) is exact, if the potential energy Vp, is a quadratic function. It is a good
approximation, if the conformation space {2 can be decomposed, such that each
part of this decomposition has a Gaussian-like Boltzmann distribution. This
is a widely used assumption in many applications. More details can be found
in Appendix A. In order to apply (8), we have to compute the limit AU(c0).
With increasing 3, the Boltzmann-distribution more and more focusses on the
global optimum of the system. In our case, we have split our system into two
parts: the anti- and the gauche-states. The limit of AU for increasing [ is
equivalent to the difference Aganoot of the lowest potential energy values of the
two subsystems, i.e. Ag,Vy, = AU(c0). The entries in Table 4 are the results of
local minimizations (using the conjugate gradient method [21]) applied to each
point of the trajectories of the given high-temperature HMC-samplings. The
gauche-position of the bromine atoms is always preferred. This also corresponds
to the experiment: All known crystal structures of HBCD stereoisomers display
all-gauche configuration of all vicinal bromine atoms [27, 19, 20]. The mean

AU(B) = + AU(0). (8)
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(+)-a-HBCD | gauche | anti | Ay V.2

pot
C1C2 539 | 253 | -14
C5C6 239 | 272 | 33
C9C10 239 | 272 | 33
(+)-3-HBCD | gauche | anti Aga‘/;)oot
C1C2 249 | 264 | -15
C5C6 249 | 285 | -36
C9C10 249 | 276 | 27
(+)-v-HBCD | gauche | anti AganOot
C1C2 257 257 0
C5C6 257 | 275 | 18
C9C10 957 | 275 | -18

Table 4: Lowest potential energy value Vpoot for the anti and gauche conforma-

tions and their differences AgoV,%, in kJ/mol.

potential energy values (V) according to a linear model (8) are presented in
the Tables 5-7. In order to interpret reaction rates, we are not interested in
the mean potential energy values but in free energy differences Ay, A(5). The
(O-dependency of A can be calculated by differentiating (4) and inserting (6):
d 1 1
—AGAB) = —=A A -

Using the linear model (8) for U provides

a _ 1 (AU(B0) = AU(0)) fo | AU(c0)
dﬂAgaA(ﬁ)_ 3 72 + 5

The orinary differential equation (10) can be solved analytically, such that

Aga{Vpot) (9)- 9)

AgaA(B) +

(10)

_ 1

AgaA(B) 3

(9 0) AU (o) +1n () 5o (AU(B)~ AU (o) + o A, A (o)
(1)

for an initial value AgqA(By) which can be found in Tables 1-3. Via formula
(11) and the corresponding values for AU (), AU (c0), and AgqA(Fo) the free
energy differences can be computed for 430 K. The results are given in the
Tables 5-7. In contrast to a point-wise reweighting scheme, formula (11) is
robust against small perturbations of the input data.

5 Rate matrix computation

In Tables 5-7, the results of the reweighting formula are presented. The most
important questions are: How do these simulation results fit to the experimen-
tal results? Do they reflect the qualitative behavior of the HBCD-system? In
order to answer these questions, the meaning of the simulation results for the
qualitative behavior of the HBCD-system will be visualized in the followings.
From a mathematical point of view, we will apply the Arrhenius equation [15]:

k o< exp(—f AggA). (12)

11



(+)-a-HBCD

(Voor) = 435 kJ /mol

interconv. to ...

C1C2
C5C6

C9C10

AggA =-13 kJ/mol
AgeA = -33 kJ /mol
AggA =-32 kJ/mol

(+)--HBCD
(+)-B-HBCD
(+)-B-HBCD

Table 5: Free energy differences AyqA and mean potential energy (Vo) of

(+)-a-HBCD at T=430 K.

(+)-B-HBCD | (Vi) = 445 kJ/mol | interconv. to ...
Cic2 Ao A=-9kJ/mol | (-)-3-HBCD
C5C6 AgaA = -30 kJ/mol | (—)-y-HBCD
C9C10 AgeA =-25kJ/mol | (4+)-a-HBCD

Table 6: Free energy differences Ay, A and mean potential energy (Vp,) of
(+)-6-HBCD at T=430 K.

In this approach, the reaction rate k£ of an interconversion is propotional to
the Boltzmann expression of the activation energy. With A,gA4 = —Ay, A, the
free energy differences in Tabels 5-7 can be used to estimate these activation
energies. On the basis of these considerations, a rate matrix @ € IR6*6 will be
constructed for the six species of Figure 1 (in the corresponding order: (+)-c,
(+)-8, (+)-y, (=)-a, (=)-8, (=)-y). The model is based on the rate equation
(1) with the concentration vector z € IRS. It is known from theory [24], that
the rate matrix @ of this Markov process can be written in the form

Q= R(K —id), (13)
where id is the six-dimensional unit matrix, K € IR%*% is the embedded Markov
chain and R € IR®*% is a diagonal matrix of rate factors. On the basis of the
free energy differences and (12), the embedded Markov chain can be computed
by inserting the values of the Arrhenius equation into a matrix and rescaling
the rows, such that the row sums are 1. For HBCD, it has to be taken into
account that there are sometimes two different ways for an interconverion from
one stereoisomer to another (muliplication of k with factor 2):

0 0.0074 0.9926 0 0 0
0.0112 0 0 0 0.9860 0.0028

K- 0.9990 0 0 0 0.0010 0
0 0 0 0 0.0074 0.9926

0 0.9860 0.0028 0.0112 0 0

0 0.0010 0 0.9990 0 0

For the computation of the rate factors, it can be used that the equilibrium
concentration of the six species is a steady state of equation (1). We will not
use experimental data in order to determine the steady state vector 7 € IRS.
The equilibrium concentrations can be estimated by the mean potential energy
values in Tables 5-7 and the Boltzmann expression (2) instead (replace Vjo: by
(Vipot))- The result is

7T = (0.4626, 0.0282, 0.0092, 0.4626, 0.0282, 0.0092).

12



(+)-v-HBCD | (Vpot) = 449 kJ/mol | interconv. to ...
C1C2 AgeA=-1kJ/mol | (+)-a-HBCD
C5C6 AgoA = -28 kJ/mol | (—)-B-HBCD
C9C10 AgaA = -28 kJ/mol | (—)-5-HBCD

Table 7: Free energy differences Ay, A and mean potential energy (Vi) of
(+)-v-HBCD at T=430 K.

Up to an unknown scaling factor g > 0, there is a unique solution for R, for
which 7 is the steady state of @@ on the basis of K and (13). This solution
r € IRS is given by the linear equation

r" D(K —id) =0, (14)

where K is given by the Arrhenius approximation, D is the diagonal matrix
D = diag(m) of the given steady state solution, and r is the unkown vector of
rate factors, with R = diag(r). In our case, this means

—0.0200  0.0001  0.0199 0 0 0
0.0022 —0.1978 0 0 0.1950  0.0005
theo, 0.9990 0 —1.0000 0 0.0010 0
@ =p 0 0 0 —0.0200 0.0001  0.0199
0 0.1950  0.0005  0.0022 —0.1978 0
0 0.0010 0 0.9990 0 —1.0000

For more details about the determination of @, see also [35]. For this matrix
@, a kinetic simulation of (1) is shown in Figure 6. p = 0.001 has been fixed
“by eye”. u is not available via classical methods because of the unknown in-
terconversion rate (see Figure 2). The kinetic simulation has been performed
for the initial condition of the kinetic experiment (Figure 4). Although there
have been so many sources of error (classical approach, vacuum, Boltzmann dis-
tribution, reweighting to 430K, Arrhenius equation, ..., see Appendix B), the
correct qualitative behavior of the system can be seen in the plots: The different
increase of the (4)-8-HBCD and the (—)-5-HBCD concentration. The initial
increase of the (4)-a-HBCD concentration far above its equillibrium value. The
low initial concentrations of (—)-a-HBCD and (—)-y-HBCD. Thus, we can con-
clude that the numerical simulations reflect qualitatively the behavior of the
HBCD-system. A detailed comparison of K and Q"¢° with the experimental
results (Q%*P- on page 7) provides the following analogies:

1. a-HBCD converts faster into v-HBCD (and much slower into S-HBCD),
2. (+)-8-HBCD converts faster into (—)-8-HBCD, and vice versa,
3. v-HBCD converts faster into a-HBCD,

4. the dominating reaction is the interconversion from v-HBCD to a-HBCD.

Conclusion

We have investigated the interconversion processes of HBCD. These are quan-
tum mechanical processes which take place on a timescale of seconds. Due to

13



Figure 6: Qualitative behavior of interconverion based on free energy computa-
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very different timescales, quantum mechanical molecular simulation algorithms
are not applicable for an analysis of these processes. But, whenever the quantum
mechanical mechanism is identical for all interconversion processes, it is only im-
portant to know which part of the conformational space initializes the process.
Then, based on classical simulations, one can compute the portion of the con-
formational space which can be seen as activated. This portion is a measure for
the corresponding transition rate. In our example, even the classical simulation
algorithm has to tackle very different timescales and only high temperature
HMC-samplings are able to provide correct thermodynamical ensembles. We
have presented a simple reweighting formula which can be used to interpolate
the important thermodynamical values at lower temperature. With all these
simplifications, the HMC-samplings for each of the HBCD-stereoisomers needed
30 million force field evaluations (CPU-time on our simple PC: 6 hours).

Outlook. The presented ideas use the fact that the unknown rate of the in-
terconversion mechanism in Figure 2 is identical for each transition in Figure
3. In this case, the time scale factor y is the only unknown value in the rate
matrix computation. If the interconversion mechanism is different for each of
the interconversion processes, the above scheme for the rate matrix computa-
tion is also valid. In this case, we have to estimate the activation energy of
the corresponding interconversion mechanism in Figure 2, e.g., by the means
of quantum-based transition state computations. This additional activation en-
ergy has to be inserted into the Arrhenius equation (12), too. This means
a combination of insufficient single-point quantum chemistry calculations with
results of classical thermodynamics simulations.

Acknowledgement. This work was supported in the framework of the BAM-
ZIB co-operation on common research and developement in the field of scientific
computing. Date of agreement: July 10th, 2007.

A Temperature dependence of the mean poten-
tial energy

In order to justify the linear model for the mean potential energy in (8), it will
be shown that this behavior is valid for quadratic potentials Vi : R¢ — IR.
This also justifies the application of a linear model for multivariate Boltzmann
distributions which are locally Gaussian (approximately locally quadratic po-
tential engergy functions). Without loss of generality (and via principle axis
transformation), the d-dimensional quadratic potential energy function can be
written in separable form:

d d

Vpor(q) = Z(ai G +bigi+ci) = Z Vi(a) (15)

i=1 i=1

with corresponding constants a;,b;,¢; € IR and a; > 0. A short calculation on
the basis of (6) and (15) yields

d
_ oy exp(=BVi(a)) ,
<V;70t> - ;/OOVZ(%) fix;o eXp(—BVi(qi))dqi sz- (16)
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Equation (16) shows that the linear dependency of the mean potential energy
can be justified by solving the integral in (6) for the 1-dimensional case. The

result is
d

1 b2

(Vpot) = 2; TR (17)
which is exactly the claimed 1/8-behavior of (Vps). With b, = 0 and ¢; = 0,
equation (17) is the well-known 1/2 kT-contribution per degree of freedom to
the inner energy of an ideal gas. For a numerical justification of the linear
temperature dependence, we performed two HMC samplings of (+)-a-HBCD
at T' = 430 K. One sampling started in the low energy region of the optimal
conformation of (+)-a-HBCD and one sampling started in an high-energy re-
gion. After 5 x 10,000 steps the samplings did not converge (as expected).
The mean potential energy values were 420 kJ/mol and 455 kJ/mol, respec-
tively. They are lower and upper bounds for the true value. From the mean
potential energy (V,ot) = 921 kJ/mol at high temperature and an optimal value
Ve = 239 k.J/mol of the potential energy, the linear model (8) predicts a mean
energy of 435kJ/mol at a temperatur of 430K in accordance with the simu-
lated bounds. For a better verification of the reweighting formula, we performed
an extensive simulation with the inhouse software ZIBgridfree [34] and a point-
wise density estimation strategy [36]. The simulated mean potential energy
434 kJ/mol is very close to the calculated value 435 kJ/mol of the reweight-
ing formula. For all these reasons, we think that the reweighting formula is
applicable.

B Medium temperature results

Quantitatively, the simulation results of Section 5 do not predict the experi-
mental results. In fact, a lot of approximations have been used. The severest
one may be the vacuum-approximation. Liquid HBCD has a dielectric constant
which is different from the vacuum. Also the interactions between the HBCD
molecules in a liquid phase can not be neglected. Briefly, the energy barriers
and the energy differences are overestimated by the classical model in Section
5. From a statistical point of view, a simple downscaling of the potential en-
ergy function is equivalent to increasing the temperature. And, in fact, for a
temperature of T'= 670 K, we get the steady state estimation:

71 = (0.3912, 0.0650, 0.0438, 0.3912, 0.0650, 0.0438),

which perfectly fits to experimental results [1, 29] (78% «-HBCD, 14% -HBCD,
and 8% 7-HBCD). Furthermore, for this medium temperature, the main inter-
conversion rates (« = v and 8 = ) with g = 0.0015 also perfectly fit to the
experiment:

~0.1730  0.0084  0.1646 0 0 0
0.0405 —0.9764 0 0 0.9152  0.0208

theo. | 1.4843 0 —1.5000 0 0.0157 0

@7 =0.001 0 0 0 —0.1730  0.0084 0.1646
0 0.9152  0.0208  0.0405 —0.9764 0
0 0.0157 0 1.4843 0 —1.5000
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