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The world-wide Internet is a huge, virtual network comprised of more
than 13, 000 distinct networks, which all rely on the Internet Protocol (IP)
for data transmission. Shortest path routing protocol such as OSPF or
IS-IS control the traffic flow within most of these networks. The network
administrator can manage the routing in these networks only by supplying a
so-called routing metric, which specifies the link lengths (or routing weights)
used in the shortest path computation.

The simplicity of this policy offers many advantages in practice. It per-
mits the use of decentralized and distributed routing algorithms, it has very
good scaling properties with respect to the network size, and it typically leads
to less administrative overhead than connection oriented routing schemes.
From the network planning perspective, however, shortest path routing is
extremely complicated. As all routing paths depend on the same shortest
path metric, it is not possible to configure the end-to-end routing paths
for different communication demands individually. The routing can be con-
trolled only indirectly and only as a whole by modifying the routing metric.
Additional difficulties arise if each traffic demand must be sent unsplit via
a single path – a requirement that is often imposed in practice to simplify
network management and to avoid out-of-order packets and other undesired
effects of traffic splitting. In this routing variant, the metric must be chosen
such that all shortest paths are uniquely determined.

In this paper, we describe the main concepts and techniques that have
been developed in [7] to solve dimensioning and routing optimization prob-
lems for such networks. We first discuss the problem of deciding if a given
path set corresponds to an unsplittable shortest path routing, the fundamen-

∗The book version of this extended abstract appeared as Routing and Capacity Opti-

mization for IP Networks, Cuvillier Verlag, 2007.
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tal properties of such path sets, and the computational complexity of some
basic network planning problems for this routing type. Then we describe
an integer-linear programming approach to solve such problems in practice,
which has been used successfully in the planning of the German national
education and research network for several years.

1 Metrics and Routing Paths

Given a digraph D = (V,A) and a set K of directed commodities, an unsplit-
table shortest path routing (USPR) is a set of flow paths P ∗

st , (s, t) ∈ K, such
that there exists a compatible metric λ = (λa) ∈ Z

A
+ with respect to which

each P ∗
st is the unique shortest (s, t)-path. One of the elementary problems

in planning shortest path networks is to decide whether a given path set S
is an USPR and, if so, to find a compatible routing metric λ.

If there is no upper bound on the length values λa, this so-called Inverse

Unique Shortest Paths problem can be solved very efficiently with linear
programming techniques. We denote with s(P ) and t(P ) the start and end
node of a path P , respectively, and with P(s, t) the set of all (s, t)-paths in D.
It is not difficult to see that there exist an integer-valued metric compatible
with S if and only if the following linear program has a solution [2]:

minλmax
∑

a∈P ′

λa −
∑

a∈P

λa ≥ 1 ∀ P ∈ S, P ′ ∈ P
(

s(P ), t(P )
)

\ {P} (1)

1 ≤ λa ≤ λmax ∀ a ∈ A,

Although this linear program contains exponentially many inequalities of
type (1) it can be solved (or proven infeasible) in polynomial time; the sep-
aration problem for these inequalities reduces to |S| many 2-shortest path
computations. Its (possibly fractional) optimal solution λ∗ easily can be
turned into an integer-valued, compatible metric by multiplying all values
λa with a sufficiently large number and then rounding them to the nearest
integer. As shown in [2], this approach yields a metric whose lengths exceed
the lengths of the smallest possible integer-valued metric by a factor of at
most min (|V |/2, max{|P | : P ∈ S}). For real-world problems, the lengths
obtained this way are small enough to easily fit into the data formats of
current routing protocols. In theory, however, the problem of finding a com-
patible routing metric with integer lengths as small as possible or bounded
by a given constant is NP-hard [7, 6].
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v4 v5 v6

v1 v2 v3
P1 = (v1, v2, v6)
P2 = (v1, v5, v3)
P3 = (v4, v2, v3)
P4 = (v4, v5, v6)

Figure 1: Four paths that cannot occur together in a unique shortest path
routing, but any subset of at most three of these paths can.

If the given path set S is no unsplittable shortest path routing, then the
above linear program is infeasible. Using standard greedy techniques, one
then can construct from the final dual solution a subset R of the given paths,
such that the paths in R cannot occur together in any USPR, but any proper
subset of the path in R can. Figure 1 shows such an inclusion-wise minimal
conflict set R consisting of four paths.

These minimal conflict sets are of great practical importance. For every
given digraph D = (V,A), the family of all path sets that comprise a valid
USPR forms an independence system (or hereditary family), and the circuits
of this independence system are exactly these minimal conflict set. Any path
set S that is not an USPR contains at least one of these minimal conflict
sets. In a routing optimization framework, it hence is sufficient to ensure
that none of these elementary conflicts occurs in the set of chosen routing
paths to guarantee the these paths indeed from a valid USPR.

Several types of such elementary conflicts have been studied in the liter-
ature. The simplest one is a violation of the so-called Bellman- or subpath-
condition [2, 10]: Two paths P1 and P2 can occur together in an USPR only if
their (u, v)-subpaths P1[u, v] and P2[u, v] – if existent – coincide for all node
pairs u, v. All elementary conflicts that involve only two paths are violations
of the Bellman-condition. Generalizations of this condition are discussed in
[2, 7], another type of necessary conditions has been studied in [13].

However, none of these combinatorial conditions yields a complete com-
binatorial description of all unsplittable shortest paths routings in a given
digraph. In general, the minimal conflict sets can be very complex and arbi-
trarily large. Given an arbitrary path set S, it is NP-hard to approximate
the size |R| of the smallest conflict set R ⊆ S within a factor less than
7/6. The contrary problem of finding the largest subset R ⊆ S that still
comprises an USPR is computational hard as well. This problem cannot be
approximated within a factor less than 8/7, unless P = NP [7].

An alternative linear programming approach for finding compatible met-
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rics and an independence system description with similar properties exist also
for arc-routing based descriptions of unsplittable shortest path routings.

2 Hardness and Approximability

Network design and routing optimization problems with unsplittable shortest
path routing are very difficult – from both the theoretical and the practical
point of view. In [7] three basic problem versions are thoroughly analyzed.

In the congestion minimization problem Min-Con-USPR, we are given
a digraph D = (V,A) with fixed arc capacities ua and a set K of directed
commodities with demand values dst , and we seek for an USPR that min-
imizes the peak congestion (i.e., the maximum flow to capacity ratio over
all arcs). This problem corresponds to the task of finding an efficient USPR
in an existing network. The peak congestion is a good measure for the ser-
vice quality network. In general, this problem is NP-hard to approximate
within a factor of O(|V |1−ǫ) for any ǫ > 0, but polynomially approximable
within min(|A|, |K|). This implies that the problem is substantially harder
than the corresponding unsplittable flow problem, for example, for which
constant factor approximations are known.

Two extremal versions of designing and dimensioning an USPR network
are expressed as the fixed charge network design problem FC-USPR and as
the capacitated network design problem Cap-USPR, respectively. In both
problems we are given a digraph with arc capacities and arc costs and a set of
directed commodities with demand values. In FC-USPR the capacities are
fix, and the goal is to find a minimum cost subgraph that admits an USPR
of the commodities. This problem is NPO-complete even if the underlying
graph is an undirected ring or a bidirected cycle. In the capacitated network
design problem Cap-USPR, we consider the given arc capacities as basic
capacity units and seek a minimum cost installation of integer multiples of
these basic capacity units, such that the resulting capacities admit an USPR
of the given commodities. This problem cannot be approximated within a
factor of O(2log1−ǫ|V |) in the directed and within a factor of 2 − ǫ in the
undirected case, unless P = NP . For various special cases, however, better
approximation algorithms can be derived. For the case where the underlying
network is an undirected cycle or a bidirected ring, for example, Min-Con-

USPR and Cap-USPR are approximable within constant factors [5].
The very restricted possibilities to configure the routing make unsplit-

table shortest path routing problems not only theoretically very hard, they
are also an inherent drawback compared to other routing schemes in practice.
In certain cases, these restrictions necessarily lead to unbalanced traffic flows
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with some highly congested links. In [4], we present a class of examples where
the minimum congestion that can be obtained with unsplittable shortest
path routing exceeds the congestion achievable with multicommodity flow,
unsplittable flow, or shortest multi-path routing by a factor of Ω(|V |2).

3 Solution Approaches

Traditional planning approaches for shortest path networks use local search,
simulated annealing, or Lagrangian relaxation techniques with the lengths of
the routing metric as primary decision variables [1, 3, 8, 14, 15, 16, 17, 19, 20].
Basically, these approaches generate or iteratively modify numerous routing
metrics and evaluate the resulting routings. The search for promising metrics
is guided by the subgradients observed at the solution or other simple, local
improvement criteria. The main challenges are to speed up the evaluation of
the generated solution candidates to avoid the creation of poor candidates.
The major drawbacks of these approaches are that they deliver no or only
very weak quality guarantees for the computed solutions and that they per-
form well only for “easy” problems, where a globally efficient routing metric
actually can be found by iterating simple local improvements.

In order to compute provenly optimal solutions, we propose a solution
approach that – similar to Bender’s decomposition – decomposes the routing
subproblem into the two tasks of first finding the optimal end-to-end routing
paths and then, secondly, finding a compatible routing metric for these paths.

In the master problem, we consider only the decisions concerning the
design and dimensioning of the network and the choice of end-to-end routing
paths. This part is solved using combinatorial methods and advanced integer
linear programming techniques, which finally guarantees the optimality of
the solution by this approach.

The client problem consists in finding a compatible routing metric for
the end-to-end paths computed in the master problem. Whenever during
the solution of the master problem an integer routing is constructed, we
solve the client problem to determine whether the corresponding path set is
a valid routing or not. This is done using the linear programming techniques
illustrated in Section 1. If the current path set is an USPR, then we have
found a incumbent solution for the master problem and the client problem’s
solution yields a compatible metric. Otherwise the client problem yields a
minimal conflict among the current paths, which leads to an inequality that
is valid for all USPRs, but violated by the current routing. Adding this
inequality to the master problem, we cut off the current invalid solution and
re-optimize the master problem. This approach was first described in [10]
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and refined and adapted to similar routing problems in [7, 12, 18, 21].
To illustrate this approach, consider the Min-Con-USPR problem intro-

duced in the previous section. With C denoting the family of all (inclusion-
wise) minimal path sets that cannot occur in an USPR, this problem can be
formulated as in integer programming problem as follows:

min L
∑

P∈P(s,t)

xP = 1 ∀ (s, t) ∈ K

∑

(s,t)∈K

∑

P∈P(s,t): a∈P

dst xP ≤ uaL ∀ a ∈ A

∑

P∈S

xP ≤ |S| − 1 ∀S ∈ C (2)

xP ∈ {0, 1} ∀P ∈
⋃

(s,t)∈K

P(s, t)

L ≥ 0

In principle, our decomposition approach solves this model with a branch-
and-bound approach that dynamically separates violated conflict constraints
(2) via the client problem. The initial formulation of the master problem
would contain only the path variables for each commodity and some of the
conflict inequalities (2), for example those corresponding to the Bellman-
condition. At each node of the branch-and-bound tree we solve the current
LP relaxation, pricing in path variables as needed. Whenever an integer so-
lution x is found, we solve the linear program for the corresponding Inverse

Unique Shortest Paths to find a compatible metric for the corresponding
routing. If there exists one, then x yields the new incumbent solution for
the master problem. If there is no compatible metric, we generate a vio-
lated conflict inequality (2) from the dual solution of the Inverse Unique

Shortest Paths LP, add this inequality to the formulation of the master
problem, and proceed with the branch-and-bound algorithm.

From the theoretical point of view, this approach seems not very attrac-
tive. For the plain integer programming formulation illustrated above, the
integrality gap of the master problem can be arbitrarily large, the separation
problem for the conflict inequalities is NP-hard, and the optimal bases of the
linear relaxation may necessarily become exponentially large. Nevertheless,
carefully implemented this approach works surprisingly well for real-world
problems. Our software implementation uses alternatively either a formula-
tion based on path-routing variables or a formulation based on arc-routing
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(a) Inverse link capacities (perturbed) (b) Unit lengths (perturbed)

(c) Geographic lengths (d) Optimized routing lengths

Figure 2: Link congestion values in G-WiN for several routing metrics.

variables for the master problem. In the branch-and-cut or branch-and-price-
and-cut algorithms, we use specially tailored branching and pricing schemes
as well as additional problem-specific primal heuristics and strong cutting
planes. One type of these cutting planes, for example, exploits the special
structure of the precedence constrained knapsacks defined by a link capacity
constraint and the Bellman-condition among the paths across that link. In
order to handle real-world problems, we also incorporated a very detailed
and flexible hardware model, network failure resilience conditions, and vari-
ous other types of technical and operational constraints into our software.

Numerous small and medium size benchmark problems could be solved
optimally with this implementation. Even for large problems, for which
optimality was not always achieved, our approach found better solutions
than traditional metric-based methods in reasonable computation times. For
several years, this software implementation has been used in the planning of
the German national education and research networks B-WiN, G-WiN and
X-WiN [8, 9, 11].

Figure 2 illustrates the importance of optimizing the routing in prac-
tice. It shows the different link loads that would result from the three most
commonly used default settings for the routing metric and those resulting
from the optimal routing metric for the G-WiN network with capacities and
traffic demands of August 2001. The traffic is distributed much more evenly
for the optimized metric. The peak congestion is not even half of that for
the default settings, which significantly reduces packet delays and loss rates
and improves the network’s robustness against unforeseen traffic changes and
failures.
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