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Abstract

We discuss first order optimality conditions for state constrained optimal
control problems. Our concern is the treatment of problems, where the so-
lution of the state equation is not known to be continuous, as in the case of
boundary control in three space dimensions or optimal control with parabolic
partial differential equations. We show existence of measure valued Lagrangian
multipliers, which have just enough additional regularity to be applicable to
all possibly discontinuous solutions of the state equation.
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1 Introduction

First order optimality conditions for optimal control problems subject to partial dif-
ferential equations have been studied for a long time, sucessfully for large classes of
problems (for an excellent overview we refer to the text book [12], for original papers
in the state constrained elliptic case cf. [5, 6, 2]). However, to the knowledge of the
author, a particularly hard class of problems is still not fully understood, namely
state constrained optimal control problems, where the control to state mapping has
poor regularity properties and fails to guarantee continuity of the state. The main
obstacle in this respect is the lack of an interior point, which in general only exists
with respect to the topology of uniform convergence.

In this work we present a way to overcome this obstacle by careful construction
of the spaces in which the optimal control problem is considered. This helps us to
make use of additional regularity of the state for regular controls and to derive a
full system of first order optimality conditions.

For the sake of clarity we present our ideas in an abstract framework and in a
setting as simple as possible. Then we show with an example, how typical optimal
control problems, if suitable regularity results are available, fit into this framework.

Acknowledgement. The author wants to thank Prof. Dr. Fredi Tröltzsch for
pointing out the difficulty and the relevance of this problem.
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2 An Abstract Optimal Control Problem

Consider a convex optimal control problem of the following form:

min
(u,y)∈U×Y

j(u, y) s.t. Ay − Bu = 0

y ≤ y.
(1)

The following conditions render this problem well defined. Note that A, which
models a differential operator, may be an unbounded operator. Thus it is typically
not defined on all of Y . For some remarks on the use of unbounded operators in
optimal control refer to the paragraph at the end of this section.

Assumption 2.1 (Assumptions for existence of optimal solutions). Let the follow-
ing assumptions hold.

(i) Q is a closed, bounded set of R
d, with d ∈ N.

(ii) U , Y , and R are Banach spaces, U and Y are reflexive, and Y is continuously
embedded into L1(Q).

(iii) The linear operator A : Y ⊃ dom A → R is closed, densely defined and
bijective, and the linear operator B : U → R is continuous.

(iv) The pointwise lower constraint function y : Q → R is continuous, the inequal-
ity is understood to hold almost everywhere in Q and defines a closed subset
G ⊂ U × Y .

(v) The functional j : U × Y → R is lower semi-continuous, convex, coercive on
the set V = {(u, y) ∈ U × dom A : Ay − Bu = 0} and Gâteaux differentiable.

(vi) G ∩ V is non-empty.

Due to our assumptions the operator

T :U × Y ⊃ dom T → R

(u, y) 7→ Ay − Bu

is linear, closed and densely defined. In particular, V = ker T is closed. By our
assumptions the main existence theorem of convex optimization (cf. e.g. [7, Propo-
sition II.1.2]) yields existence of a minimizer x∗ := (u∗, y∗) ∈ U × Y of (1).

With the help of indicator functions we may rewrite (1) as an unconstrained
optimal control problem. The indicator function ιS of a set S is defined by

ιS(x) =

{

0 : x ∈ S
∞ : otherwise

.

The indicator function ιS is convex and lower semi-continuous if and only if S is
convex and closed. This reformulation yields the problem:
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min
(u,y)∈U×Y

F (u, y) := j(u, y) + ιV (u, y) + ιG(u, y), (2)

which is equivalent to (1). Here F : U × Y → R∪ {+∞} is an extended real valued
function.

The subdifferential ∂F (x) of F at x = (u, y) is the set of all x∗ ∈ (U × Y )∗, for
which the relation 〈x∗, δx〉 ≤ F (x + δx) − F (x) holds for all δx ∈ U × Y . Here and
in the following 〈·, ·〉 denotes the dual pairing.

Optimality of x∗ = (u∗, y∗) is equivalent to

0 ∈ ∂F (x∗) = ∂ (j(x∗) + ιV (x∗) + ιG(x∗)) . (3)

For a detailed introduction to convex analysis and subdifferential calculus we refer
to [7, Chapter I]. In the remaining paper we will apply the sum-rule of convex
analysis to (3), using carefully constructed spaces in order to obtain first order
optimality conditions for the problem (1).

Our aim is to weaken the following assumptions, which are typically present in
the analysis of state constrained problems: continuity of the mapping S := A−1B :
U → Y together with the continuous embedding Y →֒ C(Q). For large classes
of optimal control problems these conditions to not hold simultaneously, which
impedes a direct application of Lagrange multiplier theorems. Particular examples
are elliptic boundary control problems in three space dimensions and parabolic
control problems in spacial dimensions higher than one.

Rather we impose the following much weaker assumptions, which capture the
fact that most partial differential equations admit more regular solutions, if the
data is more regular. The operators A∞ and B∞ introduced in the following can
be interpreted as restrictions of A and B to more regular spaces.

Assumption 2.2 (Assumptions for optimality conditions). Let the following as-
sumptions hold.

(i) U∞, Y∞, and R∞ are Banach spaces. Y∞ is a closed subspace of C(Q).

(ii) The linear operator A∞ : Y∞ ⊃ dom A∞ → R∞ is closed, densely defined,
and bijective, and the linear operator B∞ : U∞ → R∞ is continuous.

(iii) There exist continuous embeddings Y∞ →֒ Y , U∞ →֒ U , and R∞ →֒ R. The
inclusion domA∞ ⊂ dom A holds.

(iv) A∞ and A coincide on dom A∞. B∞ and B coincide on U∞.

(v) There is ε > 0 and (ŭ, y̆) ∈ V ∩ G, such that y̆ + ỹ ∈ G for all ỹ ∈ Y∞ with
‖ỹ‖Y∞ ≤ ε (Slater condition).

Under these assumptions we can already derive a weak form of optimality con-
ditions (cf. Theorem 5.1). However, a fully satisfactory theory (cf. Theorem 5.3)
can only be derived under the additional crucial assumption that U∞ is dense in U ,
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and hence enough regular solutions are present. In the context of optimal control
this is not a severe restriction.

Meaningful choices of Y∞ are C(Q) and subspaces of functions that vanish on
subsets of Q. For example, C0(Q) (the space of all continuous functions that vanish
on the boundary) is useful to accommodate Dirichlet boundary conditions in the
elliptic setting. The dual space Y ∗

∞ can be represented as a subspace of the space
of Radon measures, which we denote by M(Q).

Unbounded Operators in Optimal Control. Most authors use the continuous
control to state mapping S := A−1B as one of their main tools for the analysis of
optimal control problems. In this work the operator A is used directly. Because A
is usually a differential operator in applications, we do not assume continuity of A,
but only closedness and a dense domain.

We use this approach for several reasons. Usually, optimal control problems and
their first order optimality conditions are formulated in terms of differential opera-
tors. The use of solution operators S and their adjoints S∗ makes two translation
steps necessary. In contrast, the adjoints A∗ and B∗ typically have an immediate in-
terpretation as differential and trace or embedding operators. Moreover, the direct
use of differential operators makes the role of the dual space R∗, in which adjoint
states live evident and allows a very transparent derivation of optimality conditions
by a convex or non-smooth sum rule. Last, but not least, there are settings (such
as pure Neumann problems, not treated in this work), where no solution operator
exists, but the corresponding optimal control problem is well posed and can be
analysed successfully as a system.

For a comprehensive exposition to unbounded operators on normed spaces we
refer to [8]. In contrast to continuous operators an unbounded operator

A : Y ⊃ dom A → R

is typically not defined everywhere in its domain space Y , but possess a domain
of definition domA. A is called closed, if dom A ⊃ yk → y and Ayk → r imply
Ay ∈ domA and Ay = r. If an unbounded operator is closed, then this is a sign
that its domain has been chosen appropriately. If A is closed and dom A = Y ,
then A is continuous. Closed, densely defined operators retain many properties of
continuous operators, such as an open mapping theorem, existence of an adjoint
operator and a closed range theorem. By dropping the assumption of continuity we
gain additional flexibility, because the topologies of domain and image space can be
varied in a wide range.

If A is a differential operator, then it can usually be defined densely, because
a suitable subspace of C∞(Q) is dense in most spaces of interest. If additionally
the corresponding partial differential equation is uniquely solvable, together with
an a-priori estimate, then this operator is closed and vice versa, as asserted in the
following lemma.
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Lemma 2.3. For Banach spaces Y and R let A : Y ⊃ dom A → R be a linear
operator. A is closed and bijective if and only if A possesses a continuous inverse
A−1 : R → domA ⊂ Y in the sense that A−1A = iddom A and AA−1 = idR.

Proof. Assume first that a continuous inverse A−1 exists. Then in particular A is
bijective. Let yk → y and rk = Ayk → r. By surjectivity of A there is ỹ ∈ dom A:
Aỹ = r, hence Ayk → Aỹ. We have to show y = ỹ. Because A−1 is continuous, we
conclude yk = A−1Ayk → A−1Aỹ = ỹ, hence y = ỹ.

If in converse A is closed and bijective, then existence of a continuous inverse
follows from the open mapping theorem (cf. e.g.[13, Satz IV.4.4]), which not only
holds for continuous, but also for closed operators.

Corollary 2.4. If the Assumptions 2.1 and 2.2 hold, then the control to state
mappings S := A−1B : U → dom A ⊂ Y and S∞ := A−1

∞ B∞ : U∞ → dom A∞ ⊂ Y∞

are continuous and coincide on U∞.

Proof. By our assumptions and Lemma 2.3 A−1 and A−1
∞ exist and are continuous.

By assumption B and B∞ are also continuous, and our continuity assertion follows.
By Assumption 2.2(iv) we have Bu = B∞u for u ∈ U∞ and thus y := S∞u ∈
dom A∞. Hence A∞y = Ay and thus also Ay − Bu = 0, hence y = A−1Bu.

Let us finally recapitulate the definition of the adjoint of a densely defined
operator A : Y ⊃ domA → R, which generalizes the adjoint of a continuous
operator. Define

dom A∗ := {r∗ ∈ R∗ : the linear functional 〈r∗, A·〉 is continuous on domA} .

If r∗ ∈ domA∗, then 〈r∗, A·〉 can be uniquely and continuously extended to a
functional y∗ = A∗r∗ ∈ Y ∗, because it is continuous on the dense subset dom A ⊂ Y .
This yields the definition of A∗ : R∗ ⊃ dom A∗ → Y ∗, and the relation

〈A∗r∗, y〉 = 〈r∗, Ay〉 ∀ y ∈ dom A ∀ r∗ ∈ dom A∗.

In particular, domA∗ is canonically defined and depends on the topology of Y and
R.

3 A Variant of the Sum Rule of Convex Analysis

Our starting point and main tool is the following theorem of convex analysis, which
is an existence result, because it asserts equality of sets:

Theorem 3.1. Let X be a Banach space. Let f, g : X → R∪ {+∞} be convex and
lower semi-continuous functions. If the regularity condition

0 ∈ int(dom f − dom g) (4)

holds, then
∂(f + g)(x) = ∂f(x) + ∂g(x) ∀x ∈ X. (5)
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Proof. This theorem can be found, for example, in [4, Theorem 4.3.3]. Actually, in
[4, Theorem 4.3.3] a slightly weaker form of (4) is used: 0 ∈ core(dom f − dom g).
For a precise definition of core(S) of a set S ⊂ X see [4, Section 4.1.3], where it is
also shown that always int(S) ⊂ core(S).

The condition (4) can be interpreted as follows: there is a ball in X, centered
at 0, such that every element of X contained in this ball can be written as the
difference of two elements of X which are in dom f and dom g, respectively.

By our assumptions j(u, y) < ∞ for all (u, y) ∈ U × Y , hence, dom j = U × Y ,
and (4) is fulfilled, because V ∩ G is non-empty. Thus application of Theorem 3.1
to (3) yields:

0 ∈ ∂j(x∗) + ∂ (ιV (x∗) + ιG(x∗)) in (U × Y )∗. (6)

The difficult part of the analysis of state equations is now to show (4) for ιV and
ιG and thus split the remaining term ∂ (ιV (x∗) + ιG(x∗)).

We will now consider the case where f is the indicator function of a closed
subspace. Let V and W be closed subspaces of X that span X topologically, i.e.,
for each x ∈ X there are xV ∈ V and xW ∈ W such that x = xV + xW and there
is a constant, independent of x, such that ‖x‖ ≤ C(‖xV ‖ + ‖xW ‖).

Corollary 3.2. Let V and W be closed subspaces of the Banach space X that span
X topologically. Let g : X → R ∪ {+∞} be convex and lower semi-continuous on
X. Assume that there is x̆ ∈ V ∩ dom g and ε > 0, such that

x̆ + εBW ⊂ dom g.

Then
∂(ιV + g)(x) = ∂ιV (x) + ∂g(x) ∀x ∈ X. (7)

Proof. Let x ∈ X be given with ‖x‖ = 1. Then we can write x = xV + xW with
xV ∈ V and xW ∈ W . Because x̆ + εBW ∈ dom g, there is ε > 0, independent of x,
such that xg := x̆ − εxW ∈ dom g. Moreover, since x̆ ∈ V , also xιV := x̆ + εxV ∈
dom ιV . Consequently, εx = xιV − xg = ε(xV + xW ), and (4) is fulfilled. Hence (5)
holds and we conclude (7).

If V is defined via the kernel of an operator, then its subdifferential can be
computed as follows:

Lemma 3.3. Let X, R be Banach spaces and T : X ⊃ domT → R a closed, densely
defined, linear operator. Denote by ιker T the indicator function of ker T , which is
closed. If T has closed range then

∂ιker T (x) = ranT ∗ ∀x ∈ ker T. (8)

Proof. Since, by definition of the subdifferential, ∂ιker T (x) = (ker T )⊥, (8) is a
consequence of the closed range theorem:

(ker T )⊥ = ran T ∗.
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In standard texts on functional analysis this theorem is usually stated for continuous
operators (cf. e.g. [13, Theorem IV.5.1]), but the same result (with the same proof,
based on the open mapping theorem) works for closed, densely defined operators
on Banach spaces (cf. [8, Theorem IV.1.2]).

4 An Auxiliary Banach Space and its Properties

In order to apply our abstract results to the optimal control problem (1) we intro-
duce the auxiliary space X by the following definitions. Here and during the whole
section the Assumptions 2.1 and 2.2 are assumed to hold.

V :=
{

(uV , yV ) ∈ U × domA : AyV − BuV = 0 in R
}

W :=
{

(uW , yW ) ∈ U × Y : uW = 0, yW ∈ Y∞

}

X := V + W =
{

x ∈ U × Y : x = xV + xW , xV ∈ V, xW ∈ W
}

‖v‖V :=
∥

∥uV
∥

∥

U
, ‖w‖W :=

∥

∥yW
∥

∥

Y∞

‖x‖X := ‖uV ‖U + ‖yW ‖Y∞ .

The space X is continuously embedded into U × Y via the embedding

E : X → U × Y

((uV , yV ), yW ) 7→ (u, y) := (uV , yV + yW ),

which is continuous, because by Corollary 2.4

‖u‖U + ‖y‖Y ≤
∥

∥uV
∥

∥

U
+

∥

∥yV
∥

∥

Y
+

∥

∥yW
∥

∥

Y
≤ (1 + ‖S‖)

∥

∥uV
∥

∥

U
+

∥

∥yW
∥

∥

Y∞
.

Hence, the optimal control problem (1) is well defined on X. Moreover, the mini-
mizer of (1) is contained in V , and thus in X. It will turn out that the space X is
well suited for the application of the sum-rule via Corollary 3.2.

Proposition 4.1. X is a Banach space. V and W are closed in X, and they span
X topologically. Moreover, U∞ × Y∞ is continuously embedded into X.

Proof. Let xk be a Cauchy sequence in X. Then, first of all yW
k converges in Y∞

by completeness. Hence, W is closed in X. Moreover, uV
k converges in U by

completeness. Consequently BuV
k converges in R by continuity, and thus also AyV

k .
By our assumptions, and by Lemma 2.3 the control to state mapping A−1B is
continuous, and thus yV

k converges in Y . So (uV
k , yV

k ) → (uV , yV ) in U × Y . By
continuity of B and closedness of A also (uV , yV ) ∈ V , which shows completeness
of X and closedness of V . X is spanned topologically by V and W by construction.

For our last assertion define the embedding

E∞ : U∞ × Y∞ → X

(u, y) 7→ ((uV , yV ), yW ),
(9)
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via the definitions uV := u, yV := Su, yW := y− yV . By Corollary 2.4 we conclude
yV = Su = S∞u and thus yV ∈ Y∞, which also yields yW ∈ Y∞. E∞ is continuous,
because

∥

∥yW
∥

∥

Y∞
+

∥

∥uV
∥

∥

U
≤ ‖y‖Y∞

+
∥

∥yV
∥

∥

Y∞
+ ‖u‖U∞

≤ ‖y‖Y∞
+ (1 + ‖S∞‖) ‖u‖U∞

.

From the continuity of the embedding E∞ it follows that each linear functional
x∗ ∈ X∗ has a continuous restriction r∗ ∈ U∞ × Y∞ via r∗ = E∗

∞x∗.
Next we study on X the linear operator that defines the state equation. By

construction of V it vanishes there.

Lemma 4.2. Define dom T∞ :=
{

x ∈ X : (uV , yV ) ∈ V, yW ∈ domA∞

}

.

(i) The linear operator

T∞ : X ⊃ dom T∞ → R∞

x 7→ A∞yW .

is densely defined, closed and surjective and V = ker T∞.

(ii) Its adjoint operator T ∗
∞ : R∗

∞ ⊃ dom T ∗
∞ → X∗ is given by dom T ∗

∞ = dom A∗
∞

and
〈T ∗

∞p, x〉 = 〈A∗
∞p, yW 〉 ∀p ∈ dom T ∗

∞ ∀x ∈ X. (10)

(iii) The restriction of T∞ to U∞ × Y∞ is given by

T∞x = A∞y − B∞u ∀x = (u, y) ∈ U∞ × dom A∞. (11)

Moreover, T ∗
∞p|U∞×Y∞ = (−B∗

∞p,A∗
∞p) for each p ∈ dom T ∗

∞.

Proof. (i): Density of dom T∞ in X follows from density of domA∞ in Y∞. Sur-
jectivity of T∞ follows from surjectivity of A∞, and closedness of T∞ follows from
closedness of the space V and the operator A∞. By injectivity of A∞ we conclude
V = ker T∞.

(ii): Let p ∈ dom T ∗
∞, which means that T ∗

∞p is a continuous linear functional
on X and

〈T ∗
∞p, x〉 = 〈p,A∞yW 〉 ∀x ∈ dom T∞

The first equality gives us (10) for all x ∈ domT∞. In particular T ∗
∞p is continuous

on domT∞, if and only if A∗
∞p is continuous on domA∞, which yields equality of

dom T ∗
∞ and dom A∗

∞ and (10) for all x ∈ X by unique continuous extension.
(iii): For (u, y) ∈ U∞ × dom A∞ let x̂ := E∞(u, y), defined by (9). As we have

seen, (ûV , ŷV ) ∈ U∞ × dom A∞ and ŷW ∈ dom A∞. Then, because Ay = A∞y on
dom A∞ and Bu = B∞u on U∞

T∞x̂ = A∞ŷW = A∞ŷW + A∞ŷV − B∞ûV = A∞y − B∞u.
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Further, for p ∈ domT ∗
∞ by (11)

〈T ∗
∞p, x̂〉 = 〈p,A∞(ŷW + ŷV ) − B∞ûV 〉 = 〈A∗

∞p, ŷW + ŷV 〉 − 〈B∗
∞p, ûV 〉.

Because p ∈ dom A∗
∞, this relation extends continuously and uniquely to ŷW ∈ Y∞.

Let now (u, y) ∈ U∞ × Y∞ be arbitrary. Then there is x ∈ X, such that u = uV

and y = yV + yW , which yields

〈T ∗
∞p, x〉 = 〈A∗

∞p, y〉 − 〈B∗
∞p, u〉.

Next we study the subdifferential that corresponds to the inequality constraints
on X. Note that our inequality constraints read yV + yW ≥ y, and thus imply a

hidden restriction on uV via (uV , yV ) ∈ V , but still define a closed convex set in X.

Lemma 4.3. Let m∗ ∈ ∂ιG(x), where x ∈ G. Let δx ∈ X, and δy := δyV + δyW .
Then it follows:

〈m∗, δx〉 ≤ 0 if δy ≥ 0 (12)

〈m∗, δx〉 = 0 if δy = 0 (13)

〈m∗, δx〉 = 0 if δy = y − y. (14)

The restriction of m∗ to U∞ × Y∞ is of the form

〈m∗, δx〉 = 〈m∗
y, δy〉

and m∗
y ∈ Y ∗

∞. If in converse m∗ satisfies (12) and (14), then m∗ ∈ ∂ιG.

Proof. By definition ιG(u, y) = 0, if yW +yV ≥ y. Hence, if y + δy ≥ y, then ιG(u+
δu, y + δy) = 0, and +∞ otherwise. Now all asserted equalities and inequalities
follow from the definition of the subdifferential:

〈m∗, δx〉 ≤ ιG(x + δx) − ιG(x) (15)

Representation of the restriction of m∗ to U∞×Y∞ as an element of Y ∗
∞ follows

from (13), if we insert δx = (δu, 0) with arbitrary δu ∈ U∞.
For the converse let δx ∈ X be arbitrary. If x + δx 6∈ G, then ιG(x + δx) = ∞,

and (15) holds trivially. Otherwise ιG(x+δx) = 0 and we have to show 〈m∗, δx〉 ≥ 0.
But this follows from the splitting δy = (y − y) + δy+, where δy+ = δy + y − y ≥ 0
and application of (14) and (12).

5 Abstract First Order Optimality Conditions

In this section we prove our main results. Our first theorem provides us with a
weak form of optimality conditions. Under an additional density assumption we
can improve this.

9



Theorem 5.1. Suppose that the Assumptions 2.1 and 2.2 hold. Let x∗ be the
minimizer of (1). Then the following system of equations has a solution (m∗, p):

〈jy(x∗), δy〉 + 〈A∗
∞p, δy〉 + 〈m∗, δy〉 = 0 ∀ δy ∈ Y∞ (16)

〈ju(x∗), δu〉 − 〈B∗
∞p, δu〉 = 0 ∀ δu ∈ U∞ (17)

〈m∗, δy〉 ≤ 0 ∀ 0 ≤ δy ∈ Y∞ (18)

〈m∗, (u∗ − δu, y∗ − y)〉 = 0 ∀ δu ∈ U∞. (19)

Here p ∈ dom A∗
∞ ⊂ R∗

∞ and m∗ ∈ X∗, whose restriction to U∞ × Y∞ has a
representation as an element of Y ∗

∞.

Proof. By Assumption 2.2(v) there is x̆ ∈ V with y̆V + ỹ ≥ y for all ỹ ∈ Y∞

with ‖ỹ‖ ≤ ε. Hence x̆ + εBW ∈ G = dom ιG. By Proposition 4.1, X is a Banach
space, spanned topologically by its closed subspaces V and W . Hence, we can apply
Proposition 3.2 to the function ιV + ιG and conclude via (6) that

0 ∈ ∂j(x∗) + ∂ιV (x∗) + ∂ιG(x∗) in X∗, (20)

where ∂j(x∗) ⊂ (U × Y )∗ ⊂ X∗. Because j is Gâteaux differentiable, its subdiffer-
ential is single valued, and we may write ∂j(x∗) = j′ = (ju, jy). Then (20) asserts
that there are m∗ ∈ ∂ιG(x∗) and v∗ ∈ ∂ιV (x∗), such that

0 = 〈j′ + v∗ + m∗, δx〉 ∀δx ∈ X. (21)

By Lemma 3.3 there is p ∈ R∗
∞, such that v∗ = T ∗

∞p.
Now let δx = (δu, 0) with δu ∈ U∞ we obtain (17) due to Lemma 4.3 (asserting

m∗ = 0 if δy = 0), and Lemma 4.2(iii). Setting δx = (0, δy) with δy ∈ Y∞ we
obtain (16) from (21) and Lemma 4.2(iii). By Lemma 4.3 m∗ satisfies (18) and
(19).

So far the optimality conditions are not yet complete, because a complementarity
condition is not perfectly fulfilled. This is not possible in X, because X does
not contain all pairs of functions of the form (y∗, u) with u ∈ U . Moreover, the
optimality conditions of Theorem 5.1 are only necessary, but not sufficient, as one
should expect in the convex case. For a fully satisfactory result we have to introduce
additional spaces. Consider first

YU := {y ∈ dom A ⊂ Y : ∃u ∈ U : Ay − Bu = 0} .

YU is the range of S = A−1B and thus the set of all states that can be reached by a
control in U . Since we do not assume injectivity of B, u in the above definition may
be non-unique, but because S is continuous, the set of all these u forms a closed
affine subspace Ky of U . Because U is reflexive and norms are coercive functionals,
there is an um(y) ∈ Ky with minimal norm ‖·‖U . Hence, YU can be equipped with
the norm

‖y‖YU
:= ‖um(y)‖U .
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By continuity of S, YU is continuously embedded into Y .
Finally, for the formulation of our results we define the space Ỹ given by

Ỹ = {y ∈ Y : ∃yC ∈ Y∞, yU ∈ YU : y = yC + yU} , (22)

equipped with the norm

‖y‖Ỹ = inf
y=yC+yU

(

‖yC‖Y∞
+ ‖yU‖YU

)

.

It is easily verified, that ‖y‖Ỹ is indeed a norm. In particular, the triangle inequality

follows from the triangle inequalities of the component norms. Moreover, Ỹ is
continuously embedded into Y , because for any splitting y = yC + yU

‖yC + yU‖Y ≤ ‖yC‖Y + ‖yU‖Y ≤ ‖yC‖Y∞
+ ‖S‖ ‖yU‖YU

.

Elements of Ỹ ∗ are necessarily continuous on Y∞ and on YU . Hence the are the
continuous embeddings Ỹ ∗ →֒ Y ∗

∞ and Ỹ ∗ →֒ Y ∗
U .

Next, consider a redefinition of A∞ on Ỹ , which we call Ã. We define

dom Ã := {y ∈ Ỹ : yC ∈ dom A∞, um(yU ) ∈ U∞}.

Because um(yU ) ∈ U∞ we conclude yU ∈ dom A∞ and thus y = yC +yU ∈ dom A∞.
Hence, the operator

Ã : Ỹ ⊃ dom Ã → R∞

y 7→ A∞y

is well defined. To be able to define an adjoint operator of Ã we have to assert that
Ã is densely defined. For this we have to impose an additional assumption, which
is crucial for the complete derivation of first order optimality conditions:

Assumption 5.2. The continuous embedding U∞ →֒ U is dense.

Under this assumption dom Ã is dense in Ỹ , because dom A∞ is dense in Y∞,
and the set of all yU with um(yU ) ∈ U∞ is dense in YU by definition of ‖·‖YU

.

For a redefinition of B∞ on U , we define dom B̃ := U∞, which is dense in U by
Assumption 5.2, and

B̃ : U ⊃ dom B̃ → R∞

u 7→ B∞u.

Theorem 5.3. Suppose that the Assumptions 2.1 and 2.2 hold. Additionally sup-
pose that Assumption 5.2 holds. Let x∗ = (y∗, u∗) be the minimizer of (1). Then
the following system of equations has a solution (m,p):

〈jy(x∗), δy〉 + 〈m, δy〉 + 〈Ã∗p, δy〉 = 0 ∀ δy ∈ Ỹ (23)

〈ju(x∗), δu〉 − 〈B̃∗p, δu〉 = 0 ∀ δu ∈ U (24)

〈m, δy〉 ≤ 0 ∀ 0 ≤ δy ∈ Ỹ (25)

〈m, y∗ − y〉 = 0. (26)

11



Here m ∈ Ỹ ∗ and p ∈ dom B̃∗ ∩ dom Ã∗. In particular, m has a representation as
a positive measure on Q with additional regularity properties.

If in converse x∗ is feasible and (23)-(26) has a solution, then x∗ is a minimizer
of (1).

Proof. By Theorem 5.1 there is p ∈ domA∗
∞, such that (16) and (17) hold. Consider

(17) first, which yields:

〈ju(x∗), δu〉 = 〈B∗
∞p, δu〉 = 〈p,B∞δu〉 = 〈p, B̃δu〉 ∀δu ∈ U∞ ⊂ U.

Because ju(x∗) ∈ U∗, also the linear functional 〈p, B̃·〉 is continuous on U∞ =
dom B̃ ⊂ U , and hence p ∈ dom B̃∗. Thus, B̃∗p is well defined as an element of U∗.

Let now δy = δyC + δyU ∈ dom Ã. Then δy, δyC , δyU ∈ dom A∞, and we have

〈p, Ãy〉 = 〈p,A∞yC〉 + 〈p,A∞yU〉

with

〈p,A∞yU〉 = 〈p,B∞um(yU )〉 = 〈p, B̃um(yU )〉 = 〈B̃∗p, um(yU )〉.

Because A∗
∞p ∈ Y ∗

∞ by Theorem 5.1 and B̃∗p ∈ U∗ as shown above,

|〈p, Ãy〉| ≤ ‖A∗
∞p‖Y ∗

∞
‖yC‖Y∞

+
∥

∥

∥
B̃∗p

∥

∥

∥

U∗
‖yU‖YU

.

Hence, the linear functional 〈p, Ã·〉 is continuous on dom Ã. Thus, p ∈ dom Ã∗ and
Ã∗p ∈ Ỹ ∗ is well defined.

Because also jy ∈ Y ∗, and Ỹ →֒ Y is continuous, jy ∈ Ỹ ∗, and hence m∗ ∈ X∗

has a unique continuous extension to Ỹ × U that satisfies (23) and vanishes on U ,
which we call m. Now (25) and (26) follow from continuity of m and from (18) and
(19), respectively.

To show sufficiency of our conditions we note that (16)-(19) follow from (23)-
(26) and that X contains all feasible solutions of (1). Hence, a minimizer of F in
X is also a minimizer of F in U × Y .

Let now x∗ ∈ X be feasible and (16)-(19) have a solution (m∗, p). Clearly, j′ ∈
∂j(x∗). Next, by (18) and (19) m∗ satisfies (12) and (14) and hence m∗ ∈ ∂ιG(x∗).

Let v∗ := (−B∗
∞p,A∗

∞p) which means that

〈v∗, x〉 = 〈p,A∞yV − B∞uV 〉 + 〈p,A∞yW 〉
∀(uV , yV ) ∈ (U∞ × dom A∞) ∩ V,
∀yW ∈ dom A∞,

and A∞yV −B∞uV = 0. Because U∞ is dense in U , (U∞×dom A∞)∩V is dense in
V and we conclude AyV −BuV = 0 for all (uV , yV ) ∈ V . Hence, v∗ = A∗

∞p = T ∗
∞p,

and thus by Lemma 3.3 v∗ ∈ ∂ιV (x∗). It follows that (20) holds, and by the reverse
direction of the sum-rule, 0 ∈ ∂F (x∗). This is equivalent to optimality of x∗ in X
and thus in U × Y .

12



6 State Constrained Elliptic Boundary Control

As an example and illustration of our abstract results we consider the following
optimal control problem on a smoothly bounded domain Ω ⊂ R

3:

min
(u,y)∈U×Y

j(y, u) = ‖y − yd‖
2
L2(Ω) +

κ

2
‖u‖2

L2(Γ) (27)

subject to the state equation

−∆y + y = 0 in Ω

∂y = u on Γ
(28)

and the pointwise state constraint

y ≤ y a.e. in Ω. (29)

We assume that y is continuous and that there is (ŭ, y̆) that satisfies the state
equation, and y̆ − y ≥ ε > 0 a.e..

A class of control problems similar to our example has been analysed in [6, 2],
however with the assumption that u∗ ∈ Lp(Γ) for some p > 2 and y∗ ∈ C(Ω).

The state equation reads in the weak formulation:

〈∇y,∇v〉L2(Ω) + 〈y, v〉L2(Ω) = 〈u, v〉L2(Γ) ∀v ∈ H1(Ω).

Let us now define the spaces and operators needed to apply our general theory. In
view of Assumption 2.1 we define

- U := L2(Γ), Y := L2(Ω), R := (H1(Ω))∗.

- A : L2(Ω) ⊃ H1(Ω) → H1(Ω)∗, Ay := 〈∇y,∇·〉L2(Ω) + 〈y, ·〉L2(Ω). The Lax-
Milgram Lemma asserts closedness and bijectivity of A, and because H1(Ω)
is dense in L2(Ω) it is also densely defined.

- B : L2(Γ) → H1(Ω)∗, Bu := 〈u, γ(·)〉L2(Γ). Here continuity of the trace
operator γ asserts continuity of B.

Clearly, j satisfies Assumption 2.1(v) and is even strictly convex. All other parts of
Assumption 2.1 have already been verified or imposed and we include the existence
of a unique minimizer x∗.

Apart from this standard setting we have to define a suitable more regular
setting that obeys Assumption 2.2, where the states are continuous. For this we need
advanced regularity results for our equation. Fortunately, these results are available
in the literature. By the Sobolev embedding theorem W 1,t →֒ C(Ω) for every
t > 3 (cf. [1]). By [3, Theorem 2.3] our weak formulation defines an isomorphism
W 1,t(Ω) ↔ (W 1,s(Ω))∗ for 1 = t−1 +s−1, thus s < 3/2. This result is available for a
general class of elliptic PDEs, as long as the coefficients are smooth enough. With
this information we define:
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- Y∞ := C(Ω), R∞ := (W 1,s(Ω))∗, U∞ := Lp(Γ) with p > 2 chosen such that
the trace operator γ : W 1,s(Ω) → Lq(Γ) is continuous for q−1 = 1−p−1. With
these definitions R∞ →֒ R, Y∞ →֒ Y are continuous, and U∞ →֒ U is dense.

- A∞ : C(Ω) ⊃ W 1,t(Ω) → (W 1,s(Ω))∗, Ay := 〈∇y,∇·〉Lt(Ω)×Ls(Ω) + 〈y, ·〉L2(Ω).
Clearly, A∞ is a restriction of A. The regularity result in [3, Theorem 2.3]
yields closedness and bijectivity of A∞. Density of W 1,t(Ω) in C(Ω) yields
that A∞ is densely defined.

- B∞ : Lp(Γ) → (W 1,s(Ω))∗, B∞u := 〈u, γ(·)〉Lp(Γ)×Lq(Γ). By our choice of p
the trace operator γ : W 1,s(Ω) → Lq(Γ) is continuous and thus also B∞.

The test space Ỹ is defined just as in (22), and contains all functions that are
the sum of a continuous function on Ω and solutions of (28) for any u ∈ L2(Γ). This
implies that ỹ ∈ Ỹ may have a discontinuous trace on Γ, and thus, for example, the
Dirac measure δx ∈ M(Ω) with x ∈ Γ is not a representation of an element of Ỹ ∗.

Theorem 6.1. Let (u∗, y∗) be the optimal solution of the problem (27)-(29). Then
there exist dm ∈ M(Ω) and p ∈ W 1,s(Ω), which satisfy
∫

Ω
ϕy · (y∗ − yd) dt +

∫

Ω
〈∇ϕy,∇p〉 + ϕy · p dt +

∫

Ω
ϕy dm = 0 ∀ϕy ∈ Ỹ (30)

κu∗ − γ(p) = 0 a.e. in Ω (31)
∫

Ω
ϕy dm ≤ 0 ∀ 0 ≤ ϕy ∈ Ỹ (32)

∫

Ω
(y∗ − y) dm = 0, (33)

where all terms in (30)-(33) are well defined in the sense of unique continuous
extension.

Here dm is the representation of m ∈ Ỹ ∗ as a measure with additional regularity
properties. As regularity results we have u∗ = κ−1γ(p) ∈ L2(Γ) ∩ W 1−s,t(Γ) and
p ∈ W 1,s(Ω).

If in converse the system (30)-(33) is solvable for given feasible (u∗, y∗), then
(u∗, y∗) is the unique optimal solution of the problem (27)-(29).

Proof. We have already asserted that the Assumptions 2.1, 2.2, and 5.2 are valid,
and we can thus apply Theorem 5.3. This yields existence of p and m that satisfy
the equations (23)-(26), the regularity results and sufficiency. The representations
of the linear functional m and of the adjoint operators Ã∗ and B̃∗ are canonical.

In particular, by definition of Ỹ and the Riesz representation theorem, m has a
representation as a measure, and hence

∫

Ω ϕy dm is well defined for all ϕy ∈ C(Ω).
Theorem 5.3 asserts that this expression has a unique continuous extension to all
ϕy ∈ Ỹ , which yields (33) and (32).

As for Ã∗ we have

〈ϕp, Ãϕy〉 =

∫

Ω
〈∇ϕy,∇ϕp〉 + ϕy · ϕp dt = 〈Ã∗ϕp, ϕy〉.
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Strictly speaking, the middle expression is only defined for ϕy, ϕp ∈ C1(Ω). It is well
known that this expression can be extended canonically to ϕy ∈ W 1,t(Ω) = dom A∞

and ϕp ∈ W 1,s(Ω) = R∗
∞.

For the particular choice ϕp = p Theorem 5.3 asserts that this expression even
extends uniquely and continuously to all ϕy ∈ Ỹ . This does, of course, not imply
that ∇ϕy is well defined for all ϕy ∈ Ỹ . Our assertion is, however, that the linear
functional

∫

Ω〈∇·,∇p〉 dt, which is certainly defined on W 1,t(Ω) →֒ Ỹ has a unique

continuous extension onto Ỹ . This yields (30).

The representation of B̃∗ is the following:

〈ϕp, B̃ϕu〉 =

∫

Γ
ϕu · γ(ϕp)〉 ds = 〈B̃∗ϕp, ϕu〉.

It is defined for ϕu ∈ Lp(Γ) = U∞ with p > 2 and ϕp ∈ W 1,s(Ω) = R∗
∞. For

the particular choice ϕp = p Theorem 5.3 asserts that this expression extends to
ϕu ∈ L2(Γ). Because in our case (24) is an equation in L2(Γ)∗ = L2(Γ) we can
write it as a pointwise equation, which yields (31).

7 Conclusion and Outlook

We have presented a new technique for the analysis of state constrained optimal
control problems. It allows to derive first order optimality conditions for problems
for which this was not yet possible. Our key was the construction of a suitable
auxiliary space X, where the sum-rule of convex analysis could be applied. With
this existence result it was possible to derive an abstract Lagrange multiplier rule
in X∗ that had to be carried over to more elementary dual spaces.

One particular result of our analysis is remarkable: not only that measure valued
Lagrange multipliers exist, just as in the well known case of continuous states.
The Lagrange multipliers are even more regular for less regular state equations.
Because Lagrange multipliers reflect the sensitivity of the functional with respect
to perturbations of the constraints, we can give a heuristic interpretation. The poor
regularity properties of the state equation lead to some additional “flexibility” of the
state. Hence, perturbations in the constraints can be compensated with relatively
small effort for the control and thus for the functional.

While we have answered one question, many other theoretical and practical
questions arise. First of all, the application of our results to various classes of
optimal control problems may be explored systematically. In particular, the abstract
assertion dm ∈ Ỹ ∗ can and should be used to deduce regularity results on the
dual variables. Moreover, our results may be extended to more general inequality
constraints. Finally, the extension to suitable classes of nonlinear problems remains
to be done. This may either be completed by the use of non-convex variants of the
sum-rule, or by a-priori linearization.

Equally important is the analysis of algorithms. It will be interesting to study
the convergence behaviour of infeasible regularization methods (cf. e.g. [9, 10]) in
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the light of our new results, and it is very probable that barrier methods in function
space (cf. e.g. [11]) can also be analysed in this setting.

Finally, the construction of discretization schemes and their analysis remains as
a challenging topic, because L∞-error estimates for the state will not be available
in general.
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[12] F. Tröltzsch. Optimale Steuerung partieller Differentialgleichungen. Theorie,
Verfahren und Anwendungen. Vieweg, 2005.

[13] D. Werner. Funktionalanalysis. Springer, 3rd edition, 2000.

16


