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Abstract

The cost-efficient design of survivable optical telecommunication networks is the
topic of this thesis. In cooperation with network operators, we have developed suit-
able concepts and mathematical optimization methods to solve this comprehensive
planning task in practice.
Optical technology is more and more employed in modern telecommunication net-
works. Digital information is thereby transmitted as short light pulses through glass
fibers. Moreover, the optical medium allows for simultaneous transmissions on a
single fiber by use of different wavelengths. Recent optical switches enable a direct
forwarding of optical channels in the network nodes without the previously required
signal retransformation to electronics. Their integration creates ongoing optical con-
nections, which are called lightpaths.
We study the problem of finding cost-efficient configurations of optical networks
which meet specified communication requirements. A configuration comprises the
determination of all lightpaths to establish as well as the detailed allocation of all
required devices and systems. We use a flexible modeling framework for a realistic
representation of the networks and their composition. For different network architec-
tures, we formulate integer linear programs which model the design task in detail.
Moreover, network survivability is an important issue due to the immense band-
widths offered by optical technology. Operators therefore request for designs which
perpetuate protected connections and guarantee for a defined minimum throughput
in case of malfunctions. In order to achieve an effective realization of scalable pro-
tection, we present a novel survivability concept tailored to optical networks and
integrate several variants into the models.
Our solution approach is based on a suitable model decomposition into two sub-
tasks which separates two individually hard subproblems and enables this way to
compute cost-efficient designs with approved quality guarantee. The first subtask
consists of routing the connections with corresponding dimensioning of capacities
and constitutes a common core task in the area of network planning. Sophisti-
cated methods for such problems have already been developed and are deployed by
appropriate integration. The second subtask is characteristic for optical networks
and seeks for a conflict-free assignment of available wavelengths to the lightpaths
using a minimum number of involved wavelength converters. For this coloring-like
task, we derive particular models and study methods to estimate the number of
unavoidable conversions. As constructive approach, we develop heuristics and an
exact branch-and-price algorithm. Finally, we carry out an extensive computational
study on realistic data, provided by our industrial partners. As twofold purpose,
we demonstrate the potential of our approach for computing good solutions with
quality guarantee, and we exemplify its flexibility for application to network design
and analysis.





Deutsche Zusammenfassung

In der vorliegenden Arbeit befassen wir uns mit der Planung und dem Entwurf
kostengünstiger, ausfallsicherer optischer Telekommunikationsnetze. In Koopera-
tion mit mehreren Netzbetreibern haben wir geeignete Konzepte und mathematische
Optimierungsmethoden entwickelt, mit denen sich diese anspruchsvolle Planungsauf-
gabe praxisnah lösen lässt.
In modernen Telekommunikationsnetzen wird zunehmend optische Technologie ein-
gesetzt. Zur Datenübertragung werden dabei digitale Informationen in Form kurzer
Lichtpulse durch Glasfasern geleitet. Insbesondere erlaubt das optische Medium, auf
einer Faser zeitgleich mehrere Übertragungen durch Verwendung unterschiedlicher
Wellenlängen zu realisieren. Zu den modernsten Komponenten gehören optische
Schalteinheiten, die eine direkte Weiterleitung optischer Übertragungen in den Netz-
knoten ermöglichen, ohne die Signale wie bisher in elektronische Form zurückwan-
deln zu müssen. Durch ihre Integration entstehen durchgängig optische Verbindun-
gen, die als Lichtwege bezeichnet werden.
Wir untersuchen das Problem, zu gegebenen Kommunikationsanforderungen mög-
lichst kostengünstige Konfigurationen von optischen Netzen zu bestimmen. Eine
solche Konfiguration umfasst die Festlegung aller einzurichtenden Lichtwege sowie
aller dazu benötigten Geräte und Systeme. Dazu bilden wir die Netzwerke und ihre
Bestandteile in einer flexiblen, realitätsnahen Art ab. Für unterschiedliche tech-
nologische Auslegungen optischer Netze formulieren wir ganzzahlige lineare Pro-
gramme, die das Planungsproblem detailliert modellieren. Aufgrund der enormen
Übertragungsbandbreiten spielen für Netzbetreiber ferner Sicherheitsaspekte eine
wichtige Rolle, um auch in Störsituationen noch einen definierten Mindestverkehr
garantieren und geschützte Verbindungen aufrechterhalten zu können. Zur effektiven
Realisierung von Lichtweg-Konfigurationen mit skalierbaren Ausfallsicherheitseigen-
schaften entwickeln wir ein speziell auf optische Netze zugeschnittenes Konzept und
betten es in verschiedenen Varianten innerhalb der Modelle ein.
Unser Lösungsansatz basiert auf einer geeignet gewählten Dekomposition der Model-
le, die zwei individuell schwierige mathematische Teilprobleme trennt und dadurch
eine Berechnung günstiger Konfigurationen mit nachweisbarer Güte ermöglicht. Das
erste Teilproblem beinhaltet das Routing der Verbindungen mit Dimensionierung
von Kapazitäten, eine gemeinsame Kernaufgabe in der Netzplanung, für die be-
reits ausgereifte Methoden zur Verfügung stehen und eingesetzt werden. Im zweiten
Teilproblem fokussieren wir auf die für optische Netze charakteristische Aufgabe,
eine konfliktfreie Zuordnung vorhandener Wellenlängen zu den Lichtwegen unter
möglichst wenig Verwendung aufwändiger Wellenlängenkonversionen zu finden. Wir
leiten spezielle Modelle her, diskutieren Abschätzungen zur Anzahl unvermeidbarer
Konversionen und entwickeln als konstruktive Verfahren neben Heuristiken eine
exakte Branch-and-Price-Methode. In umfassenden Rechenstudien auf realistischen
Daten, die von unseren Kooperationspartnern bereitgestellt wurden, weisen wir
einerseits das Potential der entwickelten Lösungsmethodik zur Berechnung geeigneter
Netzentwürfe mit garantierter Güte nach und zeigen andererseits die flexiblen Ein-
satzmöglichkeiten im Rahmen der Planung und Analyse optischer Netze auf.
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Bald kamen sie an einem großen Elektroladen vorbei.[...]

Alberto zeigte auf das große Schaufenster und sagte:
”
Da siehst Du das

20. Jahrhundert, Sofie. Seit der Renaissance war die Welt gewisser-
maßen explodiert. Die Europäer begannen, um die ganze Welt zu reisen.
Und heute geschieht etwas, das wir als umgekehrte Explosion bezeichnen
können.“

”
Wie meinst Du das?“

”
Ich meine, daß die ganze Welt zu einem einzigen Kommunikationsnetz

zusammengezogen wird. Vor nicht allzu langer Zeit waren die Philo-
sophen noch viele Tage lang mit Pferd und Wagen unterwegs, um sich
in der Welt zu orientieren – oder um andere Denker zu treffen. Heute
können wir überall auf diesem Planeten sitzen und uns alle menschliche
Erfahrung auf einen Computerbildschirm holen.“

”
Das ist ein phantastischer Gedanke[...].“

”
Die Frage ist, ob die Geschichte sich einem Ende nähert – oder ob wir

im Gegenteil auf der Schwelle zu einer ganz neuen Zeit stehen. [...]
Die technische Entwicklung war – nicht zuletzt was die Kommunikation
betrifft – in den letzten dreißig, vierzig Jahren dramatischer als in der
gesamten, vorigen Geschichte zusammen. Und noch immer ist, was wir
erleben, vielleicht nur der Anfang. . .“

(aus Jostein Gaarder, ’Sofies Welt’, 1993)
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Introduction

This thesis deals with mathematical optimization methods for the design of sur-
vivable optical networks in telecommunications. The work on this topic has been
initiated and motivated by a couple of industrial projects at the Zuse Institute Berlin
(ZIB) with Telekom Austria AG and T-Systems International GmbH (formerly T-
Systems Nova), continued in ongoing cooperation. Characteristic for research driven
by real-world applications, the tasks to solve are typically tackled by a team of ex-
perts from different fields. In our case, the team consisted of the practitioners at our
partners and a group of colleagues and myself at the optimization department at
ZIB, headed by Martin Grötschel. Therefore, this thesis is written from our common
perspective including all people I had the opportunity to cooperate with.

The first project with Telekom Austria started at the beginning of 2000 and was
supposed to create a software tool for direct support of the network planning process
in practice. Much attention was paid to operate on an as accurate as possible model
of the optical network on disposition and its functionality in order to ensure that
generated designs are in fact realizable in the field. Though not all involved details
are incorporated in the following, the study has fundamentally determined our par-
ticular perception of optical networks and their working. The developed tool, in a
preliminary version presented at CeBit 2001, was finally delivered to our partner in
December 2001 and served further as groundwork for our continued research on the
issue.
The second project with T-Systems Nova (meanwhile T-Systems International) was
accompanied by a parallel project on dynamic call admission and other online tasks
in traffic engineering. It was funded by the DFN-Verein, the German research net-
work operator, and started in autumn 2000 with the goal to economically evaluate
optical network designs under various settings and architectural prerequisites. To
this end, we extended and enhanced our framework, models, and algorithms to inte-
grate variable configuration alternatives. The continuously enhanced methodology
has been successfully applied in several computational studies during the project
and, perpetuating the fruitful cooperation up to date, it has proven a vital base for
further investigations and innovations.
In consequence, we focus on two important aspects for the design of optical networks:

• economic efficiency, i.e., cost minimization accompanied by a mathematically
proven quality guarantee, and

• a realistic model of optical networks and their various devices, covering all rele-
vant properties and rules of interaction.

1



2 Introduction

Optical technology is nowadays broadly employed in modern telecommunication
networks. After emerging on the commercial markets, optical transmission systems
were soon recognized as the future technology superseding electronic transmission in
those (sub-) networks where large amounts of data are to be shipped, predominantly
in the so-called backbones. Consequently, a rapid penetration of these networks by
optical fibers took place, further driven by ongoing progress in extending through-
put capabilities. In parallel, engineers and physicists intensified their efforts to over-
come bottlenecks resulting from physical limitations in order to enable more and
more functionalities being directly applied to the optical signals, like switching or
signal regeneration. As a result, such new devices either are nowadays commercially
available or are expected to be soon. Currently, first generation optical networks
with restricted functionality in the optical domain are already state-of-the-art in
practice, and though still high prices for innovative devices slow down the process,
a migration to second generation optical networks will, following common opinion,
take place in the near future. Our methods, explicitly taking upgrade planning into
account, provide helpful support for this purpose, since they are flexible with respect
to the architecture and able to cope with the design of networks of either generation.

The great advantage of optical technology, to transport immense data volumes with
maximum possible speed, bears a risk, too. An unexpected disruption of work-
ing connections can yield tremendous loss of payload (as optical signals cannot be
buffered) and breakdown of numerous services. Hence, network providers are in
particular interested to design their high capacity optical networks in a survivable
manner, taking preventive care for failure situations in order to speed up the re-
covery process. Therefore, we put special emphasis on the issue of survivability in
optical networks. Various protection mechanisms have already been considered, and
each one comes with individual properties regarding occupation of additional backup
capacity, recovery time, and complexity of network management. We present a new
scheme, called Demand-wise Shared Protection, which has been particularly tailored
to optical networks and offers a special balance among these criteria.

Mathematical methods for network design in telecommunications have a long stand-
ing history, as such problems show a high combinatorial complexity which is hard to
master by planners without appropriate support. Besides optical networks, various
network architectures and technologies have been and are currently under investiga-
tion, like networks based on the Internet Protocol (IP) or by use of the Synchronous
Digital Hierarchy (SDH), a widespread data transport technology. The common core
task of such design problems typically consists of finding the routing of traffic con-
nections in combination with a corresponding dimensioning of capacities required
for their accommodation. For optical technology, this task extends due to a new
feature: a spectrum of different wavelengths used for parallel transmissions. As
a consequence, carrying out a wavelength assignment for the connections becomes
part of the network planning problem. From our perspective, the complete task can
be roughly subsumed as follows:

Given is a network topology consisting of nodes and (potential) links
between node pairs. For each node and link, existing and installable
devices are specified. Communication forecasts define a set of demands
for connections to be established between pairs of nodes together with
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additional survivability requirements.
Minimizing the total cost for installations, find a feasible design of the
network that meets the traffic demands. An optical network design com-
prises to select the required devices at each link and node such that
sufficient capacities are provided for the connection establishment, and
to determine a suitable routing of all needed optical connections with
specified wavelength to use on each traversed fiber link such that any
two connections sharing a fiber use different wavelengths.

This brief description outlines a comprehensive and complex problem, especially
when focussing on a detailed network representation. A vast variety of alternative
equipment configurations and routing possibilities in combination with associated
wavelength assignments (or path colorings) has to be evaluated, being compatibly
plugged together for construction of a feasible network design at least possible cost.
We develop dedicated mathematical optimization methods providing a structured
approach to determine suitable solutions. As fundament, we derive integer linear
programs to model the problem formally. For increasing computational tractability,
we propose a suitable decomposition approach carried out such that limited de-
gree of accuracy is sacrificed in order to obtain good designs with approved quality
guarantee. Our way of decomposing grants access to sophisticated methods for the
generic core task, and special emphasis is put on the extension feature modeled as
generalized coloring problem. Besides its complexity, we study primal and dual ap-
proaches, combining fast construction heuristics and lower bounds for the optimum
value. For the bounds, particular strength is achieved from the devised path pack-
ing formulation solved by a column generation algorithm which is further developed
to an exact branch-and-price method. The suitability of both methods and their
results is evaluated in an extensive computational study.

Outline. The outline of the thesis follows a natural way when developing mathe-
matical methods and tools for practical applications: first specifying the real-world
problem, then translating it into suitable mathematical models, next finding a strat-
egy how to approach their solving, followed by working out details and required algo-
rithms, and finally applying the developed methodology to evaluate its performance
and capabilities. This order of matters is reflected by the structuring of chapters.
In Chapter 1, we give an introduction into telecommunication networks and optical
technology. We explain the practical background and discuss the layout and organi-
zation of optical networks, including the issue of network survivability. Since plenty
of optional settings are possible, we make also basic assumptions defining the scope
of problems which are considered.
In Chapter 2, the focused optical network design problems are formalized and de-
scribed by mathematical models. A general framework provides the basis for repre-
sentation of networks and their composition. For three characteristic architectures,
we then discuss the modeling by integer linear programs in detail, together with
selected variations and extensions. In addition, we introduce the novel survivability
concept Demand-wise Shared Protection and explain its integration within the pro-
gram formulations.
Chapters 3 and 4 are dedicated to the solution methodology. In Chapter 3, we ex-
plain our basic approach to solve optical network design problems by decomposition
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into two subsequent subproblems and discuss its advantages. For the first of these
subproblems, the dimensioning and routing subtask, we then present our solution
methodology including alternative ways of application.
In Chapter 4, we investigate the second subproblem: wavelength assignment with
converters, forming the characteristic subtask in optical network design. We discuss
the complexity of the problem and derive integer linear program formulations. In
addition to a combinatorial method, the linear program relaxations provide lower
bounds on the number of unavoidable conversions. As constructive approaches, we
propose several fast heuristics and provide finally an exact branch-and-price method.
In Chapter 5, we report on the results obtained with the developed methods when
computing optical network designs for realistic instances. The purpose of this com-
putational study is twofold, serving on the one hand as performance evaluation of
our solution approach and, exploiting its flexibility, on the other hand as a demon-
stration of possible ways of utilization for design analyses and comparisons. The
first part, devoted to assessment of entire configurations, is organized in several case
studies on different settings in view of survivability schemes, upgrade planning, al-
ternative hardware prerequisites, and architectures. In the second part, we appraise
the various algorithms focusing on the wavelength assignment subproblem.
Some concluding remarks on the achieved results and directions for further research
close the thesis. The appendix provides an overview on used notation as well as a
detailed compilation of the original computational data for both input and results
that have been discussed in more significant aggregation in Chapter 5.



Chapter 1

Optical networks in practice

The idea of using light as long distance information carrier arose as early as 1958,
when the laser was conceived. A controlled emission of defined light signals builds
the basis for photonic communication. Next milestones have been the development
of guided wave transmission in the mid 1960s and the fabrication of first low-loss
glass fibers around 1970, making the optical transmission practical for telecommuni-
cation networks. Although first considered as a curiosity technology, operators soon
recognized the potential and the superior properties offered by optics as medium,
and the light entered the networks.
The installation of the first fiber connections in the early 1970s marks the beginning
of the evolution of optical networks. Due to physical enhancements, the new tech-
nology did not only compete with established systems, but soon outperformed them
in effectivity. In fact, the bitrate-distance product offered by optical transmission
roughly grew exponentially over the years. As a result, more and more copper ca-
bles were replaced by fibers. The 1980s brought further major breakthroughs which
enlarged the application field for optics and supported to its penetration of the
telecommunication infrastructures. The first fiber trans-Atlantic cable laid in 1988
provides a striking example. Consequently, fiber systems became the dominating
long-distance connection technology from the late 1980s on.
Until the end of the 1990s, optics was used in telecommunication networks as pure
transmission technology, whereas electronics accessed and handled the data flows
in the network nodes. In the meantime, the rapidly increasing optical bandwidth
capacities overstretch the capabilities of electronic equipment which is subject to
fundamental limitations. As a consequence, more and more functionality “goes op-
tic”, from switching optical channels directly up to refreshing the signals, exchanging
wavelengths, and more.
Nowadays, modern optical telecommunication networks form complex infrastruc-
tures composed of a plenty of various devices. Operating such a network is a chal-
lenging task. In particular, it requires an accurate planning, taking into account all
technological “needs” and “offers” of the optics, in order to end up with a working
network which provides the best return on the spent investments.

In this opening chapter, we give a brief introduction to optical telecommunication
networks. The demanding task to accurately plan such complex infrastructures re-

5
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quires a basic understanding of the applied technology and their mechanisms as well
as general networking aspects. For the scope of this thesis, we confine the descrip-
tion on those facts that are relevant for the design of optical networks, taking the
perspective of the network planners, not of the engineers. The presentation aggre-
gates various aspects in our appropriate perception and is guided by experiences
we learned from the practitioners at our industrial cooperation partners. Although
many further issues are indispensable for the practical operation of optical net-
works, we leave out detailed physical and technical explanations. The books of
Mukherjee [123], Ramaswami and Sivarajan [147], and Stern and Bala [154] provide
a comprehensive introduction to optical networking with an engineering-oriented
emphasis.

We begin with the main ingredients of optical networks, the involved hardware de-
vices and their operational properties. Due to the rapid progress in research and
product development, the attempt to give a full account of the state-of-the-art tech-
nology is futile. Moreover, network operators do not upgrade their hardware with
any innovation arising, but make only major reformations from time to time. The
network planning thus has to deal with combinations of new and old (if not ancient)
technologies, while foreseen advancements of the next years should also be prepared
within the designs to provide the future. Therefore, the description is not restricted
to hardware that currently is available, but also includes those components that will
be available soon, or are under development due to a demanding market. Occasion-
ally remarked technical quantities serve just to illustrate the concerned magnitudes
without claiming to represent current technological capabilities.
After having discussed the possible devices and their functionalities, we consider
fundamentals of operating optical networks. The physical network and its layout
build the groundwork for managing transmissions. To transport the data traffic,
connections between network nodes have to be set up. We describe optical connec-
tions and discuss their operational issues. Moreover, we introduce the concept of a
lightpath as a characteristic connection type for optical networks.
Since the network operation shall finally be robust against failures, survivability is
a further important issue. We discuss some basic aspects and present known con-
cepts to realize survivable networks. The most relevant schemes are categorized and
compared with respect to several practical criteria.
The migration of real-world networks has brought up several constitutive network
architectures, subsuming combinations of the used technology and applied concepts.
To illustrate the evolution, we briefly sketch the progression of optical networks in
practice and present main types of architectures that consolidated over time. For
design tasks, we focus on these basic network types and their relevant properties.
The chapter is completed with a description of the planning task(s) for optical
networks. A frictionless operation relies on a proper network configuration. We
specify this comprehensive term and identify configuration subproblems which com-
pile highly related issues. Moreover, planners in practice are confronted with various
questions to answer. We discuss some major aspects and present typical planning
types and variants. These descriptions serve as orientation for the final specification
of those practice-relevant optical network design problems that are studied in this
thesis and for which we develop appropriate solution methods in the subsequent
chapters.
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Figure 1.1: Guided wave propagation through an optical fiber.

1.1 Optical technology

For a long time, telecommunications was a pure electronic domain. Initially, net-
works of copper cables grew rapidly and brought phone services into everyone’s life.
As next step, data entered the networks. The extension of computer utilization
and the digitalization—an ongoing trend—turned communication networks into a
platform for improved services and applications, for instance in e-commerce. The
continuous increase of data traffic demanded for more and more bandwidth to be
provided by the networks. For this, the electronic equipment was at some point
found to be constricted by physical limits. To achieve further advancement, there
was need for a new medium.

1.1.1 Optical transmission

Using light as data transmission medium is based on the principle of guided wave
propagation. An emitted wave propagates through a carrier material whose shape
guides the wave through space to reach the intended target. For optics, the carrier
material usually consists of the highly transparent glass (silica) core of an optical
fiber . Light waves entering the fiber propagate along the glass core, being reflected
whenever they hit upon the side borders of the glass.1 Forwarded this way, the
waves can only abandon the glass core at the end of the fiber (see Figure 1.1).
This enables the directed transmission of light between any two points connected by
optical fibers.

Optical channel. To transport data optically, the digital information delivered
by electronic devices passes a transmitter which converts the bits into short light
pulses by a laser. The light then propagates along fibers until it reaches a receiver
where the signals are reconverted by photodiodes or photodetectors and handed
back to the electronic equipment. Transmitters and receivers build the interfaces
between electronics and optics. We call the optical part of such a connection on
a fiber an optical channel, as illustrated in Figure 1.2. The shorter the emitted
light pulses are, the more bits can be transmitted within some time period. The
bitrate of a transmission system is defined as number of bits per second (b/s) that
can be transmitted/received. The achievable bitrate is given by the physical skills
of transmitter, receiver, and fiber. In today’s practice, systems with a bitrate of

1 Note that ’reflection’ is just a simplifying description. There are different physical principles
applied to direct the light waves along a fiber core, depending on the properties of the carrier
material (step- vs. graded-indexed, single- vs. multi-mode etc.) as well as the specific type of light
waves (mode, polarization etc.) at hand.
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Figure 1.2: Optical data transmission on fibers.

10 Gigabit per second (Gb/s) are widely used. Systems with 40 Gb/s are also
commercially available, although rarely applied (see Freeman [51]). News from the
laboratories indicate that manufacturers already head for 160 Gb/s systems and
beyond.

Signal degradation. Under ideal conditions, the received optical signals would
have exactly the same shape as emitted. Unfortunately, real systems do not pro-
vide ideal conditions. Depending on the material of the glass core and its quality,
there are also undesirable effects (accidental such as material impairments, but also
systematical such as dispersion, attenuation, cross-talk, and others). These effects
disturb the light propagation on optical fibers. Hence, the signal quality suffers a
loss, limiting the distance over which an optical signal can be carried without loosing
or falsifying the information. More precisely, the emitted light wave carries a rec-
tangularly shaped amplitude coding the 0-1 bit information stream as light off/light
on. On its way, it blurs to a wave with fuzzy shaped amplitude which only resembles
at the original form. The receiving photodetector reinterprets the light information
as bits by applying a threshold to the light amplitudes, as depicted in Figure 1.3.
The longer the distance of the optical transmission is, the more the original am-
plitude shape is tampered. When exceeding a certain length, the light wave does
not allow anymore for a correct reconversion of the original information, and bit
failures occur. In practice, the bit error rate is used as a measure for the signal
quality, defined as the ratio of incorrectly interpreted bits over all transmitted bits.
The lower the bit error rate is, the less coding effort and redundant information is
required for error detection and correction. Currently, fibers available at the market
typically set 70 to 120 km as transmission bound without additional equipment and
a bit error rate ranging between 10−7 and 10−9.

Signal regeneration. To extend the maximum optical transmission distance on
fibers, so-called amplifiers are used to refresh the signals optically. As the name
indicates, an amplifier simply scales up the amplitude of the light wave to allow
for a correct signal reconversion after an increased total transmission length. The

transmitter

... 1   0   1   1 ...

amplitude
shape

receiver

1
0

clock ticks
... 1   0   1   1 ...

... 1   0   1   1 ... ... 1   0   1   1 ...

Figure 1.3: Transformation of emitted light pulses along fibers and their restoration
by a photodetector.
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Figure 1.4: Optical signal regeneration stages.

maximum distance can be further elongated by placing amplifiers consecutively in
regular distances. Such a reamplification cannot be repeated arbitrarily often, be-
cause the light wave blurring does not only influence the amplitude heights but also
spreads the widths of the original signals (as wave crests and troughs). At some
point, wave equalization effects dominate and make a correct signal interpretation
impossible. Amplifiers are usually placed each 60 to 80 km at a fiber, enabling to
transmit optical signals over up to around 1000 km, with special ultra long-haul
equipment even several thousand km.
Reamplification of light waves is just the simplest kind of signal refreshing. After
having passed an amplifier, the light wave shows heightened amplitudes, but still
has a fuzzy waveform. A more extensive signal regeneration consists in restoring
the original rectangular shape of the wave by use of a threshold similar to a re-
ceiver processing. This reshaping process reproduces a rectangular waveform, but
the rectangle sizes may differ from the original ones due to the distorting effects. A
full restoration of the original signal thus requires an additional step to unify the
bit lengths: The emitting has to undergo a retiming . This step finally results in a
rectangular waveform with steady sized rectangle lengths. It equals the original light
emission as long as the received signals have been interpreted correctly, i.e., no bit
errors occurred. Figure 1.4 depicts the three stages of optical signal regeneration:
reamplification, reshaping, and retiming. Since each stage also involves the former
stages in this order, they are also denoted as 1R, 2R, and 3R regeneration (cf. the
ITU standardization recommendation in G.872 [160]).

Regenerator. The differentiation between the regeneration stages results from
their distinct difficulties for optical realization. As indicated above, 1R regenera-
tion can be optically performed by rather simple amplifiers. Using a pump laser,
power is injected to increase the light wave’s energy and thereby its amplitudes.
Reshaping and retiming, however, are not that easy to realize. In practice, a full
signal regeneration currently requires to transform the signal back to electronic form
by a receiver and then pass it back to a laser reemitting light pulses. Due to the
signal transformation from optics to electronics and back to optics again, this pro-
cess is abbreviated as o-e-o conversion, and the executing hardware device called
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transponder is built of a receiver and a transmitter back to back. Recently, progress
in optical 3R regeneration has been reported, see Nolting [128]. The integration of
optical 3R regenerators would overcome the need to interrupt optical transmissions
by o-e-o conversions and lift the ban of a maximum distance. To simplify the further
description, we call any device that performs full signal regeneration a regenerator
independent of the applied technique.

Further extensions of the maximum optical transmission length have been attempted
by experiments with various fiber materials and exploiting several light wave prop-
erties, such as polarization, modulation, and others. While some compositions have
transcended certain disturbing effects, other distorting influences become more dom-
inant for them. Up to date, no optical transmission system without limitation on
the maximum distance to bridge is available. Research, however, yielded a variety
of different kinds of devices, including fibers, transmitters, receivers, and amplifiers,
which are now available at the market. Each device type comes along with specific
properties that make it the better choice for specific situations.

Compared to electronic signals on copper cables, optical transmission on fibers pro-
vides many obvious advantages: higher bitrates, lower loss of signal quality, immu-
nity against electromagnetic influences and noise, lighter and more supple carrier
material, corrosion resistance, and advanced security (since optical signals are more
difficult to tap). From an operator’s point of view, however, the most striking ar-
gument is given by the incurred cost per transmission unit. At first sight, optical
systems have a much higher price than electronic devices, but they also offer a much
higher transport capacity. Electronic transmission speed has reached its limits im-
posed by physics, with a maximum bitrate around 10 Gb/s. So, further capacity
expansion is only possible by massive parallel use of devices. This correlates with a
cost explosion when demanding a moderate capacity increase, say by a factor of two
or four. Optical transmission already enables higher bitrates than electronics, and
further advancements in ultra-short light pulse emission give rise to expect further
bitrate boosts. Moreover, optics provides further unique opportunities for capacity
expansions with low effort: multiplexing.

1.1.2 Wavelength Division Multiplexing (WDM)

In general, the term multiplexing refers to techniques which allow for a shared use
of a scarce resource. The basic idea of this principle is to divide a common resource
appropriately into ’smaller parts’ which can be used in parallel to fulfill a certain
task. In this way, the resource utilization is multiplied without enlarging the resource
itself. In most cases, the possibility to multiplex a resource is based on advanced
technology which allows to use the smaller parts.

Multiplexing techniques. In telecommunication networks, multiplexing has
been applied successfully in several manners. The most simple case consists in the
parallel use of a conduit by multiple cables, which is known as Space Division Mul-
tiplexing. It is also applied in optical networks by bundling many fibers into one
cable. A more prominent example of the principle is given by Time Division Mul-
tiplexing (TDM). In order to benefit from an increased transmission speed without
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Figure 1.5: Spectral windows of an optical fiber with low-attenuation.

increasing the capacity granularity of the connections, a high-bandwidth bitstream
is subdivided into several time slots, each carrying traffic on a lower bitrate. As last
example with an obvious similarity to light wave transmission, we describe an ap-
plication from wireless networks using radio waves to transmit information through
the air. Equipment improvements have limited the frequency deviation during the
transmission, allowing to divide the whole usable bandwidth into small frequency
windows which can be used simultaneously for many parallel transmissions without
interfering each other. This is called Frequency Division Multiplexing.

WDM. Wavelength Division Multiplexing (WDM) is based on an idea very similar
to Frequency Division Multiplexing. Instead of radio waves and frequencies, light
waves propagate on optical fibers with a certain wavelength. The usable spectrum
for optical transmission is restricted to specific wavelengths which provide low signal
quality loss, see Figure 1.5. While visible light has wavelengths of 380 to 780 nm,
the preferred bandwidth for optical signals ranges from 1270 to 1610 nm, excluding
small bands with high attenuation. These voids separate the full range into windows.
Within the spectral windows, all wavelengths have (nearly) equivalent propagation
properties and, moreover, deviate not much from the emitted wavelength during the
transmission. By use of high precision transmitters, an arriving light wave covers
a small spectral range around the emission wavelength at the fiber end, but this
range does not fill the whole low-attenuation spectrum. Hence, it is possible to
transmit several optical channels in parallel by use of different wavelengths. As long
as the chosen wavelengths are not too close together, the received light waves can
be properly separated. This way, it is possible to divide the available spectrum into
different wavelength ranges which can be used simultaneously.

Enabling equipment. For the generation of multiple wavelengths, the optical
channel access points can be equipped with series of transmitters, each emitting a
fixed wavelength of the supported spectrum. Alternatively, a tunable laser allows to
control the emission wavelength on demand. The improved scalability of the access
points makes tunable lasers the favorite transmitter choice for network operators.
Figure 1.6 sketches WDM on an optical fiber and the corresponding equipment. At
the beginning, each optical channel is set up by a transmitter on a different wave-
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Figure 1.6: Wavelength Division Multiplexing (WDM).

length (represented by different colors) within the usable spectral range. To highlight
the fact that WDM is applied, we call such a channel also wavelength channel . A
wavelength multiplexer combines these channels to a mixed light transmission sent
onto a single fiber. At the end of the fiber, a wavelength demultiplexer decomposes
the combined transmission into the different wavelengths and guides every wave-
length channel onto a separate fiber for individual access. We subsume the couple
of a multiplexer and a demultiplexer as WDM system.
Bundling multiple wavelength channels to a combined transmission allows for the
efficient use of fibers. Within the bundle, each wavelength channel represents a
separate optical transmission which underlies the disturbing effects described in
the previous subsection and thus needs to be refreshed on long fibers. A so-called
Erbium-Doped Fiber Amplifier (EDFA) allows to reamplify all combined signals at
once. For this, the channels traverse a piece of specific fiber whose doping addi-
tive is spurred by pumping light. This power injection reamplifies a whole spectral
range, covering the low-attenuation range of optical fibers. Since demultiplexing and
multiplexing is not necessary for this way of signal refreshment, EDFAs constitute
a major breakthrough for operating WDM, allowing to benefit from high capacity
against low effort.
A further advantage of applying WDM on optical fibers consists in the opportunity
to vary the transmission capacity of a fiber just by the exchange of the equipment
placed at the fiber’s end. Having in mind that the major cost portion in expansion
of a network’s transmission capacities in absence of multiplexing techniques is in-
curred by “digging” work for the installation of new cable (or fiber) connections, the
beneficial impact of WDM becomes clear. Hereby, capacity variation does not only
refer to increase, but can as well mean to downsize a fiber’s capacity if, for instance,
a former ’data highway’ becomes obsolete due to adding shortcut connections which
then bear the lion’s share of traffic.

WDM capabilities. In the early 1990s, WDM was first used to multiply the
channel capacities of optical fibers. Henceforth, this technique was improved contin-
uously, step by step enabling more channels and higher bitrates to be multiplexed
onto a single fiber, see Figure 1.7, up to so-called Dense Wavelength Division Mul-
tiplexing (DWDM) used today. The light propagation properties of a fiber and
the quality of the applied transmitters determine how many wavelength channels of
which bitrate may be multiplexed. The progress in fiber and transmitter technology
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Figure 1.7: WDM enabled bandwidths on a single optical fiber (see Ehrhardt [41]).

thus drives also the development of advanced WDM systems. For the planning of op-
tical networks, however, one must take into account that not any WDM system can
be installed on any type of fiber. Nowadays, WDM systems with 160 wavelengths
each operated at 10 Gb/s over up to 4000 km are common, while the laboratories al-
ready in 2001 reported on successfully operated systems combining 273 wavelengths
with 40 Gb/s each—a total of 10.9 Terabits per second—over 117 km (cf. [126]) or
300 wavelengths with 11.6 Gb/s each—so roughly 3.4 Terabit per second—over 7380
km, see [105]. To illustrate this volume: 3.4 Terabit corresponds to the contents of
a stack of completely filled CDs that reaches the height of about 63 meters (or 6.3
meters without CD covers)—transmitted on a single fiber within a second, say, from
Berlin to New York!

1.1.3 Switching

With the application of WDM, optical transmission becomes a powerful technology
for high-capacity long-distance data transfer. To interconnect all points, it is theo-
retically possible to establish a direct fiber link for each pair of nodes. Alas, this
yields a costly and wasteful infrastructure. A more efficient way is to use a sparse
network structure and to appropriately forward channels along a path from origin
to destination. This requires a flexible handling of channels within the nodes.
When an optical channel reaches the end of a fiber, the data flow has to be guided
right to continue its way through the network. This guiding functionality is called
switching . In old telephony networks, the requested call connections were switched
manually by physically linking the associated lines. To forward an optical channel
from one fiber to another, it is similarly possible to agglutinate the two fibers, called
splicing . Once established, such a fiber pasting is fixed and cannot be changed easily.
This method hence yields a static pattern of established connections between the
fibers. However, modern voice and data networks need higher flexibility to set up and
shut down connections with less effort. For this, software-controlled reconfigurable
switching devices are employed in two types.

Electronic switching. For electronic transmission channels, the switching is
performed by a so-called Digital Cross-Connect (DXC). A DXC offers a number of
interface ports to the transmission links. There are incoming ports on which channels
enter the DXC and outgoing ports on which data flows leave the DXC. Internally,
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a reconfigurable switching matrix maps every incoming port to an outgoing port,
guiding the data flow accordingly.
To employ DXCs in optical networks, the optical signals have to undergo an o-e-o
conversion for the switching. Each channel first traverses a receiver to be trans-
formed back to electronic form before entering a switch. The DXC then directs the
signals either to access equipment if terminating at this node, or via a transmitter
towards the next fiber link to traverse.
With the rapid growth of fiber transmission capacity, especially driven by the in-
troduction of WDM, electronic switching equipment turned more and more into a
throughput bottleneck. Only a cascading of switching matrices and interface equip-
ment is able to cope with the large number of high-speed data streams delivered on
each fiber. As desirable alternative, switching optical channels directly eliminates
the need of electronic devices. The development of this innovation therefore became
a main research topic during the advent of WDM networks in the 1990s. The first
commercially available devices have then been presented at the beginning of the 21st
century.

Optical switching. An Optical Cross-Connect (OXC) offers the same functional-
ity as a DXC without o-e-o conversion. If WDM is employed on the links, the bundled
signals are de-/multiplexed outside the OXC to provide access to single wavelength
channels. Each light wave entering the OXC at an input port is then guided towards
an output port according to the current configuration of the switching matrix. Sev-
eral switching techniques are applied, for example, by Micro-Electrical-Mechanic
Systems (MEMS) using small adjustable mirrors to reflect the lightbeams towards
the outgoing fiber, or by passing a fluid medium in which a refracting bubble can
be created if the lightbeam shall be deflected (a technology evolved from ink printer
operations, see Ferguson [47] for more details). The switching matrices are always
constructed such that any input port can be mapped to any output port. Hence, an
n×n OXC can switch n incoming channels arbitrarily to the n output ports it offers.
Moreover, the wavelength of a channel does not influence its switching possibilities
and vice versa, i.e., an OXC can switch every wavelength, and the switching does
not change the wavelength of operation unless further devices are applied.
The full switching flexibility provided by an OXC is not always needed. Especially
in WDM ring networks, most of the wavelength channels at a node carry transit
traffic to be handed over to the next fiber link. Only few optical channels have to
be branched off, i.e., are dropped out of or added to the bundled stream. Such a
restricted switching functionality is provided by an Optical Add/Drop Multiplexer
(OADM). An OADM allows to access a small number of specified wavelengths while
bypassing all others. It can be seen as a small OXC offering few configurable ports.
Figure 1.8 illustrates the functionality of an OXC and an OADM schematically.
There are further switching devices, such as passive star couplers, which are not
discussed here in detail. To simplify further explanations, we subsume DXCs and
OXCs (in any variant) as switches.
Like any manipulation of a transmitted light wave, direct switching of optical chan-
nels also influences the signal’s quality. Depending on the applied technique, the
light wave is disturbed by impairments of mirrors and traversed mediums as well as
slightly improper adjustments. Hence, optical switches in general tamper an optical
channel, which again shortens the maximum transmission length.
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Figure 1.8: Schematic functionality illustration of two optical switching devices: an
OXC (at left) and an OADM (at right).

1.1.4 Wavelength conversion

In networks combining WDM and optical switching, the wavelength of an optical
channel becomes an important issue. Assume that an optical channel operated on
wavelength λ enters an OXC and is switched onto a next fiber to continue its path
through the network. If another channel already occupies wavelength λ on the same
fiber, a conflict would occur: Any wavelength on a fiber cannot be used by more than
one channel. In case other wavelengths on the outgoing fiber are still available, a
wavelength conversion would overcome such a blocking situation. A device allowing
to exchange the wavelength of an optical channel is called a wavelength converter .
Studies have shown the profitability of wavelength conversion in various measures
such as blocking probability for new connections, network load, or realizable traffic,
see Ramamurthy and Mukherjee [145] for a survey.

Technical realization. A simple way to accomplish this functionality is by o-
e-o conversion using a transponder. The alternative, a direct optical wavelength
exchange, is physically a difficult task. The main basic approaches separate into
two categories: those that apply optical gatering effects, and those that apply some
kind of wavelength mixing. However, to our knowledge there is no commercially
available device that performs optical wavelength conversion by now. Hence, this
function is realized via o-e-o conversion, with a full signal regeneration as beneficial
side effect. Moreover, an o-e-o conversion provides an unlimited conversion range,
i.e., any wavelength can be converted into any other, and can be applied on single
wavelength channels separately.

At this point, we have introduced all main ’players’ in an optical network: transmit-
ters, receivers, fibers, WDM systems, amplifiers, regenerators, switches, and wave-
length converters. For understanding their coordinated interplay in order to realize
communication, we will next discuss the operation of optical networks.

1.2 Operation of optical networks

The very first telecommunication networks have been pure telephony networks.
While their assembly clearly marks a revolutionary progress for mankind, their op-
eration was organized quite simple: Each network user was connected to the nearest
telephone exchange by wire, and setting up a call to another network user was real-
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ized by a kind operator who manually linked the appropriate lines (whereupon the
final connection could pass several exchanges). This homey picture of how a network
is operated has meanwhile changed: Modern high-speed data networks form complex
puzzles designed to master a maximum throughput of information. In this section,
we briefly outline those operational aspects of optical networks which are relevant
for the planning task: the physical network structure, data traffic, connection types,
and virtual connection structures.

1.2.1 Physical network

Basically, a physical telecommunication network consists of a set of nodes and a set
of links each connecting a certain pair of nodes. The nodes represent the access
points through which data traffic is either brought into the network or discharged
from it. There can also be pure transit nodes where traffic is only bypassed but not
accessed. Together, the nodes and links form the physical topology of the network.

Hardware installation. The hardware devices discussed in the previous section
are installed either on the physical links or at the nodes of an optical network. The
links carry the transmission equipment by which the data is transported between the
nodes: fibers (together with amplifiers) and WDM systems (with the multiplexer at
the begin and the demultiplexer at the end of a fiber). Regenerators can be installed
on fibers which are too long for direct transmission. As only single channels can be
fully regenerated, an additional demultiplexer and multiplexer pair is needed to
enable access to each channel in such a case. Since individual (wavelength) channels
are anyway accessed at the nodes for switching, regenerators are usually placed
at nodes as well. Transmitters, receivers, switches, and wavelength converters are
always located at the nodes.

Signaling and transport. The physical network is composed of two substruc-
tures: the signaling network and the transport network . Signaling prepares the
data transmissions by accomplishing a proper adjustment of all installed devices
(esp. switches) and keeps track of their states. This also includes the detection of
failures and initiation of recovery operations. A physical topology with adjusted
devices then forms the transport network on which the data traffic is processed.
Although signaling is vital for the operation of telecommunication networks, we do
not investigate it further. It transacts on a separate infrastructure and uses special
equipment. In this thesis, we focus on the design of transport networks.

Network levels. Transport networks are usually structured hierarchically: Sub-
networks at several levels are connected to the next higher level by well-defined
interface points located at the nodes, see Figure 1.9. Each subnetwork covers a
certain geographical region and constitutes an autonomous (partial) network. From
lower to higher levels, the traffic is more and more aggregated, with the largest band-
widths occurring in the backbone or core network . Optical networks, best suited for
such requirements, occur therefore mostly as backbones, although operators tend
to use more and more optics throughout the entire infrastructure, even in access
networks, as documented by the recently launched slogans as Fiber To The Home
(FTTH), Fiber To The Building (FTTB), Fiber To The Curb (FTTC), and similar
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Figure 1.9: Hierarchically structured network.

concepts. However, we focus on the backbone in this thesis.

1.2.2 Data traffic

The installed equipment enables the transport of data through the network. There
are diverse types of (data) traffic which differ in the service quality for the client.
For instance, the provider can offer a service with a transmission guarantee or an
assured connection availability, e.g., for phone calls, emergency services, or video-on-
demand. These services need to preallocate the required bandwidth in the network.
In contrast to this allocated traffic, transmissions or connections without such a
guarantee are operated as best-effort traffic, i.e., the traffic can be dropped (or
postponed) and connections can be preempted in case a failure occurs or higher
quality service traffic enters the network. A typical example is email delivery.

Protocols. Data traffic in a network is managed by protocols which organize the
transmissions. Various protocols are in use. Among the most prominent is the In-
ternet Protocol (IP) which portions data into small packets. A header with origin,
destination, and other attributes is added to each packet. The packets are then
pushed into the network and take their routes independently. In each traversed
node, a so-called router reads the headers and decides individually for each packet
to which next router it is sent until the destination is reached. Due to this mech-
anism, IP traffic is called packet-switched . At the recipient node, the contents of
the packets are finally recomposed to the original data form. Since an IP data
transmission does not use a single dedicated connection to be preestablished for the
transport, but transmits the data packets on (potentially) many different routes, IP
is said to be connectionless.
Connection-oriented protocols base on another principle. Prior to an actual data
transfer, an end-to-end connection called circuit2 is established in the network and
provides a certain transmission bandwidth between the connected nodes. The data

2 Originally, circuit refers to a telephony connection, where a conversation required an individual
wire for each direction. The bidirectional end-to-end connection by twisted pair cables in fact
could be seen as a circuit. Over time, circuit became established as term for any form of end-to-end
connections, although today’s high-speed data circuits need not be composed of opposite connection
pairs.
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is then conveyed along this preconfigured circuit, which makes the traffic circuit-
switched . An example is the Synchronous Digital Hierarchy (SDH) providing Syn-
chronous Transport Modules (STMs) with various bandwidths as preconfigurable
circuits.
Optical transport networks are circuit-switched as well. They offer preconfigured
end-to-end optical circuits on which the data is directly transmitted between the
nodes as bitstream. A bitstream enters the network through a transmitter at its
origin node and is sent to a receiver at its destination node. Any bitstream is op-
erated at a bitrate determined by the interface devices, the transmitter and the
receiver. The market offers devices operating on different bitrates, e.g., 2.5 Gb/s or
10 Gb/s. In principle, circuits with different bitrates could be used simultaneously
in a network, since most hardware, as an OXC or WDM system, is transparent
for different bitrates. Furthermore, this allows for grooming , merging several lower
bitrate streams into one with higher bitrate for a common connection part. How-
ever, parallel use of bitstreams with different bitrates and grooming substantially
increases the complexity of planning and traffic management and also complicates
the operation with further disturbances, e.g., as a high bitrate connection disturbs
lower bitrate connections more than reverse. Therefore, optical networks in prac-
tice are often operated with a unique bitrate. We do not take different bitrates or
grooming into account and assume all bitstreams to have equal bitrates.

Network layer. The infrastructure for each type of traffic forms a layer in the
network which is characterized by the applied protocol or technology, for instance the
IP layer, the SDH layer, or the optical layer. Since the protocols do not matter about
the transported content, the layers can be embedded into each other, i.e., IP traffic
can be transported on an SDH layer, which itself can be client of an optical layer to
transmit its STMs (full of IP packets). Due to the individual payload granularity,
some layers, like IP or the Asynchronous Transfer Mode (ATM) technology, qualify
more for transport of user data with usually moderate volumes, while the optical
layer or SDH with capacities like STM-16 (i.e., 2.5 Gb/s) are better suited for higher
network levels where such bandwidths are required for transmission of aggregated
traffic flows. From an operational point of view, the embeddings produce traffic that
is organized by protocol stacks, such as ATM over SDH or the above example IP
over SDH over WDM (where WDM stands for the optical layer).

It is also a matter of network planning to select which layers to employ and to devise
their embedding. These strategic decisions are based on the services to realize. They
are usually taken prior to the network (layer) design. Currently, first attempts are
undertaken to carry out a multi-layer design simultaneously in simplified settings
(see, for instance, Orlowski and Wessäly [133]). Note that the design of optical
networks with different bitrates and grooming forms such a multi-layer problem as
well. Traditionally, however, the layers are considered individually, and we follow
this direction, focusing on the optical layer in higher detail. For a single layer
design, the planner has just to take care for sufficient transmission capacities in the
appropriate unit. So, we abstract in the following from the specific transmission
contents and focus on the circuits in the optical layer and their properties.
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Figure 1.10: Optical network with a single-hop and a multi-hop connection of the
same node pair, the latter being fully regenerated in the bottom node.

1.2.3 Optical connections and lightpaths

We refer to circuits as end-to-end connections in the optical layer as optical connec-
tions, with optical transmission on all links. In the nodes, however, signal switching
can be performed in two ways. Switching traffic by a DXC implies an o-e-o con-
version of the bitstream, i.e., the optical signal has to be transformed to electronic
form before traversing the switch and afterwards converted back to optical form
before being sent onto the next fiber. Superseding such o-e-o conversions, an OXC
can directly handle the optical signals, forming non-interrupted optical connections
which carry the information on a whole path without intermediate conversion to
electronic signals. Such an ongoing optical connection is called a lightpath. Unless
further equipment is employed, lightpaths have two characteristic properties: a re-
stricted length due to the limited distance of an optical transmission, and wavelength
continuity, i.e., operate on the same wavelength across all links and nodes.

Conversion and regeneration. In case of optical switching, the signal trans-
mitted along an optical connection can also undergo 3R regenerations or wavelength
conversions. Today, both manipulations are performed by use of transponders, i.e.,
as an o-e-o conversion, while direct optical realization is under development. In
order to anticipate technical progress, we abstract from the current realization and
rather interpret regeneration and wavelength conversion in a more conceptual way
as follows. Since wavelength conversion manipulates only a certain signal feature,
we consider it as an optical function which does not interrupt a lightpath. Hence, a
converter breaks wavelength continuity (at its installation node), but not the total
length restriction of a lightpath. In contrast, a regenerator fully refreshes the opti-
cal signal, which allows to bridge another full transmission distance. Therefore, we
understand a 3R regeneration as terminating a lightpath and setting up a new one
to continue, including a possible wavelength exchange.

Single- vs. multi-hop. An optical connection can be composed of one or more
consecutive lightpaths, each counted as a hop. Hence, a single-hop optical connection
consists of a single lightpath covering the entire bitstream path, from origin to
destination. If the optical signal along the path is regenerated in some node, the
arriving lightpath is terminated, and a new lightpath begins, making the connection
multi-hop. Figure 1.10 shows an example for both kinds of an optical connection.
In case only DXCs are employed throughout all nodes, each lightpath spans only
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Figure 1.11: Bitstream switching in a connection endnode equipped with a DXC (a)
and an OXC (b).

a single link, and the hop number of each optical connection corresponds to the
number of traversed physical links.

Capacity consumption. Along its preconfigured path, an optical connection
consumes an optical channel on each traversed link and a pair of an input and an
output switching port in each traversed node. To keep the network flexible, the
connections are also switched in their origin and destination nodes, otherwise their
first and last link would be fixed and could not be changed, impeding dynamic circuit
rearrangements according to a changed traffic pattern. So, a bitstream entering the
network in the origin node first traverses a switch which forwards it onto the first
fiber. Similarly in the destination node, an arriving bitstream is forwarded by a
switch towards the client layer. As a consequence, each optical connection also
consumes switching ports in its endnodes.
Figure 1.11 illustrates the bitstream at its origin node switched by a DXC or an
OXC onto the first fiber to traverse. If switching is performed by DXCs, an optical
connection consumes additionally a transmitter at the beginning of every link (cf.
Figure 1.11(a)) and a receiver at the end. If OXCs perform the switching, only
one transmitter is employed before the first OXC and one receiver after the last
OXC, and moreover a 3R regenerator each time the lightpath is regenerated, and a
wavelength converter each time a wavelength exchange is necessary.
Another capacity consumption issue concerns the physical placement of regenerators
and wavelength converters at the nodes. Theoretically, it is possible to install both
devices as stand-alone units towards which a lightpath has to be guided to enable
the manipulation. In this case, the appropriate lightpath would occupy two pairs
of switching ports, one when entering to be switched to such a device, and one
afterwards to be switched onto the outgoing link. However, inspired by today’s
utilization, we assume that both regenerators and wavelength converters are located
between (de-) multiplexer and optical switch, and thus can be plugged selectively
at the lightpath to manipulate. So, a lightpath needs a single port pair in each
traversed node, whether regeneration and/or conversion is applied or not.

1.2.4 Virtual topology

In a telecommunication network, a link generally represents a kind of connection
between two nodes, enabling (direct) data transport between them. For instance,
installed optical fibers or copper cables carry the data physically from one node to
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(a) Physical topology. (b) Lightpaths. (c) Virtual topology.

Figure 1.12: Example network with (a) physical topology, (b) some lightpaths, and
(c) the associated virtual topology.

another, a connection referred to as physical link. However, links are not restricted
to reflect such hardware connections only.

Virtual links. Lightpaths in an optical transport network serve as direct optical
transport lines without intermediate electronic layer access and can be interpreted
as virtual links between the optically connected endnodes. A virtual link between
two nodes exists whenever one or more lightpaths connect them, and the number
of such lightpaths defines the capacity of the virtual link. On top of the node
set, these virtual links form another network structure, called virtual topology . A
small example in Figure 1.12 illustrates the relation between the physical topology,
lightpaths, and the virtual topology.

Special topologies. Basically, an optical network with (some) optical switches
holds optical connections composed of one or multiple concatenated lightpaths. For
particular network realizations, two special topology variants occur. First, if only
DXCs are used throughout the network, any lightpath spans a single physical link
only. Then, virtual and physical topology coincide. Second, the other extreme occurs
whenever exclusively single-hop optical connections are established (e.g., demanded
as operational requirement). In this case, the virtual topology reflects exactly the
traffic requirements between each pair of nodes. The most general scenario is there-
fore given if both prerequisites do not hold, i.e., in an optically switched network
and multi-hop traffic connections.

Directions. By its nature, a bitstream is directed from the origin to the destina-
tion node. Similarly, each optical channel on a fiber is also operated as a directed
transmission, and with WDM, all wavelength channels on a fiber have the same
direction. From this point of view, optical transmissions are unidirectional . In prac-
tice, however, fibers are typically installed pairwise, carrying optical channels in both
directions. When additionally equipped with WDM systems, equivalent devices are
applied on both fibers. Any fiber pair thus offers the same connection capabilities
in both directions. This allows to consider the transmission capacity on the physical
links as being bidirectional .
Furthermore, also the connection requests are typically bidirectional, i.e., the con-
nection between two nodes shall provide the same transmission bandwidth in both
directions. In general, a connection may consist of multiple circuits, and bidirec-
tionality means that the same number of optical connections is established in each
direction. In this case, the virtual topology becomes bidirected.
Each optical connection is specified by its path in the physical topology on which the
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associated bitstream is physically transmitted. Although bidirectional connections
could theoretically reside on circuits routed independently for each direction, it is
common practice to follow the same path in both directions, for the sake of simplify-
ing the network management. In particular, lightpaths are usually routed oppositely
on the same physical path. With that requirement, the optical connections (merged
pairwise appropriately) become also bidirectional.
Summarizing, directivity affects three issues: the transmission capacities of physical
links, the implementation of lightpaths in the physical topology, and the connection
bandwidths of virtual links. Since the distinction of all the options related to uni-
and bidirectional capacities, circuits, and connections would complicate further ex-
planations and mainly just raise the formal effort, we take a simplified but realistic
perspective in what follows: We assume all these items to be bidirectional as default
and dwell on the distinction only if it implies essential differences in the current
context. In addition, we do not anymore distinguish input and output ports at the
switches, and refer with port numbers to bidirectional ports. Hence, an n×n switch
(of any type) can handle n undirected circuits.

The data traffic is transmitted on the established optical connections traversing
many optical devices whose frictionless operation is essential for successful data
transports. Admittedly, hardware is not immune against malfunctions and distur-
bances, and connections are very sensitive against such failures. For provision of
reliable services, operators have to take possible disruptions into account, planning
their handling precautionary.

1.3 Survivability

Telecommunication networks are menaced by manifold potential failure sources:
hardware malfunctions, operational mistakes by falsified signaling or human er-
rors, physical destructions by construction works—with diggers cutting cables as
a classical example—or natural disasters, terrorism attacks3 , among many others.
Each of these scenarios affects a network to a certain extent, from local trouble to
severe demolitions. Nevertheless, as long as a failure does not disable too much
hardware, network operators want to maintain at least those connections for which
service guarantees have been given or which are vital for the network operation, as
holds in particular for the backbone. To this end, they ask for designs of so-called
survivable networks. In this section, we discuss survivability of telecommunication
networks and its realization. Moreover, various known concepts are presented and
compared. For further information on the topic, we refer to the discussions of Gers-
tel and Ramaswami [54, 55] and the book of Grover [61] which provide an excellent
introduction with special emphasis on optical networking.

3 Terrorism need not be targeted directly on a network to damage it. As sad example, the severe
terror attack at September 11 in 2001 destroyed the World Trade Center in New York, and with it
the endpoint of some Transatlantic connections to Europe, located in the cellars. For redundancy,
each of the towers hosted a separate node. Their common failure was one of the main reasons for
the Internet traffic breakdown soon after the attack.
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1.3.1 Basic aspects

The survivability of a telecommunication network is its capability to ’survive in-
termittent failures’, i.e., to restore and supply (at least a defined portion of) the
data traffic in situations where some established connections are interrupted. Al-
though this rough definition clearly needs to be specified in many aspects, it states
the fundamental principle, also formulated as standard in the ITU Recommenda-
tion G.841 [159] (for SDH networks), and serves as orientation for a more precise
characterization of survivable optical networks.

Network states. If a failure occurs, one or more established connections are
interrupted, and one or more hardware devices break down. This turns the normal
operation state of the network into a specific failure state. Network providers are
clearly exerted to repair a damage as fast as possible in order to return soon to normal
operation. Since this usually takes some time, particular failure state configurations
are preplanned for the most relevant types of damage.

Failure types. Any failure yields the disruption of some circuits as end-to-end
connections carrying data traffic. An appropriate treatment clearly depends on the
failure extent. Operational mistakes are typically easy to repair by (automated) traf-
fic management reactions, quickly restoring the normal operation state. Equipment
outages require manual intervention of engineers to replace broken hardware, which
takes much more time. As preventive measure, most devices are already constructed
in a redundant way by the manufacturers: Parts important for the operation are
assembled twice, such that an outage can be (immediately) compensated by dele-
gation to the reserve part. This allows for repairs without affecting the traffic. In
contrast to these (very) short-term affections, the outage of non-redundant hardware
or multiple devices at once has a more serious effect, entailing the failure state to
persist for a long(er) period during which the traffic has to be accommodated dif-
ferently. Instead of taking all possible combinations of failing devices into account,
operators usually consider outages only by means of entire physical links or nodes
to simplify survivability considerations. So, whenever at least one non-redundant
device on a location fails, the whole location is regarded out-of-work (which in fact
is often the case during repair). In practice, the most frequent case is a single link
or single node failure in the physical topology. Therefore, survivability planning
includes particularly these situations. A link breakdown disrupts only the optical
channels transmitted on it, while a node failure cuts the connections on all adjacent
links at once. Moreover, traffic originating or terminating at a failing node cannot be
recovered and remains inoperable until repair. However, single link and single node
failures have only local consequences to take care for in the network design. The
simultaneous occurrence of multiple failures can have major influence on the com-
plete operation, e.g., by disconnecting some network parts completely. Fortunately,
multiple failures are much more unlikely and thus are typically not considered in
the planning process.

Recovery. Outage of devices can also be caused by maintenance works with a
controlled shut-down. The traffic management usually prepares these situations by
redirecting affected connections in advance. Actual failures occur abruptly and loss
of traffic on the cut connections is unavoidable. If spare capacity is available, either
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additionally installed or becoming free by disrupted connections, protected traffic
(not originating at a failing node) can be redirected onto still operable backup con-
nections, i.e., surrogate connections to take over traffic from failed connections until
the malfunction has been fixed. Shifting traffic to such backup connections is called
recovery .
Initiating a recovery requires first to identify the failing devices and to signal this
information to any location that has to perform changes. After failure detection, any
reconfiguration operation takes further time, e.g., to (re-)adjust switches, drop best-
effort traffic to free required capacities, establish new circuits, or other mechanisms.
The recovery time refers to the period from the failure incidence until finishing all
initiated emergency operations and reaching the preplanned exceptional configura-
tion. Providers clearly prefer a minimum outage duration to keep traffic loss as low
as possible. Hence, the (theoretical) recovery time is an important measure for the
quality of any survivability scheme.

Managing layer. In a layered network architecture, survivability can be imple-
mented separately in any of the traffic layers. For instance, an IP over SDH over
WDM network operator can choose to design the IP layer in a survivable manner
independent of the used transport technology (stack), or plan the SDH connections
carrying protected traffic in a redundant way within the SDH layer. Whenever
a client layer applies survivability for its own, the used transport layer(s) inherit
routing restrictions as well, in order to guarantee that a client connection and its
designated backup connection(s) are not mapped onto routes in the transport layer
which share resources. Moreover, a transport layer is not limited to serve for a single
client layer or service, and merging multiple client layers can result in complicated
restrictions. A simpler alternative is to implement the survivability mechanism
directly within the transport layer, providing (optional) protection for any client
layer/service. In view of the high amounts of data carried by the optical transport
network, the network core is usually requested for its own fast and robust surviv-
ability mechanisms.

1.3.2 Known concepts

The literature offers a wide range of survivability mechanisms for various types of
networks and architectures. A complete survey and comparison of all these schemes
and their variants is beyond the scope of this thesis. Instead, we offer a brief overview
on some basic concepts and compare those of their properties which are relevant for
practical implementation in optical networks. A more comprehensive survey on
survivability concepts, variants, and categorizations can be found in Grover [61] and
Pióro and Medhi [140].

Comparison criteria. Basically, survivability concepts try to find a trade-off
between (at least) two concurrent goals: efficient use of backup resources, and ease of
network management in the application of an as fast as possible recovery mechanism.
While the first goal can be simply benchmarked by the cost incurred for installing
the required spare resources, the second goal is far more difficult to quantify. In fact,
a fair comparison of two mechanisms can only be provided if both are established in
parallel and run through the same failure situations. As such a procedure is usually



1.3. Survivability 25

out of reach, we have to reside on hypothetical measures and simulation. For this,
we use the recovery time as main criterion for the evaluation of concepts in terms
of network management complexity.

Basic concepts. Survivability schemes for optical networks are mostly based
on those developed for SDH which is the precedent core network technology, often
used further in (parts of) current networks. A presentation of some main concepts
therefore provides a good starting point for our scope. Within the framework of SDH
network planning, Wessäly [166] discusses the most important variants together with
their integration into solution methods.

Diversification. One of the most basic survivability concepts is diversification,
introduced by Dahl and Stoer [36]. The key observation is the following: If
the maximum fraction of a demand routed through any network node or link
is restricted, then the maximum loss of this demand’s total traffic in case
of any single component failure is restricted as well. So, using a diversified
routing for each demand prevents a complete disruption of all corresponding
connections, maintaining (at least) a specified throughput percentage in any
failure situation. To realize diversification, the normal operation routing model
is simply extended by maximum demand flow bounds. No additional backup
connections are provided to take over dropped connection’s traffic, and thus
no backup resources are needed at all. However, diversification is in general no
zero-cost concept, since additional routing constraints must be satisfied which
can obviate cheaper configurations possible for unprotected designs.
Diversification is a pure loss-limiting concept and does not arrange for recovery
of disrupted connections. In telecommunications practice, diversification is
therefore not really seen as a survivability scheme. However, it provides a
framework for modeling survivability issues and can be extended to protection
schemes, as will be shown in Section 2.3.

Reservation. If disrupted traffic is to be recovered in case of failures, provision
for additional backup connections is unavoidable. The concept reservation, by
Minoux [119], does not impose restrictions on the normal operation routing,
but uses additional spare capacity to allow for rerouting of the traffic to survive
in any failure case. By allowing for a rerouting of all connections, in particular
also those unaffected by the current failure, the amount of required spare
capacity can be kept low, since the backup routing can make best reuse of all
still operable capacities. The drawback of this very resource-efficient concept
is the recovery process which can escalate to reconfigure the whole network,
including the shutdown of failed or dropped connections, and the complete
establishment of all newly designated connections.

Path restoration. The concept of path restoration, invented by Wu [171], can be
interpreted as a more practical concept between the former two extremes.
Similar to the previous concept, there are no restrictions on the routing for
normal operation, and spare capacity has to be installed for enabling backup
connections. In contrast to reservation, the rerouting in failure situations is
restricted to the failing connections, i.e., all unaffected connections have to be
maintained. Clearly, any such solution represents also a feasible solution for the
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concept reservation, and thus the total cost for path restoration (as measure
for total resource consumption) cannot be lower than the cost of an optical
solution for reservation. Additionally, it is optional whether still operable
capacities occupied by failing connections in the normal operation state can
be reused for the backup connections, an issue known as stub release. However,
the main benefit of path restoration consists in a typically faster recovery, since
action has only to be taken for those protected connections that actually fail.

Link restoration. While path restoration allows for an end-to-end rerouting of
the affected connections, an even more restrictive variant is proposed as link
restoration or span restoration by Grover [60]. Here, the rerouting of failing
connections has also to maintain all non-affected route parts, providing backup
alternatives only to circumvent the inoperable network components. For any
connection disrupted by a link failure, the backup path has to follow exactly
the same route as before between origin or destination and the respective
endnode of the disabled link, while the (partly) backup connection bridges
only the disabled gap between the nodes incident to the failure. Node failures
are handled similarly, leaving the regular routing path unchanged up to the two
neighbors of the failed node. This way, reconfigurations focus on the network
part close to the failing component. Link restoration forms a special case
of path restoration and thus yields potentially larger total cost (or capacity
consumption), whereas recovery is fastened further due to the local treatment
of failures.

Supporting features of SDH. All of the concepts described so far can poten-
tially be applied to optical networks as well. However, two specific features of SDH
contribute particularly to their resource-efficient realization: scalability of traffic
flows, and ease of sharing capacities by electronic transmissions. Concerning scala-
bility, SDH flows are organized by a hierarchy of transmission bandwidths, offering
connections with different STM capacities. This hierarchy allows for a flexible sub-
division of flows into multiple fractions of varying bandwidths which can be routed
disjointly according to diversification, for instance. Optical networks in contrast hold
indivisible lightpaths as routing units, prohibiting optical connection fragmentations
(and even with grooming, flow splittings would be much less flexible). The more
important difference indeed concerns the shared use of capacities which is hampered
in transparent optical networks by the additional attributing of wavelengths. Spare
capacity in an SDH network can be occupied by any two different backup paths as
long as it is provided that not both of these paths will be required simultaneously.
The same holds for transparent optical networks only under the additional restric-
tion that both paths are operated on the same wavelength, and hence spare capacity
can be shared by much less optical connections at once.

Survivability in optical networks. The high data volumes transported by
optical technology increase the sensitivity against malfunctions. The breakdown
of a single link in the physical topology, even if disrupting just a few lightpaths,
can affect many client layer services and connections at once. This effect is even
aggravated by a recovery that needs a complex reconfiguration. Path restoration,
for instance, can require shutting down many existing lightpaths and setting up
many new ones. Such a process takes some time during which only little traffic
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is operated until the surrogate configuration is finally arranged. This observation
holds generally for restoration schemes. These schemes take care about the presence
of sufficient spare capacity to set up a (preplanned) failure state routing, but do not
preestablish backup connections. As a consequence, optical network operators tend
to implement mechanisms which offer high availability and short recovery times at
the price of occupying more resources.
For optical networks, the favorite alternative to restoration is protection, meaning
that all backup connections are preestablished and thus reconfiguration effort is kept
as low as possible. There are two fundamentally different protection strategies. The
first approach is to protect signals by setting up complete backup paths from origin
to destination of a commodity. This strategy is called (end-to-end) path protection.
Alternatively, backup paths can serve to only circumvent individual segments (a link
or span) of working paths. Such strategies often restrict to protect single links, but
can usually be simply extended to larger segments and thus to node failures as well,
and are subsumed as link or span protection. As with link restoration, the advantage
of these schemes is that the recovery switching is performed near the failure, with
typically short switching times and no or little failure signaling effort. The drawback
is that many different backup paths are required for protecting all working paths
completely. In principle, all protection approaches are applicable for complete paths
or segments of a path. In the following, we mainly concentrate on end-to-end path
protection schemes which are for optical networks mostly used in practice.

Dedicated protection schemes. Dedicated path protection sets up two disjoint
paths in the network for each protected connection. There are two specific schemes
for dedicated path protection:

• 1+1 protection duplicates each signal and transmits it on both paths. The re-
ceiver at the destination then selects the better signal. Dedicated path protection
is very fast since in case of the better signal being disrupted, the receiver has only
to switch to the other signal. However, this protection scheme is very capacity
intensive due to doubling the traffic to be protected.

• In 1:1 protection, two disjoint paths are set up with the same strategy as in 1+1
protection, but the signal is only transmitted on the working path. The backup
path is offered to best-effort traffic. In case of a failure, the interrupted service
is switched from the working path to the preempted backup path. The strategy
to allocate protection capacity on request after a failure enables more efficient
use of the network capacity, but it has a higher recovery time since the switching
is not anymore a local decision at the endnode. The failure occurrence has to
be detected and signaled in real-time to both commodity endnodes in order to
change over to the backup path.

Usually, dedicated path protection is applied in today’s SDH ring networks as 1+1
Automatic Protection Switching (APS). The routing of disjoint path pairs is very
straightforward in ring networks, and often far more than 100% additional capacity
is needed as spare capacity with dedicated path protection.
In meshed networks, dedicated path protection is more capacity efficient, since the
routing can be more diverse. With respect to a selectable metric, such as number of
hops or total fiber km-length, the paths are for instance routed on the shortest path
and on the second shortest path which is disjoint from the shortest path. Note that
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Figure 1.13: Example network where a pair of disjoint paths between nodes o and d
exists, but not if one is a shortest path w.r.t. the hop number.

such a pair need not exist, see Figure 1.13. Therefore, Suurballe’s algorithm and
its variations (cf. Suurballe and Tarjan [156] and Bhandari [18]) are often applied
to find a shortest cycle in the network that contains both origin and destination of
the request. Such a shortest cycle comprises both the working and the backup path,
the former typically selected as the shorter one. A case study on dedicated path
protection based on several routing schemes in multi-fiber WDM mesh networks is
reported in De Patre et al. [139].

Shared protection schemes. 1:1 protection is a special case of general M:N
path mapping, where M protection paths are established to protect N different
working paths of a commodity. M:N shared protection shares capacity in the sense
that the spare resources are not dedicated for the recovery of a specific connection,
but can be shared by the N connections for different failure scenarios.
A more general shared protection concept exists with a large number of strategies
for sharing of backup resources between different commodities. Various specific
schemes for shared protection in optical networks have been proposed and evalu-
ated, e.g. in [112, 56, 80, 87]. The basic principle is that spare resources can be
shared among different backup paths as long as the protected connections will not
compete for the same resources at the same failure incidence, e.g., the associated
working paths are disjoint in case only single failures are considered. In such a case,
we say that spare capacity is reserved by a backup path, but not prededicated to it.
In shared path protection, a fully disjoint backup path is preselected for each working
path. If a failure occurs, a real-time signaling phase seizes and cross-connects the
shared capacities to establish the requested backup paths. The need for real-time
connection setups yields high recovery times, whereas sharing of spare capacities
reduces the total amount of backup resources to install. Moreover, shared path
protection can take advantage of a meshed topology to further reduce spare ca-
pacity consumption, since higher network connectivities in principle generate larger
numbers of disjoint working paths which are able to share spare resources.

p-cycles. Finally, we briefly mention the special shared protection concept of p-
cycles, at first encountered in Stamatelakis [153]. Instead of backup paths, this
concept suggests the establishment of backup cycles with uniform wavelength, called
p-cycles. Such a p-cycle protects all cycle links as well as all cycle chords at once
and can be shared among multiple working lightpaths which are disjoint on these
links. Adaptions of the original concept include node failures as well. Although the
concept is theoretically extendible to protect entire lightpaths instead of individual
links or segments, such additional restrictions are uncommon and would diminish
both resource efficiency and recovery speed. p-cycles have originally be designed
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Figure 1.14: Comparison of the discussed survivability concepts for end-to-end path
protection with respect to (theoretical) recovery time and spare resource consumption.

for link protection and are rarely considered otherwise. Since we focus on path
protection schemes, we leave out this concept in the following comparison.

Concept comparison. Figure 1.14 gives an overview about the discussed surviv-
ability concepts for end-to-end path protection with a rough classification of their
properties. Basically, it can be observed that the faster recovery a scheme provides,
the more spare capacity it consumes. Although shared protection is currently widely
studied in the literature in plenty of variants, such schemes have yet not entered the
networks in practice. In fact, most network providers apply either 1+1 or 1:1 pro-
tection due to the fast recovery. A further reason is that shared protection schemes
typically complicate the network management. Therefore, we propose in Section 2.3
an alternative scheme which is more easy to realize and offers a restricted sharing
of spare capacities to reduce the total cost for robustness.

1.4 Evolution and architectures

Telecommunication networks are anything but static infrastructures. They form an
ever-varying system that is affected by many outside influences, ranging from user
and utilization fluctuations, integration of new services and operational concepts, a
lively market environment, up to technological progress. This motivates providers to
regularly adapt and modernize their networks, and hence it is interesting to see how
optical networks evolved in practice and which are the final network realizations that
we run across today or in the near future, taking emerging technology into account.
The virtual topology of a network expresses the current connection pattern, which
is regularly adjusted to changed traffic requirements. Moreover, there are issues
belonging to mid- or long-term planning, where decisions are not that easy to revise,
and thus represent characteristic features of network realizations. Two such features
concern the used technology and the applied operation concepts. We call a specific
combination of these two issues the architecture of a network. In this section, we
highlight main architectures of optical networks in practice along their chronological
migration. Further information on the evolution of optical networks can be found
in Colle [33].
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Fiber networks. The evolution of optical networks now lasts for more than three
decades. It was initiated by the installation of first optical fibers in the early 1970s.
In the following years, the new optical transmission superseded classical electronic
transmission on copper cable connections bit by bit. Although the two technologies
coexist until present, especially the increasing bandwidth demands in the backbones
favored the use of fibers. The arising fiber networks were free of any copper cable
connections. These networks yet do not get the attribute ’optical’, because fiber
systems are applied only as one-to-one substitution for electronic equipment, but
exclusive properties of the optical medium are not utilized.

WDM networks. The first step to exploit optics is marked by the integration of
WDM. The installation of WDM systems on fiber connections started in the early
1990s and created point-to-point WDM networks, also called 1st generation optical
networks or opaque networks. In these networks, (bundles of) wavelength channels
are transmitted between adjacent nodes, whose electronic switching equipment re-
quires a conversion back to electronic signals. Since light waves cannot traverse such
nodes, these nodes (and networks) are called opaque. Notice that a WDM network
need not apply WDM on any fiber, but can also contain fibers carrying a single
optical channel, i.e., without installed WDM system.

Optical networks. During the next decade, the rapid progress in WDM tech-
nology regularly multiplied the transmission bandwidths on the links. Without im-
mense investments for many further interface devices and cascades of latest DXCs,
electronic switching could not master the throughput growth. To overcome the bot-
tleneck of opaque nodes, manufacturers intensively researched on the capability to
switch optical channels directly. With the begin of the new millennium, the first
OXCs have been presented at commercial technology fairs. This new technology
makes the nodes transparent for optical channels and yields 2nd generation opti-
cal networks or—to express being current state-of-the-art—simply optical networks.
These networks represent the first architecture with both links as well as nodes
operated optically and hold lightpaths as characteristic feature. Only full signal
regeneration and wavelength conversion are still performed by transponders, i.e.,
as o-e-o conversion. If no o-e-o conversion is allowed, most authors speak about
so-called all-optical networks. In such networks, the optics forms a closed network
layer which interfaces electronics only at the access points.

Hybrid architectures. So far, we have discussed some basic consistent archi-
tectures with specific dominating characteristics. Meanwhile, the ongoing network
migration yields also various hybrid architectures. We just pick the kind of switching
as illustrative example. Instead of a sole technology, an optical network can also mix
up of opaque and transparent nodes, known as optical networks with sparse wave-
length conversion (cf. Subramaniam et al. [155]). While most nodes apply optical
switching, some are fully equipped with DXCs and provide full regeneration and
wavelength conversion capabilities for all traversing optical connections. Further
related architecture variants use optoelectronic nodes with both DXCs and OXCs
(cf. Meddeb et al. [113]), or integrate both mechanisms in hybrid switching devices
(cf. Cavendish et al. [30]). With a sufficiently detailed level of observation, nearly
each network has a unique architecture. However, most of the specific networks tend
to become over time similar to one of the basic architectures, which therefore can
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be used as representative scenarios.

At present, we experience the advent of 2nd generation optical networks in practice
and, considering the emerging research reports, all-optical networks come into reach.
There is also a lot of research activity towards direct optical switching of packets
(see for instance [39, 100, 138, 162, 165, 174]) or so-called bursts as collections of
packets heading for the same destination (see [26, 81, 142, 164, 172]). Note that
this does not mean IP over WDM, but introduces a new kind of packet-switching
inside the optical layer. Since the protocol stack is reduced, the traffic management
is simplified, and some equipment becomes obsolete. This makes packet- and burst-
switching attractive for the operators. However, packet (or burst) routers need a
buffering capability for the time it takes to read a header and to decide about the
further way. In addition, packet-based traffic is based on best-effort transmissions
and hence can require additional buffering in case a chosen link is congested. Optical
buffering yet is not practicably procurable, and packet- or burst-switched optical
networks are not expected to enter practice in the near future. Hence, the main
subject of this thesis is the planning of circuit-switched optical networks.

1.5 Optical network planning

In view of the investments tied up by a network infrastructure, elaborate planning is
required to avoid the waste of any resources. This, however, is a complicated task.
Besides the many restrictions imposed by technological requisites and operational
guidelines, the planners have also to bear in mind qualitative issues such as reliabil-
ity and flexibility. Resulting in a problem of high complexity, the overall network
planning is typically subdivided into partial tasks. For a hierarchically structured
network transporting different kinds of traffic, the single levels and layers are typi-
cally considered separately. In this thesis, we focus on the planning of the optical
layer as transport network in the backbone.

Basically, designing a network consists in determining an appropriate network con-
figuration. We first discuss this central term and identify closely related issues
involved. Next, we list further planning aspects and typical goals to strive for. So
far, this introductory chapter provides an overview about design-relevant issues and
their options. Some of the resulting design tasks are of particular importance for
network operators in practice. The corresponding specifications are finally presented
in a concluding overview.

1.5.1 Network configuration

The operation of an optical network relies on its proper configuration—a compre-
hensive term with various meanings. In this regard, we consider neither technical
calibrations nor signaling induced device adjustments. For network planners, the
term configuration subsumes the arrangement of hardware (in the physical topol-
ogy), lightpaths (forming the virtual topology), and their composition to the re-
quested end-to-end connections as an operable network.
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Figure 1.15: Structure of the network configuration task.

From this perspective, determining a feasible network configuration comprises the
allocation of hardware devices such that sufficient capacities are provided to establish
all needed lightpaths for the asked optical connections. This high-level description
suggests a structuring as illustrated in Figure 1.15. All decisions concerning hard-
ware belong to the hardware configuration, those concerning the connections belong
to the lightpath configuration, and the capacities, provided on the one side and con-
sumed on the other side, chain these issues. In the following, both subconfigurations
are described in more detail.

Hardware configuration. The hardware configuration of the network refers to
the arrangement of the hardware devices in the physical topology: transmitters,
receivers, fibers, WDM systems, switches (OXCs, DXCs), regenerators, and con-
verters. The number and location of transmitters and receivers is predetermined
by the requested connections, and hence we neglect these devices in the planning.
By their specific functions, the remaining devices offer different kinds of capacity:
transmission capacity on the links and switching , regeneration, and conversion ca-
pacity at the nodes of the network.
On the links, the installation of fibers with WDM systems allows to operate a num-
ber of optical channels for data transport. Due to a uniform channel bitrate, the
transmission capacity of a link can simply be expressed in terms of the number of
available optical channels. Depending on whether the distinction of wavelengths is
important or not, we account for the number of wavelength channels per wavelength
or the total number of channels.
At the nodes, every installed switch provides a number of ports, each allowing to
handle a single optical channel. For WDM, multiplexing and demultiplexing of trans-
missions is performed at the end of the fibers, i.e., before channels enter a switch,
see Figure 1.16. This allows to access each channel independently for switching and,
if multiple switches are installed at the same node, the total switching capacity ac-
cumulates from the single port numbers of the present switches.
Usually, transmission capacities are directly geared to the intended number of chan-
nels to transport along a link. The need of switching capacity at a node can also
be determined in this traffic-oriented way, ensuring that the planned number of
traversing optical channels can be switched. Alternatively, the link-oriented node
dimensioning asks for installing sufficiently many ports to handle all optical channels
even if the adjacent links were fully occupied. Such a node configuration is inde-
pendent of the current traffic pattern and thus keeps the network more flexible for
changing connection requirements, but typically requires higher switching capacities
at the nodes.
A hardware configuration is completed by the placement of regenerators and wave-
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Figure 1.16: Hardware arrangement at a node for switching (with an OXC).

length converters, if available and needed. Being pluggable to individual channels,
the needed numbers of these devices are directly given by the planned number of
traversing channels that require these functionalities.

The placement of all hardware devices together determines the available capacity
resources and is called the dimensioning of the physical topology. Note that all
capacities are expressed in (equivalents of) the number of optical channels (or wave-
length channels, if wavelengths are to be distinguished). The supplied capacities
serve to establish lightpaths, as described next.

Lightpath configuration. Connections in optical networks are realized by means
of (consecutive) lightpaths. A lightpath configuration consists of the arrangement of
all lightpaths to establish and specifies completely the consumption of all physical
capacities. The routing of the lightpaths determines their transmission paths in the
physical topology. With WDM, a wavelength assignment has to be carried out addi-
tionally, i.e., assigning a wavelength of operation for each lightpath on each traversed
link. Depending on the available technologies, the limited length of lightpaths as
well as wavelength conversion capabilities have also to be taken into account for a
proper configuration.
We distinguish two kinds of routings according to the following path choice proper-
ties. A routing is called non-bifurcated if all connections between the same endnodes
use the same path, otherwise it is bifurcated . Note that bifurcation does not mean
to split optical connections by fractions, e.g., subdivide a lightpath into multiple
portions routed independently. The lightpath routing is always carried out in entire
optical channels. Some services explicitly rely in addition on non-bifurcated rout-
ing, for instance high-quality video streaming where transmission on different paths
could change the prescribed data order, resulting in replay interruptions. Whenever
such a service occupies multiple optical channels in parallel, non-bifurcation require-
ments carry over to the corresponding lightpaths.
The lightpath configuration of an optical network is schematized as virtual topology,
see Section 1.2.4. As direct optical transport line, each lightpath corresponds to a
virtual link representing the logical connection of the endnodes.

Network configuration. The network configuration comprehends both the hard-
ware and the lightpath configuration. These partial configurations are coupled by
the capacities, as shown in Figure 1.15. The capacities provided by the hardware
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configuration in the physical topology have to be large enough to realize the light-
path configuration. In case of multi-hop traffic, a network configuration also involves
the composition of end-to-end connections by lightpaths, i.e., a routing of the con-
nections on the virtual topology.

Demand and commodities. A network is primary designed to satisfy the traffic
demand . In backbones, the traffic occurs in an aggregated form, subsuming many
data streams originating from various client layers and services. Hence, it is natural
to record the demand for planning in this aggregation, too.
We assume traffic demands to be given as a set of commodities, each specified by
the associated origin and destination node and the requested number of optical con-
nections to establish. Further requirements are imposed by survivability needs, set-
tings for the targeted configuration (e.g., single- or multi-hop traffic, non-bifurcation
needs, etc.), and the underlying technology (e.g., opaque or transparent and associ-
ated technical restrictions).

Main architectures. Regarding the relation of physical topology, virtual topol-
ogy, and traffic demands, three main architectures are to be distinguished. Trans-
parent optical networks with multi-hop traffic form the most general case where the
virtual topology need not coincide with the physical topology or the traffic demands
(interpreting the demand matrix as node adjacency matrix). The two other archi-
tectures show special relations. Single-hop traffic in transparent networks yields
end-to-end lightpaths, and so the virtual topology equals the traffic demands. In
opaque networks, any lightpath spans a single fiber link, and thus the virtual topol-
ogy simplifies to (a part of) the physical topology (neglecting any multiplicities).

Once established, a properly configured network can serve the requested demands.
Over time, changing traffic requirements and technological progress regularly force
the network operators to adapt their network configuration and to modernize their
hardware. In this regard, network planners have to cope with various questions and
design tasks, discussed next.

1.5.2 Network design

The design of a telecommunication network is not a singular task which ends with
the realization of the planned infrastructure, but an ever-repeating process with
varying requisites in a dynamic environment. Driven by technological progress, op-
erational and organizational alterations, innovative concepts, and last but not least
fluctuating traffic, the planner regularly has to adapt the network to serve current
connection requests and to guarantee best service quality. This yields several types
of typical planning tasks that have to be solved in regular time spans. Short-term
planning, for instance, includes connection reconfigurations according to changing
traffic patterns which result from corrected or new forecasts. Such operational de-
cisions are easily alterable due to software-controlled equipment. Being harder to
revise, the installation of new devices is a matter of mid- or long-term strategic
planning, in particular adding new fibers or extending the physical topology by new
links or nodes. In the following, we discuss some particular aspects of planning a
network.
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Compatibility. In particular for decisions with a long-term effect, careful plan-
ning must be applied. For example, the choice of a device manufacturer often pro-
hibits simultaneous use of competitor devices because of incompatibility. Since the
available hardware is part of the input for network design, such decisions can be
integrated with in the planning, but at the price of a high complexity increase. The
better alternative is to select some scenarios and to compare the resulting networks.
In this way, the planning can support the decision maker, but outflank problem
complications.

Network upgrade. Similarly, changing an existing physical topology is also a
strategic matter. We speak about upgrade planning if a network is already at hand
and should be appropriately extended and reconfigured, while setting up a network
from scratch is called greenfield planning . In both cases, each non-existing link or
node can potentially be inserted into the physical topology, with an optional setup
cost. However, it is common practice to base on a physical topology with reasonably
preselected nodes and links for hardware installations.

Dimensioning. The capacity dimensioning task has both strategic as well as
operational character. Besides the fundamental requirement to satisfy current con-
nection requests, a more strategic aspect concerns the flexibility of a network. In
the best case, the dimensioning is carried out such that minor future adaptions can
be realized with no or low effort. Clearly, an optimal preparation of envisioned
evolution scenarios would require a multi-period planning—a much more complex
problem which just starts to enter research investigations. As practicable alterna-
tive, network design can also achieve more flexibility by following simple principles,
like link-oriented node dimensioning. Moreover, designing a network with high sur-
vivability level does not only help to overcome failure situations fastly, but inserts
additional spare capacities which open elbowrooms for lightpath reconfigurations.
In case of upgrade planning, another issue concerns the mobility of preinstalled
equipment. While fibers are obviously bound to their place, all other devices are
theoretically movable from one location to another. Router interface cards or regen-
erators can often be easily unplugged and reused on another location, whereas more
complex hardware such as WDM systems or switches cause more reallocation effort
due to necessary recalibrations. However, network operators usually disregard (ex-
pensive) transportations of damageable hardware that so far has worked satisfactory
and favor its further use on the spot, also promoted by the fact that the hardware
is often easily expandable to a higher stage at low cost.

Traffic engineering. Given a proper hardware installation, establishing optical
connections is a purely operational task since switches are software-controlled and
thus reconfigurable. The task to determine a new circuit pattern on a fixed physical
network is called traffic engineering . Note that this includes a possible lightpath
reconfiguration in multi-hop transparent networks. We distinguish two basic types
of traffic engineering. In the static case, the circuit configuration is redesigned
for the entire connection demand given as input. Such a circuit (and lightpath)
reconfiguration is carried out in regular intervals to adapt the network to changing
traffic requirements. Between these major restructurings, existing connections might
become useless and new connections are requested over time. Without replanning
the whole circuit configuration, removing and adding of single or few connections is
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done by dynamic traffic engineering.

Traffic forecasts. Since future traffic obviously cannot be foreseen, the specified
demands are usually based on a traffic forecast . Consequently, the service capability
of a proposed network also depends on the quality of the forecasts as foundation for
the planning. As major influence, this should be kept in mind when a revision of
the planning is deduced from the practical suitability of its outcome. In practice,
the provision of reliably good forecasts may be very difficult. Providers usually rest
on extrapolation of historical traffic patterns and are regularly fooled by unexpected
changes. In particular, so-called killer applications with unforeseen popularity can
suddenly generate immense additional traffic and thereby cause network overflows,
which is naturally unavoidable.

Objective. Designing an optical network will always head for an objective, de-
pending on the beholder and its interests. Network users avail the facilities and thus
focus on the offered services, their quality and price. Network providers supply the
infrastructure and have a stake in the investments and their return. In between,
network operators try to find the best way of using the available infrastructure to
realize the most efficient and asked services. Each perspective yields a different net-
work design goal: Users aim at best application support, providers at lowest cost,
and operators at best benefit from a given infrastructure. The common point of
these perspectives is to find the best trade-off between service qualities and their
prices. However, it is an option to decide which issues are fixed as requirements
and which remain variable to be optimized. A possibility is to define an investment
budget for network extensions by which a maximum throughput (based on a given
pattern) shall be obtained. The most common objective indeed is to minimize the
equipment costs for the realization of some given traffic requirements.

1.5.3 Preliminary specifications

The previous parts of the introduction have pointed up many alternative faces of
technology, operation, and planning of optical networks. Although each issue allow-
ing for choices corresponds to a fair question for network design, some decisions are
usually determined prior to the planning, and some minor aspects are disregarded
for the sake of tractability. So, this concluding part is designated to give a brief
overview of the most important preliminary specifications and definitive settings for
those network design problems that are to be studied in this thesis.

Basically, the design of optical networks consists in the task to determine a net-
work configuration that serves the traffic demand. To concretize this task, some
fundamental preliminaries are specified as follows:

• Network layer: The scope of the configuration task lies on the optical layer as
transport network.

• Compatibility: All considered hardware devices are system-compatible, i.e., we
expect all available devices to work together, except for prohibited combinations
of fibers and WDM systems. We do not account for functionality-independent
incompatibilities, for instance caused by different device manufacturers (which
should be appropriately preselected).
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• Physical topology: The physical topology of the network is proposed as
fixed input, including new nodes or links to consider with a setup cost. Adding
further nodes or links is hence disregarded within the optimization.

• Bitrate: All traffic connections in the network operate on the same bitrate,
which allows to express both demands and routings in terms of a number of
optical connections or lightpaths, respectively.

• Demand: The traffic demand is static, deterministic, and (entirely) given as
input. Dynamic demands can theoretically be simulated to some extent as sub-
sequent lightpath reconfigurations on a fixed hardware configuration, but this
approach does not include all aspects of online studies. The related issues of call
admission and dynamic provisioning of connections are studied in Poensgen [141],
for instance.

• Survivability: Generally, an optical network is to be protected against all
single link or node failures. To incorporate allocated as well as best-effort traf-
fic, we allow to designate a protection level for each connection individually.
Unprotected connections can be dropped in case of a failure.

Some aspects allow for optional alternatives which can usually be integrated by
slight changes to the models. To avoid huddling plenty of variations together in an
exhaustive presentation, we pick some default settings as follows:

• Existing network: Basically, we consider the more general case of upgrade
planning, with the possibility to specify preinstalled equipment that can be
reused on the spot. Greenfield planning occurs as special case with no prein-
stalled hardware at all.

• Directions: We assume capacities, traffic demands, and optical connections to
be bidirectional by default. As a consequence, we represent both the physical
and the virtual topology by undirected multi-graphs.

• Routing: Each demand can be routed bifurcated, i.e., multiple connections
between the same nodes need not use the same paths in the physical topology.

• Objective: The design goal is to minimize the total network cost for new equip-
ment to install.

Variations of these prerequisites will be indicated explicitly and exemplary discussed
as excursions.

Next, fundamental guidelines for the network design are prescribed by the used
architecture and the traffic management. We distinguish three scenarios:

• opaque networks, exclusively applying electronic switching such that each light-
path spans a single link only,

• transparent networks with single-hop traffic, where each optical connection is re-
alized by a single lightpath, and

• transparent networks with multi-hop traffic, where end-to-end circuits can de-
compose into multiple subsequent lightpaths.

Designing a network comprises both the hardware dimensioning as well as the light-
path configuration, including wavelength assignment in the transparent cases. Traf-
fic engineering is not considered as a separate task, but is contained as a subproblem
(with a completely fixed hardware configuration).
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By these specifications, we obtain a family of specific optical network design prob-
lems designated as practically relevant by our industrial cooperation partners Tele-
kom Austria and T-Systems International. To support the planners, we develop suit-
able solution methods for these problems by means of mathematical optimization,
providing both good designs as well as a quality guarantee for their appraisement.



Chapter 2

Modeling optical network design

A mathematical optimization approach to the design of optical networks requires to
transform the real-world problem description into the mathematical ’world’. The
goal is to find appropriate models that fit to the job. Abstraction plays a key role
in this process: Mathematics is best if applied on some well-defined objects with
specified rules for their handling. To meet this perspective, an analysis of all related
aspects has to be carried out in order to filter out issues of minor importance or
influence, leaving the focus on the problem essence for further investigation. The
preceding introduction has already prepared such a transformation by specification
of the major issues.

In this chapter, we investigate the mathematical modeling of optical network design.
The derived models form the base for solution methods. A comparison to particular
related models in the literature is postponed to the following chapter, where we
discuss these approaches in combination with algorithmic techniques. For a general
introduction into modeling of network design, we refer to the excellent books of
Pióro and Medhi [140], also providing a comprehensive collection of formulations for
various specific settings, and of Grover [61] with emphasis on survivability models.

We begin with a description of our modeling framework as common base for all con-
sidered optical network architectures. Such a ’premodeling’ step is not a necessary
burden, but proves helpful to identify those issues that reflect the main properties
and interdependencies subject to the pursued objective.
Next, we formulate integer linear programming models for optical network design.
We presented a first simplified model for transparent optical networks in Zymolka et
al. [178]. Here, we give more detailed formulations for various network architectures.
The exemplary adaptions for alternative or additional aspects reveal the flexibility
of our framework in combination with our models.
Finally, we integrate survivability into the models. We have developed a new concept
particularly designed for meshed optical networks, balancing spare capacity savings
and ease of management. A basic variant was introduced and evaluated in Koster
et al. [98, 97], followed by an enhanced version in Wessäly et al. [168] and Gruber
et al. [62].

39
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2.1 Modeling framework

In this section, we lay the ground for transforming real-world optical network design
into parameterized mathematical models suited for optimization methods. Following
the task structuring which is illustrated in Figure 1.15 on page 32, we present a basic
view on the network configuration abstracting from minor details and identifying an
adequate set of concise objects relevant for the network design. We first propose
a device-oriented hardware model which is appropriately simple for mathematical
compilation and, at the same time, flexible enough to incorporate many planning
issues. Next, we consider the capacities which are on the one side supplied by the
installed hardware and on the other side consumed by the connections to establish.
Then we investigate the routing, describing the main properties of (lightpath) con-
nections and their respective modeling. Completing the problem transformation, we
finally turn to the objective and discuss hardware cost models. Altogether, this view
provides the framework for our modeling of optical network design in the subsequent
sections.

2.1.1 Hardware

In network design, modeling the physical hardware is typically a difficult matter.
On the one hand, planners prefer a highly detailed model that incorporates as many
aspects as possible in order to get the most realistic figure of the network. On the
other hand, any simplification makes planning tasks more tractable, and the special
power of mathematical approaches often bases on the abstraction from subordinate
details, getting a problem more handy for solution algorithms.
Our hardware model tries to satisfy both needs in the following trade-off. Guided
by the practical perspective, we apply a modular description for optical networks as
composition of many single devices, but restrict on few abstract sorts of hardware
modules to reduce the detail level: fibers, WDM systems, switches, converters, and
regenerators. These module sorts subsume all devices either by abstracting the vari-
ant (e.g., DXC and OXC as switch) or particular combinations (e.g., optical fiber
together with amplifiers). Transmitters and receivers are not explicitly incorporated,
because they only occur at the beginning and the end of the circuits to establish for
carrying traffic, hence their number is fixed for a static traffic requirement.
Any module sort has a couple of attributes representing those characteristic prop-
erties that are relevant for the planning. Modules of the same sort may vary in the
attribute values, representing different module types for that sort. The auxiliary use
of artificial module types allows for easy integration of some aspects that otherwise
require cumbersome modeling. Some illustrative applications are exemplified below.

Module sorts. In the following, we give a short description of the five module
sorts involved in our hardware configuration model and their main attributes:

Fibers. Fibers represent the long-distance carrier for optical transmissions in the
network and are installed on physical links. As module sort, a fiber combines
an optical fiber with the corresponding signal refreshment equipment, i.e., a
fiber is ready-to-use for transmissions between the connected nodes.
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In general, each link can contain multiple fibers of any type which can addi-
tionally carry WDM systems. The fiber types differ in their signal propagation
qualities which influence the signal degradation during the transmission and
the applicability of WDM systems.

WDM systems. WDM allows for the efficient use of fibers by enabling simulta-
neous transmissions on different wavelengths. The module sort WDM system
combines multiplexer and demultiplexer units which perform the merging of
single wavelength channels to a combined signal for transmission and their
separation afterwards. Although each of these units is physically located at a
network node, WDM systems represent transmission equipment and are, as an
integrated unit, installed on fibers (and hence on the physical links as well).
Each WDM system type is characterized by the supported spectrum, i.e., the
number of optical channels and their particular wavelengths that can be com-
bined. Its application may premise particular fiber properties. Modern WDM
systems can combine many optical channels with very dense wavelength divi-
sion (DWDM). During transmission on a fiber, the signals must not deviate
too much for a correct demultiplexing. To model these requirements, the pos-
sible fiber types are specified for each WDM system type.
Moreover, fibers can also be operated without applying WDM. In this case, the
transmission consists of a single optical channel (of any wavelength). However,
it simplifies the modeling if we avoid to explicitly distinguish whether or not
WDM is applied on a fiber. For this, we could introduce an auxiliary WDM
system operating a single optical channel (without de-/multiplexing) which
represents the ’no WDM’ case. This allows to assume that any installed fiber
carries exactly one WDM system.

Switches. Switching of optical channels can be performed by several hardware
devices, such as DXCs, OXCs, or their variants, as described in Section 1.1.3.
The module sort switch indeed abstracts from the particular technology and
models just the common functionality: Each module provides a number of
ports for switching optical channels. If using a DXC, the switch includes also
the interface devices for the required o-e and e-o conversions, i.e., two couples of
a transmitter and a receiver for each port to enable switching of a bidirectional
optical connection. Clearly, switches are always installed in the nodes of the
physical topology, and each node can contain multiple modules.
We remind that switching an optical channel is independent of its wavelength,
and all switches are fully configurable, i.e., any (input) port can be mapped
on any (output) port. So, different switch types vary only in the number of
offered ports (and their price).

Converters. Wavelength conversion is only applied in the nodes of the physical
topology. By a conceptual interpretation, we do not (explicitly) distinguish
whether the conversion is performed optically or by a transponder, i.e., as an
o-e-o conversion. Abstracting from the applied technique, we assume that the
module sort converter operates a single optical channel without range limita-
tion, i.e., any wavelength can be converted into any other. Hence, converter
types differ only in their prices.
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Regenerators. Regeneration does not refer to amplification, but to full (or 3R)
signal refreshment and includes a possible wavelength conversion. As module
sort, a regenerator can handle a single optical channel of any wavelength. So,
also regenerator types differ only in their price.
Typically, regenerators are placed at the network nodes. An exception occurs
in networks with links that are too long for direct transmission. A typical
example are wide-area networks covering large geographical regions, such as
national networks in the USA. Such links can only be operated by intermediate
application of regenerators. An explicit integration of on-link regenerations can
simply be avoided by insertion of auxiliary nodes at the regeneration points.
To ease the modeling, we postpone the description of regeneration points and
their consistent integration to further aspects discussed in Section 2.2.5 and
assume in the following that all network links allow for direct transmission.

Additionally, all sorts of modules have some common attributes pertaining to in-
stallation capabilities. Commercial availability and installation space restrictions
can impose an upper bound on both the number of each module type and the total
number of modules of a sort at each location. Such bounds are also obligatory for
upgrade planning to express that a limited number of modules is initially given for
free reuse on the spot.
The interpretation of the physical network as a module construction kit provides
a sufficiently accurate network figure for a realistic cost determination, in partic-
ular for upgrade planning. Moreover, such a unitized hardware description offers
additional modeling flexibility: The auxiliary use of module types is a helpful tool
to integrate further planning issues, as already demonstrated for fiber operation
without WDM. To provide just one further example for the many possibilities, we
describe the integration of upgradeable WDM systems into the framework.

Example: WDM system upgrades. Manufacturers sometimes offer basic
devices with a restricted functionality which can be upgraded without exchanging
the entire unit. So, WDM systems are built of a rack that contains a de-/multiplexer
unit and some slots for fiber interfaces by which the wavelength channels to combine
are inducted. Not all slots need to be used initially. For instance, a WDM system
can have 40 slots but uses only 10 of them in the basic version. Upgrading the
system is then possible by adding further interfaces, see Figure 2.1. This way, some
of the already installed hardware can further be used.
An integration of such WDM system upgrades into our model has to ensure that an
upgrade system can only be installed on top of an appropriate basic system (without
further use of the latter on another fiber). For this, we introduce an auxiliary fiber
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Figure 2.1: Example for WDM system upgrades.
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type which represents those fibers that already carry an extendible WDM base
system. Both the WDM base system and its upgrade system are only installable
on this auxiliary fiber type whose number on a link is limited to the number of
preinstalled base system combinations on that link. Moreover, the WDM upgrade
system gets the parameters of the upgraded system. Whenever a WDM upgrade
system is selected for installation, the corresponding base system cannot be further
used due to the fiber type number limitation and the property that each fiber carries
exactly one WDM system. This way, a proper accounting of the supplied capacities
is guaranteed.

2.1.2 Capacities

The installed hardware as physical part of an optical network offers the required func-
tionalities to establish connections. These functionalities are quantified in terms of
capacities to express the amount of traffic a module can handle. According to dif-
ferent functionalities, there are several types of capacity for transmission, switching,
and transformation of connections.

Transmission capacity on the physical links is provided by fibers and WDM sys-
tems. While the fiber serves as a signal carrier, the applied WDM system
determines the number of usable optical channels and their operation wave-
lengths. Hence, transmission capacity is expressed in numbers of wavelength
channels. The individual capacities of multiple WDM systems (and fibers) on
a link sum up to the total link capacity.

Switching capacity at the network nodes is supplied by switches. The modules
offer a number of ports, each being able to handle a single optical channel inde-
pendent of its wavelength. Therefore, switching capacity can be expressed as
the number of (bidirectional) ports or, by the one-to-one correspondence, also
as the number of optical connections to dispatch. In case of multiple switches
at the same node, their capacities accumulate to the total node switching ca-
pacity.
Switching capacity at the nodes can be dimensioned either traffic-oriented or
link-oriented, as introduced in Section 1.5. Since the latter yields more flexible
network designs which can simpler be adapted to changing traffic patterns, we
focus on link-orientation as default and postpone model adaptions for traffic-
oriented node dimensioning to an excursion at the end.

Conversion capacity, as well provided by the nodes, describes the possibility to
exchange the wavelength of operation for lightpaths. For this, wavelength
converters have to be installed. Each converter handles a single optical channel
and is able to convert any wavelength to any other. Hence, the number of
wavelength converters at a node directly determines the conversion capacity
in terms of manipulatable optical channels.

Regeneration capacity is similar to conversion capacity, since a regenerator is
also applied to a single optical channel independently of its wavelength. Hence,
the regeneration capacity of a node in terms of the number of regenerable
lightpaths corresponds to the number of installed regenerators.
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Note that all capacities are counted in (equivalents of) entire units of optical/wave-
length channels, where the more specific distinction of wavelength channels occurs
only on the links. This observation allows to simplify some further explanations:
Whenever we use the term capacity without further specification, we refer to a num-
ber of optical channels, while wavelength capacity reflects a number of wavelength
channels of a particular wavelength. Clearly, the sum of the wavelength capacities
over all wavelengths on a link equals its capacity.

2.1.3 Connections

Connections requested in the network are established as end-to-end circuits which
correspond to paths in the physical topology. Basically, each circuit consumes a
wavelength channel on each traversed link and a switching port in each traversed
node, including its endnodes. The use of different technologies indeed makes it
necessary to refine this simplified connection model according to the specific circuit
types.

Opaque networks. In opaque networks, circuits represent connections which use
optics only as a point-to-point carrier. Since each transmission is o-e-o-converted in
each node, neither the wavelengths of the used link channels nor a limited overall
length are to be taken into account. So, establishing connections reduces to routing
paths such that the capacities at links and nodes are not exceeded.

Transparent networks. In contrast, transparency in network nodes brings up
additional features of connections. Here, the circuits are composed of lightpaths
which are subject to wavelength continuity unless wavelength converters are ap-
plied. In addition, the length limitation for lightpaths carries over to circuits unless
regenerators are used for establishing multi-hop connections.
Since a lightpath must specify the wavelength of operation on each link, the routing
has to be carried out with respect to the wavelength capacities in the physical topol-
ogy, and the task is accompanied by the determination of a conflict-free wavelength
assignment. Moreover, each exchange of the wavelength along a lightpath occupies
a wavelength converter at the corresponding node, and thus consumes conversion
capacity.
In case of multi-hop connections, the concatenation of lightpaths along a circuit
needs a regenerator whenever a lightpath is terminated and a new one is set up.
Hence, multi-hop connections also consume regeneration capacity in the correspond-
ing nodes. Allocating these nodes on a multi-hop connection requires an accurate
measurement of lightpath lengths.

Lightpath length measurement. Concerning length limitations, any physi-
cal equipment can in principle influence the signal quality in several regards and
thus decrease the maximum transmission distance. Although theoretically possible,
an accurate compilation of all these interdependent effects and integration of the
resulting parameters into the models yields a significant increase in size and com-
plexity. Instead, we apply a simplified length measure mechanism typically used
by the network planners. In practice, it is customary to limit connection lengths
always in terms of fiber kilometers. The link lengths then do not refer anymore to
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physical fiber lengths, but are set in order to reflect the extent of signal degradation
along lightpaths, for instance adjusted by relation factors for different fiber types.
Moreover, node disturbances can be integrated by adding an appropriate value to
the adjacent link’s lengths. This method is sufficiently flexible to incorporate many
aspects related to length-restricted transmissions, while keeping the measurement
easy.
For using such a measurement, the physical topology has to be slightly adapted. To
take different length restrictions for various equipment combinations into account,
we can replace a physical link by multiple parallel links each with specific length rep-
resenting the transmission properties of the associated installable equipment. This
way, the path of any connection in the refined topology specifies also the traversed
equipment and thus allows for an accurate length measurement corresponding to
the suffered signal degradation.
Moreover, the length restriction model can also be extended to take multiple com-
peting limitations into account, e.g., to distinguish signal quality loss by attenuation
or by dispersion. In this case, each degradation measure defines a separate length
value for each link, and the topology modifications have to be carried out w.r.t. each
of these measures in a straightforward way. However, although our modeling offers
this possibility, we remark that the network design task complexity grows substan-
tially with any extension of the physical topology, and thus the details to incorporate
should be chosen carefully to avoid model overloading. To limit notation overhead,
we restrict ourselves to a single length measure per fiber in the sequel.

2.1.4 Cost

From a provider-oriented perspective, a main goal of designing an optical network
consists in minimizing the total network cost. There are various cost sources, such as
capital expenditures (so-called CAPEX) subsuming building costs, e.g., for digging
conduits for the fibers or preparing rooms for the node equipment, hardware costs
for buying and installing new modules, or operating expenses (so-called OPEX), e.g.,
for maintenance and configuration services, among others. The planning indeed can
only take those costs into account which depend on the decisions to make and are
either already known or can be forecasted (at least approximately).

Cost model. We use a cost model that is as flexible as the component model for
the hardware. In fact, we associate all costs with network and hardware components,
each with an arbitrary cost function. So, it is up to the planner which costs are to be
involved. For instance, interpreting the design as a decision about which hardware
to buy, it is reasonable to take only current market prices for the components into
account. Alternatively, the provider could as well choose to disregard purchase costs
which are paid only once, and to focus rather on regularly incurred costs for network
operating and maintenance. In practice, however, planning a network incorporates
as many information as available, which is typically a mix of the examples above,
e.g., by combining depreciations and operational costs.
Our cost model distinguishes two main types of costs: those associated with network
components, and those associated with hardware components. The first category
refers to setting up nodes and links in the physical topology. Since the topology
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is fixed for the design, new links and nodes have to be inserted priorly, but their
usage can be bound to an incurred setup cost. The cost for providing capacities
in the network is modeled by the hardware module costs. Each module unit has
a total cost for its use. In general, the cost value can depend on the installation
location. Fiber costs, for instance, are obviously varying with the length of a link to
be installed on, while node equipment typically incurs the same cost at any node.
In cooperation with our industrial partners, we have selected the following cost
functions which reflect network building costs and are composed as follows:

Fiber cost. A fiber module represents a combination of an optical fiber together
with the required amplifiers, placed at regular distances, subdividing the fiber
into segments. The segment length is limited by the maximum transmission
distance without amplification. Hence, the total cost of a fiber type is the sum
of three parts: a cost per physical link kilometer for the optical fiber itself,
a cost per each full segment for the amplifiers, and a fixed installation cost
(independent of the link length).

WDM system cost. Although installed on links, WDM systems represent hard-
ware that is located at the ends of links and thus have no link-length dependent
cost. Instead, different module types vary in their capacities. Thus, we com-
bine the WDM system type cost of a base cost and a cost per wavelength
interface. We always consider fully equipped systems, i.e., interface costs are
not usage-dependent.

Switch cost. Similar to WDM systems, switch costs are typically independent
of the installation location, but may vary with the supported capacity. So,
a switch type cost is composed of a type base cost and an again usage-
independent cost per port.

Converter and regenerator cost. Since all types of wavelength converters and
regenerators offer the same functionality, no parameter-dependent costs occur,
and we define only a unit cost for any of these modules.

Clearly, all of the considered cost factors can also vary for different module types
and installation locations. However, we assume the cost functions to be evaluated
a priori, yielding a single value for the total cost of each module. Already existing
equipment is always assumed to be available for free. Hence, the network design
objective only sums up the defined total cost for any newly installed module.

The choice of suitable cost models completes the modeling framework. At this
point, we have identified all relevant objects and properties that have to be taken
into account in the design of optical networks. So, we are now ready to formalize
the task as a mathematical optimization problem.

2.2 Mathematical models

The preceding framework provides the basis for the formulation of integer linear
programming models for optical network design. We begin this section with a lucid
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introduction of the required formal definitions and notations. The models are then
presented separately for different network scenarios, ordered by increasing complex-
ity of the planning task. Finally, we discuss some selected formulation alternatives
and model adaptions to those options that differ from our chosen defaults or reflect
so far non-integrated aspects. Throughout this section, we leave out survivability
which is investigated separately afterwards.

2.2.1 Parameters and notation

The basic structure of an optical transport network is the physical topology which
maps the geographical layout. It contains all physical locations for hardware place-
ment as nodes and their point-to-point connections as physical links, together typi-
cally represented by a multi-graph. By default, we consider bidirectional capacities,
demands, and circuits, which allows to rest on undirected multi-graphs, cf. Sec-
tion 1.2.4.

Definition 2.1 (Physical topology) The physical topology of an optical net-
work consists of a finite set N of nodes and a finite multi-set T of physical links
represented by an undirected multi-graph T = (N,T ). To become usable, each link
t ∈ T has a link setup cost Ct ∈ R+, and similarly each node n ∈ N defines a node
setup cost Cn ∈ R+.

If the physical topology of an optical network is disconnected, the multi-graph com-
ponents are independent of each other and can be considered individually. Therefore
we can w.l.o.g. assume the physical topology T to be connected.

As physical topology, the multi-graph T does not distinguish fibers with different
signal propagation qualities as long as these fibers are commonly installed. Parallel
physical links occur only in case two nodes are connected by separately conducted
connections (which is of importance for survivability investigations, cf. Section 2.3).
To explicitly account for varying length limitations of the fibers, the physical topol-
ogy is transformed as described in Section 2.1.3 into the so-called supply network
by subdivision of the physical links such that a separate supply link serves for the
installation of all fiber types with the same transmission properties. This way, each
supply link can get an individual length for the transmission distance measurement.
Figure 2.2 shows an example for a real-world network, its physical topology, and the
associated supply network.

Definition 2.2 (Supply network) The undirected supply network N = (N,L)
is defined as the multi-graph obtained from the physical topology T = (N,T ) by
replacing each physical link t ∈ T with finitely many parallel supply links Lt rep-
resenting different equipment properties, where L =

⋃
t∈T Lt. Each link ℓ ∈ L has a

length ωℓ ∈ R+ assigned to it (expressed in virtual kilometers (km)). With respect
to these lengths, the maximum total distance for optical transmissions is the optical
reach Ω ∈ R+\ {0}.

Both the physical topology and the supply network build the foundation for the
installation of modules and the establishment of (lightpath) connections. Another
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(a) Real-world network. (b) Physical topology. (c) Supply network.

Figure 2.2: Example of a small Hessian network with (a) its real-world shape, (b) the
physical topology, and (c) the supply network for two property-different fiber types,
one of which is installable only on links of not more than 90km. Notice that Marburg
and Gießen are connected by two parallel, but independent physical links.

such fundamental resource is the set of all operable wavelengths that can be provided
by WDM systems.

Definition 2.3 (Wavelength spectrum)The finite set Λdenotes the wavelength
spectrum of all wavelengths that can be operated in the optical network.

Next, we turn to the hardware configuration of the network, composed of the modules
which are introduced sort-wise. We begin with the link technology, where fibers serve
as a basic transmission carrier.

Definition 2.4 (Fibers) The finite set F represents all available fiber types. For
each supply link ℓ ∈ L, the subset Fℓ ⊂ F contains all fiber types that are installable
on link ℓ. For each supply link ℓ ∈ L, each installable fiber type f ∈ Fℓ has as
attributes

• a cost Cf
ℓ ∈ R+ for new installation,

• the number ef
ℓ ∈ Z+ of already existing fibers, and

• the maximum number (bound) bf
ℓ ∈ N of units allowed to use.

Moreover, the maximum number of fibers installable on supply link ℓ ∈ L is denoted
by bFℓ ∈ Z+, whereas bFt ∈ Z+ limits the total number of fibers on a physical link
t ∈ T (over all associated supply links in Lt).

WDM systems represent the second constituent of link technology. In contrast to
fibers which have to be installed on particular supply links, WDM systems can be
compatible with different fibers from several supply links ℓ ∈ Lt. Hence, we allocate
WDM systems on the level of physical links.

Definition 2.5 (WDM systems) The finite setW subsumes all available WDM
system types. As attributes, each WDM system type w ∈ W defines

• the set Fw ⊂ F of fiber types on which it can be installed,

• the set Λw ⊂ Λ of supported wavelengths
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and thus provides |Λw| optical channels. Furthermore, each WDM system type
w ∈ W specifies for each physical link t ∈ T

• the cost Cw
t ∈ R+ for being newly installed,

• the number ew
t ∈ Z+ of existing units, as well as

• the maximum number (bound) bw
t ∈ N of such modules allowed to use.

For notational simplifications, we introduce for each WDM system type w ∈ W the
additional parameters

• kwλ ∈ {0, 1} as indicator whether wavelength λ ∈ Λ is provided (kwλ = 1) or
not, and

• kw = |Λw| =
∑

λ∈Λ kwλ for the optical channel capacity.

Since the total number of WDM systems on a physical link is implicitly limited by
the total number of (compatible) fibers, we do not define an additional bound.

Considering the node technology, we first introduce the switches.

Definition 2.6 (Switches) The finite set S represents all available switch types.
As attributes, each switch type s ∈ S defines the number ks ∈ N of offered switching
ports and further for each node n ∈ N

• the installation cost Cs
n ∈ R+,

• the number es
n ∈ Z+ of already existing modules, and

• the maximum number bs
n ∈ N of usable units of that type.

In addition, bSn ∈ N limits the total number of all switches at each node n ∈ N .

Further node equipment is built of wavelength converters and regenerators, two mod-
ule sorts which we differ conceptually and which we therefore introduce separately.

Definition 2.7 (Converters) The finite set C defines all (wavelength) con-
verter types. The attributes for each converter type c ∈ C define for any node
n ∈ N

• the installation cost Cc
n ∈ R+,

• the number ec
n ∈ Z+ of already existing modules, and

• the maximum number (bound) bc
n ∈ N of such modules.

Moreover, bCn ∈ N limits the total number of all converters allowed to use at node
n ∈ N .

We remark that the total number bound for converters is only introduced for a
unified view on all module sorts and for the sake of completeness. In practice, oper-
ators typically use a cheapest device as often as required throughout the network. In
such a case, the bound on the total number of converters coincides with the number
bound on the only type. The same observation holds for the regenerators.

Definition 2.8 (Regenerators) The finite set R defines all regenerator types.
For each node n ∈ N , each regenerator type r ∈ R has as attributes

• the installation cost Cr
n ∈ R+,

• the number er
n ∈ Z+ of already existing modules, and
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• the maximum number (bound) br
n ∈ N of such modules.

The number bRn ∈ N limits the total number of all regenerators usable at node n ∈ N .

Having defined all parameters for the hardware configuration, we switch over to
the lightpath configuration. As a basic term, we first introduce the routing path of
optical transmissions.

Definition 2.9 (Routing path) A routing path is an alternating sequence of
nodes and links in the supply network N defined by p = (n0, ℓ1, n1, ℓ2, n2, . . . , ℓh, nh),
where ni ∈ N for all i = 0, . . . , h, and ℓi ∈ L with ℓi = ni−1ni for all i = 1, . . . , h. We
call op = n0 the origin, dp = nh the destination, and the value h the (physical)
hop-length of the routing path. It depends on the context whether p is interpreted as
directed or undirected path, the latter making origin and destination exchangeable.
W.l.o.g., all routing paths correspond to simple, non-closed paths, i.e., ni 6= nj for all
0 ≤ i < j ≤ h, and thus define uniquely determined sets of traversed links and nodes.
For a routing path p, we denote by L(p) = {ℓ1, . . . , ℓh} ⊂ L the set of all supply links,
by N(p) = {n1, . . . nh−1} the set of inner nodes, and by N [p] = {n0, . . . , nh} ⊂ N
the set of all nodes in the path.

In optical networks, lightpaths form the basic connection type. A lightpath is char-
acterized by its routing path together with an assignment of an operation wavelength
on each traversed link.

Definition 2.10 (Lightpath) A routing path p together with an assignment αp :
L(p) → Λ of an operation wavelength αp(ℓ) to each link ℓ ∈ Lp of p defines a
lightpath (p, αp).

Whenever the associated wavelength assignment does not matter, we refer to a
lightpath also by its routing path p, i.e., without specified wavelengths.
Lightpaths then compose to optical connections, which are the end-to-end circuits
in optical networks.

Definition 2.11 (Optical connection) An optical connection is a sequence
(p1, αp1), . . . , (pk, αpk

of lightpaths such that the destination of pi is the origin of pi+1

for all i = 1, . . . , k− 1. We call k the virtual hop-length of the optical connection.
For k = 1, the optical connection is called single-hop, otherwise multi-hop.
The routing path of an optical connection composes of the concatenated routing paths
of the corresponding lightpaths. W.l.o.g., we assume all optical connection routing
paths to be as well simple, non-closed paths.

We finish with the formal statement of the connection requirements.

Definition 2.12 (Commodities) The (multi-) set Q subsumes all commodities,
also called demands, which represent the connection requirements. Each commodity
q ∈ Q is specified by

• the endnodes to connect, split in an origin oq ∈ N and a destination dq ∈ N ,
oq 6= dq, and by

• the demand value vq ∈ N as number of optical connections to establish between
these nodes.
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As we consider undirected commodities, the direction indicated by origin and desti-
nation is selected arbitrarily for the sake of modeling. Moreover, multiple commodi-
ties between the same pair of origin and destination are allowed.

2.2.2 Opaque networks

As characteristic feature, opaque optical networks perform electronic switching in
the nodes where transmissions always undergo an o-e-o conversion. So, the op-
tical medium serves just as point-to-point carrier between fiber-connected nodes,
and all lightpaths span only a single link. This implies two consequences: First, a
wavelength of operation can be chosen independently for any traversed link of each
optical connection, and second, the total length of optical connections is not limited
by the maximum optical transmission distance. In particular, the first observation
indicates that a feasible wavelength assignment can be simply determined for any
routing as long as the link capacities in terms of total channel numbers are not ex-
ceeded by the numbers of transmitted connections. So, the wavelength assignment
can be released from the core task and settled in a postprocessing step. With this
exclusion, we can abstract from specific wavelengths and take only the number of
optical channels into account.

Regarding the unlimited circuit length, we remind on the assumption that each
physical link allows for optical transmissions (on at least one fiber type). Due to
the opacity of nodes, link lengths then do not matter anymore, and splitting links
to reflect different fiber propagation properties is unnecessary. Hence, the supply
network is equivalent to the physical topology, i.e., T = L and Lt = { ℓ } for all
t ∈ T . Nevertheless, we formulate the constraints already in the general case, i.e.,
on the supply network, in order to allow reuse for other architectures.

Capacity variables. The hardware configuration and the lightpath configuration
are coupled by capacities as central term. By the use of auxiliary variables for the
capacities, we can separately model the hardware dimensioning and the connection
routing. So, we introduce the following capacity variables:

yℓ ∈ Z+ denotes the number of channels provided on link ℓ ∈ L;

yn ∈ Z+ denotes the number of ports provided at node n ∈ N .

The codomain of these variables is a discrete set of values that correspond to ca-
pacities supplied by feasible hardware installations. Although the variables can be
easily eliminated throughout all models, an explicit notation of capacities proves to
be helpful in formulating and solving the problem.

Location setup. As setup costs are involved, it is also important to allow for
not setting up a location, even though there might be existing equipment. For this,
we can consult the capacity variables, indicating utilization of links and nodes by
positive values. Since it is only important to distinguish between zero and non-zero
capacities, we use the following binary variables on the physical topology:

xn ∈ {0, 1} indicates whether node n ∈ N is set up (xn = 1) or not, and
xt ∈ {0, 1} indicates whether physical link t ∈ T is set up (xt = 1) or not.
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With M sufficiently large (e.g., the total demand sum plus the largest capacity of
a switch or WDM system, respectively), the correct setting of these variables is
enforced by:

yn ≤Mxn ∀ n ∈ N (2.1a)
∑

ℓ∈Lt

yℓ ≤Mxt ∀ t ∈ T (2.1b)

xn, xt ∈ {0, 1} ∀ n ∈ N, t ∈ T (2.1c)

yn, yℓ ∈ Z+ ∀ n ∈ N, ℓ ∈ L (2.1d)

The node capacities directly determine the node setup in constraints (2.1a), since
supply nodes and physical nodes coincide. For setting up physical links, constraints
(2.1b) state the corresponding conditions for any number of associated supply links.
Finally, binary indicators and integer capacities are guaranteed by constraints (2.1c)
and (2.1d).

Hardware configuration model. Let us next consider the hardware configu-
ration. As wavelength converters and regenerators are needless in opaque networks,
we deal only with switches at the nodes and combinations of fibers and WDM sys-
tems on the links. Taking existing equipment into account, we have to install new
modules where required, and to assign a fiber to each WDM system. The existing
equipment indeed need not necessarily be used further, e.g., when an preinstalled
small WDM system is replaced by a new larger one to be carried on the same fiber.
Therefore, we have also to decide how many units of each module type are to use
at each location. So, we introduce the following variables:

xs
n ∈ Z+ denotes the number of new switches (DXCs) of type s ∈ S to

be installed at node n ∈ N ;

zs
n ∈ Z+ denotes the total number of switches (DXCs) of type s ∈ S to

be used at node n ∈ N ;

xf
ℓ ∈ Z+ denotes the number of new fibers of type f ∈ F to be installed

on link ℓ ∈ L;

xw
t ∈ Z+ denotes the number of new WDM systems of type w ∈ W to

be installed on physical link t ∈ T ;

zf w
ℓ ∈ Z+ denotes the total number of combinations composed of a fibers

of type f ∈ F carrying a WDM system of type w ∈ W to be
used on link ℓ ∈ L.

Observe that the variables xs
n, xf

ℓ , and xw
t just set new installations without defining

the particular combinations of modules to use. These combinations are separately
defined by the variables zs

n and zf w
ℓ , the latter also fixing the assignments of fibers

and WDM systems for particular supply links. This way, we are able to cover all
possible configurations composed of existing and newly installed modules, e.g., fur-
ther use of a fiber with replaced WDM system, which would require more effort
when alternatively using installation variables referring directly to specific equip-
ment combinations. Clearly, the assignment variables zf w

ℓ are only required for
feasible combinations of WDM systems w ∈ W and associated fibers f ∈ Fw. For
notational convenience, we complete the assignment variable set for all combinations
and exclude impossible assignments by fixing zf w

ℓ = 0 for all w ∈ W, f /∈ Fw.
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Node dimensioning. With the introduced variables, we can formulate hardware
dimensioning constraints as part of an integer linear program. The auxiliary capacity
variables allow also to address node and link configurations separately. We begin
with the nodes for which the hardware dimensioning model reads:

∑

s∈S

kszs
n = yn ∀ n ∈ N (2.2a)

zs
n ≤ es

n + xs
n ∀ n ∈ N, s ∈ S (2.2b)

zs
n ≤ bs

n ∀ n ∈ N, s ∈ S (2.2c)

∑

s∈S

zs
n ≤ bSn ∀ n ∈ N (2.2d)

xs
n, zs

n ∈ Z+ ∀ n ∈ N, s ∈ S (2.2e)

For each node, constraint (2.2a) accounts for the switching capacity yn which is
accumulated from the used switches. Type-wise, constraints (2.2b) ensure their
supply by existing and newly installed modules. The numbers of usable switches
for each type and for all modules in total are bounded by constraints (2.2c) and
(2.2d), respectively. Finally, conditions (2.2e) care for solution integrality. Note
that conversion and regeneration need not be modeled.

Link dimensioning. Next, we turn to the links where the transmission capacities
are composed in a more complicated way:

∑

w∈W

∑

f∈Fw

kwzf w
ℓ = yℓ ∀ ℓ ∈ L (2.3a)

∑

w∈W

zf w
ℓ ≤ ef

ℓ + xf
ℓ ∀ ℓ ∈ L, f ∈ Fℓ (2.3b)

∑

ℓ∈Lt

∑

f∈F

zf w
ℓ ≤ ew

t + xw
t ∀ t ∈ T, w ∈ W (2.3c)

∑

w∈W

zf w
ℓ ≤ bf

ℓ ∀ ℓ ∈ L, f ∈ Fℓ (2.3d)

∑

ℓ∈Lt

∑

f∈F

zf w
ℓ ≤ bw

t ∀ t ∈ T, w ∈ W (2.3e)

∑

w∈W

∑

f∈Fw

zf w
ℓ ≤ bFℓ ∀ ℓ ∈ L (2.3f)

∑

ℓ∈Lt

∑

w∈W

∑

f∈Fw

zf w
ℓ ≤ bFt ∀ t ∈ T (2.3g)

zf w
ℓ = 0 ∀ ℓ ∈ L, w ∈ W, f /∈ Fw (2.3h)

xf
ℓ , xw

t , zf w
ℓ ∈ Z+ ∀ ℓ ∈ L, f ∈ F, t ∈ T, w ∈ W (2.3i)

For each supply link ℓ ∈ L, the variables zf w
ℓ express the selection of fiber and WDM

system pairs to use and, at the same time, their assignments to compatible combina-
tions whose channel numbers sum up to the total transmission capacity, as described
by constraint (2.3a). Provision of the selected numbers of fibers and WDM systems
is location-wise guaranteed by constraints (2.3b) and (2.3c), respectively, implying
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the installation of new units whenever the existing modules do not suffice. Further-
more, the availability of each module type is restricted by the number bounds stated
in constraints (2.3e) and (2.3d). Eventually, the total number of installable fibers
and thus link systems is limited by constraint (2.3f) for each supply link separately
and in constraint (2.3g) for each physical link in total. Prohibition of incompatible
combinations of fibers and WDM systems is achieved in constraints (2.3h) by simply
zero fixing of the corresponding variables (or, alternatively, removing them from the
model). The integrality conditions (2.3i) complete the link configuration model.

Capacity relation. With link-oriented dimensioning of switching capacities, the
two presented configuration models are linked as follows. For each selection of
feasible link capacities yℓ, the capacity requirement at each node is determined by
the sum of the capacities of all incident links, i.e.,

∑

ℓ∈L(n)

yℓ ≤ yn ∀ n ∈ N . (2.4)

This way, the nodes are dimensioned such that any set of connections not exceeding
the link capacities can be switched. In particular, the counting on the left hand
side does not care about the fact that a connection bypassing a node uses an optical
channel on two incident links, but occupies only a single (bidirectional) port in
the intermediate node. Hence, the resulting switching capacity at each node would
suffice even if all incident links were fully loaded with connections terminating in
the node. As this is rarely the case, the nodes are typically oversized by (2.4).
To curtail this effect (at the price of neglecting some extreme traffic changes), a
reasonable alternative is to use the current traffic requirements as an indicator for
the number of connections that will terminate at each node. In this case, the node
dimensioning can be carried out by

∑

ℓ∈L(n)

yℓ +
∑

q∈Q:
n∈{oq,dq}

vq ≤ 2yn ∀ n ∈ N . (2.5)

Here, each incident link channel, assumed as part of a bypassed connection, is just
counted half, expressed equivalently by doubling the right hand side. The second
term on the left hand side corrects this counting by the actual number of emanating
connections. By (2.5), the node capacities (can) become smaller than from (2.4),
but are still sufficient to establish most lightpath reconfigurations according to the
link capacities, and so we use (2.5) in this thesis. For the actual design, indeed, both
alternatives allow to exclude the node capacities from the routing restrictions. As
long as the lightpath connections meet the link capacities, their establishment will
not exceed the switching capacities as well.
The combination of all constraints resulting from the configuration models (2.2)
and (2.3) for all nodes and links, respectively, together with the linking constraints
(2.5) for all nodes comprises all network configurations at disposition. Moreover, the
formulation transfers any hardware configuration to the associated set of supplied
link capacities. The corresponding variables then hold the bounds for the capacity
consumption of optical connections to establish.

Lightpath configuration model. The routing of connections in telecommu-
nication networks is typically modeled as a multicommodity flow. Since flows are
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typically oriented, it is convenient to direct the commodities. As already indicated by
the definitions in Section 2.2.1, we arbitrarily separate each commodity’s endnodes
into an origin and a destination node and orientate the connections from origin to
destination. The connections are then routed as directed flows, although represent-
ing bidirected optical connections and thus undirected routing paths which consume
capacity in both directions.
For the modeling of network flows, two alternative approaches are known: using link
flow variables or path variables. In general, a link flow model is more compact, while
path variables allow for an easy formulation of further routing path restrictions such
as the limited length of lightpaths in transparent optical networks. Optical connec-
tions in opaque networks allow for both variants, and we first describe the link flow
formulation.

Link flow model. We introduce the following variables for directed link flows:

f q
ℓn1
∈ Z+ denotes the number of optical connections of commodity q ∈ Q

routed on link ℓ ∈ L with ℓ = n1n2 from n1 to n2.

Note that the more familiar notation with n1, n2 as indices does not apply here since
there can be multiple supply links connecting a node pair, and thus the selected one
has to be specified explicitly with additional indication of the flow direction.
The routing model for optical connections then reads:

∑

ℓ∈L(n1):
ℓ=n1n2

f q
ℓn1
−
∑

ℓ∈L(n1):
ℓ=n2n1

f q
ℓn2

=





vq , n1 = oq ,
−vq , n1 = dq ,
0 , otherwise

∀ q ∈ Q, n1 ∈ N (2.6a)

∑

q∈Q

(f q
ℓn1

+ f q
ℓn2

) ≤ yℓ ∀ ℓ ∈ L, ℓ = n1n2 (2.6b)

f q
ℓn ∈ Z+ ∀ q ∈ Q, n ∈ N, ℓ ∈ L(n) (2.6c)

For each commodity q ∈ Q, the flow conservation constraints (2.6a) ensure that
a flow of vq optical connections originates from oq, terminates at dq, and is cor-
rectly relayed in all other intermediate nodes. The total flow of all commodities
together must not exceed the link capacities independently of the direction, which
is expressed by constraints (2.6b). Conditions (2.6c) guarantee flow integrality as
required to represent optical connections.
Any non-negative integer solution of (2.6) describes an integer flow for each com-
modity. It is well known that any such integer flow decomposes into simple paths
and directed cycles (see, for instance, Ahuja et al. [2]). The flow on any directed cy-
cle can be reduced to zero without violating (2.6). The network cost cannot increase
this way. A cycle-free flow then decomposes into simple paths which correspond to
the routed optical connections. This decomposition is not unique, i.e., there can be
different path sets that sum up to the same link flow, and the planner has the op-
portunity to choose a path decomposition that suits best according to second order
goals.

Path flow model. An alternative way to represent commodity routings is pro-
posed by use of path variables. Since these variables directly correspond to the
optical connections, we can restrict the routing to simple paths. For this, we intro-
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duce the following sets:

Pod is the set of all simple paths from o ∈ N to d ∈ N in N ;

P =
⋃

o,d∈N:
o 6=d

Pod is the union of all simple paths in N .

The path variables are defined as follows:

f q
p ∈ Z+ denotes for commodity q ∈ Q the number of optical connec-

tions routed on path p ∈ Poq dq
.

We remark that the variable index q is not required as long as no two commodities on
the same node pair are involved. Here, we allow for the more general case of having
parallel commodities which are to be handled individually, e.g., due to different
restrictions regarding bifurcation, survivability, or others.
The routing model with path variables then reads:

∑

p∈Poq dq

f q
p = vq ∀ q ∈ Q (2.7a)

∑

q∈Q

∑

p∈Pod:

ℓ∈L(p)

f q
p ≤ yℓ ∀ ℓ ∈ L (2.7b)

f q
p ∈ Z+ ∀ q ∈ Q, p ∈ P (2.7c)

The routing for each commodity is determined by the selection of the requested
number of paths as optical connections in constraints (2.7a). By constraints (2.7b),
the capacity of each link limits the number of selectable paths across that link for
all commodities in common. Finally, conditions (2.7c) provide flow integrality.
Joining all paths selected for a commodity creates a commodity flow as before.
This flow can contain cycles, removable as well, and could be decomposable into a
different set of simple paths.

Objective. The optimization task is completed by the objective, which reads
∑

n∈N

Cnxn +
∑

t∈T

Ctxt +
∑

n∈N

∑

s∈S

Cs
nxs

n +
∑

ℓ∈L

∑

f∈F

Cf
ℓ xf

ℓ +
∑

t∈T

∑

w∈W

Cw
t xw

t (2.8)

and has to be minimized.

Model summary. The compilation of the discussed constraints results in com-
plete integer program formulations for the design of opaque optical networks. De-
pending on the routing model, we distinguish two major variants:

ONDl
opq resp. ONDp

opq

involving

• minimization of (2.8) subject to

• the setup constraints (2.1),

• the node configuration model (2.2) and

• the link configuration model (2.3) with

• the capacity linking constraints (2.5), and

• the link flow model (2.6) resp. the path flow model (2.7).
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Showing that each solution of the formulations represents an operable network ac-
cording to the practice-oriented description is an easy, but cumbersome exercise and
thus left out. Moreover, the integer linear programs ONDp

opq and ONDl
opq obvi-

ously model the same problem, as has already been argued for the alternative flow
formulations which state the only difference.

Problem complexity. The flow formulation provides also the key for a brief
complexity classification of the problem which contains the well-known integer mul-
ticommodity flow problem as subtask:

Lemma 2.13 The opaque optical network design problem is NP-hard.

Proof. Originally, Karp [85] has proven the NP-completeness for a simple version
of integer multicommodity flow (with disjoint paths only), and Even et al. [46] car-
ried over the result to general integer multicommodity flows, which holds even if only
two commodities are considered. In the general case, for a given graph N = (N,L)
with edge capacities kℓ ∈ Z+ and a set Q of commodities, the task is to decide
whether there is an integer flow of the requested size vq for each commodity q ∈ Q
such that the union of all flows does not exceed the edge capacities.
By the following transformations, we show that such a decision problem occurs as
a subtask in opaque optical network design (and thus reduces to it). For each sup-
ply link, we define a specific fiber and WDM system type as F = { fℓ | ℓ ∈ L },
W = { wℓ | ℓ ∈ L } with Fwℓ

= { fℓ } and kwℓ = kℓ. Their exclusive use on the asso-
ciated supply link is ensured by setting the following parameters. For each physical
link t ∈ T , define bFt = |Lt| as well as ewℓ

t = bwℓ
t = 1 if ℓ ∈ Lt and ew

t = bw
t = 0

otherwise. For each link ℓ ∈ L, set efℓ

ℓ = bfℓ

ℓ = bFℓ = 1 and ef
ℓ = bf

ℓ = 0 for all f 6= fℓ.

In addition, the link systems are determined by fixing zfℓwℓ

ℓ = 1 and zf w
ℓ = 0 when-

ever f 6= fℓ or w 6= wℓ. For the nodes, we set S = { s } with ks =
∑

ℓ∈L kℓ and
es
n = bs

n = bSn = 1 for all n ∈ N , i.e., use a large enough switch to handle all pos-
sible traffic. Finally, we set the variables xn = xt = 1 for all n ∈ N, t ∈ T , and
xw

t = xf
ℓ = xs

n = 0 for all types and locations.
As a consequence, all constraints in ONDl

opq are satisfied except for (2.6a) and (2.6b)
which together with the integrality of the link flow variables f q

ℓn1
formulate the orig-

inal integer multicommodity flow problem. This way, any integer multicommodity
flow instance can be reduced to a corresponding instance of opaque optical network
design, proving the claim. �

Formulation comparison. Comparing both formulations in size reveals that
the size of ONDl

opq is polynomial in the input data size, whereas ONDp
opq typically

contains an exponential number of path variables. In fact, for any node pair, a
meshed network provides a huge number of different paths for connections, each
generating a separate path variable. A polynomial number of paths is only given on
trivial network structures, such as rings where each node pair can only be connected
by two different paths as long as no parallel links are present. In this light, ONDl

opq

provides the more compact integer linear program.
Concerning the sets of feasible solutions, equivalence of the two formulations holds
up to routing variations by inserting (or removing) directed cycles at no cost and
different flow decompositions into simple routing paths. If both solution spaces
are restricted to cycle-free routings for all commodities, it is easy to verify that any
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solution of ONDp
opq corresponds to exactly one solution of ONDl

opq, and this mapping

is surjective. The other way round, any solution of ONDl
opq can have several routing

path decompositions, each corresponding to exactly one solution of ONDp
opq which

is a surjective mapping as well. By these observations, given a commodity routing
as a link flow can be interpreted as an aggregation of a set of path flows for which
the path decomposition information was lost. This information is dispensable in the
opaque scenario, but not in the transparent case where paths have to satisfy further
restrictions.

2.2.3 Transparent networks with single-hop traffic

In transparent optical networks, we have to deal with lightpaths which differ from
connections in opaque networks in two fundamental properties: wavelength continu-
ity and length restriction. As a consequence, it is not possible anymore to exclude
the wavelength assignment subtask from the core problem, and we have to integrate
it into the integer linear program formulation. In addition, transmissions are op-
tically forwarded in the nodes, and so we have to account for their total distance
over multiple fibers. In particular, different fiber propagation properties become
relevant, i.e., each physical link t ∈ T can in fact decompose into a non-trivial set
of supply links Lt with |Lt| ≥ 1 in general, according to Definition 2.2. In this
section, we focus on single-hop traffic and refine the previous problem formulation
to transparent optical network design.

Hardware model adaptions. On the hardware side, most constraints for the
installation of already integrated modules are not affected by the distinction of
wavelengths. In fact, we inherit wide parts of the former models, including the switch
configuration model (2.2) and nearly all constraints from the link configuration,
namely (2.3b)–(2.3i). The link dimensioning indeed has to account for wavelength
capacities which are modeled by the following variables:

yλ
ℓ ∈ Z+ denotes the number of wavelength channels with wavelength

λ ∈ Λ on link ℓ ∈ L

As a consequence, we have to adapt all constraints dealing with link capacities. So,
transmission capacity at a link ℓ ∈ L is now given wavelength-wise by

∑

w∈W

∑

f∈Fw

kwλzf w
ℓ = yλ

ℓ ∀ ℓ ∈ L, λ ∈ Λ (2.9)

which substitutes (2.3a) in the former link configuration model. For the link-oriented
node dimensioning, the wavelength capacities must be summed up to channel ca-
pacities by

∑

ℓ∈L(n)

∑

λ∈Λ

yλ
ℓ +

∑

q∈Q:
n∈{oq,dq}

vq ≤ 2yn ∀ n ∈ N (2.10)

replacing (2.5). Finally, the link setup constraints (2.1b) change to
∑

ℓ∈Lt

∑

λ∈Λ

yλ
ℓ ≤Mxt ∀ t ∈ T . (2.11)
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Conversion capacity. With the distinction of wavelengths, the capability for
their conversion comes into play, too. The nodes can be equipped with wavelength
converters to provide conversion capacities (whereas regenerators are not allowed for
single-hop traffic). Again, auxiliary variables for conversion capacities are helpful
for separate modeling of hardware and routing restrictions. So, we introduce the
following variables:

xc
n ∈ Z+ denotes the number of new wavelength converters of type c ∈ C

to install at node n ∈ N ;
zc
n ∈ Z+ denotes the total number of wavelength converters of type c ∈

C to use at node n ∈ N ;
yCn ∈ Z+ denotes the conversion capacity of node n ∈ N .

Hereupon, the hardware configuration model is extended by the wavelength con-
verter model as follows:

∑

c∈C

zc
n = yCn ∀ n ∈ N (2.12a)

zc
n ≤ ec

n + xc
n ∀ n ∈ N, c ∈ C (2.12b)

zc
n ≤ bc

n ∀ n ∈ N, c ∈ C (2.12c)
∑

c∈C

zc
n ≤ bCn ∀ n ∈ N (2.12d)

zc
n, xc

n, yCn ∈ Z+ ∀ n ∈ N, c ∈ C (2.12e)

At each node n ∈ N , constraints (2.12a) account for the conversion capacity offered
by the used modules. Moreover, constraints (2.12b) take care of necessary new in-
stallations of each converter type at each node, and the bounds on type numbers are
expressed by constraints (2.12c), whereas constraints (2.12d) limits the total number
of converters at each node. The integrality conditions (2.12e) complete this model.
Since applying conversions presumes the existence of switching capacity, the con-
verters need not be considered explicitly for the node setups which are driven by
utilization of switches. Further changes of the hardware part are not needed for
adaption to transparent optical networks with single-hop traffic.

Lightpath configuration model. In the routing part, indeed, lightpaths are
now able to span multiple links, which makes optical connections more difficult to
model. Since path length restrictions become important, we cannot anymore rely
on link flow variables by which individual routing connections need not be uniquely
determined. The routing of lightpaths therefore has to be modeled by path variables.
In turn, this provides also advantages: Using the knowledge of the link lengths, the
lightpath reach can implicitly be handled by removing too long paths from the
respective path sets. This way, intricate conditions are avoided, and the number of
path variables is reduced accessorily. We only have to define the adapted path sets
as follows:

P̃od ⊂ Pod is the set of all simple paths p in N from o ∈ N to d ∈ N
which are feasible lightpath routes, i.e., have a total length of∑
ℓ∈L(p)

ωℓ ≤ Ω;
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P̃ =
⋃

o,d∈N:
o 6=d

P̃od is the union of all such simple paths in N which do not exceed
the maximum transmission length.

Besides their routing paths, the lightpaths additionally require a conflict-free wave-
length assignment. To incorporate this issue, one possibility is to refine the path
sets to holding complete lightpaths with preassigned wavelengths. Due to the im-
mense variability of assigning wavelengths link-wise, this would create an intractable
magnitude of such sets. The better alternative is to introduce separate wavelength
assignment variables, accompanied by further variables for counting the implied
conversions:

aλ
p ℓ ∈ Z+ denotes the number of times wavelength λ ∈ Λ is assigned to

lightpaths routed along p ∈ P̃ on link ℓ ∈ L(p);

aλ
p n ∈ Z+ denotes the number of lightpaths routed along p ∈ P̃ whose

wavelength is converted from λ ∈ Λ to another wavelength in
intermediate node n ∈ N(p).

Using these variables, the lightpath configurations can be described by a common
model for routing and wavelength assignment, which reads:

∑

p∈ ePoq dq

f q
p = vq ∀ q ∈ Q (2.13a)

∑

λ∈Λ

aλ
p ℓ =

∑

q∈Q:

p∈ ePoq dq

f q
p ∀ p ∈ P̃ , ℓ ∈ L(p) (2.13b)

∑

p∈ eP:
ℓ∈L(p)

aλ
p ℓ ≤ yλ

ℓ ∀ ℓ ∈ L, λ ∈ Λ (2.13c)

aλ
p ℓi
− aλ

p ℓi+1
≤ aλ

p ni
∀ λ ∈ Λ, p ∈ P̃ , 1 ≤ i ≤ h− 1, where

p = (n0, ℓ1, n1, ℓ2, n2, . . . , ℓh, nh) (2.13d)
∑

λ∈Λ

∑

p∈ eP:
n∈N(p)

aλ
p n ≤ yCn ∀ n ∈ N (2.13e)

f q
p , aλ

p ℓ, aλ
p n ∈ Z+ ∀ q ∈ Q, p ∈ P̃ , λ ∈ Λ, ℓ ∈ L, n ∈ N (2.13f)

The demand constraints (2.13a) ensure that all commodities are satisfied using light-
paths routed on the available paths of restricted length. For the selected number of
lightpaths along any given route p ∈ P̃ , the wavelength assignment is determined
link-wise in constraints (2.13b), providing the respective number of wavelengths on
each link. Constraints (2.13c) state that all traversing lightpaths together cannot
exceed the supplied wavelength capacities on any link.
The converter counting requires to look individually on every path p and every non-
end node ni. For modeling purposes only, direct the path in an arbitrary way and let
ℓi and ℓi+1 be two consecutive links along p with common node ni. If aλ

p ℓi
= aλ

p ℓi+1

for some wavelength λ, then none of the lightpaths along p needs a converter. If
aλ

p ℓi
6= aλ

p ℓi+1
, then the difference determines exactly the number of lightpaths that

change from wavelength λ to another wavelength (in case aλ
p ℓi

> aλ
p ℓi+1

) or from

another wavelength to λ (in case aλ
p ℓi

< aλ
p ℓi+1

). Summing up over all such differ-
ences over all wavelengths in node ni clearly yields always zero, while the actual
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number of needed converters in a node is given by accumulating only the positive
differences for each wavelength. For each inner node of a path, these differences
are determined in constraints (2.13d) and hold by variables aλ

p n. For each node,
their sum over all paths traversing the node and over all wavelengths gives the total
number of converters needed at the node and is limited by the provided conver-
sion capacity in constraints (2.13e). Finally, fractional routings, assignments, and
converter placements are prohibited by conditions (2.13f).

Objective. The integration of converter costs causes an extension of the objective
function to

∑

n∈N

Cnxn +
∑

t∈T

Ctxt +
∑

n∈N

(
∑

s∈S

Cs
nxs

n +
∑

c∈C

Cc
nxc

n

)

+
∑

ℓ∈L

∑

f∈F

Cf
ℓ xf

ℓ +
∑

t∈T

∑

w∈W

Cw
t xw

t (2.14)

which again has to be minimized.

Model summary. As a result, the complete formulation for transparent optical
network design with single-hop routing is assembled to the model:

ONDtsh

involving

• minimization of (2.14) subject to

• the setup constraints (2.1) with (2.1b) replaced by (2.11),

• the node configuration model (2.2) extended with

• the wavelength converter model (2.12),

• the link configuration model (2.3) with (2.3a) replaced by (2.9),

• the capacity linking constraints (2.10), and

• the routing and wavelength assignment model (2.13).

Solutions. Given a feasible solution of ONDtsh, the associated design of the trans-
parent optical network is completely specified except for the particular wavelength
assignment of individual lightpaths. In case multiple lightpaths follow the same
route, the assignment variables aλ

p ℓ block sufficiently many wavelengths on each tra-
versed link, but do not dedicate particular wavelengths to each particular lightpath.
To accomplish the task, the allocation has to be carried out such that the number
of converters indicated by constraints (2.13e) is not exceeded. A polynomial time
method to resolve the cumulative wavelength assignments for parallel lightpaths into
individual lightpath assignments will be sketched in Chapter 4. This way, any wave-
length allocation obtained as solution of ONDtsh can be transformed to a feasible
lightpath configuration, though the result need not be uniquely determined. In the
other direction, any given operable network design can obviously be transformed
into a feasible solution of ONDtsh, which verifies the correctness of the model.

Problem complexity. The program ONDtsh contains the integer multicommod-
ity flow problem as a subtask, too, which can be easily observed for the special case
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|Λ| = 1 and Ω arbitrarily large: Without different wavelengths and restricted path
lengths, the model ONDtsh reduces to ONDp

opq. Hence, Lemma 2.13 implies that the
transparent optical network design problem with single-hop routing is NP-hard as
well. Furthermore, it is not hard to see that the wavelength assignment subtask of
ONDtsh corresponds to a coloring-type problem, bringing another difficult subtask
into play. A discussion in more detail of this issue will be carried out in Chapter 4.

2.2.4 Transparent networks with multi-hop traffic

A single-hop routing of the traffic is sometimes desired by network operators. Nev-
ertheless, the solution space of possible routings is restricted by such a precondition.
In addition, it is not applicable to node pairs for which even the shortest path ex-
ceeds the maximum transmission distance. Both handicaps are overcome by allowing
for multi-hop lightpath connections. Then, a circuit can be composed of multiple
concatenated lightpaths, with regenerators to be placed in between. Fortunately,
the models for transparent optical networks with single-hop or multi-hop routing
are quite similar.

Hardware model adaptions. Concerning hardware, the most important model
adaptions have already been carried out with the changeover from opaque to trans-
parent networks. In fact, all corresponding constraints from ONDtsh can be reused
unchanged. The hardware configuration is just supplemented by regenerator mod-
ules which are modeled very similar to converters, including auxiliary regeneration
capacity variables. So, we make also use of a similar set of variables:

xr
n ∈ Z+ denotes the number of new regenerators of type r ∈ R to

install at node n ∈ N ;
zr
n ∈ Z+ denotes the total number of regenerators of type r ∈ R to use

at node n ∈ N ;
yRn ∈ Z+ denotes the regeneration capacity of node n ∈ N .

As a further extension of the hardware configuration part, the regenerator model
reads:

∑

r∈R

zr
n = yRn ∀ n ∈ N (2.15a)

zr
n ≤ er

n + xr
n ∀ n ∈ N, r ∈ R (2.15b)

zr
n ≤ br

n ∀ n ∈ N, r ∈ R (2.15c)

∑

r∈R

zr
n ≤ bRn ∀ n ∈ N (2.15d)

xr
n, zr

n, yRn ∈ Z+ ∀ n ∈ N, r ∈ R (2.15e)

Replacing converter types with regenerator types, these constraints have exactly the
same form as those in the wavelength converter model (2.12) and are thus explained
the same way. The setup of nodes is also determined without explicitly considering
the regenerators, because their use, like for wavelength converters, presumes the
existence of switching capacity.
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Lightpath configuration. For the routing, the previous single-hop formulation
already contains all variables to model the establishment of lightpaths including
the associated wavelength assignment, but allows for each commodity only to select
among end-to-end lightpaths. Releasing this restriction already enables multi-hop
traffic, and thus we need no additional types of variables. It suffices to extend the
set of path variables to incorporate other than direct end-to-end connections:

f q
p ∈ Z+ now denotes the number of lightpaths routed on p ∈ P̃ which

are used by commodity q ∈ Q.

Moreover, we inherit the wavelength assignment and converter constraints (2.13c),
(2.13d), (2.13e), and (2.13f) which are independent of whether a lightpath is an
end-to-end connection or not. The remaining model has to be adapted as follows:

∑

p∈ eP:
op=n

f q
p −

∑

p∈ eP:
dp=n

f q
p =





vq , n = oq ,
−vq , n = dq ,
0 , otherwise

∀ q ∈ Q, n ∈ N (2.16a)

∑

λ∈Λ

aλ
p ℓ =

∑

q∈Q

f q
p ∀ p ∈ P̃ , ℓ ∈ L(p) (2.16b)

∑

q∈Q:
n6=dq

∑

p∈ eP:
dp=n

f q
p ≤ yRn ∀ n ∈ N (2.16c)

Constraints (2.16a) model the multi-hop routing for any commodity by flow conser-
vation for the selected lightpaths, i.e., as (directed) link flow routings in the virtual
topology induced by the lightpaths. Note that this in fact formulates a two-layer
routing problem. Constraints (2.16b) equal the former constraints (2.13b) except
for that all commodities occur in the sum on the right hand side. Additionally, the
regeneration capacities have to be taken into account for each node in constraints
(2.16c). It states that all lightpaths terminating in a node that is not the dedicated
commodity’s destination require a regenerator.

Objective. The objective is extended further to incorporate regeneration cost by

∑

n∈N

Cnxn +
∑

t∈T

Ctxt +
∑

n∈N

(
∑

s∈S

Cs
nxs

n +
∑

c∈C

Cc
nxc

n +
∑

r∈R

Cr
nxr

n

)

+
∑

ℓ∈L

∑

f∈F

Cf
ℓ xf

ℓ +
∑

t∈T

∑

w∈W

Cw
t xw

t (2.17)

to be minimized.

Model summary. So, for transparent optical network design with multi-hop
routing, we finally end up with the comprehensive model:



64 2. Modeling optical network design

ONDtmh

involving

• minimization of (2.17) subject to

• the setup constraints (2.1) with (2.1b) replaced by (2.11),

• the node configuration model (2.2) extended with

• the wavelength converter model (2.12) and the

• the regenerator model (2.15),

• the link configuration model (2.3) with (2.3a) replaced by (2.9),

• the capacity linking constraints (2.10), and

• the adapted routing and wavelength assignment model (2.16) in ad-
dition to (2.13c), (2.13d), (2.13e), and (2.13f).

Solutions. Concerning the correspondence of feasible solutions of ONDtmh and
operable network designs in this setting, two non-uniqueness issues combine now:
the non-unique wavelength assignment for multiple lightpaths on the same route as
before, and the non-unique decomposition of the routing (as flow on lightpaths) into
particular circuits as end-to-end connections, a consequence of the two-level routing.
In fact, the second issue is equivalent to the non-uniqueness of link flow decompo-
sitions into simple paths as discussed for the models ONDl

opq and ONDp
opq, but

resides on the virtual topology here instead of the physical topology before. Hence,
the correctness of the formulation follows in the same way as before, combining the
observations to obtain a mapping of feasible model solutions to operable network
designs, and vice versa.

Problem complexity. By restriction to the very same special case as for ONDtsh,
choosing |Λ| = 1 and Ω arbitrarily large, ONDtmh also reduces to ONDp

opq. Unsur-
prisingly, the most comprehensive formulation ONDtmh therefore models an NP-
hard problem as well, and as obvious extension of ONDtsh, the previously mentioned
coloring subtask carries over to ONDtmh, too. It is likely that the additional routing
level increases the problem’s complexity further.

2.2.5 Further aspects

So far, the network design models for all three scenarios have been derived in a
default setting which is binding throughout this thesis. However, planners in prac-
tice might prefer distinct specification for some options according to their particular
network environments. For instance, if any of the bidirectionality assumptions for ca-
pacities, demands, or routings does not hold, we can switch to directed multi-graphs
and lightpaths. The corresponding model adaptions indeed are straightforward and
thus not stressed explicitly.

Instead, we show that our framework and the developed models are flexible to in-
tegrate further aspects and details. Investigating all possible variations and their
mutual effects is far out of reach. So, we independently discuss some selected issues
which have been excluded before or are considered as practically relevant alterna-
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tives. In particular, we study the integration of regeneration points, the possibility
to reallocate preinstalled modules, the traffic-oriented dimensioning of switching
capacities, and the modeling of non-bifurcation restrictions.

2.2.5.1 Regeneration points

In Section 2.1.1, the insertion of regeneration points has been suggested to integrate
the installation of regenerators on links which are too long for a direct optical
transmission. This idea has the advantage to avoid an explicit distinction whether
these modules are placed at nodes or on links. Basically, the key to incorporate
regeneration points consists of an extension of the modeling framework.

Framework extension. Consider an arbitrary physical link whose length forbids
direct optical transmission for some fiber types. As usual, we generate the supply
network by replacing the physical link with a couple of parallel supply links, one
for each group of fiber types with identical signal degradation properties. Next,
pick an arbitrary supply link whose associated fiber types require on-link regener-
ation(s). Due to the expenses incurred by the additional hardware, the operators
prefer a minimum number of regenerations to be performed. This predetermines
possible locations to place the regeneration points, which are also often suggested
by geographical conditions or—in case of existing fibers—can be already established.
However, we assume that a particular location for each regeneration point can be or
is fixed a priori. Then, we subdivide the corresponding supply link accordingly and
insert an additional supply node to mark each of the regeneration points.
At a regeneration point, all optical channels transmitted on any fiber have to be
fully refreshed by use of a regenerator, determining the regeneration capacity in a
traffic-oriented way as in regular nodes. Performing these 3R regenerations requires
to demultiplex combined signals, so the network manipulation is also conform with
the transmission equipment model, i.e., the prerequisite that WDM systems are
installed on supply links. The node functionalities indeed change for regeneration
points since the optical channels need not really be switched. For this, we introduce
an auxiliary switch type only available at the regeneration nodes for representing
the ’no-switching’ functionality, similar to the ’no-WDM’ system on fibers. The
auxiliary switch type has zero cost and arbitrarily large switching capacity.
This way, regeneration points can be handled the same way as ’regular’ nodes for
hardware dimensioning and connection routing. The proper setting of the supply
link lengths takes care for the occupation of regenerators whenever optical channels
are routed this way. Note that such a correct length measurement for traversing
lightpaths prevents simpler modeling by only adapting WDM system costs and vir-
tual link lengths without subdivision into subsequent links. The use of regeneration
points, as desired, maintains the prerequisites that regenerators are always installed
at supply nodes as well as that each supply link enables direct transmission, and we
avoid complications by having to consider on-link placement as special case.

In principle, transparent networks with single-hop traffic do not allow for any re-
generation. Hence, too long fiber links become unusable, and regeneration points
need not be inserted. Anyway, it is also possible to keep those fibers and to con-
sider regeneration points as exceptional issue, but we omit a discussion of particular
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adaptions for this very special case and refer for the rest only to the models ONDl
opq,

ONDp
opq, and ONDtmh.

Sketch of model adaptions. To pinpoint all model adaptions, some repetitive
formulations would be required to incorporate minor changes. Thus, we restrict to
briefly sketch the major consequences in an informal way.
An important issue concerns Definition 2.2 on page 47 where the supply nodes N do
not coincide anymore with the physical nodes N ′ ( N . Fortunately, all constraints
for physical nodes remain unchanged, and we focus only on regeneration points in
the following. Due to the framework extension, most constraints carry over literally,
in particular the lightpath configuration models (2.6), (2.7), and (2.16), as all these
constraints are already formulated on the level of supply links independent on their
relation to physical links. Clearly, if not still present, the regeneration capacity
dimensioning (2.15) and consumption constraints (2.16c) have to be added, with
appropriate adaption of the objective (2.8) to incorporate regenerator cost. Other
model parts can even be simplified. The auxiliary switch properties allow to fix some
variables referring to regeneration points, for instance those in the node dimension-
ing model (2.2), or for converters in model (2.12) since conversion capabilities are
included at regeneration points. Thereby, the link-oriented capacity relations (2.5)
respectively (2.10) become redundant for regeneration points.
Next, we turn to links with the dimensioning model (2.3) and setup constraints
(2.1b) respectively (2.11). The insertion of regeneration points yields physical links
t ∈ T with an associated set Lt of supply links which need not all be parallel any-
more, but also form chains of subsequent links. This has no impact on those model
parts which do not depend on the correspondence of physical and supply links.
Since already corresponding to individual supply links, this includes the transmis-
sion capacity accounting in (2.3a) respectively (2.9), the variables zf w

ℓ representing
the assignment of WDM systems to the carrying fibers with incompatibility condi-
tions (2.3h), as well as the fiber number limitations (2.3b), (2.3d), and (2.3f). So,
affected are only setup constraints and the remaining dimensioning constraints mod-
eling WDM system utilization as well as the total fiber number on physical links.
Regarding setups, the constraints require just to restrict the sum on all links in a
single segment, or can remain unchanged except for a multiplication of M to adapt
on summing up capacities on subsequent links in the chains. Regarding module
limitations, the same multiplication can be applied to the parameters bw

t and bFt to
account for subsequently installed WDM systems and fibers. Alternatively, these
module number limits can be demanded for each regeneration segment in the chain,
i.e., for each parallel supply link subset. Then, constraints (2.3e) and (2.3g) have to
be formulated for each of these subsets individually, summing up only the associated
supply links on the left hand side.

2.2.5.2 Movable modules

Upgrade planning involves a reuse of already existing equipment in the physical
network, and we assume as default that all preinstalled devices are only disposable
on their current spot. An alternative option is to allow reallocation for some module
types. In this case, a planner disposes of a pool of devices reusable wherever needed,
and new modules must be purchased only if the existing ones do not suffice.
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Model adaption for device pools. The necessary adaption of the models
for integration of module pools is based on an elegant variable redefinition which
we explain exemplary for wavelength converters. In constraints (2.12b), the non-
negative integer variables xc

n account for the number of converters of type c ∈ C
which have to be newly installed at node n ∈ N . By relaxing the non-negativity of
c ∈ C and turning the inequalities (2.12b) into equations, the same variables hold the
difference between the existing and the required number of such modules. Thereby,
a negative value indicates the number of devices that are removed from a location
and can be employed somewhere else. For each type individually, the total sum of
these values over all locations gives the resulting pool balance.
Formally, we turn the variables xc

n ∈ Z into general integers and replace (2.12b) by

zc
n = ec

n + xc
n ∀ n ∈ N, c ∈ C. (2.18a)

To indicate by how many new devices the pool has to be filled up, we introduce a
location-independent counting variable xc ∈ Z+ for each converter sort c ∈ C. Their
proper setting is guaranteed by adding the constraints

∑

n∈N

xc
n ≤ xc ∀ c ∈ C. (2.18b)

Movable devices managed by a pool have typically a location-independent cost, i.e.,
Cc

n = Cc for all n ∈ N . For the correct cost calculation in the objective (2.17) or
(2.14), we replace the corresponding term

∑

n∈N

∑

c∈C

Cc
nxc

n by
∑

c∈C

Ccxc.

Note that these adaptions can easily be restricted to a subset of the converter types,
leaving all other types unmovable as before.

Exactly the same reformulation can be done to integrate device pools for any other
module sorts (except for fibers, of course), using a model similar to (2.18) instead
of the constraints (2.2b), (2.3c), or (2.15b), respectively, and the corresponding
adaption of the appropriate objective cost terms. A related matter is whether the
various module type bounds at individual locations are kept or not. Moreover, it
is also possible to involve transport cost for device reallocations, but these would
require further model extensions which we omit here.

2.2.5.3 Traffic-oriented node dimensioning

In the developed models, dimensioning of switching capacity at the nodes has been
carried out link-oriented, i.e., the capacity requirements at a node are measured
according to the incident link capabilities, but independent of the traffic that has
actually to be handled at the node. This way, the network gains more flexibility
in regard of changing traffic patterns, at the price of higher switching capacities at
the nodes and, thus, typically higher total cost. In the following, we present the
alternative traffic-oriented dimensioning of switching capacities.

Model adaptions. To turn link-oriented into traffic-oriented dimensioning of
switching capacities, we remove the corresponding constraints (2.5) respectively
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(2.10) from the formulations and extend instead each model’s routing part by a
new set of constraints as follows. For opaque networks, we add to the link flow
formulation (2.6) the constraints

∑

q∈Q

∑

ℓ∈L(n1):
ℓ=n2n1

f q
ℓn2

+
∑

q∈Q:
n1=oq

∑

ℓ∈L(n1)

f q
ℓn1
≤ yn1 ∀ n1 ∈ N.

For each node n1 ∈ N , the number of all incoming optical channels, including any
terminating and transit traffic, plus the number of connections originating at n1

gives the total number of connections to be switched, as expressed by the left hand
side. This determines the minimum switching capacity at node n1 that has to be
supplied for the current lightpath configuration. In the path flow formulation (2.7),
a simpler counting principle can be applied. Here, we insert the constraints

∑

q∈Q

∑

p∈Poqdq
:

n∈N[p]

f q
p ≤ yn ∀ n ∈ N (2.19)

where all used paths traversing a node sum up to the total number of connections
to be switched at this node.
Both models for transparent networks use a path formulation as well and are enlarged
by constraints very similar to (2.19), only different in the selectable paths for the
commodities. In the single-hop case, the routing model (2.13) is extended by

∑

q∈Q

∑

p∈ ePoqdq
:

n∈N[p]

f q
p ≤ yn ∀ n ∈ N,

whereas the multi-hop routing (2.16) gets the additional constraints

∑

q∈Q

∑

p∈ eP:
n∈N[p]

f q
p ≤ yn ∀ n ∈ N.

2.2.5.4 Non-bifurcated routing

As default, we have assumed that all commodities allow for bifurcated routing.
However, non-bifurcation is important for some services, and thus we briefly show
that an appropriate adaption of the models is easy to achieve. For each group of
parallel circuits independently, it can be decided whether the corresponding routing
has to be non-bifurcated or not. We split the commodity into multiple parallel
commodities, one for each subset that has to be routed non-bifurcated, and an
additional one containing all arbitrarily routable connections, if present. Therefore,
we presume that non-bifurcation restrictions hold for entire commodities in the
sequel. We refer to all commodities requesting a non-bifurcated routing as non-
bifurcated commodities in the following, subsumed in the subset Q̄ ⊂ Q.

Model adaptions. Due to the auxiliary capacity variables, the hardware configu-
ration and the lightpath configuration have been modeled separately. Therefore, re-
stricting routing possibilities does not affect any hardware configuration constraints.
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In the routing models, we have to ensure for each non-bifurcated commodity that
all its connections take the same route. To this end, we apply a simple trick: All
flow variables for any non-bifurcated commodity are turned into binary variables
which select the routing path for all lightpaths concertedly. In addition, each of
these variables gets the corresponding demand value as coefficient to express the
represented number of connections.
Formally, we redefine for each commodity q ∈ Q̄ all variables f q

ℓn1
∈ {0, 1} on all

supply links (bidirectionally) respectively f q
p ∈ {0, 1} on all actual paths. Then, we

replace these variables in the constraints as follows. In opaque networks with link
flows, each occurrence of f q

ℓn1
for a commodity q ∈ Q̄ is substituted by vqf

q
ℓn1

in

constraints (2.6a) and (2.6b). Similarly, any term f q
p for q ∈ Q̄ is turned to vqf

q
p

in constraints (2.7a) and (2.7b) of the path flow formulation for opaque networks,
in constraints (2.13a) and (2.13b) for transparent networks with single-hop traffic,
and throughout the routing model (2.16) for transparent networks with multi-hop
traffic. As an example, constraints (2.7b) afterwards read

∑

p∈P:
ℓ∈p



∑

q∈Q\Q̄

f q
p +

∑

q∈Q̄

vqf
q
p


 ≤ yℓ ∀ ℓ ∈ L.

In some cases, the resulting constraints eventually can be simplified by division with
vq, as for instance in (2.6a), (2.7a), (2.13a), and (2.16a).

Summary. The integration of individual non-bifurcation requirements for com-
modities as well as the other variations and extensions presented above make clear
that both the underlying framework as well as the derived models form a flexible
base for the mathematical support of the network planner in practice and allow to
include many relevant details. So, we finish the discussion of minor aspects and turn
to the survivability of networks which is of crucial importance in practice.

2.3 Realizing survivability

To make a telecommunication network survivable, specified connections have to be
protected against possible failure situations. In case of a malfunction, the normal
operation of the network proceeds to an emergency state, where some hardware
modules do not work anymore, and some established connections are disrupted.
The preparation of appropriate reactions by the network management requires to
take those situations into account already in the network design process. For this,
we present the survivability concept Demand-wise Shared Protection (DSP) which
has been developed for meshed optical networks. DSP provides a new trade-off
between resource efficiency, recovery speed, and ease of application.

In this section, we first specify the reliability framework and formalize survivability
requirements. Next, we explain the concept in three variants, beginning with the
basic idea which is step-wise generalized. Thereby, we discuss conceptual properties
and show how DSP (and its variants) can be integrated into the optical network de-
sign models. Finally, we compare DSP to closely related known concepts, discussed
in Section 1.3.
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2.3.1 Notation

The operation of an optical network can be disturbed by a variety of possible failures,
affecting the configuration to different extents. As introduced in Chapter 1, we focus
on the most important failure situations, the breakdown of single nodes or single
links in the physical topology. Such situations, including the normal operation of
the network, are interpreted as distinct operation states, each specified by those
components which are currently considered out of order.

Definition 2.14 (Operating states) An operating state is defined by a subset
σT ⊂ N ∪T containing the failing physical links and nodes. The special state σT = ∅
is called the normal operation state, while any other state is referred to as a
failure state. Moreover, we denote by S1

T = { σT ⊂ N ∪ T | |σT | ≤ 1 } the set of
all operating states in which at most one single physical link or node fails.

Operating states are defined by means of the physical topology, reflecting that physi-
cally colocated hardware is assumed to fail concertedly. However, both the hardware
configuration and the lightpath configuration are based on the supply network, and
so we have to map the failure states to this topology. In the normal operating state,
the supply network clearly remains unchanged. For any failure state σT ∈ S1

T , we
consider the corresponding set σ ⊂ N∪L of failing supply network elements, defined
as

σ :=

{
Lt , σT = { t } ⊂ T ,

{ n } ∪ L(n) , σT = { n } ⊂ N ,

and the corresponding residual supply network N σ defined by

N σ :=

{
(N,L \ Lt) , σ = Lt, t ∈ T ,

(N \ { n } , L \ L(n)) , σ = { n } ∪ L(n), n ∈ N .

So, a failure of a physical link t ∈ T disables all supply links in Lt, and in case a
node n ∈ N fails, the surviving supply network is obtained by removing this node n
which turns all incident links L(n) inoperable as well. For notational convenience,
we subsume all operating states σ corresponding to σT ∈ S1

T in the set S1 as single
failure states for the supply network. The transition to a residual supply network
in case of a failure disrupts all connections which have traversed at least one of the
removed links or nodes.

Regarding the connections, recall that we allow for protected traffic as well as for
best-effort traffic. This distinction has to be incorporated into the demand definition.
So, we additionally specify the part of each commodity that is to be protected against
all relevant failures.

Definition 2.15 (Commodity protection) For any commodity q ∈ Q, the addi-
tional attribute v∗q ∈ Z+ with 0 ≤ v∗q ≤ vq defines the number of optical connections
to be protected against any single node or link failure in the physical topology of the
optical network, except for failures of the commodity endnodes oq, dq ∈ N .

We remark that the commodity protection requirements can also be refined by re-
questing an individual number of connections to maintain for each particular failure
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state σ ∈ S1. In practice, however, the guaranteed service quality of connections
rarely depends on what fails, except for endnode breakdown, of course. Thus, the
surviving connection number for a commodity is typically uniform for all failure
states.

Obviously, the survival of a particular connection cannot be guaranteed, but in case
of disruption, a surrogate circuit unaffected by the failure can be provided to the
protected traffic. Having detected the failure, the traffic to survive is shifted to
the so-called backup connection. It depends on the survivability scheme whether
backup connections are preestablished or set up dynamically. In the former case,
these connections can also be used by best-effort traffic which can be dropped upon
request.

The provision of backup connections presumes a sufficient connectivity of the phys-
ical network which is defined by means of path disjointness.

Definition 2.16 (Disjoint paths) Let T = (N,T ) be an undirected physical topo-
logy and n1, n2 ∈ N , n1 6= n2. Two paths p1, p2 in T from n1 to n2 are called
link-disjoint if T (p1) ∩ T (p2) = ∅, i.e., no link t ∈ T is contained in both of them,
and node-disjoint or simply disjoint if they are link-disjoint and do not share any
node n ∈ N \ {n1, n2} except for their endnodes, i.e., N(p1) ∩ N(p2) = ∅ holds for
the inner node sets.

With these terms, we can now introduce the connectivity of a node pair.

Definition 2.17 (Connectivity) Let T = (N,T ) be an undirected physical topol-
ogy. For a node pair n1, n2 ∈ N with n1 6= n2, the link-connectivity in T is
defined as the maximum number of mutually link-disjoint paths connecting n1 and
n2. Similarly, the node-connectivity or simply connectivity for n1, n2 in T is
defined by the maximum number of mutually node-disjoint paths between n1 and n2

and denoted by κn1 n2 ∈ Z+. We also say that a node pair with connectivity κ is
κ-connected.

Menger’s theorem [118] and its variations (see, e.g., Schrijver [150]) state min-max
relations between connectivities and cut cardinalities in graphs, which are helpful for
determination of connectivity values. So, for instance, we know that the connectivity
of a pair of non-adjacent nodes equals the minimum size of a node cut separating
these nodes. With this, one can easily verify whether a given set of mutually disjoint
paths is already of maximum cardinality or not.
Figure 2.3 illustrates path disjointness and connectivity by an exemplary network.
We have defined both link- and node-connectivity for the sake of completeness. A
restriction of survivability to link failures is sometimes investigated and motivated by
the fact that node equipment is often built highly redundant and thus not involved
in failure precautions. However, we consider the more general case of survivability
against link and node failures. Therefore, we always refer to node-connectivity or
simply connectivity in the sequel.

Making use of disjoint backup connections for a commodity in case of any failure
requires the endnodes to be at least 2-connected. Today, optical backbone networks
often have a meshed topology providing higher connectivity for many node pairs.
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A

B

C

D

Figure 2.3: An exemplary network with nodes A and B being 3-connected, proven
by the three pairwise disjoint paths. Nodes C and D are 4-connected and have a
link-connectivity of 5.

For example, the meshed network in Figure 2.3 contains in total 28 node pairs with
connectivity 3, further 29 node pairs with connectivity 4, and 9 node pairs with
connectivity 5. Such topological properties allow for plenty of alternative routings,
but most known survivability concepts do not make use of more than disjointness
relations for pairs of paths. We have developed an approach exploiting the network
connectivity to save spare capacities. For comparisons, we refer often to 1+1 path
protection since that concept is widely applied in practice today.

2.3.2 Demand-wise shared protection (DSP)

Demand-wise Shared Protection (DSP) is a survivability concept that has been de-
veloped for meshed optical networks. Remind that the terms demand and commodity
are used synonymously. DSP comes in three variants, a basic version denoted as
bDSP with adjustable parameters that are to be predefined, a version denoted as
pDSP which integrates explicit determination of these parameters into the optimiza-
tion process, and the general concept DSP that abstracts from these parameters.
After explanation of each variant, we show how the scheme can be integrated into
the previously described optical network design models.
Some preliminary remarks are necessary to simplify the following descriptions.When-
ever we discuss operating states for a commodity, we do not include the breakdown
of its origin or destination. Such a failure disables the commodity and thus redun-
dantizes its further consideration. Moreover, we consider connection routings always
on the level of the physical topology, i.e., implicitly retransform each connection in
the supply network to the corresponding connection in the physical topology. The
supply network is of minor relevance for conceptual survivability issues, since con-
nectivity, disjointness, and related terms are defined on the physical topology. For
modeling, the corresponding mapping of failing components introduced in Section
2.3.1 is used implicitly without further explanation. The integer linear program
modifications restrict on the routing models for the lightpath configuration, while
all other model parts remain unchanged. Finally, we remind that the establishment
of backup connections does not require installation of additional transmitters and
receivers at terminal nodes (cf. Section 2.1.1). Since the data streams are switched
in these nodes, too, traffic of a failing connection can be redirected onto a backup
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connection already in optical form. Hence, the cost for all transmitters and receivers
is determined by the number of requested working connections and does not vary
with the number of additionally established backup connections.

2.3.2.1 The basic concept (bDSP)

As the name ’demand-wise shared protection’ indicates, spare capacity is shared by
the connections belonging to a demand, but not among different demands. Each
demand gets spare capacity dedicated to it, and backup connections are always pro-
vided as preestablished end-to-end connections. Such connections can be used to
accommodate best-effort traffic, if present. Otherwise, provision of backup connec-
tions that are only required in failure situations is to be limited in order to reduce
total capacity requirements. For this, bDSP exploits the network connectivity by
routing diversification.

Diversification. Diversification aims at spreading the normal operation routing
of a demand over several different paths. In optical networks, this spreading has to
be done in integer amounts as lightpaths cannot be split. For a commodity q ∈ Q
with a demand value of vq connections, a diversification parameter 0 < δq ≤ 1 is
set to define an upper bound ⌊δqvq⌋ on the fraction of the demand allowed to flow
through a single link or node (except for origin and destination, of course). Then,
any single component failure affects at most ⌊δqvq⌋ connections of the demand, while
at least vq − ⌊δqvq⌋ connections are ensured to survive.
To guarantee existence of such a diversified routing, the parameter δq cannot take
any value in (0, 1], since the network has to provide sufficient connectivity for the
commodity’s endnodes. Using Menger’s theorem, one observes that a diversification
parameter of δq presumes ⌈ vq/⌊δqvq⌋ ⌉ disjoint paths to exist between oq and dq

in order to accommodate the entire demand. Thus, the commodity’s connectivity
κq := κoq dq

poses a natural lower bound of 1
κq
≤ δq on selectable diversification

parameters δq. In fact, we show (in the next proof) that a feasible (integer) routing
exists whenever it holds that 1

κq
≤ δq ≤ 1 and δq is set such that δqvq is integer.

Key idea. A straightforward application of diversification can only limit the max-
imum loss incurred by any link or node breakdown. In general, providing protection
against failures for a demand needs to establish additional backup connections. For
this, the key idea of bDSP is to consider working and backup connections con-
certedly and to diversify their joint routing best possible, i.e., such that any single
failure affects as few as possible connections, leaving sufficiently many left to carry
(or take over) the protected traffic. The total number of connections required this
way depends on the connectivity to exploit and can be predetermined as follows.
Consider a commodity q with a demand of vq connections of which v∗q ≤ vq have to
be protected, vq, v

∗
q ∈ Z+. Let origin oq and destination dq of q be κq-connected,

κq ≥ 2. Then, we route a total of

ṽq := max

{
vq,

⌈
κq

κq − 1
v∗q

⌉}
(2.20)
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connections, including both working and backup connections, with a diversification
parameter of

δ̃q :=
ṽq − v∗q

ṽq
. (2.21)

The following lemma proves existence and suitability of such routings.

Lemma 2.18 For a commodity q with connectivity of κq and a demand of vq con-
nections of which 0 ≤ v∗q ≤ vq are to be protected against any single link or node
failure (except for oq, dq), there exist routings with in total ṽq connections and di-

versification parameter δ̃q that satisfy all traffic and survivability requirements, i.e.,
provide at least vq connections in normal operation and at least v∗q connections in
each failure state from S1.

Proof. At first, we show that the given network connectivity allows for such a
routing. By ṽq ≥

κq

κq−1v∗q according to (2.20), we get

δ̃qṽq
(2.21)

= ṽq − v∗q ≥ ṽq −
κq − 1

κq
ṽq = ṽq −

(
1−

1

κq

)
ṽq =

1

κq
ṽq

and hence δ̃q ≥
1
κq

> 0. Note also that δ̃q ṽq is integer by (2.21). In addition, we

obviously have δ̃q =
evq−v∗q

evq
≤ evq

evq
= 1. So, δ̃q is a feasible diversification parameter.

The existence of corresponding routings is now easy to verify. For this, we restrict on
routings composed of mutually disjoint paths only (though this is not a necessary
condition). As discussed before, a routing of ṽq connections with at most δ̃q ṽq

following the same path requires no more disjoint paths than
⌈

ṽq

⌊δ̃q ṽq⌋

⌉
=

⌈
ṽq

δ̃qṽq

⌉
=

⌈
1

δ̃q

⌉
≤

⌈
1
1
κq

⌉
= κq

as the network provides for q by prerequisite and Definition 2.17.
Regarding satisfaction of the stated requirements, (2.20) directly implies ṽq ≥ vq,
and thus the routing contains sufficiently many connections for normal operation.
Moreover, the survivability requirements are satisfied as well. Due to the applied
diversification, any single link or node failure affects at most ⌈δ̃q ṽq⌉ connections, and

thus at least ṽq − ⌈δ̃q ṽq⌉ = ṽq − δ̃qṽq
(2.21)

= v∗q connections survive, as requested. �

The proof represents the formal explanation of the key idea for the concept. With
connectivity κq available for a commodity q, a routing could in fact use κq disjoint
paths to establish all working and backup connections. Then, any single failure
disrupts at most the connections along one of these paths. For minimizing the
number of connections disrupted by an arbitrary failure, the ṽq connections are best
distributed uniformly on the disjoint paths. In the mean, each path then carries 1

κq
ṽq

connections, and any failure is survived by at least
κq−1

κq
ṽq connections, demanded

to be at least v∗q . This inequality is finally transformed to the second term in (2.20),
where the rounding takes care for distributing indivisible connections instead of the
(possibly fractional) mean values. As already indicated in the proof, we remark that
a routing on disjoint paths is only assumed for theoretical derivation of the values ṽq
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A

B

(a) bDSP routing on disjoint paths.

A

B

(b) bDSP routing on non-disjoint
paths.

Figure 2.4: A network with exemplary bDSP routings for vAB = 5 and v∗AB = 3.

and δq which characterize the required diversification. The set of possible routings
satisfying the corresponding restrictions does in general not restrict on exclusive use
of mutually disjoint routing paths.
Summarizing, bDSP takes advantage of the individual network connectivity for
a demand and diversifies the routing of working and backup lightpaths together.
Thereby, it reduces the potential impact of any failure and thus decreases the total
number of required connections. The following examples demonstrate this effect and
show also a feasible bDSP routing without any pair of disjoint routing paths.

Examples. Consider the network in Figure 2.4(a) where a demand from A to
B asks for vq = 5 connections of which v∗q = 3 have to be protected. The net-
work provides a connectivity of κq = 3 between the origin and destination. In
this case, 1 + 1 path protection would generate 8 connections. For bDSP, we get
ṽq = max{5, ⌈ 1

1− 1
3
3
⌉} = max{5, 5} = 5, and δ̃q = 5−3

5 = 0.4. A possible bDSP

routing could use ⌈52⌉ = 3 node-disjoint paths as shown in Figure 2.4(a). This rout-
ing illustrates also the principle idea of bDSP, encoded in the second term of the
maximum in (2.20): By distributing traffic in a uniform way on κq mutually disjoint
paths which exist by prerequisite, at most a portion of 1

κq
fails at the same time,

and the remaining traffic of (1− 1
κq

)ṽq must be at least v∗q . However, bDSP routings

are not restricted to disjoint paths. Figure 2.4(b) shows an alternative routing for
the very same parameters.
For the same node pair with demand value v∗q = 4, 1 + 1 path protection installs in
total 9 lightpaths. bDSP asks for totally ṽq = 6 connections and sets the diversifi-

cation parameter to δ̃q = 1/3. Hence, not more than two connections are allowed to
traverse any link or node different from A, B. Both routings in Figure 2.4 can be
easily extended to the increased commodity by adding a connection appropriately.

Minimum connection number. The introduced bDSP routings in fact estab-
lish a minimum total number of connections, as proven by the following lemma.

Lemma 2.19 For a commodity q with connectivity κq ≥ 2, any connection routing
providing vq working connections in normal operation and at least v∗q connections in
any single link or node failure state, 0 ≤ v∗q ≤ vq, has to establish at least a total
number of ṽq connections according to (2.20).
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Proof. Assume such a routing with strictly less than ṽq connections exists, and let
v ∈ N be the number of connections in this routing. Due to the number of working
connections, v ≥ vq. Hence, the assumption holds only if v is strictly smaller than
the second term in the maximum in (2.20), and since v is integer, we get

v <
κq

κq − 1
v∗q . (2.22)

As prerequisite, the commodity has connectivity κq. By Menger’s theorem, there
exists a generalized oq, dq-cut Γ ⊂ T ∪ N \ {oq, dq} in T of size |Γ| = κq. The
assumed routing sends in total at least v connections through the cut Γ. Hence, at
least one cut element γ ∈ Γ is traversed by at least v/κq connections (we abstain
from a rounding up, if possible). Hence, if this link or node γ fails, at least v/κq

connections are disrupted. So, the surviving number of connections is at most

v −
v

κq
=

κq − 1

κq
v

(2.22)
<

κq − 1

κq

κq

κq − 1
v∗q = v∗q ,

contradicting the second prerequisite. �

Hence, the described bDSP scheme in fact calls for a minimum total number of
connections.

Connectivity as parameter. So far, we implicitly assumed that the available
connectivity is to be fully exploited for each commodity. This way, ṽq is minimized.
However, it might be reasonable to rely on less connectivity κ ′

q with 2 ≤ κ ′
q ≤ κq

in order to enable shorter connections. Consider Figure 2.5 where nodes C and D
are 4-connected, and a corresponding commodity q requests vq = 4 connections of
which v∗q = 3 are to be protected. With κ ′

q = 4, we need only ṽq = 4 connections
in total, but we have to use disjoint paths, as shown in Figure 2.5(a). At least one
connection will have to span at least four links in any alternative routing. In con-
trast, premising a lower connectivity of κ ′

q = 3 in (2.20) yields ṽq = 5 connections
to route, but allows for the routing shown in Figure 2.5(b) with a lower total hop
number.
In fact, the physical topology of the network prescribes a maximum connectivity κq

for each commodity q ∈ Q, but the concept does not restrict to use this value. In-
stead, the connectivity to exploit can be seen as parameter κ ′

q selectable from the set
{2, 3, . . . , κq} individually for each commodity. This way, bDSP is parameterized.
Note that setting κ ′

q = 2 does not reduce the concept to 1+1 protection. For A, B

with vq = v∗q = 2 and κ ′
q = 2, we obtain ṽq = 4 with δ̃q = 0.5, and Figure 2.5(c)

shows a pathological bDSP routing for this case. Since any pair of connections
shares a link, this routing cannot be decomposed into a pair of cycles as would be
established by 1+1 protection.
The following lemma states a basic property when varying the connectivity to ex-
ploit.

Lemma 2.20 With increasing connectivity parameter κ ′
q, the corresponding number

ṽq of connections to establish decreases monotonically.

Proof. It suffices to show the claimed monotony for the second term in (2.20).
For increasing κ ′

q, one knows that 1
κ ′

q−1 decreases monotonically, and so does the
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C

D

(a) Connectivity 4.

C

D

(b) Connectivity 3.

A

B

(c) Connectivity 2.

Figure 2.5: bDSP routings with different connectivity parameters.

constantly extended series 1 + 1
κ ′

q−1 =
κ ′

q

κ ′
q−1 . Since v∗q ≥ 0, this carries over to

κ ′
q

κ ′
q−1v∗q . With the monotony of the rounding up operation, i.e., a ≥ b ⇒ ⌈a⌉ ≥ ⌈b⌉,

the claim follows now immediately. �

Since κ ′
q ≥ 2, the proof shows also that ṽq ≤ max{vq, 2v

∗
q} holds in any case.

2-DSP and max-DSP. In the basic variant bDSP, the connectivity parameters
are to be fixed prior designing the network. Two particular settings are highlighted
as special cases. If each commodity exploits the maximum connectivity provided
by the topology, we refer to the scheme as max-DSP. The opposite extreme is to
set the minimal value κ ′

q = 2 for each q ∈ Q, called 2-DSP. Any other selection of
connectivity parameters generates an individual bDSP scheme.

Model integration of bDSP. For integrating bDSP into the previously pre-
sented models for optical network design, we do not restrict on a particular scheme.
We only assume to have (feasible) predefined connectivities to exploit for each com-
modity. The required total number ṽq of connections and the corresponding diver-

sification parameter δ̃q are then precomputed according to (2.20) and (2.21).
The necessary model adaptions are presented separately for each proposed integer
linear programming formulation. In common for all models, we have to replace the
original number vq of requested connections by the new demand values ṽq in all the
constraints (2.6a), (2.7a), (2.13a), and (2.16a). Furthermore, the models need only
be extended to include the appropriate diversification restrictions, forming simple
bounds for the traffic flows. The straightforward formulation of the additional condi-
tions makes it easy to verify that the proposed modifications ensure proper routings
according to bDSP, and thus formal proofs are left out (which holds for the other
DSP variants, too).

Opaque networks with link flows. In ONDl
opq, we add the following diversi-

fication flow bounds on the commodity routings:
∑

ℓ∈L(n1):
ℓ=n1n2

f q
ℓn1
≤ δ̃qṽq ∀ q ∈ Q, n1 ∈ N \ {oq, dq} (2.23a)

∑

ℓ∈Lt

f q
ℓoq
≤ δ̃qṽq ∀ q ∈ Q : oqdq = t ∈ T (2.23b)

For each commodity q ∈ Q, constraints (2.23a) restrict the number of connections
routable through each physical node (except for origin and destination of the com-
modity) to the value prescribed by diversification. The flow throughput is deter-
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mined by the outflow at each node, which equals the inflow by the flow conservation
constraints (2.6a). Since the throughput limits are uniform for physical links and
nodes, any node restriction implies that no feasible routing exceeds the flow bounds
on all incident links as well. Hence, physical link flow restrictions are redundant
except for direct links between origin and destination of a commodity, since these
links are not incident to a flow restricted node. Constraints (2.23a) formulate the
routing restrictions on such direct links, where flow need only be considered in di-
rection from origin to destination (the opposite flow value can always be fixed to
zero).
We briefly remark that the redundancy of all other physical link throughput restric-
tions holds only for the case of protection against all single link or node failures.
Other non-trivial selections of relevant operating states, like taking only link fail-
ures into account, invalidate the utilized implication. For such cases, the formulation
has to be replaced or extended by explicit flow limitations (accounting for flow in
both directions) for physical links, too. This observation clearly carries over to the
following adaptations of other models as well.

Opaque networks with path flows. For ONDp
opq, the diversification con-

straints read:
∑

p∈Poq dq
:

n∈N(p)

f q
p ≤ δ̃q ṽq ∀ q ∈ Q, n ∈ N \ {oq, dq} (2.24a)

∑

p∈Poq dq
:

|L(p)|=1

f q
p ≤ δ̃q ṽq ∀ q ∈ Q : oqdq = t ∈ T (2.24b)

This model extension is quite similar to (2.23) except for determining flow through-
put now by counting of the appropriate traversing connections expressed with use of
path variables. Remind that in the opaque model, the connections for any commod-
ity q are represented by end-to-end routing paths, and thus each node n ∈ N\{oq, dq}
occurs always as an inner node in the paths for q, which explains the sum condition
in constraints (2.24a). The direct link flow limitation in constraints (2.24b) sub-
sumes the remaining routing paths without inner nodes for each commodity, i.e.,
those connections which use a single (direct) link only.

Transparent networks with single-hop traffic. The additional constraints
for ONDtsh are very similar to those for ONDp

opq in (2.24):

∑

p∈ ePoq dq
:

n∈N(p)

f q
p ≤ δ̃q ṽq ∀ q ∈ Q, n ∈ N \ {oq, dq} (2.25a)

∑

p∈ ePoq dq
:

|L(p)|=1

f q
p ≤ δ̃q ṽq ∀ q ∈ Q : oqdq = t ∈ T (2.25b)

In the transparent single-hop case, all connections correspond to end-to-end light-
paths. So, the opaque path flow model extension can be reused just with the appro-
priate restriction of selectable routing paths.

Transparent networks with multi-hop traffic. For ONDtmh, a node differ-
ent from origin or destination of a commodity need not anymore be an inner node
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of the selectable paths. The diversification constraints therefore read now:

∑

p∈ eP:
n∈N[p]\{op}

f q
p ≤ δ̃q ṽq ∀ q ∈ Q, n ∈ N \ {oq, dq} (2.26a)

∑

p∈ eP:
L(p)⊂Lt

f q
p ≤ δ̃q ṽq ∀ q ∈ Q : oqdq = t ∈ T (2.26b)

In constraints (2.26a), a node’s throughput for a commodity q is again measured
by the inflow, composed of traversing and terminating lightpaths. For this, asso-
ciated lightpaths p beginning at a node op = n ∈ N \ {oq, dq} are excluded to
avoid double accounting. The additional limitation of direct link flows can reuse
constraints (2.25b) restricted to the subset p ∈ P̃oq dq

⊂ P̃ of end-to-end lightpaths

for a commodity q. For the alternative of having uniformly P̃ as path set in the
model extension, constraints (2.26b) show an appropriately adapted sum condition.
Since single link lightpaths need not correspond to end-to-end connections anymore,
the restriction to lightpaths on a direct link for a commodity must be formulated
straightforward.

2.3.2.2 The parameter optimizing concept (pDSP)

In the basic bDSP variant, an individual connectivity parameter is preselected for
each demand. The examples in Figure 2.5 have shown that different routing possi-
bilities result from different connectivity values, each with an individual connection
number and diversification parameter. Indeed, it is not clear a priori which of these
alternatives provides the most preferable routings from a total cost perspective.

Example. Consider again the commodity example illustrated in Figure 2.5. The
routing in Figure 2.5(b) (exploiting connectivity three) has less hops in total than the
routing in Figure 2.5(a) (exploiting the maximum connectivity of four) and seems
more favorable when using the total hop number as (simple) capacity consumption
and thus routing cost indicator. However, the advantage changes if any link and
node (except for C and D) offers a free capacity of exactly one. In this case, the
maximally diversified routing in Figure 2.5(a) has zero cost, whereas any routing
exploiting a connectivity of three (establishing five connections) must use at least
one link or node twice (since not more than four node-disjoint paths exist) and thus
incurs additional cost for expanding the corresponding capacity.

Parameter integration. As a straightforward bDSP generalization, pDSP ex-
plicitly integrates the individual connectivity parameter selection for each commod-
ity into the network design optimization. With these additional decisions, a suitable
parameterization of all commodity routings can be selected in order to fine-tune
total capacity requirements and thus reduce the total design cost.
The simplest way for an integration of the connectivity parameter determination
is to formulate the connectivity selection explicitly by additional variables for each
demand. Unfortunately, the total number ṽq of required connections according to
(2.20) does not depend linearly on the explored connectivity. As example, for a
commodity with values vq = 5 and v∗q = 4, the corresponding values of ṽq for con-
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nectivities 2, 3, 4, 5 are 8, 6, 6, 5, respectively. Therefore, we have in general
to use a separate binary variable for each possible value of κ ′

q ∈ {2, . . . , κq} for
each commodity with κq > 2. Instances with many commodities between highly
connected endnodes can this way obtain a substantial number of additional binary
variables. For instance, greenfield planning taking any potential link into account
has to consider a complete physical topology, and each node pair has a connectivity
of |N | − 2.

Model integration of pDSP. The explicit formulation of the connectivity pa-
rameter selection is realized in exactly the same way in the models for all network
architectures. We therefore describe just the required adaptions in common. These
adaptions apply to the already extended models involving bDSP as described in the
preceeding section.
Consider an arbitrary commodity q ∈ Q with origin-destination connectivity κq =
κoq dq

> 2. For the parameter value selection, we introduce the following variables:

ui
q ∈ {0, 1} denotes whether connectivity i ∈ {2, . . . , κq} for commodity

q ∈ Q is exploited (ui
q = 1) or not.

Moreover, we define the corresponding total number of connections to route for each
potential connectivity value i ∈ {2, . . . , κq} as individual parameter

ṽ i
q := max

{
vq,

⌈
i− 1

i
v∗q

⌉}
.

In any model, we add the constraints

κq∑

i=2

ui
q = 1 ∀ q ∈ Q (2.27)

to ensure that exactly one connectivity value is selected. For each commodity q ∈ Q,
the number of connections to route is then given by

κq∑

i=2

ṽ i
qui

q

which replaces the former parameter ṽq throughout all constraints except for the
diversification extensions (2.23)–(2.26). In these constraints, we instead make use
of (2.21) and replace the right hand side δ̃q ṽq by the equivalent term

κq∑

i=2

ṽ i
qui

q − v∗q

without explicit inclusion of the diversification parameter (which depends on the
connection number and thus as well on the selected connectivity).

Solutions. With the described extension, each solution of the models specifies the
used connectivity by the variables ui

q individually for each commodity. Any such
solution is clearly also feasible for the basic bDSP scheme with exactly the same
connectivities prespecified (i.e., setting the connectivity parameters κ ′

q as indicated
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by the variables ui
q = 1 for all commodities q ∈ Q).

In fact, pDSP reflects a concept generalization which integrates all individual bDSP

schemes at once and enables to select a particular scheme which suits best for the
instance. However, the common feature of both variants, bDSP and pDSP, is the
explicit handling of the explored connectivities, either as parameters or by variable
representations. A further conceptual generalization allows to abstract from these
entities.

2.3.2.3 The general concept (DSP)

Consider an arbitrary commodity q demanding for vq connections of which v∗q are
to be protected. Given a proposed routing for this commodity, it is easy to verify
whether all requests are satisfied: simply by counting the number of connections in
total, which must be at least vq, and for each physical link or node endangered to
fail, counting those connections that do not traverse this element, which must be
at least v∗q . Notice that such a verification involves neither the connectivity of the
commodity nor the minimum total number of connections needed for its exploitation,
as requested by both bDSP and pDSP, when having fixed the connectivity to use.
In fact, providing more connections than necessary is not a handicap as long as no
additional capacity extensions are needed for their establishment. This observation
shows that predetermination and request of a particular total connection number
for a commodity (derived from a particular connectivity) can be released, which lays
the ground for a further conceptual generalization.

Key idea of DSP. The key idea of the general concept DSP is to repostulate
the routing and survivability requirements as follows. For each commodity q ∈ Q,
ensure that

1. at least(!) vq connections are established in total,
and

2. at least(!) v∗q of the established connections survive

in any considered failure state σ ∈ S1.





(2.28)

Each commodity routing according to these two conditions provides (at least) the
requested protection. Note that the total number of connections for a commodity is
not specified this way. Instead, the failure states are considered explicitly. Neverthe-
less, both conditions can be easily translated into linear inequalities for the routing
models, as shown next before discussing further properties of DSP.

Model integration of DSP. The general concept DSP consists of integrating
the repostulated requirements (2.28) directly into the optical network design models.
Since these conditions abstract from explicit consideration of connectivities, the
formulation does not occur as further extension of the previous model adaptions for
bDSP and pDSP, but is based on the original models presented in Section 2.2. The
modifications again affect only the routing parts and are presented individually for
each architecture and model alternative.
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Opaque networks with link flows. In ONDl
opq, the flow conservation con-

straints (2.6a) are substituted by:

∑

ℓ∈L(n1):
ℓ=n1n2

f q
ℓn1
−
∑

ℓ∈L(n1):
ℓ=n2n1

f q
ℓn2





≥ vq , n1 = oq ,
≤ −vq , n1 = dq ,
= 0 , otherwise

∀ q ∈ Q, n1 ∈ N (2.29a)

This encodes the first requirement in (2.28). For the second, we have to add the
constraints

∑

ℓ∈L(oq)

f q
ℓoq
−
∑

ℓ∈L(n):
ℓ=n1n

f q
ℓn1
≥ v∗q ∀ q ∈ Q, {n} = σ ∈ S1, n 6= oq, dq (2.29b)

∑

ℓ∈L(oq)

f q
ℓoq
−
∑

ℓ∈Lt

f q
ℓoq
≥ v∗q ∀ q ∈ Q : oqdq = t ∈ T,Lt = σ ∈ S1 (2.29c)

limiting the commodity’s throughputs similarly to (2.23). The first term on the left
hand sides counts the actual total number of connections routed for a commodity.
Reducing this flow amount by the flow through a (physical) node, measured again as
inflow in constraints (2.29b), must at least provide the number of connections that
has to survive in case the node fails. As for the basic scheme, the node conditions
imply the same property for all incident links as well. The missing conditions for
flow on direct links between origin and destination of commodities are provided in
constraints (2.29c) in the same way.

Opaque networks with path flows. The model extension for ONDp
opq is as

follows. Constraints (2.7a) formulate the normal operation flow and are simply
turned into inequalities

∑

p∈Poq dq

f q
p ≥ vq ∀ q ∈ Q (2.30a)

according to the first condition in (2.28), whereas the second condition requires a
similar extension as above by

∑

p∈Poq dq

f q
p −

∑

p∈Poq dq
:

n∈N(p)

f q
p ≥ v∗q ∀ q ∈ Q, {n} = σ ∈ S1, n 6= oq, dq (2.30b)

∑

p∈Poq dq

f q
p −

∑

p∈Poq dq
:

|L(p)|=1

f q
p ≥ v∗q ∀ q ∈ Q : oqdq = t ∈ T,Lt = σ ∈ S1 (2.30c)

using path variables instead of flow variables. We remark that the left hand side
of some inequalities can be simplified, in case of (2.30b) to

∑
p∈Poq dq :n/∈N(p) f q

p for

instance, while we keep the shown form for the sake of uniformity.

Transparent networks with single-hop traffic. For ONDtsh, the DSP

model adaption is very similar to (2.30), since both formulations differ only in the
sets of selectable paths. Here, constraints (2.13a) are replaced by the inequalities

∑

p∈ ePoq dq

f q
p ≥ vq ∀ q ∈ Q (2.31a)
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and the corresponding extension for failure states reads:
∑

p∈ ePoq dq

f q
p −

∑

p∈ ePoq dq
:

n∈N(p)

f q
p ≥ v∗q ∀ q ∈ Q, {n} = σ ∈ S1, n 6= oq, dq (2.31b)

∑

p∈ ePoq dq

f q
p −

∑

p∈ ePoq dq
:

|L(p)|=1

f q
p ≥ v∗q ∀ q ∈ Q : oqdq = t ∈ T,Lt = σ ∈ S1 (2.31c)

Transparent networks with multi-hop traffic. The adaptions for ONDtmh

combine those for link and paths flows in (2.29) and (2.30). The flow conserva-
tion constraints (2.16a) must be reformulated for an unspecified total number of
connections to route as:

∑

p∈ eP:
op=n

f q
p −

∑

p∈ eP:
dp=n

f q
p





≥ vq , n = oq ,
≤ −vq , n = dq ,
= 0 , otherwise

∀ q ∈ Q, n ∈ N (2.32a)

For the second condition in (2.28), notice that the connections are not restricted on
end-to-end paths in this model. Hence, the model extension reads now:

∑

p∈ eP:
op=oq

f q
p −

∑

p∈ eP:
n∈N[p]\{op}

f q
p ≥ v∗q ∀ q ∈ Q, {n} = σ ∈ S1, n 6= oq, dq (2.32b)

∑

p∈ eP:
op=oq

f q
p −

∑

p∈ eP:
L(p)⊂Lt

f q
p ≥ v∗q ∀ q ∈ Q : oqdq = t ∈ T,Lt = σ ∈ S1 (2.32c)

The total number of connections established for a commodity is expressed in the
first term on the left hand sides, summing up the flow on all paths originating at
the commodity’s source. The constraints guarantee at least the demanded number
of connections to survive in case all connections traversing a single node or link
are disrupted by a failure. The throughput measurement for nodes in constraints
(2.32b) and direct origin-destination links in constraints (2.32c) is modeled as already
discussed with the extension (2.26).

DSP properties. Altogether, DSP is realized by turning some flow equalities into
inequalities and by a particular expression of the protection requirements, which now
directly demand for sufficient surviving connections instead of (conversely) limiting
node or link throughputs. Thereby, DSP releases the dictates of prescribed connec-
tion numbers from bDSP and pDSP, but does not invalidate any bDSP or pDSP

routing (for any feasible value of κ ′
q), as all these routings satisfy both conditions

from (2.28) as well. In fact, the generalization consists of allowing for further routing
alternatives. This does not only correspond to adding redundant connections (as
long as these do not incur additional costs), but includes also routings that cannot be
reduced to connectivity-induced routings with a minimum number of connections,
as shown by the following example.

Example. In the exemplary network used before, consider a commodity q between
nodes A and B with vq = v∗q = 4 and κq = 3. Figure 2.6 shows a possible DSP rout-
ing with in total seven connections that satisfies both conditions in (2.28). Hence,
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A

B

Figure 2.6: A DSP routing for a commodity q between nodes A and B with
vq = v∗q = 4 that does not correspond to a pDSP routing for any connectivity.

this routing represents a feasible DSP solution for q. In particular, note that none
of these connections is redundant, i.e., can be left out without violating the second
condition in (2.28).
Applying pDSP allows to select the explored connectivity κ ′

q ∈ {2, 3}. With κ ′
q = 3,

pDSP would ask for a total of ṽq = 6 connections. Due to the observed non-
redundancy, the depicted DSP routing indeed cannot be reduced to such a solution
only by removing of connections. Furthermore, choosing κ ′

q = 2 yields ṽq = 8. Here,
an arbitrary connection could be added to the routing in Figure 2.6, making it fea-
sible for pDSP parameterized this way. In fact, such an extension to pDSP based
on a lower connectivity than explored by DSP is always possible.
Nevertheless, this routing expansion possibility does not mean that any DSP rout-
ing can be transformed into one for pDSP at same cost. In our example, assume
to consider upgrade planning where only the capacities occupied by the routing il-
lustrated in Figure 2.6 are available for free. Then any extended routing for pDSP

with κ ′
q = 2 increases total cost. In this case, the DSP routing provides the only

zero cost solution, whereas pDSP has a strictly positive optimum objective value.
This scenario demonstrates that the general concept DSP in fact expands the set
of feasible routings and cannot be reduced to an equivalent pDSP solution in any
case.

DSP connection number bounds. The example illustrates the increased vari-
ability of DSP routings in comparison to those for bDSP and pDSP and shows that
DSP is not restricted to establish a number of connections from the set {ṽ 2

q , . . . ,ṽ
κq
q }.

Besides flow conservation equalities, the exclusive use of lower limits for concerted
establishment of connections in particular sets, as described in the introduction,
leaves room for such alternative routings. This does especially not imply a natural
upper bound on the total number of connections routed by DSP for a commodity,
as long as no additional cost for capacity consumption is incurred. Nevertheless,
except for the single-hop case with end-to-end connection length limitations, it is
possible to restrict the connection numbers for DSP to a specific range (with already
presented bounds) without ruling out all optimal solutions for an instance.
The following discussion refers always to an arbitrary, but fixed commodity q with
parameters vq and v∗q . From Lemma 2.19, we know that ṽ

κq
q for exploiting the max-

imum connectivity κq yields a lower bound on the number of connections in any
feasible routing, hence for any DSP routing as well. On the opposite side, such a
general bound for all optimal solutions cannot be provided, but existence of optimal
solutions with a generally bounded connection number is proven by the following
proposition.
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Proposition 2.21 There exists always an optimal solution for survivable optical
multi-hop network design based on DSP such that for each commodity q ∈ Q in
total at most

max{vq, 2v
∗
q}

optical connections are established.

Proof. In the following, we interpret routings always as integer-valued flows and
do not matter about a corresponding decomposition into individual optical connec-
tions (though referring to the flow value also as number of connections). Hence,
reducing a routing does not mean to remove end-to-end connections, but to replace
its flow by one with lower flow value. Since such reductions do not allow to control
the total length of the finally producible connections, the proof does not apply to
single-hop architectures.
Consider an arbitrary optimal problem solution and an arbitrary commodity q ∈ Q
with v̂q connections in total. If v̂q ≤ max{vq, 2v

∗
q}, nothing is to do.

Otherwise, we have a feasible DSP routing with in total v̂q > max{vq, 2v
∗
q} connec-

tions that occupies the capacities k̂ℓ ∈ Z+ at any link ℓ ∈ L and k̂n ∈ Z+ at any
node n ∈ N \{oq, dq}. Moreover, let Γ ⊂ L∪N \{oq, dq} be an arbitrary generalized
oq, dq-cut in the network. The routing requirements (2.28) can be mapped onto the
cut Γ as follows: Ensure that

1. at least vq connections traverse the cut, and

2. at least v∗q connections still traverse the cut when
removing an arbitrary element γ ∈ Γ.





(2.33)

As long as these conditions hold, we call a cut throughput feasible. By application of
(an appropriate adaption of) the max-flow min-cut theorem of Ford and Fulkerson
(see Appendix A), it is easy to verify that a DSP routing for a commodity q is
feasible if and only if the throughput for each generalized oq, dq-cut is feasible.

Consider an arbitrary cut element γ1 ∈ Γ. The value k̂γ1 corresponds to the number

of connections traversing γ1. If this number can be reduced to k̂γ1 − 1 without
violating the throughput feasibility of the cut, we are satisfied. Otherwise, such a
reduction must violate the second condition in (2.33), since the first condition is
satisfied due to the prerequisite v̂q > max{vq, 2v

∗
q} and thus in the reduced case still

v̂q−1 ≥ vq. Hence, there must be another cut element γ2 ∈ Γ\{γ1} whose elimination
leaves exactly the minimum number of connections traversing the remaining cut
elements, i.e., it holds that

∑

γ∈Γ\{γ2}

k̂γ = v∗q (2.34)

such that a throughput reduction in γ1 would yield the described violation. As the
total cut throughput is clearly at least v̂q, we then obtain

∑

γ∈Γ

k̂γ = k̂γ2 +
∑

γ∈Γ\{γ2}

k̂γ
(2.34)
= k̂γ2 + v∗q ≥ v̂q > max{vq, 2v

∗
q}

=⇒ k̂γ2 > max{vq, 2v
∗
q} − v∗q = max{vq − v∗q , v

∗
q} ≥ v∗q (2.35)
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for the number of connections traversing the cut element γ2. This number now can
be reduced by one without violating the throughput feasibility of Γ. The first con-
dition holds as argued above, and the second condition holds because elimination
of any cut element from Γ \ {γ2} leaves γ2 in the remaining cut with the reduced
throughput of k̂γ2 − 1 ≥ v∗q according to (2.35). Moreover, removing γ2 leaves v∗q
throughput due to (2.34) as no other element’s throughput has been reduced.
As a result, each generalized oq, dq-cut Γ contains at least one element with through-
put reducible by at least one without violating (2.33). Using the reduction potentials
as capacities, the max-flow min-cut theorem of Ford and Fulkerson implies existence
of a flow from oq to dq with value (at least) one using only links and nodes with
reducible throughput. Removing this flow from the initial routing leaves a flow
that, by construction, still satisfies (2.33) for each generalized oq, dq-cut and thus,
by the equivalence observed above, also conditions (2.28) for a corresponding rout-
ing. Hence, the reduced flow represents a feasible DSP routing for q, too.
The described reduction works whenever the initial routing connection number is
v̂q > max{vq, 2v

∗
q}. Hence, iterative application finally generates a routing for q with

the desired property v̂q ≤ max{vq, 2v
∗
q}. The same procedure can be carried out for

each commodity q ∈ Q and generates in the end, as no additional cost have been
incurred, another optimal solution whose existence was claimed. �

As a consequence, the number v̂q of connections in DSP routings for each commodity
q ∈ Q can be bounded by

ṽ
κq
q ≤ v̂q ≤ max{vq, 2v

∗
q}

for any survivable optical multi-hop network design instance. These bounds can
be explicitly added to the models, for instance when introducing v̂q as auxiliary
variables for all q ∈ Q defined by

v̂q =





∑
ℓ∈L(oq)

f q
ℓoq

, for ONDl
opq,

∑
p∈Poq dq

f q
p , for ONDp

opq,

∑
p∈ eP:
op=n

f q
p , for ONDtmh.

2.3.2.4 Further variations

The protection scheme DSP and its variants have been introduced for the partic-
ular setting of survivable optical network design underlying this thesis. However,
DSP provides a general survivability concept (in different specifications) with the
characteristic feature of exploiting meshed network connectivity for routing diversi-
fication in order to limit the impact of failures and thus to reduce the required spare
capacities. This concept is not bounded to a particular technology or architecture
and open to further extensions, adaptions, and variations. A thorough discussion of
such possibilities indeed goes beyond the scope of this thesis and is left for further
work. Here, we just exemplify the capabilities by describing variations of DSP for
selecting alternative sets of operating states that are to be involved for planning.
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As presented, DSP has been designed for protection against all single link or node
failures, but can be easily adapted to variations of this assumption. Some of these
alternatives are briefly discussed. For this, we restrict on an explanation for the
basic concept bDSP, as the adaptions can be carried over straightforward to the
generalized schemes as well.

Restriction to link failures. In principle, bDSP does not presume any par-
ticular property of the failure states to consider. Hence, a restriction to link fail-
ures is straightforward by substituting connectivity with the weaker notion of link-
connectivity throughout the description. The parameter κ ′

q then refers to the link-
connectivity to exploit. This way, the very same principle of bDSP applies to the
restricted case of link protection. Moreover, the link-connectivity for a node pair is
not less than the connectivity, but can indeed be higher. In this case, the total num-
ber of connections required for such a commodity can be reduced further according
to Lemma 2.20.

Selectable failure states. Similarly, it is not necessary to take a failure of any
link or node into account. Some elements of the physical topology can be declared
as unfailing, making them present in each residual network. For selective failure
states, we have to adapt the notion of connectivity by accounting for the maximum
number of paths between a node pair which are pair-wise disjoint on potentially
failing links and nodes. This number can be determined for each commodity by a
max-flow computation where each unfailing element gets unlimited capacity, whereas
all other links and nodes have a capacity of one. If the maximum flow is unlimited,
there exist entirely unfailing routing paths from origin to destination of a commodity.
In this case, the routing can be restricted to such paths, and no backup connections
are required at all. Otherwise, bDSP is used the very same way as before, applying
the modified connectivity values.

Multiple failures. The last issue concerns protection against multiple failures.
Due to the diversified routing, bDSP already provides a certain extra protection for
such situations. For example, the routing shown in Figure 2.6 guarantees at least
one surviving connection whenever at most two links or nodes (except for origin
and destination) fail. For the same set of operating states, the routing in Figures
2.5(a) on page 77 even leaves at least two connections unaffected, i.e., v∗q = 2 is yet
provided for up to two failing links or nodes. However, these implicit guarantees for
multiple failures are irregular and depend mainly on the arbitrarily selected routing,
which has originally been carried out for single element protection only. An explicit
integration of multiple failure states for bDSP with a prescribed number of protected
connections can be done as follows.
Consider a commodity q with connectivity κq ≥ 2 asking for vq connections of
which a number of v∗q , 0 < v∗q ≤ vq, have to be protected against all failures of at
most k links or nodes, where 1 ≤ k < κq. With bDSP exploiting connectivity κ ′

q,
k < κ ′

q ≤ κq, a total number of

ṽk
q := max

{
vq, v

k
q + (k − 1)

⌈
vk

q

κ ′
q − k + 1

⌉}
with vk

q :=

⌈
κ ′

q − k + 1

κ ′
q − k

v∗q

⌉
(2.36)
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connections (including both working and backup connections again) is routed with
a diversification parameter of

δ̃k
q :=

1

ṽk
q

⌊
ṽk
q − v∗q

k

⌋
. (2.37)

Obviously, both definitions (2.36) and (2.37) applied to single link or node failures
(k = 1) reduce to those presented originally in (2.20) and (2.21), respectively, with
parameterized connectivity κ ′

q.
Again, we formally prove existence and suitability of routings for this generalization
of bDSP.

Proposition 2.22 For a commodity q with connectivity κq ≥ 2 demanding for
vq > 0 connections of which v∗q , 0 ≤ v∗q ≤ vq, are to be protected against all multiple
failures of up to k links or nodes from L ∪N \ {oq, dq} with 1 ≤ k < κq, there exist
routings with in total ṽk

q connections according to (2.36) and diversification param-

eter δ̃k
q defined by (2.37) that satisfy all traffic and survivability requirements, i.e.,

provide at least vq connections in normal operation and still at least v∗q connections
in each failure state.

Proof. Clearly, ṽk
q ≥ vq holds for normal operation by (2.36). In any considered

failure state, at most k links or nodes break down simultaneously, and (in the worst
case) the corresponding sets of affected connections can be mutually disjoint. By
diversification, however, each failure cannot disrupt more than δ̃k

q ṽk
q connections,

and thus the number of surviving connections is at least

ṽk
q − kδ̃k

q ṽk
q

(2.37)
= ṽk

q − k

⌊
ṽk
q − v∗q

k

⌋
≥ ṽk

q − k
ṽk
q − v∗q

k
= v∗q

providing the demanded protection.
It remains to show that the diversification parameter δ̃k

q is in fact feasible and enables

generation of appropriate routings. As simple observations, δ̃k
q ṽk

q is integer by (2.37),
and furthermore

δ̃k
q ≤

1

ṽk
q

ṽk
q − v∗q

k
≤

1

ṽk
q

ṽk
q

k
=

1

k
≤ 1 .

Showing that δ̃k
q is also sufficiently large is more difficult. At first, observe for vk

q

according to (2.36) that

vk
q =

⌈
κ ′

q − k + 1

κ ′
q − k

v∗q

⌉
≥

κ ′
q − k + 1

κ ′
q − k

v∗q

=⇒ (κ ′
q − k)vk

q = (κ ′
q − k + 1)vk

q − vk
q ≥ (κ ′

q − k + 1)v∗q

=⇒ vk
q − v∗q ≥

vk
q

κ ′
q − k + 1

=⇒ vk
q − v∗q ≥

⌈
vk

q

κ ′
q − k + 1

⌉
(2.38)
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since the left inequality term is integer. Then we obtain

ṽk
q − v∗q

k

(2.36)
=

1

k

(
vk

q + (k − 1)

⌈
vk

q

κ ′
q − k + 1

⌉
− v∗q

)

=
vk

q − v∗q
k

+
k − 1

k

⌈
vk

q

κ ′
q − k + 1

⌉

(2.38)
≥

1

k

⌈
vk

q

κ ′
q − k + 1

⌉
+

k − 1

k

⌈
vk

q

κ ′
q − k + 1

⌉
=

⌈
vk

q

κ ′
q − k + 1

⌉

and we can conclude now by the integer right inequality term that also
⌊

ṽk
q − v∗q

k

⌋
≥

⌈
vk

q

κ ′
q − k + 1

⌉
. (2.39)

After this preparation, we end up with

κ ′
q δ̃k

q ṽk
q

(2.37)
= κ ′

q

⌊
ṽk
q − v∗q

k

⌋
(2.39)
≥ κ ′

q

⌈
vk

q

κ ′
q − k + 1

⌉

= (κ ′
q − k + 1)

⌈
vk

q

κ ′
q − k + 1

⌉
+ (k − 1)

⌈
vk

q

κ ′
q − k + 1

⌉

≥

⌈
(κ ′

q − k + 1)
vk

q

κ ′
q − k + 1

⌉
+ (k − 1)

⌈
vk

q

κ ′
q − k + 1

⌉

= vk
q + (k − 1)

⌈
vk

q

κ ′
q − k + 1

⌉
(2.36)

= ṽk
q

which allows to deduce the desired inequality δ̃k
q ≥

1
κ ′

q
. This inequality together with

the integrality of δ̃k
q ṽk

q yields existence of feasible routings in exactly the same way
as in Lemma 2.18, completing the proof. �

Unfortunately, this time the proof is more technical and less self-explanatory, but
an explicative derivation of the complex second term in (2.36) can be provided as
well. Assume again that the routing shall use disjoint paths only. Whenever k − 1
of these paths are disrupted, the connections routed on the remaining κ ′

q − k + 1
disjoint paths are carried out as in the single failure case, which yields (as first sum-
mand) the term for vk

q to protect the traffic against a single further failure. This way,

v∗q connections would survive k failures in total. When distributing vk
q connections

onto κ ′
q − k + 1 disjoint routes in a best possible balanced way, each route carries

either ⌊
vk

q

κ ′
q−k+1⌋ or ⌈

vk
q

κ ′
q−k+1⌉ connections. For the already disrupted k − 1 paths,

we have to take the higher number into account, which is exactly expressed in the
second summand in (2.36). As a result, we get the full routing best balanced as
well, such that it does not depend on which k paths are disrupted. In any case, still
sufficiently many connections will survive. The diversification parameter is finally
set such that according to (2.39) the bound δ̃k

q ṽk
q still allows to route the potentially

higher connection number ⌈
vk

q

κ ′
q−k+1⌉ through any link or node.
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C

D

(a) k = 2, κ ′
q = κq = 4.

C

D

E

(b) k = 2, κ ′
q = 5.

C

D

E

(c) k = 3, κ ′
q = 5.

Figure 2.7: bDSP routings for commodity q with vq = 3 = v∗q between nodes C and
D, each with a minimum total number of connections providing full protection for
multi failure situations and selective failure states.

Most observations for single failure bDSP carry over to the multiple failure gener-
alization. For instance, routings are not restricted to exclusive use of disjoint paths,
and it can also be shown (again by reduction to the single failure case) that the con-
nection number (2.36) for exploiting the full available connectivity κ ′

q = κq states a
minimum for the number of connections in any feasible commodity routing satisfy-
ing all requirements. However, since multiple failures are not further considered in
this thesis, we omit a detailed discussion of these issues and finish with an example
illustrating the bDSP mechanism for multiple failures and selective failure states.

Example. Continuing the example series, we reuse the former network and consider
a commodity q between the four-connected nodes C and D. Let vq = 3 demanding
full protection v∗q = 3 against up to k = 2 failures and exploit the full connectivity

κ ′
q = κq = 4. Then, we find vk

q = ⌈323⌉ = 5 which yields ṽk
q = 5+⌈53⌉ = 7 and δ̃k

q = 2
7 ,

hence at most δ̃k
q ṽk

q = 2 connections can traverse each link or node except for C and
D. When using only disjoint routing paths such as those displayed in Figure 2.5(a),
a distribution of 1, 2, 2, and 2 connections on these paths must be established,
whereas Figure 2.7(a) shows another possible routing for this commodity.
For a second case, assume further that failures of node E are not to be considered,
i.e., this node will never fail. Taking this into account, nodes C and D become even
five-connected. For the same commodity with κ ′

q = 5, one obtains vk
q = ⌈433⌉ = 4,

and in total ṽk
q = 4 + ⌈44⌉ = 5 connections suffice. Since δ̃k

q = 1
5 , all connections in

any feasible routing must be mutually disjoint except for nodes C, D, and E, as the
example routing in Figure 2.7(b) illustrates.
Let now k = 3. Here, we get vk

q = ⌈323⌉ = 5 and further ṽk
q = 5 + 2⌈53⌉ = 9 with

δ̃k
q = 2

9 . Similar to the very first example, a routing of 1, 2, 2, 2, and 2 connections
on a appropriate disjoint path set (e.g., as that in Figure 2.7(b)) would do, and a
further alternative is depicted in Figure 2.7(c).

2.3.3 Discussion and comparison

In this section, we close the presentation of DSP by a discussion of some properties
in view of practical application, also in comparison to existing path protection con-
cepts which have been described in Section 1.3. Besides total connection numbers
and incurred cost, important comparison criteria for survivability schemes in prac-
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vq 1 2 3 4 5 6 7 8 9 10 15 20 25 35 50

1
2 -protected

1+1 protection 1 1 2 2 3 3 4 4 5 5 8 10 13 18 25
κq = 2 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0

max-
κq = 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DSP
κq = 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2
3 -protected

1+1 protection 1 2 2 3 4 4 5 6 6 7 10 14 17 24 34
κq = 2 1 2 1 2 3 2 3 4 3 4 5 8 9 13 18

max-
κq = 3 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1

DSP
κq = 4 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0

3
4 -protected

1+1 protection 1 2 3 3 4 5 6 6 7 8 12 15 19 27 38
κq = 2 1 2 3 2 3 4 5 4 5 6 9 10 13 19 26

max-
κq = 3 1 1 2 1 1 2 2 1 2 2 3 3 4 6 7

DSP
κq = 4 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1

full-protected

1+1 protection 1 2 3 4 5 6 7 8 9 10 15 20 25 35 50
κq = 2 1 2 3 4 5 6 7 8 9 10 15 20 25 35 50

max-
κq = 3 1 1 2 2 3 3 4 4 5 5 8 10 13 18 25

DSP
κq = 4 1 1 1 2 2 2 3 3 3 4 5 7 9 12 17

Table 2.1: Number of backup connections established by 1+1 path protection and
by max-DSP exploiting different connectivities for a series of demand values and
some selected protection levels specified as demand value fraction (where resulting
fractionals are always rounded up). The 1+1 path protection entries also equal the
number of protected connections.

tice concern also operational issues such as recovery time or (expected) connection
availabilities.

Connections and cost. Basically, the DSP schemes are designed to exploit
opportunities of the structure of meshed networks in order to save in the number
of backup connections to establish for provision of the requested protection. Ac-
cording to Lemma 2.19, this number is in fact minimized when fully exploring the
available connectivity, as proposed by max-DSP. For illustration of the potential
backup connection number reductions, Table 2.1 lists such minima for a series of
demand values and protection levels in comparison to the corresponding numbers
generated by 1+1 path protection. The latter values correspond also to the num-
ber of protected connections at each level, since 1+1 path protection establishes
an individual backup connection for each protected connection. So, the overview
demonstrates how many backup connections suffice to protect the specified working
connections when both are appropriately routed in a meshed network. Note further
that 2-DSP is equivalent to max-DSP with connectivity two. Even for this lowest
connectivity, savings in backup numbers are possible as long as partial protection is
requested. Only with full protection, 2-DSP and 1+1 path protection coincide in
the numbers, but 2-DSP additionally provides more possible routings for selection.
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With lower total connection numbers, bDSP attempts also to reduce spare capacity
consumption. Depending on the selected parameters, the diversification require-
ments indeed can impose to use long routing paths whose additional capacity oc-
cupation can overcompensate the savings by establishing less connections in total.
Therefore, the generalized schemes pDSP and DSP have been introduced to gain
more flexibility in the routing selection. In view of the solutions, one easily observes
that 2-DSP, max-DSP, or any other individual bDSP scheme (which are not com-
parable against each other) forms a special case of pDSP, and furthermore, each
solution of pDSP is also a feasible solution of the general DSP scheme. As a conse-
quence, the schemes in this order will yield non-increasing optimal network design
costs, or equivalently, the optimal solution cost for a more general scheme provides
a lower bound on the network design costs for any more special scheme.
Similar relations regarding the (optimal) cost of corresponding network designs can
also be derived in comparison to some known concepts. For full protection, 1+1
path protection establishes the same total number of connections as 2-DSP, but
has restricted routing possibilities due to individual disjointness restrictions for each
pair of a protected connection and its dedicated backup connection. Hence, the op-
timal cost with 2-DSP is a lower bound for any 1+1 path protection solution, and
so is the optimum for DSP as well. This carries over to any partial protection case,
too. In such a setting, 1+1 path protection can use more connections in total for
a commodity than 2-DSP, but each such 1+1 routing can be turned into a feasible
one for 2-DSP by appropriately removing some of the connections established by
1+1 path protection. Since the solution cost does not increase when connections are
removed, the lower bound relations remain valid.
1:1 path protection is more similar to 2-DSP, since backup connections established
for the protected connections of a commodity are already provided to the unpro-
tected best-effort connections. Nevertheless, such routings also form special cases
of 2-DSP routings, again possibly after removal of some connections, and thus the
solution costs are lower bounded by 2-DSP optimal solution costs as well. When
M:N path protection is used to provide the requested survivability for specified con-
nections, M and N have to be set individually for each commodity q according to
the values of vq and v∗q . Then, M:N path protection routings can be interpreted as a
special cases of 1:1 path protection routings, inheriting the same bounding relations.
On the other side, DSP can be interpreted as a special variant of shared path pro-
tection. In fact, DSP allows to share backup connections in an end-to-end manner
among the protected connections of a commodity, where the assignment of the par-
ticular backup for a protected connection depends on the failure state and all backup
connections can serve unprotected best-effort traffic, too. Hence, DSP routings with
this restricted kind of sharing form special case solutions for any shared path pro-
tection scheme that allows to specify individual backup connections for each failure
state and offers shared capacities to accommodate best-effort traffic.

DSP recovery mechanism. From an operational point of view, the recovery by
DSP in case of a failure depends on the affected connections. If only connections
carrying unprotected traffic fail, no recovery is needed at all. Otherwise, if pro-
tected working connections are disrupted, recovery requires to reorganize (a part of)
the commodity’s routing by reallocating protected traffic to surviving connections.
These backup connections may be occupied by best-effort traffic, which has then first
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to be dropped. After that, a sufficient number of connections is offered to carry the
protected traffic. Since all these connections are preestablished, the recovery process
needs just to redirect each disrupted and protected channel at the origin node to
a surviving connection (and a corresponding operation at the receiving destination
node). Neither a routing computation has to be performed nor new connections
have to be set up on request. So, the DSP recovery mechanism restricts to failure
detection, propagation, and switching operations in the endnodes of affected com-
modities, providing a fast mechanism similar to that for M:N path protection.
Basically, DSP does not differentiate working and backup connections, but guar-
antees only for connection numbers to survive each (preplanned) failure situation.
The operator can arbitrarily distribute the normal operation traffic over the set of
routed connections, e.g., meeting second order goals such as providing the shorter
routes to working connections. Alternatively, this assignment can also be carried
out such that the maximum number of protected working connections traversing a
link or node is minimized. This limits the damage by individual failures and can fas-
ten DSP recovery (in the mean). A further alternative is to minimize the expected
recovery time by an appropriate distribution of protected connections when having
individual link and node failure probabilities, which are also used for evaluation of
connection availabilities.

Connection availabilities. Given a failure probability for each link and node,
the availability of a connection is defined as the probability that none of the traversed
links or nodes fails. The endnodes of a commodity are often excluded for availabil-
ity evaluations. In case of protected connections, the availability of corresponding
backup connections has to be involved, too. With dedicated path protection, avail-
abilities can be easily analyzed by evaluating the probability that either the working
connection or its assigned backup connection does not fail. Such an analysis indeed
becomes more difficult when sharing of backup resources occurs as in case of shared
path protection or DSP.
In Hülsermann et al. [70], we report on a study on the mean availabilities of (pro-
tected and unprotected) connections by application of different survivability schemes,
including unprotected shortest path routings, 1+1 path protection carried out by
Suurballe/Dijkstra routings as well as in an cost optimizing way, 2-DSP, max-DSP,
DSP, and shared path protection by use of a heuristic approach. For the DSP

schemes, we developed a combinatorial method for exact computation of mean avail-
abilities. Note that such a computation implicitly involves the probability of any
potential failure situation, including any combination of multiple failures. For the
other schemes, standard (exact or approximate) evaluation methods have been used.
In a nutshell, the study results show on the one hand that for protected connections,
DSP provides a mean availability comparable to that of 1+1 path protection. The
availability of unprotected connections indeed suffers from the applied routing diver-
sification which tends to establish (substantially) longer connections than shortest
path or shortest cycle routings (and disruption probability grows with the number
of hops as well as with the total kilometer distance due to length-dependent link fail-
ure probabilities). On the other hand, the DSP solutions are considerably cheaper
than those for 1+1 path protection. For relating availabilities and costs, we use the
so-called gain defined as increase in mean availability over increase in cost both in
comparison to the unprotected solution. In this measure, DSP clearly outperforms
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Figure 2.8: DSP in relation to other path protection schemes with respect to (theo-
retical) recovery time and spare resource consumption.

1+1 path protection. This holds also for the comparison to shared path protection
as long as the traffic is not fully protected. Otherwise, shared path protection yields
a slightly higher gain by providing further network cost savings. These savings are
achieved with lower backup capacity consumption by sharing resources whenever
possible, which in turn slows down the recovery process and complicates network
management.

Categorization embedding. As a summary, DSP can be included into the
scheme from Figure 1.14 on page 29 as shown in Figure 2.8. Regarding general sur-
vivability principles, DSP constitutes a mixing of dedicated and shared protection.
On the one hand, backup connections are set up for each commodity individually.
Thus the occupied spare capacities are dedicated to the commodity. On the other
hand, the provided protection is shared among the working connections within the
commodity. This way, DSP combines advantages of both dedicated and shared pro-
tection and provides another compromise between fast recovery and spare capacity
requirements.



Chapter 3

Solving optical network design

In the previous chapter, we show that cost-oriented optical network design can
be formulated in an adequate ’language’ for mathematical optimization, as integer
linear programs. By the derived models for different architecture scenarios, we also
gain insight into the problem’s structure. Such a modeling indeed is only the first
step towards finding good network designs.

In this chapter, we present our solution approach for survivable optical network
design. We strive for an exact approach, i.e., finding optimal solutions. Little
experience in the field suffices to recognize that the comprehensive integer linear
programs are too complex for a direct exact approach. Therefore, we make use
of a well-known helpful idea: divide-and-conquer. We decompose the problem in
a suitable way which makes solutions tractable, but does not sacrifice too much
solution quality.

On passage from modeling to algorithms, we begin with a brief overview of re-
lated work in the literature. A refined task structuring helps in categorizing the
approaches.
Next, we explain our solution approach, as preliminarily introduced in Zymolka et
al. [178]. We motivate the applied decomposition and discuss its properties. The
approach subdivides the task into a dimensioning and routing subproblem and a
wavelength assignment subproblem, which are solved subsequently. This provides a
common solution framework for all scenarios.
In Section 3.3, we present our method for the first step, the dimensioning and routing
task, whereas the next chapter is dedicated to wavelength assignment with convert-
ers as second step. For dimensioning and routing, we first unify the subproblem for
all scenarios. The resulting (core) problem is then solved in a three-step procedure,
consisting of preprocessing, mathematical optimization, and postprocessing.

95
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3.1 Related work

In the literature, optical network design has received growing attention with the
migration to WDM networks in the early 1990s. At this time, design investiga-
tions were naturally dedicated to opaque networks. As the idea of optical switching
came up in technician’s minds due to its operational benefits, the development of
appropriate devices was initiated. Consequently, research to investigate transpar-
ent networks was started as well. In lockstep with technological progress (or its
announcement), planning tasks have been considered for innovative transparent ar-
chitectures expected to arise. Meanwhile, plenty of papers and books on operation,
configuration, and design of optical networks in any architecture have been pub-
lished. Before we subsume work related to this thesis, we prepare the discussion by
a refinement of the task structure.

Task structure refinement. In Section 1.5, we introduced the design task
for optical networks and identified two main configurations involved: the hardware
configuration and the lightpath configuration. A closer look on the mathematical
models derived in the previous chapter reveals that in particular the configuration of
lightpaths gains complexity with advanced technology. A routing of the lightpaths is
indispensable in any case, whereas the need for an additional wavelength assignment
is a characteristic feature of networks with transparent nodes. This gives rise to refine
the structuring of the comprehensive task, as shown in Figure 3.1. We propose a
classification of the many decisions to take within planning into three main subtasks:

• hardware dimensioning
including

• topological decisions (setup of links and nodes),

• capacity decisions (sufficient provision of all types), and

• hardware decisions (device selection);

• lightpath routing
including

• routing path selection (single-/multi-hop),

• survivability guarantees according to a (predefined) underlying concept;

• wavelength assignment
for conflict-free operation of the lightpaths to establish.

installed
hardware
devices

capa−
cities

provide enable

consumesupplied by

hardware
configuration

lightpath
routing

(single−/multi−hop) conflict−free

assignment
wavelength

lightpath
configuration

RWA

i n t e g r a t e d   a p p r o a c h

(opaque) network design

n e t w o r k   c o n f i g u r a t i o n

Figure 3.1: Refined structure of the network design task.
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In this light, the design of opaque optical networks combines dimensioning and
routing, whereas wavelength assignment is of minor relevance and can be easily ac-
complished afterwards. For the design of transparent optical networks, all three
aspects state non-trivial and interdependent problem parts, with an even more so-
phisticated routing task in the multi-hop case. The architecture at hand determines
also which hardware module sorts are involved for dimensioning. The refined task
structuring provides a base for a categorization of related work in the literature.

Literature. We focus on literature that deals with modeling and solving of network
planning tasks rather than those on technical issues or network operation, including
survivability. For these topics, we refer to Chapters 1 and 2 and literature cited
there. Moreover, the following discussion does not claim completeness as survey for
an already large and permanently growing field of literature, but restricts to the
most relevant work for this thesis.
For planning optical networks, most research concentrates around the new property
that optics brings into play: the wavelengths. In fact, a large portion of the work
has been carried out for the particular subproblem of Routing and Wavelength As-
signment (rwa), i.e., restricting on the lightpath configuration as shown in Figure
3.1, while dimensioning or, more generally, (a detailed figure of) the hardware con-
figuration received substantial less attention. We refer to any approach including all
three subtasks as transparent optical network design, while those without assignment
of wavelengths are denoted as network design, which includes opaque optical and
non-optical networks.

Network design. An overview on classical, though still actual network design
problems and associated literature is provided by Minoux [120], Yuan [175], and van
Hoesel [161]. For the core task of capacity installation (or upgrade) against cost
to establish multicommodity flows, fundamental work [by use of mathematical pro-
gramming] has been carried out, for instance, by Bienstock et al. [19] and Günlük
[63]. The extension to survivable networks is studied in Grötschel et al. [59], Dahl
and Stoer [36], and Bienstock and Muratore [20]. Particular application in telecom-
munications is discussed in Alevras et al. [3, 4]. In context of planning SDH networks
as predecessor of optical networks, further developments are provided in Wessäly
[166], including alternative survivability schemes and capacity models which enables
an application for various architectures. With slight adaptions, this approach suits
already well for opaque optical network design, too, where distinction of wavelengths
does not matter. This indeed changes with the arise of optical transparency.

Routing and Wavelength Assignment (rwa). For the design of networks,
the integration of transparent optical nodes brings up lightpaths as new character-
istic and adds wavelength assignment as indispensable problem part. To approach
this extension, a major part of work in the literature deals with the subproblem
of Routing and Wavelength Assignment (rwa), also referred to as logical topology
design, which corresponds to the traffic (re-) engineering subtask. While switching
capacities are often neglected completely, transmission capacities are typically fixed
or unlimited both in the number of fibers per link and in the numbers of wave-
lengths per fiber, using a non-fixed parameter as objective (to minimize). Moreover,
the demands are considered either static or dynamic. We omit work on dynamic
traffic, yielding questions of different type like call admission or blocking prevention,
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and rather focus on rwa with static traffic which forms a subtask of our problem.
Comprehensive surveys on rwa approaches are given by Dutta and Rouskas [40] and
Zang et al. [177], and we just subjoin selected recent works on this topic, postponing
those more close to wavelength assignment to the next chapter.
In contrast to many approaches following (decomposing) multi-step procedures, Jau-
mard et al. [74, 76, 75] study various integer linear programming formulations for
joint rwa without regeneration and conversion, with special focus on column gen-
eration formulations in Jaumard et al. [77]. They differentiate in asymmetric and
symmetric traffic and several objectives, including minimizing the number of re-
quired wavelengths (per fiber in multi-fiber networks), minimizing network load,
and maximizing the number of accommodated connections. As result, they report
that the formulations are of equivalent quality regarding linear relaxation bounds,
but show (significant) differences in terms of size and tractability.
While rwa is most often studied without wavelength conversion capabilities, an
exception is provided by Coudert and Rivano [34] who consider rwa with prespec-
ified link capacities and converter placements. The problem to find a feasible (un-
protected) routing for all connection requests without exceeding wavelength and
conversion capacities is transformed into an integer multicommodity flow problem
and solved by LP-based heuristics, based on randomized rounding techniques. A
similar approach is also provided by Ozdaglar and Bertsekas [134] for rwa with
non-bifurcated unprotected routing in three optical network architectures: opaque,
transparent, and hybrid networks with both types of nodes. In addition, they dis-
cuss methods to abet getting integer solutions of relaxed problems by application of
special objectives and penalty functions.
Finally, we remark two papers on uniform fiber spectra rwa without conversion,
but extended in direction of hardware integration. Kennington et al. [86] consider
such a problem including a selection of nodes where photonic switches are placed to
interconnect layered subnetworks on disposition, too. For minimizing cost incurred
by the switches and the selected layered subnetworks, they propose an integer lin-
ear programming model and a four-step procedure of subsequent heuristics to find a
solution. Nomikos et al. [130] consider two variants of rwa with variable link capaci-
ties, either fixing the capacities and minimizing the number of required wavelengths,
or fixing the number of wavelengths per fiber and minimizing link-individual costs
for the required fibers to install. For both problems (in further variants), they pro-
pose exact or constant-factor approximation algorithms for topologies restricted to
chain, ring, star, and spider networks.

Transparent optical network design. In the studies on rwa, objectives like
minimizing the number of wavelengths, fibers, or similar entities can already be in-
terpreted as an elementary form of capacity dimensioning. However, we refer by
transparent optical network design to cases where a more detailed figure of hard-
ware devices and their properties is taken into account. Such approaches indeed
often consider different settings regarding architecture, technology, devices, or traf-
fic types. A survey on such problems and corresponding literature can be also found
in van Hoesel [161], next extended by further recent work closest to our perspective.
Brunetta et al. [25] study transparent optical network design under cost including
different WDM systems and selective opaque nodes, but restricted to non-bifurcated
and unprotected routings. For the joint dimensioning, routing, and wavelength as-



3.2. Solution approach 99

signment problem, they propose a binary linear programming model (and a variant
with incremental link capacities) using path variables for small sets of preselected
routing paths on disposition, i.e., without column generation. By adding strength-
ening inequalities, a cutting plane algorithm is derived for solving the problem. The
paper is also part of the PhD thesis by Yuan [176] which contains some further
studies on general network design by integer linear programming approaches.
Melián et al. [116, 117] study upgrade planning of opaque optical networks with
uniform fibers, WDM systems, and (opaque) OXCs to meet varying demands by
non-bifurcated unprotected routings. For this, the proposed integer linear program
contains also path variables for preselected path sets (using k-shortest paths algo-
rithms). They develop a metaheuristic solution method, basically composed of tabu
search and scatter search, and compare it against another heuristic (in [117]) and
solutions of the integer linear program (in [116]) which models in fact a subproblem
(due to the restricted path sets).
Birkan et al. [22, 21, 23] consider the design of optical networks under cost with spe-
cial emphasis on a detailed figure of signal propagation equipment on links, whereas
fiber and switch costs are neglected. In [21], several protection schemes are com-
pared, whereas [22] deals with demand uncertainty. Their evaluation of opaque and
transparent architectures in [23] reveals the latter to be more cost-efficient under
their assumptions.
Belotti [13] studies integer linear programming approaches for three (sub-)problems
of optical network design. Besides shared protection schemes and integration of lim-
ited range converters, an interesting variation consists in the cost-based design with
non-linear node cost (depending on nodal degrees).
More similar to our setting, optical networks with selective o-e-o regenerations have
been recently studied as translucent networks. In this context, Morea and Poirrier
[122] analyze potential cost savings with special focus on optical reach and thereby
involved devices (and costs). They use simulations based on shortest path routing
and evaluate the benefit of a translucent architecture.

Summarizing, network planning shows up in the literature with manifold settings and
alternative layouts which have been studied to various extents. As far as transparent
optical networks are concerned, it can be observed that an integrated handling of
wavelengths plays typically a major role in these studies. Around this characteristic
feature, further aspects like hardware configurations are investigated much less ac-
curate, if at all. For cost-oriented network design, however, hardware expenses are
the sole objective driver and thus should be accounted for as detailed as possible.
To this end, we follow a different solution approach.

3.2 Solution approach

A drawback of the accurate integer linear programs presented in the preceding chap-
ter is their solvability. Experiments have shown that even for moderate problem
sizes, the programs are computationally intractable for state-of-the-art mixed-integer
programming solvers, in particular for the transparent scenarios. The structural
analysis in Section 2.2 indicates a main reason for this: the inclusion of an inte-
ger multicommodity flow problem which models the lightpath routing as well as a
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coloring-like problem for the wavelength assignment. The first subtask has already
been identified to be NP-hard in Lemma 2.13. A complexity grading for wavelength
assignment with fixed routing is given in the following chapter, finding this subtask
to be NP-hard as well. Since both problems can be isolated as special case of trans-
parent optical network design, their combination makes anything but a simpler task.
In practice, the number of converters at the nodes is usually not bounded as already
remarked in Section 2.2, and we focus on the setting without these bounds in the
sequel. So, we relax the corresponding conditions (2.12c) and (2.12d) in all models
and continue with the remaining wavelength converter model (2.12a), (2.12b), and
(2.12e) referred to as (2.12) in what follows. This inconspicuous variation in fact
has a fundamental impact. It allows to decompose the task into two subproblems
such that at least the two NP-hard special cases are separated. This decomposition
is first presented for ONDtsh without survivability adaptions, which are discussed
afterwards, and then also carried over to ONDtmh.

Decomposition of ONDtsh. Consider the model ONDtsh from page 61. The
basic relation between link capacities and wavelength capacities on links is expressed
by constraints

yℓ =
∑

λ∈Λ

yλ
ℓ ∀ ℓ ∈ L (3.1)

which can be added to the model, introducing the variables yℓ. Using this relation
directly allows to retransform constraints (2.10) to (2.5) and (2.11) to (2.1b). For
each link ℓ ∈ L, we build the sum over all wavelengths of constraints (2.9) and get

∑

λ∈Λ

∑

w∈W

∑

f∈Fw

kwλzf w
ℓ =

∑

w∈W

∑

f∈Fw

kwzf w
ℓ =

∑

λ∈Λ

yλ
ℓ = yℓ ∀ ℓ ∈ L, λ ∈ Λ

by Definition 2.5 and relations (3.1). These redundant constraints equal conditions
(2.3a) which can therefore be added to the model, too. Hence, model ONDtsh now
includes the link configuration formulation (2.3).
Next, the sum over all wavelengths of constraints (2.13c) results in

∑

λ∈Λ

∑

p∈ eP:
ℓ∈L(p)

aλ
p ℓ =

∑

p∈ eP:
ℓ∈L(p)

∑

λ∈Λ

aλ
p ℓ ≤

∑

λ∈Λ

yλ
ℓ

(3.1)
= yℓ ∀ ℓ ∈ L

where insertion of the appropriate equations (2.13b) yields

∑

p∈P:
ℓ∈L(p)

∑

q∈Q:

p∈ ePoq dq

f q
p ≤ yℓ ∀ ℓ ∈ L (3.2)

as further redundant inequalities to be added. Together, constraints (2.13a), (3.2),
and integrality conditions f q

p ∈ Z+ from (2.13f) form the (opaque) path flow model

(2.7) just using the single-hop path set P̃ instead of P. Finally, all variables f q
p in

constraints (2.13b) are replaced by duplicates f̃ q
p which are identified by adding the

equations

f q
p = f̃ q

p ∀ q ∈ Q, p ∈ P̃ (3.3)
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to the model, and for which separate integrality conditions f̃ q
p ∈ Z+ are added to

(2.13f).
Since only equivalence transformations have been applied so far, the resulting model
is equivalent to ONDtsh. Now, if we relax the relations (3.1) and (3.3) as well as
constraints (2.9), the model decomposes into two separate parts as follows:

ONDDR
tsh

containing

• objective (2.8),

• setup constraints (2.1),

• node configuration model (2.2),

• link configuration model (2.3),

• capacity linking constraints (2.5),

• routing model (2.7) with P̃ instead
of P.

ONDWA
tsh

containing

• objective min
∑

n∈N

∑
c∈C

Cc
nxc

n,

• wavelength converter model (2.12),
and

• wavelength assignment model
(2.13b)–(2.13f) with f̃ q

p replacing
f q

p .

The model ONDDR
tsh represents the dimensioning and routing subproblem without

distinction of wavelengths, whereas ONDWA
tsh encodes the corresponding wavelength

assignment subproblem including the placement of converters. The relaxed con-
straints specify some variable relations between the partial problems. Hence, any
solution of ONDDR

tsh turns variables yλ
ℓ and f̃ q

p in ONDWA
tsh into parameters defined

by (2.9) and (3.3), respectively. As main foundation of the decomposition approach,
the following theorem proves feasibility of ONDWA

tsh for any such parameters obtained
from a feasible solution of ONDDR

tsh , such that the combined solution is feasible for
the original model ONDtsh.

Theorem 3.1 For any feasible solution of ONDDR
tsh

defining the values of yλ
ℓ and f̃ q

p

by equations (2.9) and (3.3), there exists a feasible solution of ONDWA
tsh

.

Proof. Consider an arbitrary solution of ONDDR
tsh with the implied values for all

parameters yλ
ℓ and f̃ q

p .
Let ℓ ∈ L be an arbitrary, but fixed link. We define the sets of all (individual)
selected routing paths traversing ℓ and all (individual) wavelengths available on ℓ
by installed systems in the ONDDR

tsh solution as

Pℓ :=
⋃

p∈ eP:
ℓ∈L(p)

Pp with Pp :=





p(i)
∣∣∣ 1 ≤ i ≤

∑

q∈Q:

p∈ ePoq dq

f̃ q
p





∀ p ∈ P̃

and

Λℓ :=
⋃

λ∈Λ

Λλ
ℓ with Λλ

ℓ :=
{

λ(i)
∣∣∣ 1 ≤ i ≤ yλ

ℓ

}
∀ λ ∈ Λ .

Due to mutual disjointness of the sets Pp and of the sets Λλ
ℓ ,

|Pp| =
∑

q∈Q:

p∈ ePoq dq

f̃ q
p , |Pℓ| =

∑

p∈ eP:
ℓ∈L(p)

∑

q∈Q:

p∈ ePoq dq

f̃ q
p , |Λλ

ℓ | = yλ
ℓ , |Λℓ| =

∑

λ∈Λ

yλ
ℓ = yℓ
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hold. From constraints (3.2), we know that |Pℓ| ≤ |Λℓ| and both sets are finite.
Hence, there exist injective mappings A : Pℓ → Λℓ.
Let A be such an arbitrarily selected mapping, and let A−1(X) refer to the set of
all elements in Pℓ that are mapped by A into the set X. Then we define the values
of aλ

p ℓ according to A by

aλ
p ℓ := |Pp ∩A−1(Λλ

ℓ )| ∀ λ ∈ Λ, p ∈ P̃

as the number of times copies of path p are assigned to the wavelength λ. Since A is
injective, we have A−1(Λλ

ℓ ) ∩A−1(Λλ′

ℓ ) = ∅ whenever λ 6= λ′. For each path p ∈ P̃ ,
this implies

∑

λ∈Λ

aλ
p ℓ =

∑

λ∈Λ

|Pp ∩A−1(Λλ
ℓ )| =

∣∣∣∣∣Pp ∩
⋃

λ∈Λ

A−1(Λλ
ℓ )

∣∣∣∣∣

=

∣∣∣∣∣Pp ∩A−1

(
⋃

λ∈Λ

Λλ
ℓ

)∣∣∣∣∣ = |Pp ∩ Pℓ| = |Pp| =
∑

q∈Q:

p∈ ePoq dq

f̃ q
p

and thus verifies that all constraints (2.13b) for ℓ are fulfilled. Moreover, the dis-
jointness of the sets Pp together with injectivity of A imply for each wavelength
λ ∈ Λ

∑

p∈ eP:
ℓ∈L(p)

aλ
p ℓ =

∑

p∈ eP:
ℓ∈L(p)

|Pp ∩A−1(Λλ
ℓ )| =

∣∣∣∣∣∣∣∣

⋃

p∈ eP:
ℓ∈L(p)

Pp ∩A−1(Λλ
ℓ )

∣∣∣∣∣∣∣∣

= |Pℓ ∩A−1(Λλ
ℓ )| = |A−1(Λλ

ℓ )| ≤ |Λλ
ℓ | = yλ

ℓ

such that constraints (2.13c) are fulfilled for ℓ as well. As an arbitrary link ℓ was
considered, the same conclusions hold for all links ℓ ∈ L.
Regarding the converter model (2.12), remind that bounds (2.12c) and (2.12d) have
been relaxed. So, a cheapest converter c ∈ C can be established arbitrarily often in
each node n ∈ N , implying existence of feasible ONDWA

tsh solutions with arbitrarily
large values of yCn. Hence, constraints (2.13d) and (2.13e) can be fulfilled trivially,
e.g., by setting for each p ∈ P̃ with p = (n0, ℓ1, n1, ℓ2, n2, . . . , ℓh, nh) the variables
aλ

p n := aλ
p ℓ for all λ ∈ Λ and all 1 ≤ i ≤ h − 1, as well as for each node n ∈ N the

variables yCn :=
∑

p∈ eP:
n∈N(p)

∑
q∈Q:

p∈ ePoq dq

f̃ q
p and zc

n := yCn together with xc
n := zc

n − ec
n for

the selected converter device c. Altogether, a feasible solution of ONDWA
tsh has been

constructed, proving the claim. �

As a consequence, Theorem 3.1 inspires to solve ONDtsh by first solving ONDDR
tsh ,

fixing the values for all yλ
ℓ and f̃ q

p parameters by (2.9) and (3.3), and then deter-
mining a corresponding solution of ONDWA

tsh with respect to these parameters. Note
that the parameter fixing is applied by some previously relaxed constraints which
are therefore automatically fulfilled as well. The satisfaction of the remaining re-
laxed constraints (3.1) follow implicitly from constraints (2.3a), (2.9), and Definition
2.5 since the above applied opposite transformation, involving equations only, is re-
versible. Hence, each combination of a solution of ONDDR

tsh and a corresponding



3.2. Solution approach 103

solution of ONDWA
tsh provides in fact a feasible solution of the unrelaxed modified

model equivalent to ONDtsh.
As a relaxation of ONDtsh, the submodel ONDDR

tsh has a further useful property.

Proposition 3.2 Any lower bound on the optimal value for ONDDR
tsh

is also a lower
bound on the optimal value for ONDtsh.

Note that the objective of ONDDR
tsh leaves only converter costs out of consideration,

while all other cost drivers are involved. Thus good lower bounds for ONDDR
tsh can

be expected to provide also good lower bounds for ONDtsh. Clearly, lower bounds
for the subsequently solved model ONDWA

tsh do not contribute in this regard. Never-
theless, the objective of ONDWA

tsh takes care that completing a solution for ONDtsh

occurs at minimum additional cost.
Furthermore, the dimensioning and routing subproblem ONDDR

tsh is very similar to
opaque network design as modeled in ONDp

opq (see page 56). In fact, ONDDR
tsh differs

from ONDp
opq only by the restricted routing path set P̃ instead of P. This obser-

vation has a further consequence: incorporation of survivability works well with the
decomposition. One easily verifies that the model adaptions described in Section 2.3
for inclusion of any DSP survivability scheme into ONDtsh affect only model parts
that are transformed into ONDDR

tsh , and that the decomposition transformations turn
these adaptions to those proposed for ONDp

opq when applied to ONDDR
tsh . Therefore,

a slightly adapted decomposition, including statements corresponding to Theorem
3.1 and Proposition 3.2, applies also to survivable design of single-hop transparent
optical networks using an arbitrary DSP survivability scheme.

Decomposition of ONDtmh. A very similar decomposition as for ONDtsh can
also be applied for ONDtmh, with few changes following the single-hop model ex-
tension for multi-hop optical connections discussed in Section 2.2. In fact, all above
described model transformation steps preparing the decomposition carry over lit-
erally. In addition to this, the dimensioning and routing submodel ONDDR

tmh ex-
tends by the regenerator model (2.15), and its objective by the regenerator costs∑

n∈N

∑
r∈R Cr

nxr
n. All further changes concern only the routing model. The tran-

sition from ONDtsh to ONDtmh required to replace constraints (2.13a) and (2.13b)
by (2.16a) and (2.16b) and to add constraints (2.16c), whereas conditions (2.13c)–
(2.13f) have been kept. Consequently, the decomposed submodels reflect these adap-
tions. For the multi-hop dimensioning and routing submodel ONDDR

tmh, constraints
(2.16b) together with (2.13c) transform in the same way to (2.7b) as well as con-
ditions (2.13f) to (2.7c), while constraints (2.7a) are substituted by (2.16a) and
constraints (2.16c) are inserted additionally. Finally, the wavelength assignment
submodel ONDWA

tmh is just marginally influenced by replacing constraints (2.13b)
with (2.16b) where as only difference the flow variables are summed up over all
commodities rather than just those for which the considered lightpath is an end-to-
end connection.
Summarizing, the equivalent transformations turn model ONDtmh analogously into
a modified formulation which decomposes after relaxation of constraints (3.1), (3.3),
and (2.9) as follows:
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ONDDR
tmh

containing

• objective (2.8) +
∑

n∈N

∑
r∈R

Cr
nxr

n,

• setup constraints (2.1),

• node configuration model (2.2),

• link configuration model (2.3),

• capacity linking constraints (2.5),

• regenerator model (2.15),

• routing model (2.16a) and (2.16c),
together with (2.7b) and (2.7c)
where P̃ replaces P.

ONDWA
tmh

containing

• objective min
∑

n∈N

∑
c∈C

Cc
nxc

n,

• wavelength converter model (2.12),
and

• wavelength assignment model
(2.16b) and (2.13c)–(2.13f) with
f̃ q

p replacing f q
p .

A comparison to the decomposition of ONDtsh shows that wide parts of the submod-
els are equal. In particular, the proof of Theorem 3.1 holds also for the decomposition
of ONDtmh when just substituting the definition of multi-sets Pp by

Pp :=



 p(i)

∣∣∣ 1 ≤ i ≤
∑

q∈Q

f̃ q
p



 ∀ p ∈ P̃

and following the same outline to construct a feasible solution of ONDWA
tmh with

(2.16b) instead of (2.13b). So, the statement of Theorem 3.1 carries over to the
decomposition of ONDtmh, too:

Theorem 3.3 For any feasible solution of ONDDR
tmh

defining the values of yλ
ℓ and

f̃ q
p by equations (2.9) and (3.3), there exists a feasible solution of ONDWA

tmh
.

Any such pair of corresponding solutions for ONDDR
tmh and ONDWA

tmh again satisfies
all relaxed constraints and thus combines to a feasible solution of ONDtmh.
Moreover, ONDDR

tmh is a relaxation of ONDtmh, and so we can conclude analogously
to Proposition 3.2:

Proposition 3.4 Any lower bound on the optimal value for ONDDR
tmh

is also a lower
bound on the optimal value for ONDtmh.

Finally, integrating survivability again does not impede the application of the de-
composition approach. The necessary adaptions, as described in Section 2.3 de-
pending on the selected DSP scheme, concern constraints (2.16a) and the insertion
of further conditions which become part of ONDDR

tmh. The wavelength assignment
submodel ONDWA

tmh is not affected at all, and hence the decomposition with all prop-
erties carries over to survivable multi-hop transparent optical network design in an
straightforward way.

Decomposition approach. Summarizing, Theorems 3.1 and 3.3 guarantee that
feasible network designs can be constructed from separate solutions of the decom-
posed models, even when survivability is involved. Furthermore, the resulting di-
mensioning and routing models ONDDR

tsh and ONDDR
tmh are quite similar to ONDp

opq

and, by Propositions 3.2 and 3.4, provide for the original problems a lower bound
which involves already all costs except those for conversion. So, to relieve the com-
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Figure 3.2: Decomposition approach for transparent optical network design.

putational effort without losing too much solution quality, we apply the following
decomposition approach, illustrated in Figure 3.2, and solve the entire optical net-
work design task in two subsequent steps:

• dimensioning and (survivable) routing
for which we neglect the distinction of wavelengths and use (sub-) models ONDp

opq,

ONDDR
tsh , or ONDDR

tmh, respectively, followed by

• wavelength assignment and converter placement
for the established lightpaths in case of transparent optical networks as formu-
lated by submodels ONDWA

tsh or ONDWA
tmh.

Note that compared to the previous classification, wavelength converters are now
excluded from the hardware dimensioning since their functionality is directly con-
nected to the assignment of wavelengths.

Discussion. Solving a problem by decomposition into subproblems has some pros
and contras. For the proposed approach, a major concern is the loss of the opti-
mality guarantee. Even optimal solutions of both submodels need not combine to
an optimal solution of the original problem as long as converters are required. The
dimensioning and routing subproblem has no control on the number of conversions
finally needed, and so converters might incur a substantial portion of the design
costs, e.g., when these devices have high prices or upgrade planning already offers a
lot of infrastructure for free. As a further consequence, the approach cannot guar-
antee to meet (non-trivial) bounds on the converter numbers.
On the other hand, application of the proposed decomposition offers some major
advantages:

Decoupling hard subproblems. The decomposition decouples (at
least) the two identified NP-hard subproblems, the integer multicom-
modity flow problem (with capacity dimensioning) and the coloring-like
wavelength assignment problem. Their isolated investigation gives rise
to expect better solvability properties than with a direct approach to the
comprehensive models derived in Section 2.2.

Common methodology. As a further feature, the approach allows to
tackle all technology scenarios presented in the previous chapter with
the same methodology. By excluding the wavelength assignment, the
remaining dimensioning and routing tasks are very similar. In fact,
ONDp

opq, ONDDR
tsh , and ONDDR

tmh have only few differences and can be
easily unified (see Section 3.3). An even stronger similarity holds for the
ONDWA

tsh and ONDWA
tmh models.
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Applicable know-how. A special advantage is that the wavelength-
free dimensioning and routing (sub-) problems have fundamental sim-
ilarities to non-optical network design which has been widely studied.
Hence, we can profit from the existing results, in particular sophisticated
optimization methods that are already available.

Good solutions. Our computational experiments have shown that typ-
ically few converters are required to accommodate a conflict-free wave-
length assignment for a lightpath routing. Often, even converter-free
solutions could be found (see Chapters 4 and 5). In such a case, an opti-
mal dimensioning and routing subproblem solution is in fact completed
to a provably optimal solution of the overall problem.

Solution method overview. Prior to the detailed presentation and discussion of
the applied algorithm(s), we give a basic overview on the major steps of our solution
method. Figure 3.3 illustrates the procedure schematically. The input comprises
the physical and supply networks, the hardware, and the demands as introduced
in Section 2.2.1. In the first phase, the dimensioning and routing subproblem is
solved, with pre- and postprocessing procedures around a sophisticated optimiza-
tion method. As result, we get a lower bound on the total cost, a network with
properly dimensioned capacities (except for conversion) and a (survivable) optical
connection routing. For transparent networks, the second phase then accomplishes
the lightpath configuration by a conflict-free wavelength assignment and the hard-
ware configuration by placement of wavelength converters. After all, the output
comprises the solution as complete network configuration and a quality guarantee
by the computed lower bound of the first phase.

− switching capacity
− transmission capacity

Input
− types
− attributes
− number bounds

− graph
− setup costs
− preinstallations

− demand values
− protection

Modules

Supply network

Demands

Hardware configuration
Lightpath configuration
Lower cost boundOutput

Dimensioning & Routing
Preprocessing
− capacities and costs

Postprocessing

Routing connectionsDimensioning capacities

Lower bound on total cost

Optimization

− survivability
− commodity flows

− optical connections
− regenerators

Wavelength Assignment
Optimization

Assigning wavelengths
− availability − minimum cost

Converter placement

transparent optical networks

opaque optical networks

Figure 3.3: Solution method scheme.
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In the following, we describe this comprehensive method step-wise in detail. Ac-
cording to the natural order, we begin with the dimensioning and routing procedure,
while wavelength assignment with converters is postponed to Chapter 4.

3.3 Dimensioning and routing

As first phase of our method, we solve the dimensioning and routing subproblem
with the goal to minimize the network cost, except for converters. Despite ex-
cluding wavelength assignment, this subproblem remains a rather difficult remit,
representing an integer multicommodity flow problem with capacity constraints and
additional restrictions according to the particular scenario. Before going into detail
on the solution process, we unify the models for all scenarios.

Model unification. As result of the model decompositions in the previous sec-
tion, we consider the models ONDp

opq, ONDDR
tsh , and ONDDR

tmh. Since wavelengths
are not distinguished anymore in the transparent scenarios, we only have to deal
with channel capacities for transmission and switching as well as a routing of optical
connections in terms of entire (uncolored) channels. The connection types indeed
differ. When adapting the path set P to P̃ throughout (2.7), ONDp

opq and ONDDR
tsh

already become identical. Transparent multi-hop networks may additionally em-
ploy regenerators, concatenating lightpaths to the final connections as expressed in
(2.16a). By neglecting regenerations, however, these connections can be handled ex-
actly the same way as those in opaque networks. For this, we exclude the placement
of regenerators in transparent multi-hop networks from the main optimization phase
and accomplish this issue in a postprocessing step. So, the regenerator model (2.15),
the corresponding objective function term, and constraints (2.16c) are removed from
ONDDR

tmh, and constraints (2.16a) are replaced by (2.7a). These modifications turn
the model into ONDp

opq in the end. In view of the lower bound, this additional
reduction has the same consequences as the exclusion of wavelength converters. Re-
generator costs are not anymore involved in the optimization step, but any lower
bound on the cost obtained for the reduced problem remains valid for the original
problem.
As a result, the dimensioning and routing subproblem becomes the same for all
three scenarios and is represented by the opaque network design model ONDp

opq,
optionally with the corresponding adaptions to integrate survivability as described
in Section 2.3. The sole difference concerns the transparent single-hop case where
the selection of routing paths is restricted to those of limited length, as modeled in
(2.13), and needs just P to be replaced by P̃ in the (survivable) routing model (2.7).

Method selection. As already indicated, opaque network design is also very
similar to the design of non-optical networks, which has been intensively studied
since long before optics entered the networks. Hence, it is reasonable to avail the
existing knowledge rather than to reinvent the wheel. There are several sophisticated
optimization methods and solution tools which can be used to handle the (reduced)
dimensioning and routing subproblem.
For our model, one particularly suitable tool is Discnet introduced by Wessäly [166].
Discnet exploits integer linear programming techniques to achieve two goals: to find
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good feasible solutions and to derive a lower bound on the total cost of any network
design that satisfies the stated requirements. Thereby, the underlying model and
the solution algorithm are flexible enough to incorporate many specific aspects of
our setting, such as the survivability concept. Moreover, optional parameter settings
allow to balance computational effort and solution accuracy.

To take advantage of these features for our purpose, we address the necessary in-
tegration that has to be carried out to use Discnet. At first, we discuss possible
transformations of our problem description into a suitable input for Discnet in a
preprocessing phase. Next, we present in more detail the methodology of Discnet

and its application as a solver. The intermediate result obtained from Discnet is fi-
nally handed to a postprocessing step to accomplish the solution of our dimensioning
and routing subproblem.

3.3.1 Transforming the problem

As introduced by Wessäly [166], Discnet is based on a simplified representation of
available hardware configurations by means of a discrete set of the corresponding
capacities, each with an associated cost value. Initially restricted to links, the model
has been later carried over to node capacities, too. Main advantage of this approach
is that dimensioning reduces to the selection of a single configuration out of the
given set for each link and node, but presumes to have such capacity-cost sets at
hand.

Components and resources. Meanwhile, Kröller [99] developed and imple-
mented a more sophisticated network framework which extends the integer linear
programming formulation of Wessäly. Instead of sets with alternative capacities (and
costs), the hardware composition at each link and node is taken into account in more
detail. The framework uses the abstract concept of components and resources to
represent real or fictive objects and their provision or consumption of definable re-
sources. This abstraction adds high flexibility to the tool. As demonstrated in Bley
et al. [24], the extension offers a direct way to model (and solve) design problems
for various technologies, such as IP, SDH, ATM, or—of our particular interest—
opaque WDM networks. The transfer of our modular network description into this
framework is quite simple, using (wavelength) capacities and installation space as
resources, whereas modules and lightpaths form the components. We omit further
details, which are straightforward to carry out.

Discnet interfaces. As a result, both input interfaces are available for Discnet

today. Clearly, the component/resource concept is more comfortable to use, but
brings also further complexity into the task handed over to the optimization algo-
rithm. In fact, whereas a simple decision of which capacities to install in the network
had to be taken before, the full set of different configurations has then to be encoded
in the integer linear program. Hence, the ’easy’ component/resource based interface
suits well as long as the multitude of alternative configurations is reasonably small,
in particular without providing too many different configurations for any installable
capacity. Otherwise, the complexity reduction by exclusion of such configuration
details and a compressed representation of the selectable capacities is advisable for
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performance improvement of the solving procedure. In view of our module variety,
simplifications are often preferable, and thus we describe how to convey our module-
based configuration formulations (2.2) for nodes and (2.3) for links to the alternative
model on discrete sets for capacities and costs in a preprocessing.

Model for discrete sets. At first, we restate the model for discrete sets from
Wessäly [166] in our notation, as introduced in Chapter 2. For each link or node
(subsumed as place) π ∈ N ∪ L, assume the set Kπ = {(kπ

1 , Cπ
1 ), . . . , (kπ

mπ
, Cπ

mπ
)}

comprises any installable capacity kπ
i ∈ Z+ available at cost Cπ

i ∈ R+, i = 1, . . . ,mπ.
For the dimensioning, binary variables xπ

i ∈ {0, 1} to express whether capacity kπ
i

is selected at place π ∈ N ∪ L or not. The original model for dimensioning with
discrete capacities then reads:

min
∑

π∈L∪N

mπ∑

i=1

Cπ
i xπ

i (3.4)

s.t.

mπ∑

i=1

kπ
i xπ

i = yπ ∀ π ∈ N ∪ L (3.5a)

mπ∑

i=1

xπ
i = 1 ∀ π ∈ N ∪ L (3.5b)

xπ
i ∈ {0, 1} ∀ π ∈ N ∪ L, i = 1, . . . ,mπ (3.5c)

Together with the integrality conditions (3.5c), constraints (3.5b) ensure that a single
option is selected at each place π ∈ N∪L. The corresponding capacity is determined
in constraints (3.5a), and the objective (3.4) summarizes the costs for all selections.
We remark that the original model in Wessäly [166] is formulated with incremental
capacities and costs, motivated by a preferable computational behavior. However,
it is easy to verify that the original model is equivalent to (3.4) and (3.5).

Configurations and capacities. In order to substitute the configuration formu-
lations by the simpler model (3.5), we have to determine the discrete sets Kπ for all
places π ∈ N ∪L. Revisiting our formulations, one easily observes that the hardware
configuration of each individual link or node is independent of all others, except for
parallel supply links associated to the same physical link where the installation of
WDM systems and the total number of fibers can be restricted in common. In such
a case, it is not possible to use sets of discrete capacities and costs for individual
supply links which can be selected independently of each other, and an appropriate
component and resource model with auxiliary entities representing resources con-
sumed concertedly by parallel supply links must be applied. So, we continue for the
case that no such (non-trivial) common restrictions are given. If preinstalled WDM
systems are present, we fix their utilization to the currently carrying fiber (and thus
supply link). Then the configuration model for parallel supply links can be decou-
pled, and the discrete capacity and cost set calculation can be independently carried
out place-wise as next considered individually for an arbitrary supply link or node
π ∈ N ∪L. In what follows, major notation and formulation changes can be avoided
by simply refining the set of physical links such that each physical link corresponds
to a single supply link, i.e., we assume mutually disjoint Lt = {ℓ} for all t ∈ T and
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cost

capacity

Figure 3.4: Example of installable capacities and their costs for all potential hardware
configurations at a link or a node.

use associated physical and supply links ℓ and t synonymously.
Each feasible hardware configuration at π according to (2.2) respectively (2.3) yields
an installable capacity with precomputable cost. Taking any possible configuration
into account might yield a result as plotted in Figure 3.4 by a dot for each set ele-
ment. In general, some configurations may be dominated by others which provide
the same or higher capacities at equal or even lower cost by taking advantage of
economies of scale. Such dominated configurations need not be considered, and it
suffices to take only undominated configurations into account, whose corresponding
dots constitute the lower envelope in Figure 3.4.
Moreover, capacities beyond a maximally required amount need also not be evalu-
ated. Such a maximum value k̂π can be determined as follows. For each commodity,
the maximum throughput at π is either the demand value or even stricter limited
by survivability restrictions. All such limits can be predetermined except for the
most general DSP scheme where the total number of connections to establish for a
commodity is not specified in advance. In this case, we instead use the upper bound
on the total connection number provided by Proposition 2.21 on page 84 and so
can derive a maximum throughput limit for each commodity at each π. Summing
up these limits over all commodities, we find k̃π as maximum number of connec-
tions that can traverse π in any design. Since a capacity of exactly k̃π need not be
installable at π, the value k̂π is finally obtained by adding the maximum capacity
of an installable switch if π ∈ N , or of an installable WDM system otherwise, i.e.,
we set k̂n = k̃n + maxs∈S ks for nodes n ∈ N and k̂ℓ = k̃ℓ + maxw∈W kw for links
ℓ ∈ L. Note that in case no bounds on the number of installable devices are given,
determination of k̂π is in fact required to terminate the generation of capacities.

Set generation by ILPs. Given a required capacity k ∈ Z+ for a node or link,
the minimum cost configuration providing at least this capacity can be determined
by models (2.2) and (2.3), respectively. So, a self-evident idea to generate the discrete
capacity sets is by repeatedly solving these configuration formulations individually
for each supply link and node. For this, we define the following functions:

zn(k) :=

{
min

∑

s∈S

Cs
nxs

n

∣∣∣∣∣ (2.2), yn ≥ k

}

zℓ(k) :=



 min

∑

f∈F

Cf
ℓ xf

ℓ +
∑

w∈W

Cw
t xw

t

∣∣∣∣∣∣
(2.3), yℓ ≥ k



 (where Lt = {ℓ})
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For each place π ∈ L ∪N , the function zπ(k) returns the minimum cost of all con-
figurations providing at least capacity k, and each optimal model solution specifies
such a corresponding configuration and its real capacity y∗π (≥ k). Starting with
k = 0, we iteratively compute zn(k) and set k := y∗π + 1 for the next iteration until
either zn(k) = ∞ or k > k̂π. After that, we discard dominated capacities, if found
some, and obtain the desired minimum discrete sets. However, such a method needs
to solve many integer linear programs and might become a time-consuming process.
A typically more effective way is to use dynamic programming.

Set generation by dynamic programming. Any hardware configuration of
a node can be seen as a collection of individual switches, each contributing a certain
amount to the total capacity. Vice versa, we can ’build’ any feasible node configura-
tion by deciding for each installable switch device individually whether to participate
in the configuration or not. Moreover, given an optimal configuration for capacity k
containing a switch device u of type s, the configuration without that switch must
be optimal for capacity k − ks among all configurations not using u. Otherwise,
there would obviously exist a cheaper configuration for k, contradicting its assumed
optimality. On links, the same holds for pairs of fibers and WDM systems. This
idea gives the key for a (configuration) generation method according to the principle
of dynamic programming (see, e.g., Nemhauser and Wolsey [127], Section II.5.5, for
an introduction).
At first, we build the set of all potentially employable units (i.e., all switches for
nodes, all pairs of fibers and WDM systems for links). Thereby, we distinguish
preinstalled units available for free and new units to be installed against the corre-
sponding cost. Note that we have also to decide on the use of preinstalled units,
since it might be necessary to replace those units by (new) larger ones due to limited
space. Then, we resolve the generation of all configurations in a sequence of deci-
sions on the participation of each of these units, thereby keeping track of a cheapest
configuration for all capacities upon the units involved so far. As principle of op-
timality, any part of a cheapest configuration forms a cheapest configuration itself,
if restricting the involved units to those considered upon completion of the part.
Having processed all units in the end, all feasible configurations have been evaluated
implicitly, and we obtain a cheapest configuration for each installable capacity.
In the following, we describe the general methods separately for nodes and links due
to the different hardware composition. We begin with the hardware configuration
at nodes.

Dynamic programming method for node capacities. The switching ca-
pacity at a node n ∈ N is provided by the installed switches whose attributes are
defined in Definition 2.6 on page 49.

Generation of the discrete capacity set at a node

Input. A node n ∈ N and its configuration model (2.2) with all associated
parameters.

Method. For each switch type s ∈ S, we define the set U s
n := {us

1, . . . , u
s
bs
n
}

of individual switch units that can be used at node n. If bs
n is unlimited,

we set bs
n := ⌈k̂n/ks⌉. Each such unit contributes a capacity of ks and

has a cost of Cs
n except for the first es

n units which are preinstalled and
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thus for free. For notational convenience, we introduce a capacity function
k(n, u) and a cost function C(n, u) for these values defined by

k(n, us
i ) := ks and C(n, us

i ) :=

{
0 , i ≤ es

n

Cs
n , i > es

n
∀ i = 1, . . . , bs

n .

So, k(n, us
i ) is the capacity of the i-th unit and C(n, us

i ) the associated
cost. All individual units of any type are subsumed in the set

Un :=
⋃

s∈S

U s
n =: { u1, . . . , uBn } with Bn :=

∑

s∈S

bs
n

where the unit indices constitute an arbitrary, but fixed ordering. Note
that any combination of units Un implicitly satisfies the bounds bs

n for the
number of each type, but not necessarily the bound bSn on the total num-
ber of switches at node n. For unlimited bSn , we can simply set bSn := Bn

(see below for an alternative and more efficient way to treat this special
case).
Now, we define the functions ri(k, b) to hold the minimum cost for pro-
viding exactly a switching capacity of k by any configuration composed of
exactly b units selected among the first i units {u1, . . . , ui} ⊂ Un. These
functions are evaluated sequentially for i = 1, . . . , Bn. For initialization,
we set r0(0, 0) = 0 and r0(k, b) =∞ for all k 6= 0, b 6= 0, including negative
values for k and b for notational convenience. Then we work along the
unit sequence. In each step i, we consider whether additional inclusion
of unit ui yields cheaper configurations or not, which is expressed by the
relation

ri(k, b) = min {ri−1(k, b), ri−1(k − k(n, ui), b− 1) + C(n, ui)} (3.6)

for each capacity 0 ≤ k ≤ k̂n and unit number 1 ≤ b ≤ bSn . The last
function rBn(k, b) then holds for each capacity k the minimum cost over
all feasible configurations with b units. So, we finally set

r(k) := min
b=0,...,bSn

rBn(k, b) ∀ 0 ≤ k ≤ k̂n

to get the minimum cost of any configuration providing capacity k. Re-
ferring to Figure 3.4, we obtain this way the lowest dot for each capacity.
The method is completed by discarding all dominated capacities and those
with infinite cost. An efficient way for this is to start with the highest ca-
pacity and to proceed the entries in order of non-increasing capacities, dis-
carding any entry with cost higher than or equal to the last non-removed
capacity-cost pair.

Output. After terminating, the method returns the desired minimal discrete
set Kn = {(kn

1 , r(kn
1 )), . . . , (kn

mn
, r(kn

mn
)} of installable capacities and their

costs at node n.

In this general form, the method has a running time of order O(Bn · k̂n · b
S
n) and

thus provides an algorithm that is pseudo-polynomial in time and space.
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Algorithm 3.1 Minimum discrete set of capacities and costs for node n ∈ N

Require: The set Un = {u1, . . . , uBn} (in arbitrary but fixed order) of installable
units with associated capacities k(n, ·) : Un → Z+ and costs C(n, ·) : Un → R+.

Ensure: The (minimal) set Kn.
1: set Kn = {(0, 0)} {initialization}
2: for i = 1 to Bn do
3: set K ′

n = Kn {configurations from previous step, without unit ui}
4: for all (k,C) ∈ Kn do
5: if k + k(n, ui) ≤ k̂n then
6: if ∃ (k̄, C̄) ∈ K ′

n : k̄ = k + k(n, ui) then
7: if C̄ > C + C(n, ui) then
8: K ′

n ← (K ′
n \ {(k̄, C̄)}) ∪ {(k̄, C + C(n, ui))} {found cheaper config.}

9: end if
10: else
11: K ′

n ← K ′
n ∪ {(k̄, C + C(n, ui))} {found new capacity}

12: end if
13: end if
14: end for
15: Kn ← K ′

n

16: end for
17: for all (k,C) ∈ Kn do
18: if ∃ (k̄, C̄) ∈ Kn \ {(k,C)} : (C̄ ≥ C) ∧ (k̄ ≤ k) then
19: Kn ← Kn \ {(k̄, C̄)} {dominated element}
20: end if
21: end for
22: return Kn

Special case. As described above, the dynamic programming method applies for
any set of configuration parameters at a node, whereas simplifications are possible
for particular settings. For demonstration, we just pick the special case of an unlim-
ited bound bSn . Instead of setting it to Bn, we can exploit this property to reduce
the computational effort substantially. In fact, we need not account for the unit
number in any configuration throughout the computation. This allows to remove
the second parameter in all functions ri(k, b), and r(k) coincides with rBn(k) in the
end. Moreover, the running time reduces to order O(Bn · k̂n).
For this special case, Algorithm 3.1 provides an exemplary pseudo code of the
method, with an efficient way to store and update the functions ri(.) by means
of a repeatedly extended set, omitting all entries with infinite cost. At the end, the
lower envelope capacities can be efficiently traced as already described, if storing
Kn as sorted set according to non-increasing capacities. However, we skipped these
details in Algorithm 3.1 to reduce notational effort in the pseudo-code. The same
holds for storage of the corresponding hardware configurations whenever a better
cost value has been found.

Dynamic programming method for links. The transmission capacity on
links is provided by the installed combinations of fibers carrying WDM systems
according to Definitions 2.4 and 2.5 on page 48. We remind that a refined physical
topology is used such that physical and supply links coincide, i.e., ℓ and t are used
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synonymously according to the relations Lt = {ℓ}.

Generation of the discrete capacity set at a link

Input. A link ℓ ∈ L and its configuration model (2.3) with all associated
parameters.

Method. An accurate cost calculation for new and preinstalled modules with
all possible recombinations requires to refine the type sets for both module
sorts, representing free and new devices separately. We replace each fiber
type f ∈ F with bf

ℓ > ef
ℓ > 0 by two auxiliary types ffree with zero cost

and b
ffree

ℓ := ef
ℓ , and fnew with cost Cf

ℓ and bfnew

ℓ := bf
ℓ − ef

ℓ . All other
attributes carry over from the original to both substituting types. WDM
system types are processed analogously. So, we obtain new type sets F ′

and W ′ where each module type has an individual cost value.
Any feasible link configuration consists of the installed fibers and WDM
systems as well as their assignment into compatible pairs. Hence, we
consider any such pair as an installation unit. For arbitrary w ∈ W ′ and
f ∈ F ′

w, the maximum number of installable pairs of these types is given
by bfw

ℓ := min{bf
ℓ , bw

t }, and we introduce the set

Ufw
ℓ := {ufw

1 , . . . , ufw

bfw
ℓ

}

containing each of these pairs as an individual unit. Each unit ufw
i ∈ Ufw

ℓ

provides capacity kℓ(u
fw
i ) = kw and has cost Cℓ(u

fw
i ) = Cf

ℓ + Cw
t . We

subsume all of these installation units in the set

Uℓ :=
⋃

f∈F ,w∈W

Ufw
ℓ = { u1, . . . , uBℓ

} with Bℓ :=
∑

w∈W ′

∑

f∈F ′
w

bfw
ℓ

and reset the parameter bFℓ := min{bFℓ , Bℓ}.
Unfortunately, the bounds on the number of modules for an individual
type are not anymore implicitly satisfied for any subset of Uℓ, whenever a
fiber type is compatible with multiple WDM system types or vice versa.
Hence, we have in general to keep track of the module type utilization
explicitly, too. For this, we use the counting vectors JF ′ = (jf )f∈F ′ ∈

Z
|F ′|
+ for fibers and JW ′ = (jw)w∈W ′ ∈ Z

|W ′|
+ for WDM systems. The sets

of feasible counting vectors, satisfying all number bounds, are defined by
JW ′ := { JW ′ | jw ≤ bw

t ∀ w ∈ W ′ } and

JF ′ :=



 JF ′

∣∣∣∣∣∣
jf ≤ bf

ℓ ∀ f ∈ F ′,
∑

f∈F ′

jf ≤ bFℓ



 ,

and we denote by ef and ew the corresponding unit vectors, with all entries
being 0 except for a 1 at position f and w, respectively.
Now, the dynamic programming approach has to evaluate the functions
ri(k, JF ′ , JW ′) which denote the minimum cost for any configuration with
capacity k composed of a subset of the installation units { u1, . . . , ui } ⊂ Uℓ

which concertedly use the numbers of fibers and WDM systems of any type
as expressed by the corresponding counting vectors JF ′ and JW ′ . Due to
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this definition, only some pairs of vectors from JF ′ and JW ′ form feasible
arguments for these functions. For notational convenience, however, we do
not go into further detail and allow simply for any argument combination,
implicitly assigning infinite cost as function value for all impossible ones.
So, we start with initializing all function values with infinity except for
r0(0, 0, 0) := 0, and then consider the units ui ∈ Uℓ consecutively for

i = 1, . . . , Bℓ. Whether or not using unit ui with ui = ufw
i′ is favorable in

the composed configurations is expressed by

ri(k, JF ′ , JW ′) = ri−1(k, JF ′ , JW ′)

whenever (jf = 0) ∨ (jw = 0) ∨ (k < kℓ(ui)), and otherwise by

ri(k, JF ′ , JW ′) = min{ ri−1(k, JF ′ , JW ′),

ri−1(k − kℓ(ui), JF ′ − ef , JW ′ − ew) +Cℓ(ui)}

for all capacities 0 ≤ k ≤ k̂ℓ and all (associated pairs of feasible) counting
vectors JF ′ ∈ JF ′ and JW ′ ∈ JW ′ . At the end, function rBℓ

(k, ., .) is
reduced to the desired capacity-cost correspondence by

r(k) = min
JF′∈JF′ ,JW′∈JW′

rBℓ
(k, JF ′ , JW ′) .

A final list cleanup in the same way as for nodes discards all dominated
entries and those with infinite cost.

Output. In the end, the method returns the desired minimal discrete set
Kℓ = {(kℓ

1, r(k
ℓ
1)), . . . , (k

ℓ
mℓ

, r(kℓ
mℓ

)} of installable capacities and their costs
at link ℓ.

The evaluation of the functions ri(·, ·, ·) looks exhaustive at first sight, but again
this method reflects the most general case, and as indicated above, only few pairs
of counting vectors form argument combinations for a finite function cost value.
Therefore, propagating only these values step-wise as exemplified in Algorithm 3.1
reduces the computational effort significantly. Though the dynamic programming
algorithm can become of exponential order for particular parameter settings, there
are various special cases with pseudo-polynomial running time, e.g., with a fixed
bounded number of fiber types, or WDM capacities which are mutually multiples
of each other, like systems with 16, 32, and 64 wavelengths. In practice, the type
sets are often quite small, also due to the supply network construction, and have
typically such divisibility properties, such that the dynamic programming method
remains an efficient algorithm to determine the discrete capacity sets for links, too.

Setup costs. After having determined the discrete sets Kπ of installable capacities
and their costs for all nodes and links π ∈ N ∪L, an additional integration of setup
costs is easy to achieve. To this end, we simply add the setup cost value Cπ to the
cost of each non-zero capacity in the set Kπ. If not contained (due to existence of
a non-zero free capacity), we also add the entry (0, 0) to Kπ representing not to
use this link or node, i.e., providing zero capacity at zero cost without incurring the
setup cost. As a consequence, the reformulation (3.5) absorbs also the constraints
(2.1) from the opaque network design model.
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Capacity subsets. From a computational point of view, the alternative dimen-
sioning model (3.5) is most often favorable since the solution variety reduces consid-
erably this way. Moreover, algorithmic performance is typically correlated with the
number of possible selections. The smaller the discrete capacity sets become, the
faster we can expect to find good solutions for the problem. The cardinality of any
Kπ indeed depends on the particular setting and can become quite large. In such a
case, it is possible to restrict the dimensioning options to a subset of the complete Kπ

for each link and node, which shrinks the solution space further. Nevertheless, any
solution for such a reduced problem is feasible for the original problem as well. As
drawbacks of the manipulation, a lower bound on the network cost for the reduced
problem need not anymore be globally valid, thus we loose the quality guarantee,
and optimal solution of the reduced problem need not anymore be a global optimum.
However, the computation acceleration by reducing the search space can be used for
quickly computing a couple of comprehensive network designs in a heuristic manner.
In particular for practice, such a heuristic is often preferable for fast generation of
designs at first instance, and thus this option has been integrated into our software.
We provide several heuristic levels to rule the extent of the set reduction. Having
found suitable designs this way, a solution quality can finally be regained by running
the exact method until a (satisfying) lower bound is achieved.

Summarizing, two basic approaches are applicable to transform the unified dimen-
sioning and routing subproblem into a suitable model for Discnet, either by direct
use of the component-resource concept or with a precalculation of discrete capacity
sets. As a result, we gain access to the optimization engine of Discnet.

3.3.2 Applying Discnet

In principle, Discnet can be applied comfortably as a black-box solver for the
transformed dimensioning and routing problem. Nevertheless, it is worth to take a
closer look inside and to see how the sophisticated mathematical optimization algo-
rithm works. Discnet integrates a combination of decomposition techniques, cut-
ting plane techniques, and linear programming based heuristic algorithms. Together,
this constitutes a flexible method with several options to balance effort against solu-
tion accuracy and further parameters to guide the solution process. Thus, we briefly
describe the algorithmic outline and explain different application possibilities for our
purpose.

Model specification. Although we consider the dimensioning and routing prob-
lem in an unified form, optional model formulations have been proposed for hardware
representation and survivability integration. The algorithmic outline of Discnet,
however, is the same in any case. Therefore, we pick a specific setting in order to
ease the explanation.
We use the model on the discrete capacity sets for hardware dimensioning and the
basic DSP variant for survivability, with the precomputed DSP demand values ṽq (cf.
Section 2.3). Moreover, Discnet is based on a routing model with path variables.
So, a complete formulation of the problem is given as:
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Discnet integer linear program

minimizing (3.4) subject to

• the hardware dimensioning model (3.5),

• the capacity linking constraints (2.5),

• the routing model (2.7), and

• the diversification constraints (2.24).

Even for moderate problem sizes, this integer linear program is typically too large
for standard methods. As default, Discnet solves a relaxation of the program by
neglecting integrality of the path variables, i.e., with fractional routings. Note that a
lower bound for this relaxation remains valid for the integer linear program. We first
describe the solution method for the relaxed problem, before we stress possibilities
to generate integer routings.

Algorithmic outline. Discnet applies an approach similar to a Benders de-
composition (cf. Benders [15, 16]), splitting the program into two parts. As first
part, a master integer linear program comprises the objective (3.4) and the hardware
dimensioning constraints (3.5) and (2.5). The second part models survivable (frac-
tional) routings by constraints (2.7) and (2.24) and is used as a decision subproblem.
Due to link-oriented node dimensioning, these partial programs are only coupled by
the auxiliary link capacity variables yℓ. In contrast to Benders original approach,
the subproblem is solved as linear program in our case. Figure 3.5 illustrates the
decomposition and sketches also the basic outline of the solution algorithm which
works as follows.
The central procedure is a branch-and-cut method based on the linear relaxation
of the master program. Throughout the process, the current relaxation is strength-
ened by separation of cutting planes, such as Gomory mixed-integer rounding cuts
(cf. Marchand and Wolsey [108]), band inequalities (cf. Dahl and Stoer [35]), GUB
cover inequalities (cf. Wolsey [170]), and generalizations (cf. Wessäly et al. [168])
of metric inequalities (cf. Iri [72]). Whenever an integer hardware solution has been
found in the branch-and-bound tree, the corresponding link capacities are handed

(2.7), (2.24)

found?

decision subproblem:

separation of
metric inequality

No

Yes

master integer program:

(branch−and−cut method)

(column generation method)

hardware model

link capacities

routing model

min (3.4) s.t. (2.5), (3.5)

feas. routing

Figure 3.5: Algorithmic approach for dimensioning and routing by Discnet.
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over as parameters to the decision subproblem in order to verify whether these ca-
pacities admit a feasible routing or not. If the subproblem turns out as infeasible,
the dual objective function of the routing linear program enables to derive a violated
metric inequality which is added to the master program and cuts off the infeasible
hardware configuration. Otherwise, a routing has been found and completes, added
to the current hardware dimensioning, a feasible solution of the relaxed problem.
Running this procedure until the global lower and upper bounds meet ensures to end
up with an optimal solution of the relaxed problem with fractional routings. This
however might become a very time-consuming task since the branch-and-bound tree
to be searched typically grows extremely fast for increasing problem size. To allow
for a scaling of the computational effort, a couple of stopping criterions can be set,
e.g., a total time limit, a gap limit, or a tree node number limit, among others. If
such a criterion applies, the method terminates and returns (an adjustable number
of) the best solution(s) found as well as the final lower bound on the total cost.

Routing subproblem. Given link capacities as parameters, the subroutine has
to decide whether a feasible fractional routing exists within these capacities. Since
no objective for the routing program is specified, a common trick is to turn the
feasibility dichotomy into a threshold of an additional variable which at the same
time guarantees for a solution of the modified program. To this end, the routing
model is extended by a single unbounded capacity extension variable y ∈ R+ added
to each link capacity, i.e., replacing yℓ by yℓ + y in constraints (2.7b) for all links
ℓ ∈ L, and its value is minimized by the objective min y. An optimal solution of this
extended linear program answers the question for feasibility by the objective value.
An optimum value of zero indicates that indeed a feasible routing exists within the
given capacities. Otherwise, the current capacities are insufficient for the demanded
traffic, and the dual solution implies a feasible metric inequality as a Benders cut
which is added to the master program.
The modified routing subproblem is solved by a column generation approach. The
associated pricing problem consists of a shortest path computation (for each com-
modity) with weights computed by use of the dual variable values. Without further
restrictions, the pricing is polynomially solvable. For single-hop transparent net-
works, however, limited path lengths have to be taken into account, adding further
constraints to the pricing problem. Hop-count limits affect the complexity only
marginal and leave the shortest path computation polynomial (cf. Garey and John-
son [52]), whereas a limited total distance with respect to individual link lengths
turns the pricing into a pseudo-polynomial shortest path algorithm (cf. Handler and
Zang [65]).

Integer routings. The proposed algorithm provides an exact method for the
relaxed problem with fractional routings. To generate integer routings, two heuris-
tic approaches can be followed. One idea is to run Discnet as described and to
turn the obtained solutions into integral ones in a postprocessing (cf. Section 3.3.3).
Here, we discuss the alternative to integrate such a heuristic search into Discnet’s
method which is offered optionally and returns the best integer solution(s) found.
During the branch-and-cut procedure, a routing computation is initiated for each
identified integer hardware solution. Since existence of a feasible integer routing
presumes that a fractional one is found, a search can be restricted to those sub-
routine calls that prove feasibility for the relaxed problem. Often, the feasibility
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test already generates a routing that is nearly integral, i.e., only few path variables
have fractional values. Hence, it is natural to focus on methods to adapt a frac-
tional routing. Discnet offers several heuristics for this, some with the emphasis
on fast completion due to frequent execution, some more elaborate to achieve good
integer solutions. For instance, it is possible to remove all fractional path flows,
which leaves integer residual capacities, and to sequentially resettle their routings
by min-cost flow computations with the residual capacities for free and additional
capacity expansions (in integer amounts) against cost. With all capacities being in-
teger, these flows become integer as well, and diversification conditions can be taken
into account by bounding the usable capacities.
An advanced method is to solve the actual routing program for the removed flows
and the resulting residual capacities as an integer linear program without further
pricing, i.e., only by use of already generated routing paths. By adding appropriate
capacity expansions variables individually for each link, an integer routing is com-
pleted against minimum cost increase (for this set of routing paths). This method
applies in particular for the transparent single-hop scenario due to implicit selection
of feasible paths only.
At last, a very fast heuristic with specific properties is highlighted. Instead of
rerouting, the method simply rounds up all fractional path variables and, if neces-
sary, adjusts the dimensioning in case of exceeded capacities. This way, we obtain an
integer solution with more than the required number of connections routed for some
commodities. While just this could be acceptable, diversification restrictions might
be violated additionally. Nevertheless, we will show in the postprocessing that such
integer routings can be fixed to meet both the actual connection number and the
diversification requirements, except for the transparent single-hop case. However, if
survivability is attained by the most general DSP concept, all corresponding routing
constraints remain satisfied by the rounding for all scenarios, in particular for the
transparent single-hop case as well. Hence, the rounding heuristic is the favorite
method for these settings.

In either way of application with fractional or integer routings, Discnet constitutes
a suitable algorithmic framework for the dimensioning and routing subproblem and
features a twofold outcome: a valid lower bound on the total cost for any network de-
sign satisfying all requirements, and a pool of the best found solutions. Making these
solutions feasible for the original settings is accomplished by further procedures, as
described next.

3.3.3 Accomplishing solutions

Although Discnet can be applied to generate solutions with an integer routing, it
might be reasonable to investigate dimensioning and routing with fractional flows
at first instance. Without spending effort on heuristics to achieve integrality on the
run, a larger portion of the solution space can be browsed within the same time limit,
and better solutions could be achieved if a postprocessing ensures integer routings
in the end. Both approaches can also be run competitively.
Moreover, regenerators have been excluded from transparent multi-hop networks
initially to unify the dimensioning and routing subproblem. As a consequence, con-
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nections can become too long for direct optical transmissions, and thus regenerators
have to be placed for a proper decomposition into consecutive lightpaths which meet
the length restrictions.

For both issues, we present a selection of heuristics for transforming a solution
obtained from Discnet into one with the desired properties. In order not to delay
the computation too much, the heuristics have been designed for a fast completion of
good solutions for practical instances. The development of more elaborate methods
is left for further research.

3.3.3.1 Generating integer routings

In general, the problem of generating feasible integer routings looks different for any
network architecture and any survivability scheme, due to the specific requirements
imposed by both issues. In the previous section, some possible mechanisms have
already been sketched for integrated use in Discnet. Any of these heuristics can in
principle be applied as a postprocessing algorithm as well (and vice versa), but some
exploit information that is most easy accessible on the run. In transparent single-hop
networks, for instance, only routing paths of limited lengths are selectable. During
execution of Discnet, most promising candidates for such paths are continuously
priced out and hold in a collection that is regularly updated. Hence, it is preferable
to benefit from these efforts for immediate generation of suitable integer routings
rather than trying to regain comparable knowledge afterwards from scratch. We
therefore advise use of integrated heuristics for the transparent single-hop scenario
and neglect this complicating setting in the following.
Moreover, the method of rounding up fractional flows has been proposed as a sim-
ple and very fast heuristic to generate integer routings. In particular, this method
maintains feasibility and thus is preferable for the most general DSP variant, which
is not discussed further. Instead, we focus on the other DSP schemes with prespec-
ified demand value ṽq for each commodity q ∈ Q and present a method that turns
a fractional routing into a feasible integer one by rerouting fractional path flows
commodity-wise.

Rerouting fractional flows. The algorithm follows a simple outline. At first,
we remove all fractional path flow portions and fix the remaining integer routing
parts, thereby obtaining integer residual capacities. These residual capacities need
not be sufficient to accommodate an integer routing. Figure 3.6 shows an example
where a fractional, but no integer routing can be achieved within the capacities, even
if no survivability restrictions are involved. Hence, we allow for capacity expansion
against cost by appropriate transformations of the supply network to a directed
network where all capacities and costs are attached to arcs. In the transformed
network, we then reroute the removed flow sequentially for each commodity by a
min-cost flow computation with individual capacities reflecting the diversification
requirements. Since all these capacities and the flow to reroute are integer, theory
guarantees for the existence of an optimal integer flow (see Ahuja et al. [2], Section
11.5), and several min-cost flow algorithms provide such solutions on request. In
addition, the cost objective directs the search towards small expansion costs.
Regarding the costs, some simplifications are made in order to keep the flow problem
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(a) Network topology with installed
link capacities and demands (as ar-
rows).

a

c

b

d
2.5

1.5

2.5

1.5

(b) Fractional routing solution with
flow values at each path.

Figure 3.6: Example of a network design problem with two commodities, between a
and b of value 5, and between c and d of value 3. Within the installed link capacities
3.6(a) (node capacities are neglected), a fractional routing 3.6(b), but no integer
routing solution exists.

polynomial. First, we neglect potential savings by capacity cutbacks, but take only
additional cost for required capacity extensions into account. Second, if such an
expansion to a next higher capacity level provides more than one additional channel,
a correct formulation would result in a min-cost fixed-charge network flow problem,
which isNP-hard (see Garey and Johnson [52], where it is called minimum edge-cost
flow). To avoid this, the cost for any such capacity expansion is fully accounted for
each additional unit of flow, thus oversizing the effectively implied expansion costs.
And third, node expansions are initiated in a traffic-oriented way similar to link
capacity upgrades. Altogether, such a min-cost flow need not be a (re-)routing that
in fact causes the minimum capacity extension cost. For a heuristic, however, we are
content to approximate these values, where good solutions with cost overestimation
are hopefully good as well in effective costs, and in case we end up with an integer
flow for all commodities at zero total cost, such a solution is provably optimal.
In detail, the heuristic works as follows.

Integer routing generation from fractional flows

Input. Given is an integer hardware configuration of the supply network
N = (N,L), with the currently selected capacities given by the variable
values yℓ, yn ∈ Z+ for all nodes n ∈ N and supply links ℓ ∈ L, and a
fractional routing expressed by path flows f q

p ∈ Q+ for all commodities
q ∈ Q and all paths p ∈ P.
In addition, we have for each link or node π ∈ N ∪ L the discrete set
Kπ = {(kπ

1 , Cπ
1 ), . . . , (kπ

mπ
, Cπ

mπ
)} of installable capacities and their costs

(or compute these sets by the methods described in Section 3.3.1). In each
of these sets, the index jπ ∈ {1, . . . ,mπ} marks the element corresponding
to the selected capacity, i.e., yπ = kπ

jπ
for all π ∈ N ∪ L.

Method. At first, we remove the fractional portion f q
p − ⌊f

q
p ⌋ of any non-

integer path flow f q
p /∈ Z and freeze all remaining integer path flows. For

each commodity q∈Q, the total removed flow value ρq :=
∑

p∈Pq
(f q

p−⌊f
q
p⌋)

is integer as difference of two integer values, the number of connections
to establish and the total value of the fixed flow part. Moreover, the flow
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(b) Network transformation.

Figure 3.7: Demonstration of the network transformation for a single link and its
endnodes (at left) and for the complete network from Figure 3.6 (at right).

reduction leaves on each link or node π ∈ N ∪ L the residual capacity

k̃π := yπ −
∑

q∈Q

∑

p∈Pq :

π∈N[p]∪L(p)

⌊f q
p ⌋

which is obviously integer as well.
Next, the supply network N is transformed to a directed topology ~N
as follows. Each node n ∈ N is split into a pair n1, n2 of nodes with
a connecting node arc (n1, n2), and each supply link ℓ = mn ∈ L is
substituted by the two link arcs (m2, n1) and (n2,m1). Formally, the
directed topology ~N = (N ′, A) is defined by

N ′ := { n1, n2 | n ∈ N }

A := AN ∪AL with AN := { (n1, n2) | n ∈ N }

AL := { (m2, n1), (n2,m1) | ℓ = nm ∈ L }

Figure 3.7 illustrates the transformation for an individual link with the
incident nodes and for an entire exemplary ring network with four nodes.
Then, we process all reduced commodities q ∈ Q with ρq > 0 sequentially
in an arbitrary order. For each such commodity q, the procedure consists
of three steps: individual adaption of ~N to an extended network ~N ′ in-
cluding capacity expansion capabilities, min-cost flow computation in ~N ′

to complete the integer routing for q, and reduction of the residual capac-
ities for the remaining commodities to be processed. These steps are next
described in detail for an arbitrary, but fixed commodity q from o = oq to
d = dq being on turn.
Taking the prefixed routing part for q into account, the diversification re-
quirements imply that at most k̄π := δ̃qṽq−

∑
p∈Pq :π∈N(p)∪L(p)⌊f

q
p⌋ further

routing paths can traverse link or node π ∈ L ∪N \ {oq, dq}. When such

a value exceeds the available residual capacity at a place, i.e., k̄π > k̃π,
the corresponding arc is copied as many times as further upgrade stages
must be provided until capacity k̄π is finally reached. In general, the
following transformation is applied to the single arc (n1, n2) for a node
π = n ∈ N or in the same way for each of the arcs (n2,m1), (m2, n1)
for a link π = ℓ = nm ∈ L. The original arc, indexed by 0, gets the
capacity bound k̄0

π := min{k̃π, k̄π}, thus holding only residual capacity,
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with zero flow unit cost C0
π := 0, and we define k0

π := k̄π − k̄0
π ≥ 0 as

remaining exploitable capacity to be provided by upgrades with incre-
mental amounts. If k0

π = 0, the residual capacity already suffices. Oth-
erwise, for i = 1, 2, . . ., we insert an i-th arc copy with capacity bound
k̄i

π := min{ki−1
π , kπ

jπ+i − kπ
jπ+i−1} and flow unit cost Ci

π := Cπ
jπ+i − Cπ

jπ
.

Note that thereby the cost increases with i so that the represented capac-
ity upgrades are occupied in the correct order. We set ki

π := ki−1
π − k̄i

π

and iterate as long as ki
π > 0 and jπ + i < mπ. After all, the resulting

network with all multiplied arcs is referred to as ~N ′ = (N ′, A′).
In this extended network ~N ′, an integer min-cost flow f̃ of value ρq from
o1 to d2 is computed. Appropriate algorithms can be found, for instance,
in Ahuja et al. [2]. After removing directed cycles if present, the flow f̃
can be decomposed (arbitrarily) into simple routing paths p′ in ~N ′ with
integral flow, denoted by f̃ q

p′. In a straightforward way, any routing path

p′ in ~N ′ corresponds to a path p in the original network N by

n ∈ N [p] ⇔ (n1, n2) ∈ A′(p′)

ℓ = mn ∈ L(p) ⇔ ((m2, n1) ∈ A′(p′)) ∨ ((n2,m1) ∈ A′(p′))

and we set f̃ q
p = f̃ q

p′ to get the indicated min-cost flow routing in N
for q. In combination with the previously fixed routing part, the total
path flow

∑
p∈Pq

f̃ q
p + ⌊f q

p⌋ = ṽq has the requested value and satisfies all

diversification constraints due to the definition of k̄π for each link and
node π ∈ N ∪ L, thus forms a feasible integer routing for q. So, we fix
the new flow f̃ q

p as routing completion for q, i.e., the full routing for q is
expressed by ⌊f q

p ⌋+ f̃ q
p for all paths p ∈ Pq.

Before turning to the next commodity to process, we have to adapt the
network capacities according to the added fixed flow and possibly required
capacity upgrades. For each link ℓ ∈ L, let iℓ be the highest index of a
parallel arc used by f̃ . This indicates that the link capacity yℓ is increased
by an amount of ∆ℓ := kℓ

jℓ+iℓ
− kℓ

jℓ
at an effective cost of Cℓ

jℓ+iℓ
− Cℓ

jℓ
.

After finishing all link upgrades, the node capacities are considered, but
without using parallel arc occupation as indicator. Instead, the new link
capacities imply the capacity requirements at the nodes. For this, we
determine the smallest indices in ≥ 0 for all nodes n ∈ N such that the
node dimensioning constraints (2.5) on page 54 are satisfied with yℓ :=
kℓ

jℓ+iℓ
and yn := kn

jn+in . Hence, the capacity yn at a node n is increased by
an amount of ∆n := kn

jn+in−kn
jn

at an effective cost of Cn
jn+in−Cn

jn
. From

the resulting capacities, the routing completion occupies at each node or
link π ∈ N ∪ L a value of f̃π :=

∑
p∈P:π∈N [p]∪L(p) f̃ q

p . As a consequence,

we reset the residual capacities to the new value k̃π + ∆π − f̃π and the
indices jπ to jπ + iπ for all nodes and links π ∈ N ∪ L, and then proceed
with the next commodity on turn.

Output. After termination, the method returns a feasible integer path rout-
ing f̃ q

p + ⌊f q
p ⌋ for each commodity q ∈ Q and new capacities yπ := kπ

jπ
for

any node or link π ∈ N ∪L. The total cost increase caused for the routing
integrality is the sum over all effective capacity upgrade costs generated
throughout the procedure.
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In general, this sequential rerouting method by min-cost flows can fail at some point
when capacities and their expansion capabilities are strictly limited. Though such
instances are not hard to construct, we have rarely observed the algorithm failing
for practical instances. If this occurs, it often helps to process the commodities in
a different order. Another idea is to vary the assigned costs such that very scarce
capacities at bottlenecks become more expensive. A similar variation allows also to
seek for improving solutions with an already integer routing.

Improving integer routings. When integer routings are generated heuristically,
the obtained solutions need obviously not be optimal. Hence, it might be possible to
achieve capacity and thus cost savings by varying the commodity routings. For this,
we briefly sketch an appropriate adaption of the previous algorithm that attempts
to reroute commodities such that potential capacity cutbacks can be realized.
Basically, the improvement heuristic works in the same way as before, considering
the commodities sequentially. This time, however, we remove the entire path flows
of the commodity q on turn, while fixing those of all other commodities. Thereby,
the value ṽq of the removed flow and all residual capacities are integer, and we can
again use a min-cost flow computation for the rerouting. Moreover, we additionally
know that capacity supplements will not be required, since a feasible integer routing
within the current capacities yπ for all π ∈ N ∪L exists. So, we use the cost function
to indicate that potential cost savings by declining to lower capacity levels are not
realized.
To this end, we determine the smallest discrete capacities kπ

jπ
(≤ yπ) at each node

or link π required for the fixed routing of all other commodities. With k̄π := δ̃qṽq,
the extended network is constructed by multiplying arcs as before, but allowing
for upgrades only up to the input capacities yπ since we focus solely on potential
cutbacks and do not allow for further expansions. Regarding the costs, kπ

jπ
now

mark the free capacities, and we assign costs to parallel arcs representing upgrade
stages in relation to kπ

jπ
. Then a rerouting for q is computed as min-cost flow and

yields finally required capacities kπ
jπ+iπ . Whenever kπ

jπ+iπ < yπ holds for some node
or link π, an improved solution has in fact be found.
This basic improvement method is further extendible in various ways. For instance,
the capacity upgrade capabilities need not be limited up to the given capacities.
This way, further expansions can be found at some places with a total cost less than
the total savings by potential cutbacks at other places. Moreover, note that the
improvement algorithm iteratively generates feasible solutions, i.e., with an entirely
integer routing and appropriate capacities after each commodity rerouting. Hence,
the algorithm can be terminated after each iteration. Alternatively, it can be run as
an iterative search heuristic, revisiting commodities multiple times in any suitable
order or by dynamically selecting a most promising commodity next. Furthermore,
the improving algorithm suits also for fixing integer flows generated with a rounding
procedure (which might hold more connections than requested).

Fixing rounded flows. Among the heuristics that Discnet applies internally,
we have stressed the naive, but very fast procedure to make a fractional routing inte-
ger by simply rounding up each fractional flow to the next integer value, followed by
proper adjustment of the required capacities. This way, some commodities get more
connections than initially demanded, which is only feasible for the most general DSP
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Figure 3.8: Example for infeasible routing by flow rounding. For a commodity q
requesting one protected connection between the 2-connected nodes a and e, we route
in total 2 connections, at most one traversing each link or node except for a and e.
The displayed routing with a flow of 1

2 on each path is feasible, but rounding up each
path flow to 1 violates several diversification constraints. With the same commodity
parameters, the routing shown in Figure 2.5(c) on page 77, again with flow 1

2 on
each path, yields similar violations, and even more, no cardinality 2 subset of the
rounded routing paths is a feasible integer routing.

concept. For other DSP variants, diversification constraints might become violated
as well, and it can even happen that no subset of the routing paths obtained by
rounding forms a feasible routing. Figure 3.8 provides examples for such violations.
Nevertheless, the following lemma shows that a feasible integer routing of the origi-
nally requested demand value exists within the capacities occupied by the rounded
flow. Note that it suffices to consider the link capacities since the corresponding
node capacities are dimensioned in a link-oriented way and thus any routing not
exceeding the link capacities does also not exceed the node capacities.

Lemma 3.5 For a commodity q ∈ Q, let f q
p for all p ∈ Pq denote an arbitrary

feasible fractional routing of total value ṽq, i.e., satisfying all corresponding flow and
diversification constraints. Then there exists a feasible integer routing that does not
exceed the link capacities yq

ℓ :=
∑

p∈Pod:ℓ∈L(p)⌈f
q
p⌉ reserved for q by the rounding

procedure.

Proof. Assume such a feasible integer routing does not exist. Consider a max-
imum flow from oq to dq with respect to the link capacities min{δ̃qṽq, y

q
ℓ} for all

ℓ ∈ L. Since all these capacities are integer (by (2.21)), there exists also an integer
maximum flow (cf. Nemhauser and Wolsey [127], Part I.3.4). If such a maximum
flow would have a value of at least ṽq, (part of) this flow would provide a feasible
integer routing for q. By the assumption, the maximum flow value must hence be
strictly less than ṽq. From the max-flow min-cut theorem (cf. Ford and Fulkerson
[50]), we know that there exists an oq, dq-cut Γ ⊂ L with a total capacity equal to

the maximum flow value, i.e., ṽq >
∑

γ∈Γ min{δ̃q ṽq, y
q
γ}.

By prerequisite, the fractional flow f has value ṽq, which implies that ṽq ≤∑
γ∈Γ

∑
p∈Pq :γ∈p f q

p holds for the cut Γ. Due to its feasibility, the fractional flow

also satisfies the survivability restriction
∑

p∈Pq:γ∈p f q
p ≤ δ̃q ṽq at each cut element

γ ∈ Γ, and since the reserved capacities base on rounding up each path flow, we
have

∑
p∈Pq:γ∈p f q

p ≤ yq
γ , combining to

∑
p∈Pq :γ∈p f q

p ≤ min{δ̃q ṽq, y
q
γ} for all γ ∈ Γ.

With these inequalities, we finally obtain the contradiction

ṽq ≤
∑

γ∈Γ

∑

p∈Pq:γ∈p

f q
p ≤

∑

γ∈Γ

min{δqvq, y
q
γ} < ṽq .

�
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Lemma 3.5 implies that a network design solution with capacities sufficient for an
integer routing that results from rounding up a feasible fractional routing can be af-
terwards transformed into a solution with a feasible integer routing without further
capacity expansions. For this, the previously described integer routing improvement
method can be used, since capacity supplements will never be required by Lemma
3.5. In fact, the feasible integer routing can free previously occupied capacities due
to the reduced total flow amount, and thus the solution cost can decrease by the
postprocessing.
As a result, the flow rounding heuristic can be used in Discnet without the risk
to produce infeasibility. Since rounding and capacity adaptions are fast to perform,
integer solutions can be provided on the run with marginal effort, using the fixing
procedure in the end only for the best found rounded solution(s). Alternatively, the
rerouting can also be applied after each rounding, trying to improve the integer so-
lution immediately. This modus operandi might provide a better final result against
additional effort.

To conclude, the provided methods serve to generate or improve an integer rout-
ing for any scenario. This completes a solution of the dimensioning and routing
subproblem except for the transparent multi-hop case which requires the check for
regenerator placements.

3.3.3.2 Regenerator placement

In the following, we focus on the transparent multi-hop scenario where regenerators
have been initially excluded in order to simplify the routing model and to unify a
core task for all scenarios. Given a previously generated integer routing, regener-
ators have now to be placed such that the connections decompose into lightpaths
which meet the length restrictions. The objective is to keep the additionally implied
total regeneration cost as low as possible. For this task, we present two generic
combinatorial heuristics.
We apply a simplified module and cost model for regenerators, similar to that for
wavelength converters which will be extensively discussed in the next chapter. In
a nutshell, we assume to have a single regenerator type R = {r} with the same
cost Cr and unbounded applicability br

n =∞ throughout the network and movable
preinstalled modules. For this setting, minimizing the total regeneration cost is
equivalent to minimizing the total number of required regenerators, and the latter
objective is used for both proposed methods. The methods differ in the extent to
which the integer routing given as input can be manipulated.

Supply network based method. The first method gets a connection routing
specified on the supply network and shall not change any of these end-to-end paths.
We remind that the supply network has been constructed such that all transmission
systems at a supply link have the same propagation properties. For this setting,
the placement of regenerators for each connection is independent from all other con-
nections, and a total minimum number of regenerators is achieved if any individual
connection does not use more regenerators than necessary. The routing paths are
considered individually to determine such an optimal regenerator placement.
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Algorithm 3.2 Routing path decomposition into lightpaths

Require: A routing path p = (n0, ℓ1, n1, . . . , ℓh, nh) in supply network N = (N,L)
and the maximum lightpath length Ω.

Ensure: A decomposition of p into a sequence s1, . . . , sjp of lightpath routes.
1: set j := 1, jp := 1 {initialization}
2: while j ≤ h do
3: determine a maximum j′ ∈ Z+ such that


j+j′∑

i=j

ωℓi
≤ Ω


 ∧

(
j + j′ ≤ h

)

4: set sjp := (nj−1, ℓj, nj , . . . , ℓj+j′, nj+j′)
5: j ← j + j′ + 1
6: jp ← jp + 1
7: end while
8: return s1, . . . , sjp

Regenerator placement for routing in supply network

Input. Given is a supply network N = (N,L) with sufficiently dimensioned
transmission and switching capacities, a total number eR ∈ Z+ of prein-
stalled regenerators, and an integer routing of all connections to establish
denoted by the path flow variables f q

p for all commodities q ∈ Q and all
paths p ∈ P.

Method We begin with initializing the numbers of required regenerators by
yRn := 0 for all nodes n ∈ N . The flow variables f q

p > 0 indicating used
routing paths are then processed sequentially in an arbitrary order.
Let p be the routing path of the variable currently on turn. If p ∈ P̃,
i.e., the path has a total length of

∑
ℓ∈L(p) ωℓ ≤ Ω, the associated connec-

tions can be established as a single lightpath, and we leave the variables
unchanged. Otherwise, p /∈ P̃ , thus these connections exceed the maxi-
mum optical transmission distance and have to be split into a sequence of
lightpaths. For this, we apply the method listed in Algorithm 3.2 which
determines a decomposition of p into a sequence of consecutive subpaths
s1, . . . , sjp ∈ P̃ that match the lightpath length restriction. This decom-
position is incorporated into the actual solution by the following variable
adaptions. For placing the required regenerators, we add the value of f q

p

to yRn for each node n ∈ {ds1 , . . . , dsjp−1} as an intermediate node between
two consecutive lightpaths of the decomposition. Moreover, we increase
the values of the routing variables f q

s1, . . . , f
q
sjp

by the value of f q
p . Then

we set f q
p = 0 to mark that these routing paths have been replaced.

After having processed the given routing this way, all flow variables f q
p for

paths p /∈ P̃ have been vanished, i.e., have value 0.

Output. When finished, the method returns the required number yRn of re-
generators at each node n ∈ N and a feasible lightpath routing denoted
by f q

p for all commodities q ∈ Q and all lightpath routes p ∈ P̃ such
that all constraints (2.16a) and (2.16c) hold. The total cost incurred for
regenerations in this solution is given as max{0, Cr · (−eR +

∑
n∈N yRn )}.
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The following lemma shows that Algorithm 3.2 decomposes a path p in fact into a
minimum number of lightpaths.

Lemma 3.6 For any routing path p in the supply network N = (N,L), Algorithm
3.2 returns a lightpath decomposition of minimum cardinality.

Proof. Due to selecting the maximum value for j′, Algorithm 3.2 ensures that the
first subpath cannot be extended by further links without exceeding the lightpath
length restriction. Hence, in any proper decomposition of p, the first regenerator(s)
cannot be placed later than in node ds1 . The same argument holds iteratively for
all consecutively following subpaths and their terminating regeneration nodes, too.
This implies that any decomposition needs at least the same number of regeneration
nodes along path p as established by Algorithm 3.2, proving the claim. �

As a consequence, the proposed method generates a solution with a minimum to-
tal number of regenerators when the connection routing in the supply network is
prespecified and not to be changed. However, allowing for routing manipulation
of the given connections widens the solution space for regenerator placement and
generation of a feasible lightpath routing in the transparent multi-hop scenario.

Physical topology based method. Without imposing path length restric-
tions, the dimensioning and routing subproblem for transparent multi-hop networks
transforms to that for opaque networks without parallel supply links corresponding
to the same physical link, as described in Section 3.3.1. This way, the connections
are routed directly in the (possibly refined) physical topology T = (N,T ), and the
supply network with parallel links Lt for each physical link t ∈ T is constructed after
dimensioning of the link capacities. For accomplishing the solution, an assignment
of the connections to a specific supply link on each traversed physical link then has
to be carried out in addition. In relation to the previous method, this corresponds
to allow accessorily for a connection regrouping on the supply links associated to
the same physical link.
The second heuristic has been designed for this extended task with a physical topol-
ogy based routing as input and consists of a two-step procedure. In the first step,
we place the minimum number of unavoidable regenerators on each routing path,
thereby assuming that the shortest parallel supply link can be used on each physical
link. This way, we get two results: a lower bound on the total number of required
regenerators, and a candidate multi-set of potential lightpaths to accommodate the
routing. In the second step, these candidates are subsequently assigned to specific
supply links with capacity left, using longest possible alternative links as long as not
exceeding the lightpath length restriction. Additional regenerators might become
necessary if the lightpath candidates become too long nonetheless.

Regenerator placement for routing in physical topology

Input. Given is the supply network N = (N,L) with link capacities yℓ > 0
for all ℓ ∈ L and sufficiently dimensioned nodes, as well as a routing of all
connections in the physical topology T = (N,T ) denoted by variables f q

p

for paths p = (n0, t1, n1, . . . , thp
, nhp

).

Method During the procedure, we use R as lower bound on the number
of unavoidable regenerators and the auxiliary values kℓ for all ℓ ∈ L
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Algorithm 3.3 Routing path decomposition into balanced lightpath candidates

Require: A routing path p = (n0, ℓ1, n1, . . . , ℓh, nh) in supply network N = (N,L),
and the number Rp ≥ 1 of regenerators to place.

Ensure: A decomposition of p into a sequence s1, . . . , sRp+1 of lightpath routes such
that maxi=1,...,Rp+1 ωsi

is minimal, where ωs :=
∑

ℓ∈L(s) ωℓ denotes the length of
a subpath s.

1: set ω(j, 1) :=
∑j

m=1 ωℓm
for all j = 1, . . . , h {initialization}

2: for j = 2, . . . , h do
3: for i = 2, . . . ,min{j,Rp + 1} do
4: set ω(j, i) by (3.7), and let n(j, i) := j′ be an index for which the minimum

in (3.7) is taken
5: end for
6: end for
7: set jd := nh

8: for i = Rp + 1, Rp, . . . , 2 do
9: set jo := n(jd, i)

10: set si := (njo , ℓjo+1, njo+1, . . . , ℓjd
, njd

)
11: set jd := jo

12: end for
13: return s1, . . . , sRp+1

to keep track of still unused link capacities. We initialize the variables
yRn := 0 for all nodes n ∈ N , the lower bound by R := 0, and the
capacities with kℓ := yℓ for all ℓ ∈ L. Moreover, we apply the sup-
ply link selection functions ℓ(t) := arg min { ωℓ | ∀ ℓ ∈ Lt : kℓ > 0 } and
ℓ(t) := arg max { ωℓ | ∀ ℓ ∈ Lt : kℓ > 0 } to get the shortest respectively
longest still available supply link on a physical topology link, as well as the
functions ω(p) :=

∑
t∈T (p) ωℓ(t) and ω(p) :=

∑
t∈T (p) ωℓ(t) for the minimum

respectively maximum length of a physical topology path p when mapped
into the (residual) supply network.
Step 1: At first, we place unavoidable regenerators by splitting each path
into candidate lightpaths. Due to always selecting the shortest alternative
supply links, these computations are independent of each other, and the
variables f q

p > 0 can be processed in an arbitrary order.
Let p = (n0, t1, n1, . . . , th, nh) be the path of an arbitrary variable on
turn. Then we define an associated shortest supply network routing path
as p := (n0, ℓ(t1), n1, ℓ(t2), n2, . . . , ℓ(th), nh) and use Algorithm 3.2 to de-
termine the minimum number Rp := jp − 1 of regenerators required for p.
If Rp = 0, the path p is a lightpath candidate itself, and we set f q

p = f q
p .

Otherwise, p must be accommodated by (at least) Rp+1 consecutive light-
paths, and we increase R by Rp. The path decomposition provided by
Algorithm 3.2 has the undesirable property that all subpaths are longest
possible except for the last which might become very short. When finally
fixing the link assignments, the long candidate subpaths probably become
too long if the assumed shortest supply links were not available anymore.
Therefore, we compute another decomposition with better balanced sub-
path lengths to lower the risk of needing additional regenerations.
For this, we apply Algorithm 3.3 encoding a dynamic programming ap-
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proach to split p into Rp + 1 subpaths minimizing the maximum subpath
length in the decomposition as objective. The algorithm iteratively evalu-
ates the function ω(j, i) defined as the objective for any decomposition of
the front path part (n0, ℓ1, n1, . . . , ℓj , nj), j ≥ 1, into exactly i parts, with
1 ≤ i ≤ min{j,Rp + 1}. For i = 1, the value of ω(j, 1) is simply the total
path part length, which is used for initialization. If i > 1, any decomposi-
tion of (n0, ℓ1, n1, . . . , ℓj , nj) into i parts must place the last regenerator in
one of the nodes ni−1, . . . , nj−1. Each regenerator place selection nj′ fixes
the last subpath (length), and the objective for any decomposition of the
remaining front path into i − 1 parts is given by ω(j′, i− 1), yielding the
relation

ω(j, i) =
j−1
min

j′=i−1
max



ω(j′, i− 1),

j∑

m=j′+1

ωℓm



 (3.7)

for all j = 2, . . . , h and all i = 2, . . . ,min{j,Rp+1}. In the end, ω(h,Rp+1)
holds the optimal objective value, and keeping further track of a minimum
argument in (3.7) allows to reconstruct the corresponding decomposition.
Note that the setting of Rp implies ω(h,Rp + 1) ≤ Ω, but ω(h, i) > Ω for
all i < Rp + 1.
Algorithm 3.3 returns such a balanced decomposition of p, and the sub-
paths s1, . . . , sRp+1 are retranslated into the physical topology by replacing
each link ℓ by the corresponding t with ℓ ∈ Lt. This way, p is decomposed
into the corresponding subpaths s1, . . . , sRp+1. For adaption of the rout-
ing, we add the value f q

p to the variables f q
si

for all i = 1, . . . , Rp + 1, and

set f q
p = 0 afterwards. Moreover, we increment the variables yRn for each

n ∈ {ds1 , . . . , dsRp
} by 1, before proceeding with the next path.

Step 2: As result of the first step, R gives a lower bound for the number
of unavoidable regenerators, and the variables f q

p contain the candidate
lightpath routings for all commodities. The second step fixes the assign-
ment to specific supply links for each candidate lightpath, continuously
updating the remaining supply link capacities. Since early occupation of
short supply links increases the risk that later processed paths need ad-
ditional regenerators, the lightpath candidates p are individually inserted
into a processing priority queue ordered by non-decreasing length ω(p),
i.e., with respect to the total length for selecting the longest supply links
for each traversed physical link.
Let p = (n0, t1, n1, . . . , th, nh) be the next candidate lightpath to process
(at first position in the queue). We remove it from the priority queue
and decrement f q

p . Whenever ω(p) ≤ Ω, we in fact assign on each hop
the longest alternative supply link which is still available, i.e., we define
p := (n0, ℓ(t1), n1, . . . , ℓ(th), nh), increment the variable f q

p , and decrement
kℓ(ti)

for all i = 1, . . . , h. In the other case, ω(p) is first evaluated with
respect to the remaining link capacities.
If ω(p) > Ω, any still possible link assignment yields a supply network
path exceeding the maximum lightpath length (which can happen when
shorter alternative supply links have already been occupied by previously
processed lightpaths). Hence, p has to be decomposed further. Reusing
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Algorithm 3.4 Supply link assignment for lightpath candidate

Require: A path p = (n0, t1, n1, . . . , th, nh) in the physical topology T = (N,T ),
supply link capacities kℓ for all links ℓ ∈ L in the supply network N = (N,L),
and the maximum lightpath length Ω.

Ensure: A supply network path p = (n0, ℓ1, n1, . . . , th, nh) with kℓi
> 0 for all

i = 1, . . . , h and maximum total length ωp ≤ Ω.
1: set p := (n0, ℓ(t1), n1, . . . , ℓ(th), nh), ω := ω(p)
2: set P := {p}
3: for j = 1, . . . , h do
4: set P ′ := ∅
5: ω ← ω − ωℓ(tj)

6: for all p ∈ P , p = (n0, ℓ1, n1, . . . , ℓh, nh) do
7: for all ℓ ∈ Ltj , kℓ > 0 do

8: set ωj−1(p) :=
∑j−1

i=1 ωℓi

9: if ωj−1(p) + ωℓ + ω ≤ Ω then
10: set p′ := (n0, ℓ1, n1, . . . , nj−2, ℓj−1, nj−1, ℓ, nj , ℓj+1, nj+1, . . . , ℓh, nh)
11: P ′ ← P ′ ∪ {p′}
12: end if
13: end for
14: end for
15: set P := P ′

16: end for
17: set p := arg maxp′∈P ωp′

18: return p

Algorithm 3.3 from the previous step, we obtain a decomposition of p into
subpaths s1, . . . , sRp+1 which are inserted into the priority queue, and we
also increment the regenerator counting variables yRdsi

for all i = 1, . . . , Rp

as well as the flow variables f q
si

for all i = 1, . . . , Rp + 1.
Otherwise, ω(p) ≤ Ω implies the existence of link assignments turning
p into a feasible lightpath route. In order to avoid blocking of shorter
supply links as far as possible, the fixed assignment is selected such that
the resulting path has a maximum total length below Ω. For any path
p, Algorithm 3.4 computes such a link assignment by link-wise progressed
enumeration of selectable alternatives and returns the corresponding path
p ∈ P̃ in the supply network. This path is inserted into the lightpath
routing by incrementing the variable f q

p , while decrementing kℓ(ti)
for all

i = 1, . . . , h to account for the induced reduction of remaining capacities.
Having p finished, the next path in the priority queue is processed until
the queue is empty, terminating the method.

Output. After all, the outcome consists of the variables yRn for all nodes
n ∈ N , representing the regenerator placement, and the variables f q

p for

all commodities q ∈ Q and lightpath routes p ∈ P̃ , holding a feasible
lightpath routing, such that all original constraints (2.16a) and (2.16c)
are satisfied. As before, the total cost incurred for regeneration in this
solution is given by max{0, Cr · (−eR +

∑
n∈N yRn )}.
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The two-step method provides an optimum solution if either the total cost is zero,
or the total number

∑
n∈N yRn of placed regenerators coincides with the final lower

bound R.

Method comparison. Both presented methods generate a feasible lightpath
routing with regenerators for the transparent multi-hop scenario. In comparison, the
first method is obviously much faster since Algorithm 3.2 is only of order O(hp) for
each variable f q

p > 0, whereas the second method uses Algorithm 3.3 of order O(h3
p)

for each flow variable f q
p > 0, and Algorithm 3.4 of order O((maxt∈T (p) |Lt| )

hp)
for each generated candidate lightpath p. However, the higher computational effort
for the two-step heuristic typically pays off by solving the unified dimensioning and
routing subproblem in advance on a sparser network.

The algorithms presented in this section enable to accomplish solutions for the orig-
inal dimensioning and routing subproblem after various applications of Discnet as
core optimizer. In principle, any of these postprocessing procedures can also be
incorporated into Discnet’s method for being executed in an integrated way. How-
ever, we suggest to restrict such extensions on very fast algorithms in order to avoid
slowing down progress in solving the main task too much.
In summary, the composition of a complete solution procedure allows for several op-
tions and variations of individual steps. We therefore conclude the discussion with
a brief overview of alternative methodologies for all scenarios.

3.3.4 Methodology overview

The general methodology outline for solving the (unified) dimensioning and routing
subproblem in optical network design consists of three steps:

1. a preprocessing transforming the hardware model accordingly,

2. the application of Discnet as main optimization routine, and

3. a postprocessing to adapt solutions for the original problem.

With respect to different scenarios and performance aspects, alternative layouts for
these steps have been discussed and allow for various combinations which results in
a toolbox of individual solution methods. Table 3.1 gives an overview of the main
options and indicates compatible compositions of the complete procedure for each
network architecture.
Throughout all scenarios, two hardware representations provide a suitable input
formulation: the presented models reinterpreted in the more abstract concept of
components and resources (Comp. & Res.), or the transformation to a model based
on precomputed discrete capacities (Discr. Cap.). The latter approach renders a
solution space reduction which can improve the optimization performance, compen-
sating the additional transformation effort.
As core solver, Discnet is applied for solving the problem relaxation with fractional
routings, optionally extendible by regular execution of heuristics to generate inte-
ger routings on the run. This is in particular preferable for transparent single-hop
networks with additional connection length restrictions, where valuable information
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scenario alternative selections

hardware model routing solution adaptions

opaque
Comp. & Res.
Discr. Cap.

fractional
integer

integer (re-)routing
none

transparent
single-hop

Comp. & Res.
Discr. Cap.

integer

transparent
multi-hop

Comp. & Res.
Discr. Cap.

fractional
integer

int. (re-)rout. + reg.
regenerations

preprocessing → Discnet → postprocessing

Table 3.1: Solution method overview for the dimensioning and routing subproblem.

provided by the enhanced pricing is best exploited immediately. For the other sce-
narios, the alternative to solve the relaxed problem with fractional routings at first
and to derive and improve integer routings by postprocessing reroutings has been
discussed as well. Moreover, transparent multi-hop networks require an additional
completion step, for which two algorithms have been presented to place regenerators
in order to turn the routing into a feasible lightpath routing.
With any method generated as a way along the lines in Table 3.1, a feasible solution
of the dimensioning and routing subproblem for the considered scenario is obtained.
In case of transparent networks, Theorem 3.1 guarantees further for the existence
of a feasible wavelength assignment with converters, and the construction of such
assignments is discussed in the following chapter.
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Chapter 4

Wavelength Assignment with
Converters

In mathematical optimization, coloring problems belong to the most fascinating
and challenging problems. As prominent example, the coloring of maps states the
historical origin of such problems, dating back to the 19th century, and gives also
a hint on their deepness. Originally stated by Francis Guthrie in 1852, the famous
four-color theorem waited for over a century for its proof, found by Appel and
Haken [7, 8] in 1976. Having this one solved, the next intricacy is not far away.
So, vertex coloring for arbitrary graphs, (seeming) as a slight generalization of map
coloring, shows up to date to be a very hard problem which allows rarely for progress,
neither theoretical nor algorithmic (see Jensen and Toft [79] for a monography on
this and other graph coloring problems and results).
In optical networks, the introduction of WDM brings different wavelengths or, as
an evident equivalent interpretation, colors into play. Being easy to handle in the
opaque scenario, transparency introduces the wavelength continuity property for
lightpaths and turns wavelength assignment with converters into a further challenge.

In this chapter, we investigate the wavelength assignment problem with convert-
ers in transparent optical networks. Theorem 3.1 ensures feasibility by unbounded
wavelength converter employments, but our objective dictates economic utilization
to complete network designs at low cost. To this end, we develop suitable methods
for determining conflict-free assignments of the available wavelengths to a given set
of lightpaths with as few converters as possible.

We start with a specification of the studied problem which is based on some pre-
liminary simplifications in the decomposition. We introduce required notation and
briefly discuss related work in the literature.
Next, we analyze the problem’s theoretical complexity. We establish close relations
to graph coloring problems and find the problem to remain hard even under strong
assumptions. Only very simple network or routing structures allow for an efficient
solving.
In Section 4.3, we revisit integer linear programming formulations for the problem.
Since the adapted model part from Chapter 2 reveals poor properties, we make use
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of the close relation to the vertex coloring problem for which Mehrotra and Trick
[115] developed a successful approach. We derive a similar formulation for our prob-
lem and in fact find promising qualities.
The last section is devoted to the algorithms. We open with some heuristics from
Zymolka et al. [178] which have been evaluated in Koster and Zymolka [93] and
enhanced further in Koster and Zymolka [96]. For exact methods, we come back to
the more promising integer linear program. Due to the large variable number, we
describe a column generation procedure for solving the linear relaxation, yielding a
good lower bound as shown by the results in Koster and Zymolka [94, 96]. Moreover,
this method is extended to a full branch-and-price algorithm.

4.1 Problem specification

We cope with the wavelength assignment subproblem after having solved the di-
mensioning and routing subproblem according to our solution approach for optical
network design, presented in Section 3.2. For opaque networks, assigning the avail-
able wavelengths link-wise from a proper hardware configuration to the traversing
optical connections can be carried out arbitrarily without any wavelength convert-
ers. Therefore, we neglect the opaque scenario and focus on transparent networks
in this chapter.
For both transparent scenarios, we derived in Section 3.2 an appropriate decom-
position of the comprehensive models ONDtsh, ONDtmh into the dimensioning and
routing submodels ONDDR

tsh , ONDDR
tmh and the wavelength assignment submodels

ONDWA
tsh , ONDWA

tmh, respectively. Thereby, the formulations ONDWA
tsh and ONDWA

tmh

vary only with respect to the sets of selectable lightpaths composing to the (end-to-
end) connections in the routing models. Now, any given solution of ONDDR

tsh respec-

tively ONDDR
tmh specifies all variables f̃ q

p , which thus become parameters in ONDWA
tsh

and ONDWA
tmh. Theorems 3.1 and 3.3 guarantee feasibility of these wavelength as-

signment models for any parameter setting obtained from a feasible dimensioning
and routing solution. By a parameter transformation, replacing the right hand sides
in both (2.13b) and (2.16b) by the integer values vp =

∑
q∈Q f̃ q

p as number of times

a lightpath p ∈ P̃ is used throughout the routing, we obtain the same formulation
for both scenarios. Hence, the same problem is to be solved in either case. We
postpone an integer linear program discussion to Section 4.3 and change over to a
combinatorial perspective.

Combinatorial description. We consider a transparent optical network N =
(N,L) with a feasible solution for the dimensioning and routing subproblem. Such
a solution comprises the allocation of all hardware modules except for wavelength
converters, and the routing of all connections by means of (consecutive) lightpaths.
Each lightpath is routed on a link path p ∈ P̃ in the supply network N , but no
specific fiber on multi-fiber links is selected. Independent of commodities, the values
vp denote for each routing path p ∈ P̃ how many lightpaths are routed along this
path. The multi-set P contains all lightpaths individually, i.e., holds vp copies of

each routing path p ∈ P̃ . For differentiating the paths without multiplicity, the set
P1 ⊂ P contains each used routing path just once, and the set Pℓ ⊂ P1 comprises all
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used routing paths that share link ℓ ∈ L. All links on which no lightpath is routed
can be removed from the network.

Observation 4.1 W.l.o.g., we assume |Pℓ| > 0 for all links ℓ ∈ L.

The hardware configuration is dimensioned such that the switching and regeneration
capacities at each node are large enough to handle all traversing connections. Like-
wise, the links provide sufficient wavelength channels to accommodate all traversing
lightpaths, i.e.,

∑

p∈Pℓ

vp ≤
∑

λ∈Λ

yλ
ℓ ∀ ℓ ∈ L (4.1)

holds, where yλ
ℓ is the number of times wavelength λ ∈ Λ is available by the (fibers

and) WDM systems on link ℓ ∈ L. Note that the values yλ
ℓ come as parameters

from the dimensioning solution. These quantities define the wavelength multiplicity
function K : Λ × L → Z+ by K(λ, ℓ) := yλ

ℓ for all λ ∈ Λ, ℓ ∈ L, and we write
abbreviately kλ

ℓ := K(λ, ℓ) to avoid confusion in parameter and variable notation.
Conditions (4.1) ensure that all lightpaths containing only a single link can always be
assigned a remaining wavelength for any feasible assignment to all other lightpaths
(and never require converters). Such single-edge lightpaths can therefore be handled
in a postprocessing step.

Observation 4.2 W.l.o.g., we assume |L(p)| ≥ 2 for all p ∈ P1.

The task now is to find an assignment of the available wavelengths on each link to all
traversing lightpaths. Any exchange of the operated wavelength along a lightpath
occupies a wavelength converter in the intermediate node, and the objective is to
minimize the total cost for the installation of wavelength converters.

Assumptions. With regard to the flexible optical network design framework intro-
duced in Chapter 2 and the corresponding models, the use of wavelength converters
is subject to several side constraints, including the involvement of different converter
types, preinstalled modules, and installation limitations. These aspects are practi-
cally less relevant and introduced mainly for completing the models in a uniform
way. Basically, an accurate provision for such issues can be implemented into all
developed algorithms, but would complicate the explanation. Therefore, we omit
some details and transform the problem to a simpler setting as described in the
following.
Regarding the objective, the most general case occurs when the cost for wavelength
converters depends on the place of installation. In practice, however, this is rarely
the case. The cost of a converter module is typically the same throughout the net-
work. Moreover, the cheapest module type is commonly used (arbitrarily often) at
all nodes. In such a situation, the total conversion cost depends linearly on the total
number of new converters needed.
Moreover, as for all modules, the models have been formulated for preinstalled con-
verters to be reused at their place. Typically, the converters are plugged directly
onto the switch ports. Assuming that such individual allocation capabilities make
converters also easy to reallocate, it is natural to consider them as movable modules.
In this case, minimizing the total conversion cost in fact reduces to minimizing the
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total number of converters employed. In addition, we need not take the actual place
of preinstalled modules into account, but can restrict on reminding their number for
the final total cost determination. As a consequence, these modules can be left out
completely for the wavelength assignment.
In summary, we consider the wavelength assignment problem based on the following
assumptions (unless stated otherwise):

• there is only one type of wavelength converters

• the installation cost for converters is independent of the particular node

• the total number of converters at each node is unbounded

• preinstalled converters are movable

In the sequel, we therefore investigate the resulting problem variant to which we
refer as the Minimum Converter Wavelength Assignment Problem (Mcwap).

Problem 4.3 Minimum Conversion Wavelength Assignment Problem

instance: • the supply network N = (N,L) of the optical network

• the multi-set P of all lightpaths

• the set Λ of all available wavelengths

• the wavelength multiplicity function K : Λ× L→ Z+

solution: • a wavelength assignment αp : L(p) → Λ for all lightpaths p ∈ P
not exceeding the wavelength availabilities kλ

ℓ on any link ℓ ∈ L for
any wavelength λ ∈ Λ

• the number kc
n ∈ Z+ of required wavelength converters at each node

n ∈ N

objective: • min z :=
∑

n∈N

kc
n

For short notation, we denote an instance of Mcwap by (N , P,Λ,K).

Related work. With the (proclaimed) entering of transparency into WDM optical
networks, wavelength assignment becomes an inevitable part of the design task and
received increasing attention in the literature over the last decade. However, most of
this work does not take conversion capabilities into account and deals with the com-
bination of routing and wavelength assignment (rwa), as discussed in Section 3.1.
Often, such approaches are also referred to as wavelength routing to indicate that no
wavelength exchange is allowed on the routing paths. Feasibility is typically ensured
by the assumption that (link) capacities are variable and can be determined after-
wards. A typical setting uses uniformly equipped networks where any link holds k
fibers each providing (the same) w wavelengths, and k, w, or a weighted sum of both
is to be minimized. In some works, rwa is split into the routing and the wavelength
assignment subtasks with major focus on the wavelength assignment and integrated
routing path selection, see for instance Pal and Patel [135], Li and Simha [103], or
Noronha and Ribeiro [132], all investigating partition coloring for unions of alterna-
tive routing paths for each connection. For the special case of rwa in ring networks
with two routing alternatives only, Lee et al. [101] solve the joint problem with an
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integer linear program applying column generation and branch-and-price. Further
results for this and other topologies are subsumed in Beauquier et al. [12].
Wavelength assignment for a fixed routing has been studied less frequently in the
literature, if not in connection with special network structures where the routing is
fixed by the topology, like chains (see Winkler and Zhang [169]) or trees (see, for
instance, Auletta et al. [11] or Erlebach and Jansen [44] and the surveys in Cara-
giannis et al. [29] or Kaklamanis [82]). Again, converters are rarely involved in
such investigations. Instead, different objectives are focused, the most prominent
one of minimizing the number of wavelengths required to accommodate all light-
paths conflict-free (see, among many others, Nomikos [129], Caragiannis et al. [27]
or Caragiannis and Kaklamanis [28]). From a practical perspective, such approaches
disregard the fact that the spectra provided by commercially available WDM sys-
tems are fixed. In particular, it is not clear how to cope with solutions demanding for
more wavelengths than offered by the systems. For this, alternative approaches for
fixed spectra deal with maximizing the number of lightpaths that can be established
without conversion, see for instance Nomikos [129], Hu and Shuai [69], or Andrews
and Zhang [6].
In case of fixed spectra, another problem variant without conversion focuses on op-
timizing the number (or total cost) of fibers required to realize a set of lightpaths
(see for instance Nomikos et al. [131] or Andrews and Zhang [5, 6]). A common
approach consists in deriving upper bounds or approximations for the required fiber
multiplicity in relation to the network load l (see Margara and Simon [109, 110] or
Li and Simha [102, 104]), in our notation defined as l := maxℓ∈L |Pℓ| . These inves-
tigations stay abreast of the fact that optical network links in practice are usually
furnished with multiple fibers. In some cases, the fiber number (and spectrum size)
is assumed to be uniform throughout the network (as in Margara and Simon [109] or
Ferreira et al. [48]). Our experiences show that the traffic distribution in practice is
typically not homogeneous and contains often highly occupied centers. In Germany,
for instance, only a few nodes are linked to international connections along which
high amounts of data leave or enter the network. Other areas or subnetworks carry
low traffic. Hence, designing homogeneously dimensioned networks is not always
suitable.
Architectural comparisons reveal that the use of converters can increase the network
performance significantly, allowing for better resource utilization (see for instance
Jaumard et al. [78] or Ramamurthy et al. [144]). Nevertheless, only little research
addresses problems involving conversion. In addition, many different assumptions
regarding technical and operational properties of wavelength converter devices are
taken. The most often considered problem employs both opaque and transparent
nodes in a network, referred to as network with sparse conversion. In this case, the
designer picks some nodes which obtain full conversion capability for all traversing
lightpaths, while all other (transparent) nodes do not allow for wavelength exchanges
at all (see, e.g., Kleinberg and Kumar [88], Belotti and Stidsen [14], Chu et al. [31],
Sengezer and Karasan [151], Karasan et al. [83], or Erlebach and Stefanakos [45]).
Other papers deal with limited conversion restricting the spectral conversion range
(see, for instance, Belotti [13] or Ramaswami and Sasaki [146]), consider convert-
ers capable to handle multiple channels under additional restrictions (cf. Auletta
et al. [10]), or hybrid architectures (as an example, see Cavendish et al. [30] with
hybrid OXCs uniformly equipped with a number of o-e-o converters).
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In the following sections, we study Mcwap in our particular setting and develop
appropriate solution methods for completing the design of transparent optical net-
works. As a first step, we investigate the theoretical complexity of Mcwap and
establish relations to known coloring problems.

4.2 Complexity

For analyzing the complexity of Mcwap, it is helpful to restate the problem in
its decision variant, which asks for the existence of solutions with at most a given
number M ∈ Z+ of converters.

Problem 4.4 Mcwap-Decision(M) (Mcwap-D(M))
instance: • Mcwap instance (N , P,Λ,K)

• an integer M ∈ Z+

question: Does a Mcwap solution with at most M wavelength converters exist?

We first investigate the relation of Mcwap-D(M) to classical graph coloring prob-
lems. By appropriate simplifications, we identify special cases of Mcwap-D(M) for
which a complexity classification can be given.

Mcwap special cases. In the general form, Mcwap differs from vertex coloring
or edge coloring in several aspects. A major difference concerns the objective. Using
a predefined color multi-set on each link, Mcwap asks to assign the available colors
to the given paths with a total minimum number of color changes along the paths.
Clearly, zero states a natural lower bound on the objective value, reflecting the case
in which no color changes or, respectively, wavelength converters are required at all.
If such a solution exists, all lightpaths can be operated on a single wavelength from
origin to destination, and the construction of an associated wavelength assignment
reduces to allocate wavelengths to lightpaths—a task much more similar to vertex
or edge coloring where colors are allocated to vertices or edges, respectively. In our
notation, Mcwap-D(0) corresponds to this special case, which occurs as subprob-
lem in the design of optical networks without wavelength converters and has been
investigated by several authors.
A further difference to classical graph coloring regards the color availability. In pres-
ence of multiple types of WDM systems offering different wavelength spectra, the
wavelength multiplicities can vary on a link and among the links. The lightpaths
have to choose link-wise from different sets of available colors which turns the task
into a list coloring problem. For the sake of simplicity, it is therefore often assumed
in the literature that all WDM systems offer the same set of wavelengths, i.e., all
fibers are equipped with uniform WDM systems. We refer to this as uniform fiber
spectra case where for each link ℓ ∈ L, we have kλ1

ℓ = kλ2
ℓ for all λ1, λ2 ∈ Λ. Then

each lightpath can be potentially operated on each wavelength.
The assumption of uniform fiber spectra unifies the multiplicities of available wave-
lengths on each link, but not among the links since any link can be equipped with
an individual number of fibers. These numbers determine how many lightpaths can
share the same wavelength on a link. The general case of multi-fiber links exhibits
another difference regarding the conflict conditions. Classical coloring problems
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state assignment conflicts between pairs of items (vertices or edges). In multi-fiber
Mcwap, wavelength allocation conflicts form conditions for the whole set of light-
paths sharing a link. Only on links with a single fiber, these set-based conditions
can be dissolved into a set of pair-wise lightpath conflicts as equivalent formulation.
This indicates another important special case of Mcwap in which all links offer (at
most) a single fiber, referred to as the single-fiber case. Due to the possible refor-
mulation with pairwise lightpath conflicts, this problem variant again becomes more
similar to familiar coloring problems.
We remark that dedicating each lightpath initially to a specific fiber on each link
would automatically yield a single-fiber Mcwap in which multi-fiber links are re-
placed by multiple parallel links, one for each fiber. Such a modification restricts
the Mcwap solution space, however, significantly since each pair of lightpaths dedi-
cated to the same fiber on a multi-fiber link could in fact share the same wavelength.
Hence, all solutions with the latter property are excluded from the consideration.
Moreover, such a preassignment would be arbitrary since dimensioning and routing
does not make a discrimination. In order to avoid unnecessary solution space reduc-
tions, we consider Mcwap without preassignment of lightpaths to fibers and rather
treat the single-fiber Mcwap as a special case of the general problem.

Equivalence to vertex coloring. Combining all described simplifications, we
obtain the special case of single-fiber Mcwap-D(0) with uniform fiber spectra. In
this variant, the wavelength assignment problem can be transformed into a vertex
coloring problem of the so-called path conflict graph GP = (VP , EP ). The path
conflict graph contains a vertex vp for each lightpath p ∈ P , and two vertices
vp1, vp2 ∈ VP are adjacent if the associated lightpaths p1, p2 ∈ P share a com-
mon link, i.e., vp1vp2 ∈ EP ⇔ L(p1) ∩ L(p2) 6= ∅. Any feasible vertex coloring of
GP with at most |Λ| colors indicates a conflict-free wavelength assignment without
converters, and vice versa. This way, single-fiber Mcwap-D(0) with uniform fiber
spectra is reduced to the vertex coloring problem in graphs.
Due to this close relation of single-fiber Mcwap-D(0) with uniform fiber spectra and
vertex coloring, equivalence of both problems is often suggested (or stated) in the
literature. The following reverse reduction from vertex coloring to Mcwap shows
an even stronger result.

Theorem 4.5 Mcwap-D(M) is NP-complete, even for the special case of single-
fiber Mcwap-D(0) with uniform fiber spectra and load l ≤ 2 on a supply network
forming a chain with parallel links (multi-chain).

Proof. Given a claimed solution for Mcwap-D(M), the confirmation of feasibility
requires to verify a number of conditions which is polynomial in the input data.
Hence, Mcwap-D(M) is in fact in NP .
For a reduction of vertex coloring to Mcwap, we show that any graph G can be the
path conflict graph of a Mcwap instance (NG, PG,Λ,K) such that G is C-colorable
if and only if the instance with |Λ| = C is solvable without converters. The actually
constructed Mcwap instance will also have the claimed additional properties.
Consider an arbitrary vertex coloring instance asking whether a graph G = (V,E)
can be colored with at most C ≥ 3 colors (for C = 2, the problem is equivalent to
verifying bipartiteness of G and thus polynomial). W.l.o.g., we can assume G to be
simple. Karp [84] first proved this problem to be NP-complete.
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(a) Vertex coloring graph G
with an edge coloring.
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(b) Resulting Mcwap network NG with paths pv.

Figure 4.1: Example of the construction of a Mcwap instance from a vertex coloring
instance by help of edge coloring.

With G to be a path conflict graph, any edge represents a conflict between the paths
corresponding to the incident vertices, and these paths have to share a link in the
supply network to construct. For this construction, we setup an individual supply
link for each conflict and route the paths accordingly. In order to keep the network
small, we exploit an arbitrary edge coloring of G with E1, . . . , Ek ⊂ E denoting the
edge color classes. Note that k ≤ |E| . The minimum number of colors needed for
such an edge coloring is the chromatic index χ′(G), but for our purpose, any edge
coloring will do (e.g., for simple graphs, an edge coloring with ∆(G) + 1 colors can
be computed in polynomial time, see Vizing [163]).
Based on the k-edge coloring of G, we construct a supply network NG = (N,L) with
k +1 nodes N = { n1, . . . , nk+1 } forming a multi-chain where each consecutive pair
is connected by parallel links. The instance construction is exemplary depicted in
Figure 4.1. For i = 1, . . . , k, we introduce |V | − |Ei| parallel links between ni and
ni+1. Each link is equipped with a single fiber carrying a WDM system that offers
all wavelengths in a spectrum Λ with |Λ| = C, i.e., K(λ, ℓ) = 1 for all λ ∈ Λ and
ℓ ∈ L.
In the network NG, we define the following path set. For each vertex v ∈ V , we
setup a path pv from node n1 to node nk+1 traversing all intermediate nodes. The
particular link at each hop to use by a path is derived from the edge coloring. If
v is incident to an edge e = vw ∈ Ei, then pv shares one of the links between ni

and ni+1 with path pw associated to vertex w. Otherwise pv uses one of the parallel
links exclusively. At the i-th hop, all |V | paths require |Ei| pair-wise shared plus
|V | −2 |Ei| exclusively used links, such that in total |Ei| + |V | −2 |Ei| = |V | − |Ei|
links suffice between ni and ni+1. In addition, any supply link in NG is traversed
by at most two paths, hence its channel capacity |Λ| = C > 2 is sufficient to
accommodate the complete path set PG = { pv | v ∈ V }.
By construction, adjacent vertices in G correspond to paths in NG that share a link,
and vice versa. Hence, G is the path conflict graph associated to the Mcwap instance
(NG, PG,Λ,K). Consequently, G is C-colorable if and only if (NG, PG,Λ,K) has a
converter-free solution for |Λ| = C. Moreover, the transformation is polynomial in
the size of the vertex coloring instance, since NG has O( |E| ) nodes and O( |V | · |E| )
links, |Λ| = C, and |V | paths each of hop-length k ≤ |E| are used.
As a result, vertex coloring has been reduced to single-fiber Mcwap-D(0) with
uniform fiber spectra on a multi-chain network with load l ≤ 2, proving the claim.

�

In combination with the preceding argument of reducing Mcwap to vertex color-
ing, Theorem 4.5 yields in fact the equivalence of vertex coloring and single-fiber
Mcwap-D(0) with uniform fiber spectra on multi-chain supply networks with load
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at most 2. As a further consequence, this also implies that any instance of single-fiber
Mcwap-D(0) with uniform fiber spectra on an arbitrary network can be transformed
into an equivalent instance on a multi-chain supply network.
Moreover, results similar to Theorem 4.5 hold also for other variations of the Mcwap

special case properties. For instance, giving up the chain structure of the physical
topology, a restriction to simple networks can be easily achieved by placing an ad-
ditional node on each but one parallel supply link at each hop in the constructed
network NG. This in fact generates a simple series-parallel network. With this mod-
ification, NP-completeness carries over to the problem class of single-fiber Mcwap-

D(0) with uniform fiber spectra on simple series-parallel supply networks (with load
l ≤ 2).

Polynomially solvable cases. A further restriction to single-fiber Mcwap-D(0)
with uniform fiber spectra on a simple chain network finally makes the problem poly-
nomially solvable. In this case, the associated path conflict graph forms an interval
graph. Interval graphs are perfect (see for instance Schrijver [150]), and the chro-
matic and clique numbers coincide. Hence, the number of required wavelengths
(chromatic number) equals the maximum load (clique number) in the network, and
the paths can always be assigned wavelengths without need of conversions in polyno-
mial time. This result indicates that theNP-completeness statement in Theorem 4.5
cannot be strengthen further.
Expanding Mcwap-D(0) with uniform fiber spectra to the multi-fiber case, the cor-
responding path conflict graph coloring transforms to a generalized interval graph
coloring. Winkler and Zhang [169] proved that this problem is polynomially solvable,
too.

Theorem 4.6 (Winkler and Zhang [169]) Multi-fiber Mcwap with uniform fi-
ber spectra on a simple chain network has always a converter-free solution.

By a constructive proof, they also provide a method to compute optimal assignments
for this problem variant.
In connection with Theorem 4.5 and Theorem 4.6, the following remark has to
be made. We mentioned that preassigning lightpaths to particular fibers turns a
multi-fiber problem on a simple chain into a single-fiber problem on a multi-chain
network, with the intention to ease the task. Indeed, the theorems show that exactly
the converse happens on chains: A preassignment makes an easy problem hard, and
even more, an optimal (converter-free) solution could be lost due to the solution
space shrinking. Hence, the purposed ’simplification’ shows up as bad idea.

Mcwap with converters. In the proof of Theorem 4.5, we mentioned that
vertex coloring for C = 2 is polynomial, and thus the derived problem equivalence
yields that single-fiber Mcwap-D(0) with uniform fiber spectra on multi-chains and
|Λ| = 2 is polynomially solvable, too. But even such a strongly restricted variant of
Mcwap turns hard if converters are involved. Note that individual lightpaths can
make use of more than one converter, hence there is no one-to-one correspondence
between converters and converted lightpaths. However, the minimum number of
converted lightpaths over all solutions gives a lower bound on the minimum number
of converters needed. Its determination is already a difficult matter.
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Theorem 4.7 For general M > 0, it is NP-complete to decide whether a single-
fiber Mcwap instance with uniform fiber spectra on a multi-chain network has a
solution with at most M converted lightpaths, even if only |Λ| = 2 wavelengths are
involved.

Proof. Consider an arbitrary Mcwap instance with all claimed properties. Obvi-
ously, the question whether a solution with at most M converted lightpaths exists
or not is equivalent to the question whether deletion of at most M lightpaths leaves
an instance with a converter-free solution or not, i.e., whether Mcwap-D(0) returns
a positive answer for the reduced instance.
We have already shown that single-fiber Mcwap-D(0) with uniform fiber spectra
of size |Λ| = C is equivalent to C-colorability of the corresponding path conflict
graph. Now, removing a lightpath from such a Mcwap instance corresponds to re-
moving the associate vertex in the equivalent vertex coloring instance in GP and vice
versa. Hence, the equivalence relation holds also for instances reduced by removing
lightpaths respectively the associated vertices. As a consequence, the claimed de-
cision problem is equivalent to the question whether the path conflict graph has a
C-colorable subgraph induced by a vertex subset of cardinality at least |V | −M .
In the considered special case |Λ| = C = 2, the latter problem is further equivalent
to the question whether GP has a bipartite subgraph obtained by removing at most
M vertices. Yannakakis [173] (see also Garey and Johnson [52] where this problem
belongs to the problems on ’induced subgraph with property Π’) proved this last
problem to be NP-complete, and by the derived problem equivalence chain, the
statement carries over to the claimed problem, too. �

Theorem 4.7 shows that in case converters are in fact required, determining the
minimum number of converted lightpaths and this way getting an estimation for
the number of unavoidable converters for Mcwap cannot be performed efficiently
even under very strong assumptions. Hence, larger classes of polynomially solvable
problems are more likely to be detected for Mcwap-D(0) special cases.

Conflict hypergraphs. Without preassigning lightpaths to fibers, multi-fiber
Mcwap-D(0) cannot be transformed to usual vertex coloring, since path conflicts
cannot anymore be equivalently modeled by edges. In a natural extension of the
path conflict graph, the conflicts at a link form a hyperedge, containing all paths
traversing the link. Ferreira et al. [48] investigated such an extension to coloring
of hypergraphs in context of wavelength assignment. Besides uniform wavelength
spectra with w wavelengths per fiber, they also assume all links to be uniformly
equipped with the same number k of fibers, resulting in so-called (k,w)-networks.
Using a construction similar to NG in Theorem 4.5, the wavelength assignment
problem without converters in these networks is proven to be equivalent to a vertex
coloring generalization on hypergraphs, where the number of equally colorable nodes
on each hyperedge is limited by k. Transferred to our setting, they obtain:

Theorem 4.8 (Ferreira et al. [48]) Mcwap-D(0) in a (k,w)-network is NP-
complete.

Hence, the assumption of a regular dimensioning does not reduce the complexity of
Mcwap in general networks.
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Ring networks. By Theorem 4.6, multi-fiber Mcwap with uniform fiber spectra
on chain networks is polynomially solvable. This encourages to seek for further spe-
cific network structures whose exploitation allows for efficient solution methods.
A natural generalization of chains consists in ring networks, which often occur in
practice as building blocks of network topologies. In the single-fiber case with uni-
form fiber spectra, it is easy to see that Mcwap-D(0) on rings is equivalent to
the coloring of circular-arc graphs, which has been shown to be NP-complete by
Garey et al. [53]. For the multi-fiber extension, Li and Simha [102] studied k-fiber
rings where each link contains k fibers. By an appropriate extension of the problem
reduction from circular-arc coloring, they proved:

Theorem 4.9 (Li and Simha [102]) Mcwap-D(0) in (k,w)-ring networks is
NP-complete.

As straightforward generalization, the result carries over to rings with individual
fiber numbers per link. Hence, rings in any variant do not offer structural oppor-
tunities exploitable for Mcwap. Even worse, any meshed network topology with
cycles contains a ring subproblem and thus, unless further strong simplifications are
applied, inherits the complexity from Theorem 4.9. This observation motivates to
focus on cycle-free topologies, i.e., tree-like structures, in order to identify further
polynomially solvable cases.

Star networks. Among tree topologies, star networks are the most simple struc-
ture. While single-fiber Mcwap-D(0) on stars was already shown to be NP-
complete by Raghavan and Upfal [143], the multi-fiber extension for the regular
case of k fibers per link was again studied by Li and Simha [102]. Surprisingly, the
difficulty vanishes for specific fiber multiplicities:

Theorem 4.10 (Li and Simha [102]) Mcwap-D(0) with uniform fiber spectra
on star networks is NP-complete in general. In (k,w)-star networks with k even,
Mcwap-D(0) can be answered in polynomial time.

In fact, they show that no conversion is necessary in even-dimensioned (k,w)-stars
for any path set not exceeding the capacities.

Special routings. Li and Simha [102] observed further that Theorem 4.10 can
also be applied to Mcwap instances on arbitrary networks with the specific connec-
tion pattern that all paths span at most two links. Harder [66] investigated such
instances, originally for the single-fiber case, and proved:

Theorem 4.11 (Harder [66]) Mcwap-D(0) with uniform fiber spectra and paths
of hop-length at most two in arbitrary networks is NP-complete.

Li and Simha [102] transformed such an instance to an instance on a star network
as follows. Each original link ℓ ∈ L is replaced by a node nℓ, which is connected
to an additional central node nc. Each original path is transformed to a path on
those links in the star that are incident to the vertices representing its original links.
An example for this transformation is depicted in the left part of Figure 4.2. It
is easily verified that any wavelength assignment for the constructed star network
instance can be retransformed in a straightforward manner to the original instance,
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MCWAP instance with paths of hop−length at most 2

edge coloring instance

Transformations

instance on star network

Erlebach/Jansen [43]
Koster/Zymolka [93]

Koster [91]Li/Simha [102]

Figure 4.2: Transforming Mcwap instances with paths of hop-length at most 2.

preserving the assigned wavelengths path-wise. As a consequence, Theorem 4.10
directly implies:

Corollary 4.12 (Li and Simha [102]) For Mcwap with paths of hop-length at
most two in an arbitrary network with k fibers per link, k even, there exists always
a solution without converters.

For Mcwap-D(0) with uniform fiber spectra on single-fiber star networks, Erlebach
and Jansen [43] proved the equivalence to edge coloring of (multi-) graphs, first
shown to be NP-complete by Holyer [68]. While paths with a single link can be
neglected, each path spanning two links is replaced by an edge connecting the path’s
origin and destination. The star center is removed together with all incident links.
This reversible transformation is illustrated in the lower part of Figure 4.2. Now,
any edge coloring of the resulting (multi-) graph with at most |Λ| colors corresponds
to a converter-free wavelength assignment of the single-fiber Mcwap instance on the
star network, and vice versa.
Extending this equivalence transformation to capture the multi-fiber case for star
networks was adumbrated in Koster and Zymolka [93]. In contrast to vertex coloring,
edge coloring can be generalized for multiple fibers without transition to hypergraphs
as follows. Let kℓ ∈ N denote the number of fibers on link ℓ ∈ L. Then, kℓ paths on
link ℓ can share the same wavelength. Equivalently, kℓ edges incident to vertex nℓ

can be assigned the same color in the multi-graph. The latter problem is known as
k-edge-coloring , see Hakimi and Kariv [64] (who originally used f instead of k). This
way, the result of Erlebach and Jansen [43] is lifted to the equivalence of multi-fiber
Mcwap on a star network and k-edge-coloring of a multi-graph. Note that the fiber
multiplicities need not be uniform in the network, and we denote such networks as
(kℓ, w)-star networks for the case of uniform fiber spectra.
Alternatively, Koster [91] proposes a direct way to transform a multi-fiber Mcwap

instance with paths of length at most two into a k-edge-coloring problem on a multi-
graph, as indicated in the right part of Figure 4.2. This way, Koster [91] generalizes
Corollary 4.12 to:

Theorem 4.13 (Koster [91]) Any Mcwap instance with paths of hop-length at
most two in an arbitrary (kℓ, w)-network with individual, but even fiber numbers
kℓ ∈ 2N for all ℓ ∈ L has a solution without converters.
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polynomial cases NP-complete cases

multi-fiber Mcwap-D(0) on simple
chain networks

single-fiber Mcwap-D(0) on multi-
chain networks

single-fiber Mcwap-D(0) on multi-
chain networks with |Λ| = 2

becomes single-fiber Mcwap-D(0) on a
multi-chain network with |Λ| = 2 true
after deletion of ≤M lightpaths?

single-fiber Mcwap-D(0) on trees of
bounded degree

single-fiber Mcwap-D(0) on arbitrary
trees

Mcwap-D(0) on (kℓ, w)-star networks,
kℓ even ∀ ℓ ∈ L

Mcwap-D(0) on general (kℓ, w)-star
networks

Mcwap-D(0) on (kℓ, w)-networks, kℓ

even ∀ ℓ ∈ L, with |L(p)| ≤ 2 ∀ p ∈ P
Mcwap-D(0) on general (kℓ, w)-
networks with |L(p)| ≤ 2 ∀ p ∈ P

Table 4.1: Complexity results for Mcwap with uniform fiber spectra.

Theorem 4.13 can be in particular applied to star networks, where simple paths
naturally have length at most two, and thus Theorem 4.13 extends the second state-
ment in Theorem 4.10 to the irregularly dimensioned case of (kℓ, w)-networks with
all kℓ even as well.

Tree networks. With stars as special case, Mcwap-D(0) on arbitrary tree net-
works clearly remains NP-complete in general according to Theorem 4.10. However,
it is an interesting question whether the polynomially solvable special cases for star
networks can be extended to tree networks. For the single-fiber problem, Erlebach
and Jansen [44] argue that a path coloring with minimum number of wavelengths
can be obtained in polynomial time by merging optimal path colorings on local star-
like instances. In contrast to arbitrary single-fiber stars discussed above, trees (and
stars) of bounded degree allow to solve the local problem polynomially, and thus the
corresponding Mcwap-D(0) instance, too. Unfortunately, such a merging of locally
optimal solutions on excised star networks cannot be straightforward carried over
to the multi-fiber case.

Overview. As conclusion, Table 4.1 summarizes the complexity results for the dis-
cussed Mcwap special cases such that closely related problem variants are arranged
together. One observes that polynomial solvability requires very strong assumptions
on the dimensioned supply network structure or the path routing. Releasing any of
the properties listed in the left part turns Mcwap into a hard problem.
It is likely that further complexity strengthenings, such as non-approximability re-
sults of Hochbaum [67] for graph coloring, can be carried over to (particular variants
of) Mcwap. For instance, Nomikos [129] proved non-approximability for path col-
oring on general single-fiber topologies for both minimizing the number of colors
as well as, for a fixed spectrum, maximizing the number of paths which can be as-
signed wavelengths without conflicts (and converters). More recently, in relation to
Theorem 4.8, Andrews and Zhang [5] proved that there is no constant-factor ap-
proximation for Mcwap-D(0) in (k,w)-networks with fixed w unless NP ⊂ ZPP .
Such questions are important for the development of approximation algorithms with
guaranteed solution quality. However, this approach goes beyond the scope of this



148 4. Wavelength Assignment with Converters

thesis. Instead, we focus on efficient heuristic algorithms for Mcwap as well as on
exact methods, beginning with a modeling in terms of integer programming.

4.3 Integer linear program formulations

In this section, we derive and compare two integer linear programming formulations
for Mcwap. The first formulation—based on the corresponding model parts from
Chapter 2—can be seen as a straightforward approach, which directly encodes the
assignment decisions and leads to a compact assignment formulation. The second
formulation is inspired by a successful column generation approach for the vertex
coloring problem by Mehrotra and Trick [115]. Our adaption to Mcwap integrates
structural information on the possible path combinations for each wavelength into
model columns and yields the large-scale path packing formulation.

4.3.1 Assignment formulation

A natural way to formulate coloring-like problems is by introduction of decision
variables that directly represent the color assignments. In case of Mcwap, we have
to assign wavelengths to every link of a lightpath. Similar to Section 2.2.3, multiple
lightpaths routed along the same path are considered cumulative, and we use the
following variables to express the wavelength assignments:

aλ
p ℓ ∈ Z+ denotes the number of times wavelength λ ∈ Λ is assigned to

lightpaths along path p ∈ P1 at link ℓ ∈ L(p).

These variables are integer because multiple lightpaths can be routed along each path
p ∈ P1 and wavelengths can be available multiple times on a link by parallel fibers.
The alternative to model the wavelength assignment for each individual lightpath
by binary variables is discussed below.
To calculate the number of needed converters, a second set of variables is necessary:

aλ
p n ∈ Z+ denotes the number of lightpaths routed along path p ∈ P1 that

are converted from wavelength λ ∈ Λ to any other wavelength
at node n ∈ N(p).

Note that the variables are indexed only with the incoming wavelengths at node n,
since it does not matter for the converter counting to which wavelength a lightpath
is converted. Instead, we just account for lightpaths that cannot continue with the
same wavelength on the next link after n and thus need a converter in n.
Using these variables, the straightforward assignment formulation of Mcwap reads:

zA = min
∑

λ∈Λ

∑

p∈P1

∑

n∈N(p)

aλ
p n (4.2a)

s.t.
∑

λ∈Λ

aλ
p ℓ = vp ∀ p ∈ P1, ℓ ∈ L(p) (4.2b)
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∑

p∈Pℓ

aλ
p ℓ ≤ kλ

ℓ ∀ λ ∈ Λ, ℓ ∈ L (4.2c)

aλ
p ℓi
− aλ

p ℓi+1
≤ aλ

p ni
∀ λ ∈ Λ, p ∈ P1, 1 ≤ i ≤ h− 1, where

p = (n0, ℓ1, n1, ℓ2, n2, . . . , ℓh, nh) (4.2d)

aλ
p ℓ, a

λ
p n ∈ Z+ ∀ λ ∈ Λ, p ∈ P1, ℓ ∈ L, n ∈ N (4.2e)

A detailed explanation of this model has been already given in Section 2.2. As only
difference, the multi-set of lightpaths is not determined anymore by the routing
formulation, but given as input. Hence, the capacity conditions (4.2c) restrict on
the given set Pℓ of different routing paths traversing link ℓ, and constraints (4.2b)
hold at the right hand side a parameter vp that reflects the number of lightpaths
routed along path p ∈ P1, as introduced in the problem description in Section 4.1.
Note that the size of the assignment formulation (4.2) is polynomial in the number
and hop-length of the paths in P1 and the number of wavelengths.

Individual lightpath assignments. By variables aλ
p ℓ, wavelengths are at first

assigned cumulatively to all lightpaths routed along a path p ∈ P1. It remains to
resolve such a solution for parallel lightpaths to a wavelength assignment for each
individual lightpath without need of additional converters.
Regarding constraints (4.2d), one observes that converters are only placed for those
wavelengths at a link that are not assigned (sufficiently often) at the following link
on the path. In turn, this dictates to assign any wavelength on as much consecutive
links as possible to the same lightpath in order to avoid unaccounted conversions.
Consequently, the cumulative wavelength assignment for parallel lightpaths decom-
poses into a multi-set of maximal subpaths each with a continuous wavelength. An
appropriate concatenation of these subpaths finally provides the individual lightpath
assignments. This procedure is easily realized for each path p ∈ P1 in polynomial
time of order O(vp · |L(p)| ).
Since the resolving of an aggregated assignment to parallel lightpaths can be per-
formed efficiently, it becomes clear that the alternative modeling by binary variables
for individual lightpath assignments does not provide an advantage. In contrast, the
formulation would grow in size, and the solutions would degenerate by allowing for
permutation of the assignments for parallel lightpaths. Their cumulative assignment
subsumes such equivalent solutions and thus overcomes this type of degeneracy.

Wavelength symmetry degeneracy. Anyway, a major disadvantage of the
assignment formulation is the degeneracy of solutions caused by the symmetry of
the spectrum Λ. Typically, many wavelengths are permutable due to their concerted
provision by the WDM systems. The worst situation occurs for the uniform fiber
spectra case. Then, not only for all integer solutions, but also for fractional solutions
of linear relaxations, O( |Λ| !) equivalent solutions exist. Cutting plane approaches
and branch-and-bound based on similar assignment formulations have been shown
to be computationally intractable for problems with such characteristics (like vertex
coloring, see Pardalos et al. [137], or frequency assignment, see Aardal et al. [1]).
These experiences motivate to investigate an alternative formulation.
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4.3.2 Path packing formulation

For the vertex coloring problem, Mehrotra and Trick [115] introduced a column
generation approach to overcome the color symmetry degeneracy. Given a graph G,
it is well known that all vertices that can be colored by the same color form a stable
set . Thus, the chromatic number χ(G) of a graph G is given as the minimum number
of stable sets needed to cover all its vertices. By introducing a selection variable
for every stable set in the graph, an alternative formulation for vertex coloring is
derived. Due to the huge number of variables, the columns corresponding to the
stable sets are generated dynamically. Although the associated pricing problem is
NP-hard, the method proved computationally tractable and was able to solve many
vertex coloring instances.
This successful approach has inspired to develop a similar formulation for Mcwap.
A step-by-step generalization of the formulation from vertex coloring to Mcwap

can be found in Koster and Zymolka [96]. To simplify the explanation, we at first
assume uniform fiber spectra and discuss the adaption to the non-uniform case at
the end.

Subpath packings. The key to our approach is the following observation. A
wavelength assignment for any individual lightpath can be interpreted as a parti-
tioning into subpaths assigned the same wavelength on all links. Throughout the
lightpaths, all subpaths that are assigned the same wavelength can be viewed as
a packing of subpaths with respect to the wavelength’s multiplicities. This way, a
wavelength assignment for all lightpaths decomposes into |Λ| subpath packings.
The number of converters needed for a lightpath partitioned into i subpaths is ex-
actly i− 1. Since the total number of lightpaths is fixed, the objective of Mcwap is
therefore equivalent to minimizing the total number of subpaths involved.
In order to formulate the above problem reinterpretation as an integer linear pro-
gram, we have to characterize feasible packings of subpaths. We introduce the
following notation. For each p ∈ P1, let Sp be the set of all subpaths s of p. Note
that |Sp| = 1

2 |L(p)| ( |L(p)| + 1), and the same subpath can be in multiple sets Sp.
We define S := ∪p∈P1Sp as the set of all possible subpaths. Then a path packing φ
is a multi-set of items from S such that all subpaths s ∈ φ can be assigned the same
wavelength λ, i.e., for every link ℓ ∈ L, at most kλ

ℓ subpaths containing link ℓ are
in the multi-set φ. The multiplicity of each subpath s ∈ S in the path packing φ is
denoted by ms

φ ∈ Z+. The set Φ subsumes all path packings φ.

Path packing formulation. Now, Mcwap consists in the task to find |Λ| path
packings such that all lightpaths are properly covered. Thereby, a path packing
φ ∈ Φ can be selected more than once, if the multi-set of subpaths to be assigned
the same wavelength is identical for multiple wavelengths. For every path packing
φ ∈ Φ, we therefore introduce a general integer variable:

xφ ∈ Z+ denotes the number of times path packing φ ∈ Φ is selected
in the assignment (where each path packing states that all
contained subpaths s ∈ φ are assigned the same wavelength).

In addition, we have to specify which subpaths are used for the partitioning of each
lightpath. Again, we consider all lightpaths along the same routing path concertedly
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and use the following variables for the correspondence:

ys
p ∈ Z+ denotes the number of times subpath s is used in the parti-

tionings of lightpaths routed along path p ∈ P1.

Now, Mcwap reads alternatively:

zP = min
∑

p∈P1

∑

s∈Sp

ys
p


−

∑

p∈P1

vp


 (4.3a)

s.t.
∑

s∈Sp:ℓ∈L(s)

ys
p = vp ∀ p ∈ P1, ℓ ∈ L(p) (4.3b)

∑

p∈P1:
s∈Sp

ys
p =

∑

φ∈Φ

ms
φxφ ∀ s ∈ S (4.3c)

∑

φ∈Φ

xφ ≤ |Λ| (4.3d)

ys
p, xφ ∈ Z+ ∀ p ∈ P1, s ∈ Sp, φ ∈ Φ (4.3e)

As expressed by (4.3a), the total number of converters is given by the total number
of subpaths selected for all lightpath partitionings minus the total lightpath number,
the latter being a fixed value and therefore put in brackets. For any routing path
p ∈ P1 at every link ℓ ∈ L(p), vp subpaths covering that link must be provided
for the lightpath partitionings, which is enforced by constraints (4.3b). Constraints
(4.3c) model that every subpath s ∈ S is offered by the selected path packings as
often as chosen for partitioning of lightpaths. The single constraint (4.3d) restricts
the number of selectable path packings to the size of the available spectrum Λ, and
constraints (4.3e) guarantee integrality of the solution.

Solutions. Regarding the solutions of the path packing formulation (4.3), two re-
transformations are required to obtain a solution for the original problem: deriving
individual wavelength assignments for the lightpaths and the placement of convert-
ers. Both issues are easy to accomplish. At first, we assign the wavelengths in Λ to
the selected paths packings, i.e., to each subpath in a packing. For the individual
lightpath wavelength assignments, we proceed as for the assignment formulation,
except for that the variables ys

p already specify the subpaths to use for each bunch
of parallel lightpaths. Hence, we have only to concatenate these subpaths accord-
ingly to get the lightpath assignments.
The placement of converters follows also directly from the partitioning variables ys

p.
Whenever a subpath does not reach the associated lightpath’s destination node, its
wavelength cannot be used further, and a wavelength converter is needed. Hence,
the number of required converters at a node n ∈ N is given by

yRn =
∑

p∈P1:
n∈N(p)

∑

s∈Sp:
ds=n

ys
p .

Non-uniform fiber spectra. For the case of non-uniform fiber spectra, formu-
lation (4.3) is to be adapted as follows. The wavelength spectrum Λ is partitioned
into subsets Λ1, . . . ,Λw such that all wavelengths in a subset have the same multi-
plicities on all supply links, i.e., for each i = 1, . . . , w, any wavelengths λ1, λ2 ∈ Λi
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have kλ1
ℓ = kλ2

ℓ for all links ℓ ∈ L. Each subset Λi specifies an individual set Φi

of feasible path packings with respect to the corresponding wavelength multiplici-
ties. A solution now composes of selecting |Λi| path packings from set Φi for each
i = 1, . . . , w. With Φ :=

⋃w
i=1 Φi, all but one constraints in formulation (4.3) re-

main unchanged. Only the path packing selection constraint (4.3d) is replaced by
an individual restriction for each wavelength subset as

∑

φ∈Φi

xφ ≤ |Λ
i| ∀ i = 1, . . . , w .

Note that 1 ≤ w ≤ |Λ| , where w = 1 reflects the uniform fiber spectra case in
model (4.3), and w = |Λ| is the opposite extreme that each wavelength has unique
multiplicities. For practical instances, however, w is typically small since few dif-
ferent wavelength spectra are offered by the available WDM systems. Then, many
wavelengths are provided concertedly on all fibers, which yields large subsets Λi.

In the path packing formulation (4.3), the number of constraints is comparable to
that of the assignment formulation, but the number of variables is tremendously
large. However, the advantage of the formulation is that wavelengths are not dis-
tinguished explicitly, but represented by the corresponding path packings to select.
As a consequence, solutions are unaffected by wavelength permutations (within the
subsets Λi).

4.3.3 Formulation comparison

The two presented formulations for Mcwap show very different characteristics. The
assignment formulation is much more compact in size, but suffers from the spectral
symmetry degeneracy, whereas the path packing formulation breaks the symmetry
at the price of a huge number of variables. For computational purposes, a further
important aspect of integer linear program formulations is the strength of the linear
relaxation, reflecting how good the linear program approximates integer solutions.
Some results are presented to evaluate and compare this quality for both models.

Assignment model relaxation. Let z∗A denote the optimal value of the linear
relaxation of the assignment formulation (4.2). In the uniform fiber spectra case
where each link ℓ ∈ L offers all wavelengths with the same link-individual multiplicity
kℓ ∈ Z+, the following observation can be made:

Lemma 4.14 If kλ
ℓ = kℓ for all λ ∈ Λ, ℓ ∈ L, then z∗A = 0.

Proof. Consider the fractional solution with aλ
p ℓ := vp/ |Λ| and aλ

p n := 0 for all
λ ∈ Λ, p ∈ P1, ℓ ∈ L(p), n ∈ N(p). This solution obviously satisfies all constraints
(4.2b) and (4.2d). For constraints (4.2c), the dimensioning ensures by (4.1) that

∑

p∈Pℓ

aλ
p ℓ =

1

|Λ|

∑

p∈Pℓ

vp

(4.1)
≤

1

|Λ|

∑

λ∈Λ

kλ
ℓ = kλ

ℓ

for all λ ∈ Λ, ℓ ∈ L, since
∑

λ∈Λ kλ
ℓ = kℓ |Λ| = kλ

ℓ |Λ| by prerequisite.
Hence, the solution is feasible for the linear relaxation of (4.2) and has objective
value 0, which is optimal due to non-negativity of all variables. �
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(b) Two path packings with
xφ = 1 in the linear relaxation
of (4.3).

(c) Extended network with arbitrarily
large difference between the LP values.

Figure 4.3: Star network with different linear relaxation values.

In the general case with non-uniform wavelength multiplicities, z∗A can clearly take
positive values since paths for which consecutive fibers have no offered wavelengths
in common always require converters in any feasible solution, including fractional
ones.

LP value comparison. Let z∗P denote the value of the linear relaxation of the
path packing formulation (4.3). It is easy to verify that every (fractional) solution
of (4.3) can be transformed to a (fractional) solution of (4.2) with the same objective
value, which yields:

Lemma 4.15 The objective value of the linear relaxation of (4.3) is not worse than
the objective value of the linear relaxation of (4.2), i.e., z∗P ≥ z∗A.

Equivalence of both relaxations does not hold. This can be shown by the instance
displayed in Figure 4.3(a) with vp = 1 for all paths. In the single fiber case with
uniform fiber spectra of size |Λ| = 2 and kℓ = 1 for all links, one wavelength con-
verter is clearly needed. The linear relaxation of (4.2) has the value zero, according
to Lemma 4.14. In contrast, the linear relaxation of (4.3) has value one. To see this,
note that in single-fiber cases each path packing cannot cover each link more than
once. Since all links in the instance are traversed by two lightpaths and (in sum)
at most |Λ| = 2 path packings can be taken, only path packings covering all links
can occur in any (fractional) solution. Any such path packing indeed must contain
single links as subpaths, cf. Figure 4.3(b).
In fact, by extending the star network as displayed in Figure 4.3(c), where a con-
verter has to be placed in each node with degree three for any feasible wavelength
assignment with |Λ| = 2 (and thus z∗P = 1

2( |V | − 2), while z∗A = 0 still), the
following result is obtained:

Lemma 4.16 The difference z∗P −z∗A can be arbitrarily large, even if only two wave-
lengths are involved.

For even |Λ| > 2, the example of Figure 4.3(a) can be alternatively generalized by
setting vp = 1

2 |Λ| for each of the three lightpath requests. Then zP = z∗P = 1
2 |Λ| ,

whereas again z∗A = 0. As a result, the difference z∗P − z∗A is of order O( |Λ| ) and
hence can be arbitrarily large even for single-fiber Mcwap on a simple star network.

Path packing formulation strength. The comparison of the linear realaxtion
for both Mcwap models in Lemma 4.15 indicates that the path packing formulation
is preferrable due to the better LP value. In fact, the computational experiments
documented in Koster and Zymolka [96] show that in those cases where we know
the optimal Mcwap solution, the value of the linear relaxation of the path packing
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formulation (4.3) equals the optimal integer value. But this is not always the case.
For construction of a counterexample, we come back to some results from Section 4.2
about the close relation of Mcwap and graph coloring.
By the proof of Theorem 4.5, equivalence of vertex coloring and single-fiber Mcwap

with uniform fiber spectra in multi-chain networks has been shown. For any graph
G, an instance (NG, PG,Λ,K) has been constructed such that G is |Λ| -colorable if
and only if a Mcwap solution without converters exists.
Recall that the chromatic number χ(G) of a graph G is the minimum number of
stable sets such that all vertices are covered. If we allow to take stable sets in
fractional amounts under the restriction that the sum of the fractions still covers
all vertices, we obtain the fractional chromatic number χ∗(G) (cf. Scheinerman and
Ullman [148]). In terms of integer linear programming, the fractional chromatic
number is the value of the linear relaxation of the stable set formulation for vertex
coloring by Mehrotra and Trick [115]. The difference between χ(G) and χ∗(G) can
be arbitrarily large for some graph classes, see Molloy and Reed [121]. With such
graphs, we obtain the following result:

Theorem 4.17 Let G = (V,E) be a graph with 2 ≤ χ∗(G) ≤ χ(G) − 1, and let
(NG, PG,Λ,K) be the corresponding Mcwap instance as constructed in the proof of
Theorem 4.5. For this instance with |Λ| = χ(G)−1, we get z∗P = 0, whereas zP > 0.

Proof. The fractional chromatic number χ∗(G) is attained by a collection B of
stable sets B ⊂ V in G, each one taken with a fractional value 0 < wB ≤ 1, such that∑

B∋v wB = 1 for all vertices v ∈ V . From such an optimal solution of the vertex
coloring relaxation, we construct a solution of the relaxation of (4.3) for the Mcwap

instance (NG, PG,Λ,K) with |Λ| = χ(G) − 1 ≥ 2, which suffices to accommodate
all paths due to the load l ≤ 2 by the instance definition.
For each B ∈ B, we define the corresponding path packing φB by ms

φB
:= 1 if path

s = pv for some v ∈ B, and ms
φB

:= 0 otherwise. We set xφB
:= wB for all B ∈ B

and xφ := 0 for all other path packings. The solution is completed by ys
p := 1 if

s = pv for some v ∈ V , and ys
p := 0 for all proper subpaths s ∈ Spv \ {pv}. Note

that the paths pv are mutually different by construction, i.e., no parallel lightpaths
occur, and vp = 1 for all p ∈ P1. Using this, the constructed solution is easily found
feasible for the linear relaxation of (4.3) and has objective value z∗P = 0.
Since G is not colorable with χ(G)−1 colors, the Mcwap instance with that number
of wavelengths cannot be solved without converters. Hence, zP > 0, completing the
proof. �

It is easy to find graphs for which χ∗(G) < χ(G), e.g., for an odd cycle C2k+1 with
2k + 1 vertices, we get χ∗(C2k+1) = 2 + 1/k for any k > 0, whereas χ(C2k+1) = 3.
Thus, χ∗(C2k+1) < χ(C2k+1) for k ≥ 2. Another example is the Petersen graph with
2.5 = χ∗(G) < χ(G) = 3. However, the gap χ(G) − χ∗(G) for all these graphs is
smaller than one, and thus we cannot apply Theorem 4.17.
Kneser graphs are a generalization of the Petersen graph, introduced by Kneser
[89] in 1955. Given two positive integers n and k, the Kneser graph KGn,k is the
graph whose vertices represent the cardinality k subsets of {1, . . . , n} and where two
vertices are adjacent if and only if they correspond to disjoint subsets. KGn,k has(n
k

)
vertices, each one with degree

(n−k
k

)
(we assume

(n−k
k

)
= 0 if n − k < k). The

Petersen graph equals to the case n = 5, k = 2. Kneser graphs turned out as a
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challenging class in view of their chromatic number. It was first proven by Lovász
[107] in 1978 that χ(KGn,k) = n−2k+2, whereas χ∗(KGn,k) = n

k , see Scheinerman
and Ullman [148]. So, as suggested by Matoušek and Ziegler [111], for n = 3k−1, it
holds that χ(KG3k−1,k) = k+1, whereas χ∗(KG3k−1,k) = 3k−1

k < 3. Thus for k ≥ 3,
we find that χ∗(KG3k−1,k) ≤ χ(KG3k−1,k)− 1 yielding a sufficient gap, and we can
construct a Mcwap instance with the property of Theorem 4.17. In particular,
there exists an edge coloring of KG8,3 with ∆(KG8,3) + 1 = 11 colors, resulting in
an optical network with 12 nodes and 336 links for which z∗P = 0 whereas zP > 0.

Hence, the path packing formulation does not provide the opportunity to match the
integer optimum by its linear relaxation value in general.1 Nevertheless, from the
results in Lemmas 4.15 and 4.16, we can conclude that the path packing formulation
is favorable compared to the assignment formulation in view of supporting the solv-
ing of Mcwap by additional information. Since the linear relaxation value of any
formulation provides a dual bound on the optimum, we prefer the alternative that
yields the better approximation. Hence, we focus on the path packing formulation
in our algorithmic solution approaches described next.

4.4 Algorithms for Mcwap

The complexity results from Section 4.2 reveal Mcwap to be an NP-hard problem
except for very strong assumptions which are far off practical instance properties.
As a consequence, we cannot expect to find suitable efficient exact methods unless
P = NP.
Therefore, we follow a twofold approach. On the primal side, we describe several
heuristics to generate feasible solutions for the problem. Their application is ac-
companied and guided by derivation of a lower bound for the optimum objective
value as dual side approach. A good lower bound allows to rank the quality of any
solution found and, in the best case when meeting a solution’s objective value, can
prove optimality. For this, we describe how to solve the linear relaxation of the path
packing formulation, which has turned out as more promising model. The developed
column generation method is finally extended to a full branch-and-price algorithm,
followed by a report on preliminary computational experiences.

4.4.1 Heuristics

The intention in designing heuristics for a hard problem is to keep a balance be-
tween the quality of the outcome and the required computation time. We distin-
guish between constructive and iterative methods. Where constructive heuristics try

1 Notice that this is not immediately clear, as this property would not turn an NP-hard problem
into a polynomially solvable linear program. In fact, the path packing formulation is not of poly-
nomial size, and the associated pricing problem for column generation is an NP-hard problem for
itself, as will be shown in Section 4.4.2.
On the other hand, the counterexample by use of Kneser graphs has a strongly artificial flavor,
exploiting specific properties of a constructed structure that will hardly occur in the routings of
real-world networks. In this light, the initial suggestion still remains a motivating observation.
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to generate good assignments from scratch, the iterative approaches start with an
assignment and try to reduce the converter number by clever transformations. We
present some basic strategies as well as extensions by which further advancements
can be achieved. As common feature, all these algorithms base on the principle of
sequential wavelength assignment.

4.4.1.1 Sequential wavelength assignment

The main idea for both the constructive and iterative heuristics is to assign wave-
lengths to the lightpaths in a sequential way, i.e., the lightpaths are processed one by
one in a certain order. In each step, the locally best possible decision is to assign the
wavelengths to the lightpath on turn such that the number of required converters for
that path is minimized. Each time a lightpath has been processed, the availability
of the assigned wavelengths is adapted, and we call the remaining problem a residual
Mcwap instance. Even if we start with uniform wavelength capacities at the links,
the remaining set of wavelengths differs from link to link during the process, and
thus we have to find out how to compute a locally best assignment with respect
to such non-uniform spectra of available wavelengths. Since the goal is to avoid
converters whenever possible, a natural idea consists in reusing a wavelength on as
much consecutive links as possible. This yields the following Greedy-like procedure:

Beginning with the first link, repeatedly select a wavelength that can be assigned
as far as possible, until no links of the lightpath are left anymore.

For breaking ties in case multiple wavelengths reach equally far, we select the first
alternative wavelength according to an arbitrary, but prefixed ordering of the wave-
lengths. Algorithm 4.1 lists a pseudo-code for computing such an assignment for a
single lightpath in a residual Mcwap instance. A simple argument shows that this
procedure indeed generates the locally best assignment for a single lightpath:

Lemma 4.18 For a (residual) Mcwap instance (N , P,Λ,K) with arbitrary wave-
length multiplicities kλ

ℓ ∈ Z+ for all λ ∈ Λ, ℓ ∈ L, and an arbitrarily selected path
p ∈ P , Algorithm (4.1) generates a wavelength assignment for p with a minimum
number of converters.

Proof. For path p = (n0, ℓ1, n1, . . . , ℓh, nh), let ẑ(p) be the least possible number
of converters in any feasible solution for the residual Mcwap instance and z(p) the
number of converters placed by Algorithm 4.1. By the optimality assumption of
ẑ(p), we have ẑ(p) ≤ z(p).
Algorithm 4.1 starts by selecting a farthest reaching wavelength. If this wavelength
can be assigned to all links of the path, a converter-free and thus optimal assign-
ment has been found. Otherwise, let ni1 ∈ N(p) be the last node reached. Then in
any feasible wavelength assignment for path p in the residual Mcwap instance, a
wavelength converter has to be placed in one of the nodes nj1 with j1 ≤ i1 due to
the policy of selecting a farthest reaching wavelength. Since Algorithm 4.1 continues
again with a farthest reaching wavelength, the same argumentation applies (itera-
tively) for each converter node nim and the m-th converter node njm with jm ≤ im
in any feasible assignment, finally needing at least the same number of converters as
the above procedure places. As a conclusion, z(p) ≤ ẑ(p), completing the proof. �
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Algorithm 4.1 Locally optimal single lightpath wavelength assignment

Require: A path p with consecutively ordered link set L(p) = {ℓ1, . . . , ℓh} and
wavelength multiplicities kλ

ℓ ∈ N for all ℓ ∈ L(p), λ ∈ Λ = {λ1, . . . , λw} ordered
arbitrarily.

Ensure: A feasible wavelength assignment αp : L(p) → Λ with minimum number
of converters.

1: set i := 1
2: while i ≤ h do
3: set j := 0
4: Λr =

{
λ ∈ Λ | kλ

ℓi
> 0

}

5: while (i + j + 1 ≤ h) ∩ (∃ λ ∈ Λr : kλ
ℓi+j+1

> 0) do

6: Λr ← Λr \
{

λ ∈ Λr | kλ
ℓi+j+1

= 0
}

7: j ← j + 1
8: end while
9: set s := min { i | λi ∈ Λr }

10: for m = 0 to j do
11: set αp(ℓi+m) := λs

12: end for
13: i← i + j
14: end while
15: return αp

Algorithm 4.1 is of order O( |L(p)| · |Λ| ) and thus offers a polynomial procedure to
compute the locally best assignment for a single lightpath.

Lightpath order. Using Algorithm 4.1, sequential methods for generating Mcwap

solutions are completed by specifying the order in which the lightpaths are to be
processed. For each selected sequence, the resulting Mcwap solution follows deter-
ministically. As a consequence, the obtained objective value as required number of
converters depends only on the processing order of the lightpaths. Hence, a natural
question concerns the correspondence between the set of all lightpath sequences with
their resulting solutions and the set of all Mcwap solutions, in particular optimal
ones.
As Mcwap is NP-hard, a guaranteed optimal sequence cannot be expected to be
determinable in polynomial time. In fact, we show that there need not exist such
an ordering at all. Consider the (pathological) example in Figure 4.4, where two
chains as parts of an optical network are displayed. In each part, we have four
consecutive links on which three parallel lightpaths spanning all links have to be
established. Each row represents a certain wavelength, which is available on a link
if its endnodes are connected in this row. Note that both parts differ only in ex-
changed availability of wavelengths λ2 and λ3. Moreover, thin lines illustrate the
lightpaths constructed by using the farthest reaching wavelength method according
to the wavelength ordering (λ1, λ2, λ3, λ4). Changing a row means to place a con-
verter at the appropriate node. While in the left part, only three converters are
needed, the right solution requires five converters. Reordering the wavelengths to
(λ1, λ3, λ2, λ4) simply exchanges both parts. Each other order of the wavelengths
results in a solution with at least the same number of converters or even more, while
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Figure 4.4: Example for an instance, where a sequential heuristic finds an optimal
wavelength assignment in (a), but not in (b).

an optimal solution for the whole network clearly uses only six converters (applying
different wavelength orders in the parts). This shows that there exist instances of the
minimum converter wavelength assignment problem for which not all solutions can
be generated by a sequential method. As a consequence, the space of all solutions
that can be generated by a sequential procedure may be restricted to a subset of all
feasible assignments. Especially, it is not sure that it contains an optimal solution.
On the other hand, however, sequential wavelength assignment has promising fea-
tures in case an optimal assignment needs only few converters. If a wavelength
assignment without converters exists, then there exists an ordering of the lightpaths
such that the sequential wavelength assignment algorithm finds an optimal solution.
To see this, notice that an optimal assignment implies such an ordering. Arrange
all lightpaths using the same wavelength in the solution consecutively. Then the
sequential procedure finds the optimal assignment (without converters) if the wave-
lengths are assigned in the same order as they appear in the lightpath sequence.
In case an optimal solution needs a single converter, a similar argument applies. For
such a fixed optimal solution, consider the only lightpath that needs a converter.
Order all wavelengths and lightpaths as before except for the converted lightpath
which is processed last, and place the wavelength used in the solution after the con-
version as last, whereas that used before conversion becomes the last but one. This
way, again no converter is required by the sequential method until the last lightpath
is on turn. By the wavelength ordering, an assignment as in the solution is then still
possible for the last lightpath, and thus not more than one converter will be placed
by Algorithm 4.1 with this ordering. Hence, the constructed sequence generates an
optimal solution.
This result can be generalized to cases where only few converters are needed each
by a different lightpath in different parts of the network. So, for many instances
where the number of required converters is small, lightpath sequences resulting in
an optimal solution are likely to exist.

The previous sequence constructions have been derived from knowing an optimal
solution to (re-) generate. Without such an input, promising sequences have to be
specified by other means, as discussed next.

4.4.1.2 Constructive methods

The construction of a Mcwap solution based on sequential wavelength assignment
requires just a single run processing each lightpath once by Algorithm 4.1. For this,
the lightpath processing order is to be specified, either statically by a priori fixing the
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entire sequence or dynamically by selecting the next lightpath to process according
to some rule. Both variants occur by application of rules with greedy character.

Greedy-based sequences. Among the many possibilities, three Greedy ordering
rules for the lightpaths have been implemented and tested:

• longest path first

• most inflexible path first

• most inflexible longest path first

The longest path first rule selects among the not yet processed lightpaths one that
contains the largest number of links. Ties are broken arbitrarily. The underlying
idea is that the step-wise reduction of wavelength availabilities makes it in particular
for long lightpaths more and more difficult to avoid need for converters. Note that
this rule yields a static ordering, i.e., the sequence can be determined before the
algorithm is executed.
The most inflexible path first rule selects among the not yet processed lightpaths one
for which the number of continuing wavelengths is minimal. In case each remain-
ing lightpath can still get a wavelength assignment without conversion, lightpaths
with scarce availability of common wavelengths at the complete path are selected
first. The idea is that those lightpaths are most likely to need converters if other
assignments would further reduce the set of available (ongoing) wavelengths. This
ordering is dynamic, since the selection of the next lightpath to be processed is based
on information generated by the previous assignments.
The most inflexible longest path rule combines the two previous rules. Among the
most inflexible paths, a longest one is selected. In this way, the increased risk for
the need of wavelength conversion on long paths with a scarcity of wavelengths is
taken into account. As for the previous rule, this ordering is also dynamic.

Evaluation. A computational evaluation of the constructive heuristics has shown
that none of the tested rules proved to be superior to the others, i.e., there is always
an instance where a rule is outperformed by other rules (see Koster and Zymolka
[93] for the detailed study). This observation indicates that instances may offer
structural preferences favoring any of the specific rules. The outcome in number
of converters reflects these differences, but since the method terminates after the
assignment is completed, no further advantage of such additional information is
taken. To do so, the possibility to reorder a sequence on the basis of the actual
assignment is therefore an attractive idea.

4.4.1.3 Iterative methods

Given a Mcwap solution generated by sequential wavelength assignment, the num-
ber of converters might be reducible by a (partial) exchange of the wavelengths
assigned to two lightpaths. Such an exchange can often be acquired by interchang-
ing the position of the lightpaths in the processing order, as shown in the following
example.
Consider the situation in Figure 4.5. There are two lightpaths with different starting
points, but both use the links AB, BC and end at node C. The wavelengths are
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Figure 4.5: Example for improvement by reordering the lightpath sequence.

ordered as λ1, λ2, λ3. First suppose lightpath 1 is ordered before lightpath 2 and
wavelength λ1 is not available on link BC anymore, whereas wavelength λ3 is not
available on the links of lightpath 1 before node B. So, wavelength λ1 is assigned
to lightpath 1 on all links up to B, and wavelength λ2 is used for link BC. Next,
wavelengths are assigned to lightpath 2. Since wavelength λ2 is not available on BC
anymore, lightpath 2 gets wavelength λ2 on the links up to B, but then needs to use
wavelength λ3 on link BC. This assignment requiring two converters in node B is
shown in Figure 4.5(a).
However, a reordering of the lightpaths allows for the reduction of the number of
converters by one. If processed first, lightpath 2 gets wavelength λ2 on all links,
whereas lightpath 1 is assigned wavelength λ1 up to node B and wavelength λ3 on
its last link BC. This solution is shown in Figure 4.5(b).

Iterative approach. The example shows that the solution of a sequential method
can indicate possible improvements of the processing sequence. We exploit this ob-
servation by an iterative approach, repeatedly processing lightpath sequences which
are reordered in view of the previously required converters. In addition, we presume
to have a lower bound on the converter number. Such a bound can be determined
by the methods described in Section 4.4.2 (or is simply set to zero). In the best case,
a solution matches the bound and is thus identified as optimal solution, terminating
the search. The general outline of an iterative procedure is as follows.

Iterative sequential wavelength assignment.

Input. A Mcwap instance (N , P,Λ,K) as defined in Problem 4.3, a lower
bound B ≥ 0 on the objective value, and a computation time limit.

Method. The flow chart of the method is depicted in Figure 4.6. The itera-
tion starts with an arbitrary initial ordering of the lightpaths, for instance
generated randomly or as for the constructive methods. In each step, the
current sequence is processed by sequential wavelength assignment using
Algorithm 4.1 for each lightpath. If an assignment with in total B convert-
ers is obtained, the method terminates immediately (STOP 1) and returns
this provably optimal solution. Otherwise, maybe too much converters are
still required. In case the time limit is not yet exceeded, we reorder the
sequence by moving lightpaths with converters to the front of the sequence
according to some predefined scheme. The reordered sequence is then pro-
cessed in the same way as next step. During the iteration, the procedure
keeps track of the best found solution which is finally returned in case the
time limit is exceeded (STOP 2).

Output. A Mcwap solution as defined in Problem 4.3.
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Figure 4.6: Iterative sequential wavelength assignment flow chart.

Note that this procedure is no local search method. In the best case, optimality
follows directly from matching the lower bound. However, the lower bound need
not equal the optimum value, and thus it can happen that an optimal solution is
returned without having it identified as such one.
In any way, the method always returns a feasible solution for the Mcwap instance.
Moreover, different initialization sequences can yield different results. Besides the
initialization, another flexible issue is the scheme according to which the lightpath
sequence is reordered.

Reordering schemes. As core step in the procedure, the reordering scheme en-
codes how information from a generated solution is exploited in order to achieve
improvements in reordering the lightpath processing sequence. For our computa-
tional experiments, we implemented four variants:

• push the first lightpath with converter(s) to the beginning of the ordering
(First Path Reordering, FPR)

• push the last lightpath with converter(s) to the beginning of the ordering (Last
Path Reordering, LPR)

• push all lightpaths with converter(s) to the beginning of the ordering, remain-
ing the order of these lightpaths (All Paths Reordering, APR)

• push all lightpaths with converter(s) to the beginning of the ordering, reversing
the order of these lightpaths (All Path Reverse Reordering, APRR)

Pushing (even single) lightpaths to the beginning of the ordering may yield a com-
pletely different result, a worse as well as a much better one. However, the first
lightpaths in the ordering usually do not need conversions, so that at least the
prepended lightpath(s) with converters in the former solution have best chances to
get rid of them.
In this way, the iterative method explores many sequences, each started with a
slight push in a promising direction. This effect may be accelerated by the last two
variants, which push many lightpaths at once to the beginning.

Evaluation. A comparison study of these methods over 24 Mcwap instances is
documented in Koster and Zymolka [93]. In essence, Figure 4.7 shows some typical
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converter number progressions during the iterations. Although observations are
clearly restricted to our test set, the results give rise to several remarks. First
of all, those variants that move multiple lightpaths at once outperform the other
methods by far. The most impressive example is provided by Figure 4.7(a), while
the other diagrams 4.7(b)–4.7(d) show gradually more similar behaviors. Note that
the number of iterations required by the best performing method (APRR) increases
in the same diagram order. The comparison results indicate that moving just a
single lightpath to the sequence front does not change much in the converter number
generated by the next iteration. A larger jump between two iterations rarely happens
if the order is just slightly rearranged. The lightpath set moves (APR and APRR)
allow for faster progress towards considerably better solutions. In fact, the APRR
method seems to be most effective. Compared to APR, reversing the order of the
moved lightpaths brings additional motion into the lightpath sequence reorderings,
which seems to have a beneficial effect.
Within the time limit of ten minutes, 16 of the instances have been solved by at
least one of the methods (APRR always among them) to optimality, detecting a
converter-free assignment. Figure 4.7(d) shows one of the remaining cases where the
lower bound was not matched during the iterations. In three of these instances, the
gap between the best found solution and the lower bound is less than three, showing
the generated solutions to be close to optimal. However, this gap could not always
be fully closed and thus gives rise to look for further advancements of the methods.

(a) (b)

(c) (d)

Figure 4.7: Converter number progressions of the iterative methods for some selected
instances.



4.4. Algorithms for Mcwap 163

4.4.1.4 Wavelength extraction

A promising idea for a refinement of solution methods is the principle of problem
reduction by fixing of partial solutions. Many optimization methods, such as branch-
and-bound, make systematical use of this principle. For Mcwap, the following
observation offers a heuristic approach in this direction.

Extracting wavelengths. Assume we have found a solution with a converter
number z < 1

2 |Λ| . Since any converter affects exactly two different wavelengths,
the solution contains some wavelengths that are never converted from or to. Such
wavelengths are assigned exclusively to complete lightpaths. Restricting to (any sub-
set of) these wavelengths and the corresponding lightpaths, a converter-free partial
solution is obtained. As the objective value cannot be improved on such a partial
solution, it is reasonable to fix it and to continue with the remaining instance, re-
flecting a ’critical part’ of the problem where converters are still needed and thus
further improvements can be expected. This process, called wavelength extraction,
applies also to solutions with a number of converters larger than 1

2 |Λ| as long as
unconverted wavelengths occur to form an unimprovable problem part to be fixed.
Note that the original solution guarantees existence of feasible solutions for any re-
duced instances generated by extracting a subset of wavelengths together with their
associated lightpaths from any feasible solution of the original problem at hand.
By a wavelength extraction, the space of producible solutions is shrunken which
can, in the worst case, exclude all optimal solutions, too. The probability for such
a case keeps low as long as only unconverted wavelengths are extracted. Moreover,
the extraction of complete wavelengths from an instance (solution) is just one re-
duction possibility, among many others. As special feature, this approach maintains
structural properties from the original instance, such as uniform availability of wave-
lengths. In this light, the proposed wavelength extraction approach provides a good
compromise between sacrifice of accuracy and gain of tractability by a considerable
problem size reduction.

Improving heuristics. As a generic problem reduction principle, wavelength
extraction can be applied in combination with the previously described heuristics.
Whenever a solution with unconverted wavelengths is detected, (a subset of) un-
converted wavelengths with the associated lightpaths can be removed, executing a
heuristic recursively on the reduced instance. A preliminary study of this method-
ology has been carried out in Koster and Zymolka [96]. From 14 instances in total,
in four cases an iterative heuristic run over 6000 seconds CPU time could not find
a solution matching the lower bound. So, wavelength extraction was repeatedly
applied for the best found solutions, removing all unconverted wavelengths and run-
ning the iterative heuristic again for the same time. One instance did not allow for
progress this way, but two further instances have been solved to optimality within
two iterations, and for the last instance, the gap between the best known solution
and the lower bound was reduced by a total of 83% after three iterations. These
results motivate to consider a more elaborate way to exploit wavelength extraction
within the heuristics.
Since the iterative heuristics generate a complete solution in each iteration, wave-
length extraction can be applied as a built-in feature. For this, we keep track of
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the (number of) converted wavelengths in the actual assignment and initiate an ex-
traction step according to some guiding criteria. Such extractions can be applied
recursively. For any recursive call, we set a stop limit for searching the reduced
instance, by a time bound, a maximum iteration number, or both in a competing
manner. If no improvement was found when reaching the limit, we return to the
larger instance of the invoking run and continue its iterative processing, seeking for
further (partial) assignments promising to be extracted. Otherwise, a better partial
solution found somewhere during the iterations can always be extended to the as-
sociated complete solution by adding the formerly fixed assignments. This way, a
more elaborately guided search of the solution space is realized, exploiting problem
size reductions in a useful manner.

A computational study of iterative heuristics with integrated wavelength extraction
is presented in the next chapter. Here, we close the discussion of upper bound
algorithms by heuristics and turn to their counterpart, lower bounds for Mcwap.

4.4.2 Lower bounds

NP-hard problems do not allow for efficient computation of optimal solutions in
general. Hence, the derivation of good lower bounds is of crucial importance. Such
an additional information does not only allow to rate the quality of any solution for
the problem, but can also be a valuable guide for solution algorithms, as already
stated in the preceding section.
In this section, we study the computation of lower bounds for Mcwap. Having an
integer linear program formulation at hand, a standard approach to obtain a dual
bound consists of solving its linear relaxation. Moreover, a recent combinatorial
lower bound from Koster [91] is discussed.

4.4.2.1 Linear relaxation values

For Mcwap, two integer linear programming models are presented in Section 4.3.
Their comparison in Lemma 4.15 and Lemma 4.16 shows that the assignment formu-
lation is dominated by the path packing formulation in terms of the linear relaxation
value. Thus, we focus on the path packing model (4.3) and propose a column gen-
eration method to solve its linear relaxation. For the general outline of the method,
we restrict to the uniform fiber spectra case and describe appropriate adaptions to
general instances afterwards. As a first step, we describe a model transformation by
which the size of the linear program is (in theory) substantially reduced.

Model transformation. In the original form, the path packing formulation (4.3)
on page 151 is tremendously large since it holds an individual variable for each
possible path packing. This is necessary due to the requirement that the selected
path packings provide exactly the subpaths used for lightpath partitionings. On
one hand, letting the path packings provide more subpaths than strictly required
does not invalidate any solution, as turning equalities (4.3c) into ’≤’-inequalities
yields a relaxation of the original model. In fact, any solution of the relaxed model
could just offer multiple wavelengths for some partitioning subpaths to generate



4.4. Algorithms for Mcwap 165

the individual lightpath assignments. For this relaxation, on the other hand, path
packings that are not maximal with respect to set inclusion become dispensable,
since any solution including such path packings can be easily transformed to a
solution with same objective value using exclusively inclusion-maximal path packings
(by filling up the selected packings). Hence, the xφ-variables can be restricted to
the subset of inclusion-maximal path packings. As a consequence, the described
transformation implies a considerable model size reduction.
Let Φ̂ ⊂ Φ be the set of all path packings that are maximal with respect to set
inclusion, i.e., ∀ φ̂ ∈ Φ̂, φ ∈ Φ : φ̂ ⊂ φ ⇒ φ̂ = φ . Then the alternative path
packing model for Mcwap reads:

ẑP = min
∑

p∈P1

∑

s∈Sp

ys
p


−

∑

p∈P1

vp


 (4.4a)

s.t.
∑

s∈Sp:

ℓ∈L(s)

ys
p = vp ∀ p ∈ P1, ℓ ∈ L(p) (4.4b)

∑

p∈P1:
s∈Sp

ys
p ≤

∑

φ̂∈Φ̂

ms
φ̂
xφ̂ ∀ s ∈ S (4.4c)

∑

φ̂∈Φ̂

xφ̂ ≤ |Λ| (4.4d)

ys
p, xφ̂ ∈ Z+ ∀ p ∈ P1, s ∈ Sp, φ̂ ∈ Φ̂ (4.4e)

Both the objective (4.4a) and the lightpath partitioning constraints (4.4b) are carried
over unchanged from the original model (4.3). Constraints (4.4c) result from relaxing
constraints (4.3c) to inequalities, in order to allow for overprovision of subpaths,
and the additional restriction to inclusion-maximal path packings, which applies for
constraint (4.4d) as well. As usual, ẑ∗P denotes the linear relaxation value of (4.4).
Due to the variable set reduction, the transformation does not yield a relaxation of
(4.3). So, it is not immediately clear how the solutions of both models are related
to each other, in particular in view of their linear relaxations. The following lemma
shows that the optimal values of both models still coincide.

Lemma 4.19 The path packings models (4.3) and (4.4) have the same optimum
value both as integer linear programs and as linear relaxations, i.e., zP = ẑP and
z∗P = ẑ∗P for all instances.

Proof. We first consider the linear relaxations and show that any feasible solution
of (4.3) can be transformed to a feasible solution of (4.4) with the same objective
value, and vice versa.
Consider an arbitrary fractional solution of the linear relaxation of (4.3). Any path
packing φ with xφ > 0 can be filled up by adding single-link subpaths for any link

with unoccupied wavelengths to an inclusion-maximal path packing φ̂ ∈ Φ̂ with
φ ⊂ φ̂. Setting xφ̂ := xφ for all these packings, we get a solution of (4.4) with same
objective value, as the y-variables have not been changed.
Unfortunately, the reversed transformation to turn strictly satisfied inequalities
(4.4c) into equalities does not work that simple. Removing paths from a pack-
ing φ̂ decreases the right-hand side of such an inequality by integer multiples of the
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corresponding variable xφ̂ which might fail to close the difference to the left hand

side exactly (or even violate the former inequality). Instead, we modify a solution
of (4.4) iteratively as follows. For each subpath s ∈ S, define the corresponding
inequality slack

∆s :=
∑

φ∈Φ

ms
φxφ −

∑

p∈P1:
s∈Sp

ys
p ≥ 0 .

Let s ∈ S be an arbitrary subpath with ∆s > 0. Then there exists a variable xφ > 0

(initially in fact φ ∈ Φ̂) with ms
φ > 0. Let φ′ be the path packing obtained from φ by

decrementing the multiplicity for s by one, i.e., ms
φ′ := ms

φ− 1 for s and ms′

φ′ := ms′

φ′

for all s′ ∈ S \ {s}. Then we reset the variable xφ to xφ := max{0, xφ − ∆s} and
xφ′ to xφ′ := xφ′ + min{xφ,∆s}. This setting increases xφ′ by the same value as xφ

decreases, namely by ∆s if xφ ≥ ∆s and by xφ otherwise. By the same (positive)
value, the transformation reduces the slack of the inequality for s (either to zero or
to ∆s − xφ > 0) due to the definition of φ′, while all other inequality slacks remain
unchanged. This procedure is repeated as long as s ∈ S with ∆s > 0 exists. In the
end, we get ∆s = 0 for all s ∈ S, a feasible solution for the linear relaxation of (4.3).
Thereby, the solution value is unaffected by any step since all y-variables keep their
value.
For the integer linear programs, notice that ∆s ∈ Z+ for all subpaths s ∈ S. Ap-
plying the same transformations as for the linear relaxation solutions, all x-variable
value changes occur in integer amounts and thus maintain integrality of the so-
lutions. Hence, equivalence of both integer linear programs follows by the same
argumentation. �

As a result, the transformed model, though much smaller, does not loose strength
and provides the same lower bound for Mcwap as the original model. Hence, for-
mulation (4.4) is favorable for computational purposes.

Column generation approach. Despite the reduction, Φ̂ remains a set of
exponential size, and thus the transformed path packing formulation is still too
large to be handled explicitly. Therefore, we propose a column generation method
to solve its linear relaxation. For a basic introduction to column generation and
related techniques, we refer to Chvàtal [32] and Desrosier and Lübbecke [37].
For (4.4), we apply column generation for the x-variables, whereas all y-variables
are considered explicitly. Let Φ ⊂ Φ̂ denote the subset of path packings whose
associated variables are already included in the current linear program. Having
determined the optimal solution of this restricted linear program, we have to solve
the so-called pricing problem to decide whether further variables are required.
To formulate the pricing problem for (4.4), we introduce the dual variables πp

ℓ , πs,
and πΛ for the constraints (4.4b), (4.4c), and (4.4d), respectively. A primal-dual
pair ((x, y), π) is optimal for the linear programming relaxation of (4.4) if and only
if c − AT π ≤ 0, where c is the primal objective function and A is the coefficient
matrix of (4.4). For a path packing φ̂ ∈ Φ̂, we have cφ̂ = 0, and the coefficients in A

corresponding to (4.4b) are zero as well. So, the optimality condition reads in our
case

−
∑

s∈S

ms
φ̂
πs ≤ πΛ . (4.5)
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Note that πs ≤ 0 by (4.4c), whereas πΛ ≥ 0. If ((x, y), π) is in fact an optimal pair
for the unrestricted problem, (4.5) holds for every φ̂ ∈ Φ̂. To verify this, we search
for a still not contained path packing φ̂ ∈ Φ̂ \Φ that maximizes the left hand side of
(4.5). If the maximum value is less than or equal to πΛ, then no improving columns
exist, and the linear relaxation is solved to optimality. Otherwise, we have found a
path packing φ ∈ Φ that violates (4.5) and can be added to the linear program to
improve the relaxation.
Representing the multiplicity function of a path packing, we introduce the following
variables:

ms ∈ Z+ denotes the number of times subpath s ∈ S is contained in a
path packing.

Then the pricing problem reads:

z = max
∑

s∈S

(−πs)ms (4.6a)

s.t.
∑

s∈S:ℓ∈L(s)

ms = kℓ ∀ ℓ ∈ L (4.6b)

ms ∈ Z+ ∀ s ∈ S (4.6c)

Using Observation 4.1, inclusion-maximal path packings are characterized my meet-
ing the provided wavelength multiplicities kℓ on all links ℓ ∈ L exactly, as demanded
by equalities (4.6b). In fact, any path packing that occupies a link ℓ ∈ L less than
kℓ times can be filled up by adding the subpath s with L(s) = {ℓ} as often as re-
quired to reach kℓ. In the other direction, any path packing that fully occupies all
link capacities obviously cannot be extended by further paths and thus is inclusion-
maximal. Hence, equalities (4.6b) together with non-negativity and integrality con-
ditions (4.6c) ensure that the set of all feasible solutions (ms)s∈S corresponds to the
set of multiplicity functions of all inclusion-maximal path packings, and objective
(4.6a) is equivalent to maximizing the left hand side of the optimality condition
(4.5).
We briefly remark that the pricing problem for the original formulation (4.3) is quite
similar. As only difference, the equalities (4.6b) are replaced by ≤-inequalities, ex-
pressing that the wavelength multiplicities must not be exceeded by the selected
subpaths, which already characterizes any feasible path packing of subpaths. Note
that this pricing problem forms a relaxation of (4.6). Moreover, both pricing prob-
lems have the same optimum value as long as (−πs) ≥ 0 for all s ∈ S, since then
each optimum path packing as solution for the relaxed problem with inequalities in
(4.6b) can be filled up to an inclusion-maximal path packing without decrease in
the objective function value.
In case kℓ = 1 for all ℓ ∈ L, the pricing problem (4.6) reduces to a maximum
weighted set partitioning, which is known to be NP-hard (see Garey and Johnson
[52]). Hence, the pricing problem modeled by (4.6) is as well NP-hard in general.
However, the pricing problem need not be solved to optimality in every iteration of
the algorithm. It suffices to find a feasible solution with value strictly larger than πΛ,
e.g., by heuristics such as built-in primal heuristics of general purpose mixed-integer
program solvers (which we in fact use in our implementation). Only if this fails, we
have to solve (4.6) to optimality in order to guarantee for an exact evaluation of the
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optimality condition (4.5) for the path packing formulation (4.4).
In general, a path packing represents a multi-set (of subpaths). From an abstract
perspective, problem (4.6) can then also be interpreted as maximum weighted multi-
set partitioning and the relaxation with inequalities for (4.6b) as maximum weighted
multi-set packing , representing the multi-set generalizations of the well-known set
partitioning and set packing problem, respectively. In this light, multi-set partition-
ings and multi-set packings form generic structures which provide an interesting field
for further research. As a first step, a special variant of multi-set packing with re-
striction to pairwise subpath conflicts has been studied as stable multi-sets in Koster
and Zymolka [92, 95]. Similar investigations for multi-set partitioning and multi-set
packing could be helpful in improving the solving process for the pricing problems
and, due to their generic structure, for many other problems as well.

Non-uniform fiber spectra. In view of the generalization of the path packing
formulation to non-uniform fiber spectra, the pricing problem can be easily adapted
to generate columns for a particular wavelength subset Λi, as introduced in Sec-
tion 4.3.2. To this end, we have only to replace the wavelength multiplicities in
conditions (4.6b) by those for the considered subset, i.e., instead of kℓ, the right-
hand sides are given by kλ

ℓ for an arbitrary λ ∈ Λi. As a result, we obtain w different
pricing problems, one for each wavelength subset. In each iteration, all these prob-
lems have to be solved in order to check whether there is an improving column for
each wavelength subset individually. Since this adaption of the pricing procedure is
straightforward, all further modifications and discussions can be applied on each of
the individual pricing problems as well, and we continue to describe only the case
of uniform fiber spectra.

Path number bounds. The solution space of pricing problem (4.6) comprises all
inclusion-maximal path packings that do not exceed the wavelength multiplicities
on the links. However, such a path packing can be of limited use if it contains a
subpath s ∈ S more often than it occurs as partial path of the given lightpaths. The
corresponding packings, though included in (4.4), can in principle be replaced in any
solution by packings in which the unusable paths are substituted by an appropriate
multi-set of single-link subpaths (which are always usable for partitionings). In order
to avoid pricing of columns with useless subpaths, additional bounds on the number
of times a subpath can be packed are introduced.
For a subpath s ∈ S, the maximum utilization multiplicity is given by

bs :=
∑

p∈P1:s∈Sp

vp ,

the total number of lightpaths that contain s as subpath. Hence, we extend the
formulation by restricting the multiplicities of multiple link subpaths in the packings
as

ms ≤ bs ∀ s ∈ S : |L(s)| ≥ 2 (4.6d)

and incorporate these conditions whenever we refer to the pricing model (4.6).

Restricted pricing. The bounding of subpath multiplicities inspires a further
idea to improve pricing of valuable packings. Selecting a packing containing sub-
paths that have to be used as strict partial paths for partitioning of the lightpaths
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directly implies a need for converters. To avoid this implication, a packing has to
provide only full lightpaths as subpaths, each at most vp times. In the wavelength
assignment, the corresponding wavelength is then assigned exclusively to entire light-
paths. Such packings are most likely to be part of optimal solutions, in particular
in case only few converters are needed in total.
For exploiting this observation, we apply the following strategy for pricing, referred
to as restricted pricing. We start with the generation of path packings that are
exclusively composed of entire lightpaths, called restricted path packings. For this,
we bound the variables ms by vp if s = p for a lightpath p ∈ P1, and by 0 otherwise.
Note that this only requires to modify conditions (4.6d) on the right-hand side.
Moreover, single-link partial paths remain selectable and guarantee that maximal
restricted path packings can be obtained this way. As soon as no further restricted
path packings as improving columns are found, the variable upper bounds in the
pricing problem are lifted from 0 or vs to bs, continuing with the usual column gen-
eration until reaching the optimum. For z∗P = 0, restricted pricing could suffice to
construct an optimal solution, and no proof of optimality is required when 0 is fi-
nally reached. In case z∗P > 0, a change to unrestricted pricing is typically necessary
at some earlier point to provide for the optimal solution also packings with strict
partial paths (if not all of these occur also as full lightpaths). However, usually few
final iterations with unrestricted pricing are needed for completing the procedure.
Using restricted pricing turns out to be a very profitable idea for solving the linear
relaxation more quickly, as a computational evaluation in Koster and Zymolka [94]
has indicated. Out of a test set of 80 instances, a converter-free and thus optimal
solution was found by an iterative heuristic in totally 57 cases. For the remaining
23 instances, the lower bound obtained from the linear relaxation of (4.4) was com-
puted both without and with restricted pricing. The results reveal the benefit of
applying restricted pricing as long as possible. Overall, reductions above 50% in the
total number of generated columns are typical, CPU time reductions of more than
80% not seldom. Figure 4.8 illustrates characteristic progressions of usual column
generation and that by use of restricted pricing. In this example, restricted pricing
was applied for the first 194 of totally 198 iterations. In the beginning, both strate-
gies show a similar behavior. When approaching the LP solution (being z∗P = 5 in
this case), restricted pricing sheers out of the common progression track, providing
faster pricing as well as faster progress towards the optimum value. At this phase,
the advantage of restricted pricing takes effect. While the usual procedure grinds the
final solution out by collecting many unrestricted and thus semi-helpful path pack-
ings at a constant rate, the restricted pricing has soon generated most necessary
ingredients to compose the optimal fractional wavelength assignment. This is also
indicated by the lower number of non-zero path packing variables xφ in the optimal
solution, in this case 179 compared to 236 by the usual pricing strategy. If restricted
path packings cannot be found anymore, switching back to unrestricted pricing is
just necessary at the very end for a couple of iterations to prove optimality.

Initialization. By use of column generation, we need not setup the complete pro-
gram for solving the linear relaxation. In every iteration, the set of path packings
considered explicitly is extended, exploiting the dual information of the actual so-
lution. It is, however, unclear with which columns the linear program should be
initialized as to minimize the number of iterations and computation time. We de-
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(a) LP value. (b) CPU time.

Figure 4.8: Iterative progress of LP value (in logarithmic scale) and accumulated
CPU time (in seconds) without and with the restricted pricing strategy in a typical
case.

scribe three promising strategies that have been evaluated and compared.
The path packing formulation (4.4) allows to initialize the master problem with a
single path packing. For every link ℓ ∈ L, we insert the subpath consisting only
of this single link kℓ times. Obviously, the resulting path packing is feasible and
inclusion-maximal. We refer to this path packing as the basic column in the linear
program as well as to the strategy using only this column for initialization. This
column can be taken |Λ| times to obtain a feasible (integer) solution in which every
lightpath is converted at every intermediate node. Hence, the initial solution value
is the worst possible (integer) one as every path p ∈ P1 contributes ( |L(p)| − 1)vp

to the objective.
Alternatively, the linear program can be initialized with a feasible wavelength as-
signment obtained by any heuristic method. Given such a solution, we have to
construct |Λ| path packings consisting of all subpaths to which the same wave-
length is assigned and maximize them by adding single-link subpaths as often as
needed to meet the provided wavelength multiplicities. In the strategy best solution,
we use the best known solution for this construction. This way, the initial value of
the master program becomes the number of converters in the solution and thus the
best possible objective value known so far.
Both strategies described above start with a feasible (integer) solution by provi-
sion of a number of suitable path packings. A drawback of such an initialization is
the necessity to find new columns that can be appropriately combined with the al-
ready included columns. To gradually construct a feasible (fractional) solution from
scratch, the linear program has to be initialized without any path packing. However,
in that case the first master problem is infeasible and typically no dual information is
generated by the linear programming solver, which makes it impossible to solve the
first pricing problem. A remedy lies in the usage of the basic column in a different
way. We add a column to the formulation that is equivalent to the basic column,
except for the objective coefficient and the contribution to the spectrum bound in-
equality (4.4d). This so-called feasibility column gets coefficient 0 in the spectrum
bound constraint (4.4d) and thus does not represent a wavelength. Moreover, the
column gets a huge objective penalty. This guarantees that the first master problem
is feasible by selecting the feasibility column (at most) |Λ| times. So, the first LP
value will be very high. In the next iterations, columns are generated that reduce
utilization of the feasibility column more and more until a (fractional) solution is
found making the feasibility column obsolete. Initializing the linear program this
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(a) LP value. (b) CPU time.

Figure 4.9: Iterative progress of LP value (in logarithmic scale) and accumulated
CPU time (in seconds) for all initialization strategies in a typical case.

way constitutes the strategy feasibility column.
Compared to the basic column strategy, the feasibility column strategy progresses
slightly different since (4.4d) initially is not satisfied with equality in the feasibility
column case, whereas it typically is in the basic column case. Hence, the dual vari-
ables are likely to have different values and thus produce different columns to add.
After the initial differences, both strategies perform similar.
A computational study on the performance influence by these initialization strate-
gies for solving the linear relaxation is also reported in Koster and Zymolka [94].
Reusing the same test set as above, the linear relaxation was additionally solved
in several ways, by alternative application of different initialization strategies and
restricted pricing for a competing evaluation.
The results disclose two interesting observations. At first, the best solution strat-
egy behaves very irregular on the test set. It turns out that this strategy is better
compared to the others whenever the value of the best known solution used for ini-
tialization in fact equals the LP value, and much worse otherwise. This effect can
be explained easily. In those cases that the LP value equals the best known solu-
tion value, no improving columns exist to decrease the value of the initial LP. This
conclusion is drawn by the best solution strategy algorithm very quickly, for the
test set confirming optimality after at most five iterations. The other strategies are
comparable fast, but process more iterations for still having to generate the columns
of an optimal solution. If in contrast the best solution value differs from the optimal
LP value, starting with such a solution hampers the progress, due to being forced to
improve it step-wise by compatible columns. In comparison, the other strategies can
more simple and direct frame improved LP solutions and find the optimum much
faster. For such a case, Figure 4.9 illustrates a typical behavior of the strategies
during the column generation process, displaying the iterative progress of the LP
value and the accumulating computation time.
Second, we realized that for the best solution strategy in particular those instances
with a small (non-zero) gap between LP and best solution value are the most time
consuming ones in comparison with the other strategies. This second effect is more
difficult to explain, since it is in fact counter-intuitive. Experiments with less good
solutions used as initial columns revealed that they often result in better CPU times
than with the best solution. A possible explanation is that the progression can be
more easily achieved if the solution is not that close to the LP value. Figure 4.9(b)
confirms this, as the slope of the CPU time is far more steep for the best solution
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strategy than for the other strategies, indicating that it is more difficult to integrate
the new columns (the CPU time for pricing is typically marginal in comparison to
the reoptimization of the master LP). First if the LP value starts to drop (compare
with Figure 4.9(a)), the CPU time per column is comparable to the other strategies,
but this usually happens much later.
So, against intuition, the best solution strategy is not favorable except for cases with
suspicion to have an optimal solution already at hand. Otherwise, we experienced
that the feasibility column strategy is most favorable on average, closely followed
by the basic column strategy. These first evaluations have been carried out with
the usual pricing. In combination with the always accelerating restricted pricing
strategy, the best results are obtained by the basic column strategy, whereas the
feasibility column strategy takes more time. This indicates that the restriction of
path packings is most beneficial if achieving improvement by transition to another
feasible solution requires generation of good fitting columns. In presence of a feasi-
bility column, the effect looses strength.

Summary. As conclusion, the most profitable strategy combination is an initial-
ization with the basic column and use of restricted pricing as long as it provides
potential columns. Without restricted pricing, the strategies basic column and fea-
sibility column perform comparable, usually following a similar progression curve
after a different starting phase.
A further observation from the obtained results is that the path packing model has
proven to be strong. The associated LP relaxation has often a non-zero optimum,
which states a good lower bound and often directly confirms optimality of the best
known solution generated heuristically. Hence, the formulation qualifies particularly
as a suitable fundament for the development of an exact method. Before we turn to
this, an alternative lower bound by a combinatorial approach is presented.

4.4.2.2 Combinatorial lower bound

Recently, Koster [91] suggested a combinatorial lower bound for Mcwap. Originally,
the bound is derived for the special case of uniform fiber spectra and so resumed
first, before we add the adaption to the general case and further observations.
In a clever way, Koster combines two former results and makes the conclusion ap-
plicable by excising small parts with characteristic topology from the network.

Excising stars. Consider an arbitrary Mcwap instance (N , P,Λ,K) with uniform
fiber spectra. The network N = (N,L) can have any physical topology. However,
focusing on a single node n ∈ N and its incident links L(n) ⊂ L (with the node’s
neighbors N(n) ⊂ N) forms a star subnetwork. We call such a partial network
Nn := ({n} ∪ N(n), L(n)) an excised star around n. In a straightforward way, the
Mcwap instance can be reduced to any such excised star. We replace each path
by its subpath in Nn or remove it if it traverses no or just a single link in L(n),
obtaining the adapted path multi-set Pn of two-hop paths, and adapt K accordingly
to Kn : Λ × L(n) → Z+ with Kn(λ, ℓ) := K(λ, ℓ) for all λ ∈ Λ and ℓ ∈ L(n). Let
(Nn, Pn,Λ,Kn) denote such a reduced instance, referred to as excised Mcwap star
instance (around n).
In an excised Mcwap star instance, the center node n is the only place where
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converters can be necessary. By the construction, a lower bound for such an excised
Mcwap instance gives a lower bound on the number of converters required at n
in the original instance, too. Since a node does not occur as center of multiple
stars, lower bounds for excised Mcwap star instances around different nodes are
independent of each other and thus can be accumulated to a total lower bound for
the original instance. Besides this cumulation capability of the associated lower
bounds, the investigation of star subnetworks is also profitable by the close relation
of Mcwap to familiar coloring problems on such topologies.

Lower bound for excised stars. In Section 4.2, stars have been identified as
topology with special properties in view of Mcwap. Figure 4.2 on page 146 indicates
the close relation of Mcwap on star networks to instances with paths of hop-length
at most two and the reversible transformation to edge coloring instances. Koster
exploited the latter correspondence, capturing multi-fiber Mcwap with individual
link fiber numbers by extension to k-edge coloring. This way, excised stars for any
Mcwap instance can be handled. As second ingredient, he observed that a particular
lower bound for k-edge coloring by Nakano et al. [125] can be adapted to provide
an implication for the associated Mcwap star instances. This bound approximates
the number of edges in a k-edge coloring instance that cannot be colored with a
given number of colors. Because any edge represents a (part of a) lightpath by
construction, uncolorable edges correspond to lightpaths that cannot be assigned a
single wavelength and thus need a converter.
Let (Nn, Pn,Λ,Kn) be an arbitrary excised Mcwap star instance. Since the proper
dimensioning condition (4.1) from page 137 carries over to excised subinstances,
single-link paths in Pn can always be assigned a wavelength in a postprocessing and
are left out in the following, assuming w.l.o.g. that |L(p)| = 2 for all paths p ∈ Pn.
The corresponding k-edge coloring instance is then defined by the multi-graph Gn =
(VL(n), EPn) where VL(n) contains a vertex vℓ for each network link ℓ ∈ L(n) and EPn

holds an individual edge vℓ1vℓ2 for each path p ∈ Pn with L(p) = {ℓ1, ℓ2}. The vertex
weights kvℓ

are given by the associated link fiber numbers kℓ, w.l.o.g. with kℓ > 0
for all ℓ ∈ L(n). Then, any k-edge coloring of Gn with at most |Λ| wavelengths
corresponds to a wavelength assignment for (Nn, Pn,Λ,Kn) without converters.
Let W ⊂ VL(n) be an arbitrary vertex subset, and define k(W ) :=

∑
vℓ∈W kℓ. For

any k-edge coloring of Gn, the number of edges with the same color in the induced
multi-subgraph Gn[W ] = (W,EPn [W ]) is at most

⌊
1
2k(W )

⌋
(the maximum size of a

so-called k-matching). Hence, any feasible k-edge coloring with (at most) |Λ| colors
leaves at least a number of

bn(W ) := max

{
0, |EPn [W ]| − |Λ|

⌊
1

2
k(W )

⌋}
(4.7)

edges uncolored. Koster argues that condition (4.1) yields |E[W ]| ≤ 1
2 |Λ| k(W )

and thus bn(W ) = 0 for any subset W with k(W ) even. The same result holds for
|W | ≤ 2. Therefore, these subsets can be omitted. Since (4.7) gives a valid lower
bound on the number of uncolorable edges or, equivalently, the number of converters
in the corresponding Mcwap subinstance restricted to the links associated with W
for any remaining selection of W , it is possible to maximize over these subsets which
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gives

B(Gn) := max
W⊂VL(n):

k(W ) odd

bn(W ) = max



0, max

W⊂VL(n):

k(W ) odd

(
|EPn [W ]| − |Λ|

⌊
1

2
k(W )

⌋)


as lower bound on the converter number for (Nn, Pn,Λ,Kn). Accumulating these
bounds for each node n ∈ N yields finally

B :=
∑

n∈N

B(Gn) (4.8)

as lower bound for the original Mcwap instance (N , P,Λ,K).
Koster proved some interesting properties of the lower bound B defined by (4.8). On
one hand, a comparison to the lower bound ẑ∗P obtained from the linear relaxation
of (4.4) shows:

Theorem 4.20 (Koster [91]) For any Mcwap instance with uniform fiber spectra
on a star network, the lower bounds B and ẑ∗P for the minimum converter number
are equal, i.e., B = ẑ∗P .
In the general case of Mcwap with uniform fiber spectra on arbitrary networks, it
holds that ẑ∗P ≥ B.

So, B is theoretically weaker than ẑ∗P , and Koster gives an example where in fact
ẑ∗P > B.
On the other hand, the combinatorial nature of B provides some advantages. As ad-
ditional information, the values B(Gn) allocate unavoidable converters to particular
nodes in the network. Further research might investigate to exploit such non-zero
bounds for individual nodes to improve guidance of solution algorithms. Moreover,
B can be determined efficiently. Koster reformulated B(Gn) by means of a sub-
modular function. Minimizing such functions has been investigated by Grötschel et
al. [57, 58] and yields:

Theorem 4.21 (Koster [91]) For any Mcwap instance with uniform fiber spec-
tra, B according to (4.8) can be computed in strongly polynomial time.

Moreover, Schrijver [149] and Iwata et al. [73] gave combinatorial methods for mini-
mizing submodular functions. For computational reasons, however, Koster proposed
a simpler Greedy-type algorithm to approximate the values B(Gn) from below by
considering selected subcollections of subsets W and used this method for a bound
comparison.

Non-uniform fiber spectra. We now adapt B to Mcwap with non-uniform
fiber spectra. For this, reconsider the definition of bn(W ) in (4.7). Note that in the
previous derivation for uniform fiber spectra, the colors from Λ are considered indi-
vidually, but all in parallel due to having the same total multiplicity k(W ) for any
vertex subset W . Without the latter property, an analogous argumentation holds
when using color-wise adapted entities.
We construct the edge-coloring multi-graph Gn as before, but deal now with indi-
vidual vertex weights kλ

vℓ
:= kλ

ℓ for each color λ ∈ Λ, i.e., restrict to edge colorings of

Gn where the number of edges with color λ incident to a node n does not exceed kλ
ℓ .
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Each such (complete) coloring of Gn again corresponds to a wavelength assignment
for (Nn, Pn,Λ,Kn) without converters. For an arbitrary vertex subset W ⊂ VL(n),

we define kλ(W ) :=
∑

vℓ∈W kλ
ℓ for all λ ∈ Λ. Then, no feasible edge coloring of Gn

w.r.t. the vertex weights kλ
vℓ

can have more than
⌊

1
2kλ(W )

⌋
edges colored with λ in

the induced multi-subgraph Gn[W ]. This holds for any color λ ∈ Λ, and over the
complete spectrum, the maximum number of colorable edges in Gn[W ] sums up to∑

λ∈Λ

⌊
1
2kλ(W )

⌋
. Hence, the estimation (4.7) for the least number of uncolorable

edges in Gn[W ] is replaced by

bn(W ) := max

{
0, |EPn [W ]| −

∑

λ∈Λ

⌊
1

2
kλ(W )

⌋}

and, if inserted further into the definition of B(Gn), finally yields the desired com-
binatorial lower bound B for Mcwap with arbitrary fiber spectra.

Influence of terminating lightpaths. We add a further observation regard-
ing the lightpaths terminating in the star center which have been neglected for
the bound estimation. For the explanation, we restrict again to the special case
of uniform fiber spectra, which carries over straightforward to the general case.
Consider an arbitrary node n ∈ N as center of an excised Mcwap star instance
(Nn, Pn,Λ,Kn). Each path p ∈ Pn in the adapted path multi-set has two hops
and thus occupies a channel on two links from L(n), and note that |Pn| = |EPn | .
Moreover, let Pn := { p ∈ P | n ∈ {op, dp} } be the multi-set of all lightpaths from
the original instance (including single-link lightpaths) that terminate in node n.
Each such path occupies a single channel on one of the links L(n) incident to
n. For reduction to an arbitrary vertex subset W ⊂ VL(n) of Gn, let further

Pn[W ] :=
{

p ∈ Pn

∣∣ L(p) = {ℓ} : vℓ ∈W
}

define those paths from Pn using a link
with associated vertex vℓ in W . Then the policy of sufficiently dimensioned links,
as formulated in (4.1) on page 137, can be summed up over all links corresponding
to vertices vℓ ∈W and guarantees that

2 |EPn [W ]| + |Pn[W ]| ≤ |Λ|
∑

vℓ∈W

kℓ = |Λ| k(W ) , (4.9)

i.e., the restriction of all lightpaths from the original solution to the links corre-
sponding to vertices in W does not occupy more channels in total than provided by
the sum of installed link capacities. Inequality (4.9), appropriately transformed, can
now be inserted into the combinatorial estimation (4.7) of unavoidable converters at
node n and yields for the only relevant case that k(W ) is odd:

bn(W ) = max

{
0, |EPn [W ]| − |Λ|

⌊
1

2
k(W )

⌋}

≤ max

{
0, |Λ|

1

2
k(W )− |Λ|

1

2
(k(W )− 1)−

1

2
|Pn[W ]|

}

≤ max

{
0,

1

2

(
|Λ| − |Pn[W ]|

)}

Hence, we can deduce that bn(W ) = 0 whenever the number of lightpaths terminat-
ing in n along the links associated to W is at least as high as the spectrum size |Λ| .
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In other words, a combinatorial indication of unavoidable converters at a node n is
only possible if the remaining lightpaths traversing n altogether occupy a number of
channels on the involved links which is close to the totally provided capacity. With-
out need of conversion, lightpaths terminating in n push the amount of installed
capacities, thus have a contra-productive influence on the lower bound estimation.

Evaluation. Koster [91] carried out a computational study on the quality of B,
reusing the test set of the linear relaxation evaluations. This evaluation restricts to
uniform fiber spectra cases. From the initial 80 instances, no converter-free solution
was found by heuristics in 23 cases, and 13 of these have shown a zero lower bound
ẑ∗P = 0 which yields B = 0 as well by Theorem 4.20. For the remaining 10 instances,
the proposed Greedy heuristic was applied to compute a lower bound (on B, in fact,
and thus indirectly on the Mcwap instance as well). These computations termi-
nated after less than a millisecond each and revealed as result that the obtained
values were equal to ẑ∗P without exemption.
So, the proposed combinatorial bounding method proves comparable throughout the
practical test instances of this evaluation. Clearly, this cannot be expected in gen-
eral, as already indicated by Koster’s counter-example. Therefore, using the linear
relaxation value ẑ∗P of formulation (4.4) as lower bound is anyway advisable, too.
As already suggested, model (4.4) suits also for development of an exact approach,
discussed next.

4.4.3 An exact approach

A standard exact solution approach for integer linear programs is provided by the
well known branch-and-bound method (see, for instance, Nemhauser and Wolsey
[127]). In a divide-and-conquer manner, the scheme explores a dynamically gener-
ated search tree of partial problems, which are successively subdivided whenever the
associated linear relaxation does not show an integer optimum solution. Thereby,
a bounding methodology is used to identify search tree areas whose investigation
becomes obsolete during the process. For this, the optimal value of the linear relax-
ation of a subproblem typically serves as dual bound, whereas the value of the best
found integer solution provides the primal bound to compare with. In combination
with a pricing procedure for solving the linear programs by column generation, the
resulting method is finally called branch-and-price.
In this section, we complete the necessary ingredients to define an exact branch-
and-price method for solving the path packing formulation (4.4) as integer linear
program. The model and the applied column generation procedure have already
been presented. As last essential part, we discuss applicable branching rules to deal
with fractional solutions of the generated linear programs. For our Mcwap model,
this aspect turns out to be challenging due to the influence of master program mod-
ifications on the pricing step.

Branching rules. In any branch-and-bound based approach for solving integer
linear programs, the provision of well-designed branching rules is of crucial impor-
tance for the solution process. In the inspiring approach to vertex coloring, Mehrotra
and Trick [115] propose a combinatorial branching by the simple distinction whether
two non-adjacent vertices get the same color or not. This elegant idea provides the
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advantage that branching just changes the underlying graph, but does not require
to add branching constraints to the integer linear program and thus does not affect
the column generation procedure at all. Unfortunately, this way of branching does
not carry over to Mcwap where wavelengths can be available multiple times and
thus conflicts do not restrict to pairs of lightpaths.
General purpose ILP solvers typically apply generic branching schemes, such as
branching on a single integer variable with non-integral value or branching on a
weighted integer variable sum with actual fractional sum value (also known as knap-
sack branching). Furthermore, each of these schemes comes along with a specified
rule to break ties, for instance by maximum fractionality or by random choice. For
a particular branching step, the applied rule dictates which additional constraints
have to be inserted into the actual linear program to cut off a current non-integral
LP solution and to specify the subproblems to consider further. As long as these
subproblems are solvable by standard LP solvers, any branching rule can be ap-
plied. In our case, however, column generation is used to solve the LP due to its
exponential number of variables. In combination with column generation, suitable
branching rules for the master problem have to be selected more careful since the
induced constraints added to an LP for branching can also influence the pricing
problem (and its solvability). A further issue is the completeness of a branching
scheme, i.e., whether one of the involved rules applies to each feasible fractional
solution or not. In the following, we propose a couple of branching rules and discuss
their properties in regard of these aspects.

Branching on individual variables. Branching on individual integer variables
with non-integral value is one of the most prominent types of branching rules. Such
a branching possibility is simple to detect and simple to realize, as usually only
variable bounds must be adapted.
The path packing formulation (4.4) contains two types of integer variables, the y-
variables selecting the partial paths to cover each lightpath, and the x-variables
specifying the path packings to provide these selected partial paths (and, implicitly,
the wavelengths assigned to them). For LP solving, the x-variables are priced out by
column generation, and so branching on these variables has undesired implications
on the pricing problem. In fact, assume the current (subproblem) LP solution con-
tains a variable with fractional value x∗

φ̂
/∈ Z for a path packing φ̂ ∈ Φ̂. A branching

on this variable generates two subproblems, one by adding the constraint xφ̂ ≤ ⌊x
∗
φ̂
⌋,

and the other by adding the constraint xφ̂ ≥ ⌈x
∗
φ̂
⌉. Each of these constraints gener-

ates a further dual variable whose value must be appropriately taken into account
within the corresponding pricing when solving the respective master subproblem.
(Otherwise, pricing in the branch with xφ̂ ≤ ⌊x

∗
φ̂
⌋ could generate exactly the same

column as for xφ̂, and the associated variable with value x∗
φ̂
− ⌊x∗

φ̂
⌋ would repro-

duce an equivalent LP solution as that intended to be cut off—the begin of a never
ending story without happy end.) Unfortunately, detection of whether such a dual
value contributes to the objective of the pricing problem or not requires to identify
whether the actual pricing problem solution equals exactly the multiplicity function
of φ̂ or not, a rather extensive task as will be discussed below in more detail. An-
ticipating these results, we propose not to branch on individual x-variables in order
to avoid the exacerbating complication of the pricing.
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In contrast, all y-variables are explicitly included in the master program, and one
easily observes that branching on such a variable does not influence the pricing.
Hence, we propose as first branching rule:

Branching rule 1: Branching on y-variables
Given a feasible fractional solution (y∗, x∗) of the linear relaxation
of (4.4) such that there exist p ∈ P1, s ∈ Sp with value y∗sp /∈ Z,
branch by dividing the current problem into two subproblems de-
fined by adding

ys
p ≤ ⌊y

∗s
p ⌋ in one branch, and

ys
p ≥ ⌈y

∗s
p ⌉ in the other branch.

For breaking ties, select an arbitrary candidate variable with most
fractional value, i.e., branch on a variable whose value minimizes
|y∗sp − ⌊y

∗s
p ⌋ − 0.5|.

Clearly, no feasible integer solution of (4.4), but the actual fractional LP solution
is cut off by this standard branching rule. Since the branched variables occur in
the objective, such branchings have often an impact on the optimal subproblem LP
value in (at least) one of the branches. For instance, any branching on a variable ys

p

with s = p directly implies usage of more respectively less conversions for lightpaths
along route p in the subproblems. In case no other lightpaths need conversion, the
LP optimum in the branch with ys

p ≤ ⌊y
∗s
p ⌋ will strictly increase and, in the best

case, might thereby become prunable.
Unfortunately, Branching rule 1 is not complete since there exist feasible fractional
LP solutions with all y-variables integer, e.g., whenever the LP value ẑ∗P = 0 in ob-
jective (4.4a) (where evaluations always include the term in brackets), all y-variables
have integer values according to the only feasible setting y∗sp = vp if s = p and y∗sp = 0
otherwise, independent of whether the LP solution is completed by fractional or in-
teger x-variables. As a consequence, exclusive application of Branching rule 1 does
not suffice to provide an exact solution method for Mcwap, and further branching
rules involving the x-variables are inevitable.

Branching rules involving x-variables. Whenever a variable xφ̂ is involved
in a constraint added to the master program for branching purposes, the pricing
has to take the corresponding dual variable value of this constraint into account.
Basically, such a dual variable becomes part of the optimality condition (4.5) for
φ̂, being added to the left hand side with the appropriate constraint coefficient as
weight. Hence, the weighted dual variable value becomes part of the pricing problem
objective if and only if the solution of (4.6) equals the multiplicity function of φ̂.
This implies that the pricing problem has to be adapted in order to identify those
solutions that correspond to path packings contained in a master program branching
constraint.
An exact identification of an individual path packing φ̂ is cumbersome since it is
to ensure that ms = ms

φ̂
holds for all s ∈ S. This can be linearly modeled by use

of binary indicator variables and appropriate constraints for their correct setting as
shown below, but introduces a number of additional variables and constraints in the
order of O( |S| ) to the pricing model. Since to be added for each individual path
packing to identify, these substantial extensions of (4.6) yield an exploding pricing
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problem which soon becomes too complex for an efficient (since often repeated) so-
lution and thus impracticable.
A more promising alternative is to apply knapsack branching by use of a particu-
larly designed partition of Φ̂ into categories whose members can be identified more
efficiently for pricing. For this, branching is realized by adding a master program
constraint that bounds an (actually fractional) sum over all x-variables for path
packings that belong to the selected category, including those that have not yet
been priced out, to the next integral values. A simple case for such a partition of Φ̂

is to consider the subsets Φ̂s
β :=

{
φ̂ ∈ Φ̂

∣∣∣ ms
φ̂
≥ β

}
and Φ̂ \ Φ̂s

β, i.e., to distinguish

the path packings according to whether subpath s is contained at least β times or
not. Provided the actual LP solution has a fractional sum value over the x-variables
for all φ̂ ∈ Φ̂s

β ∩ Φ, the following branching rule can be applied:

Branching rule 2: Branching on a single subpath multiplicity
Given a feasible fractional solution (y∗, x∗) of the linear relax-
ation of (4.4) such that there exist s ∈ S and β ∈ Z+ with∑

φ̂∈Φ∩Φ̂s
β

x∗
φ̂

=: α /∈ Z,

branch by dividing the current problem into two subproblems de-
fined by adding

∑

φ̂∈Φ̂s
β

xφ ≤ ⌊α⌋ in one branch, and (4.10)

∑

φ̂∈Φ̂s
β

xφ ≥ ⌈α⌉ in the other branch. (4.11)

For breaking ties, select an arbitrary candidate set Φ̂s
β with most

fractional value α, i.e., select s ∈ S and β such that the corre-
sponding sum value α minimizes |α− ⌊α⌋ − 0.5|.

Again, no feasible integer solution of the path packing formulation is discarded
by such a branching, whereas the current fractional LP relaxation solution is cut
off. Regarding the pricing of further columns, the following adaption has to be
done. Let πΦ̂s

β
be the dual variable corresponding to the added constraint (4.10)

resp. (4.11). In the objective (4.6a) of the pricing problem, the value of this variable,
with coefficient 1 when representing (4.10) and coefficient -1 otherwise, must be
added if and only if the solution of (4.6) corresponds to the multiplicity function of
a path packing φ̂ ∈ Φ̂s

β. For characterizing this situation, we introduce the indicator

variable tΦ̂s
β
∈ {0, 1} to express whether φ̂ with ms

φ̂
:= ms in (4.6) belongs to Φ̂s

β

(by tΦ̂s
β

= 1) or not. Then the objective (4.6a) is extended by the additional term

±πΦ̂s
β
tΦ̂s

β
, and the correct setting of tΦ̂s

β
is ensured by adding the following conditions

to the pricing model (4.6):

β tΦ̂s
β
≤ ms (4.12a)

1 + (ms − β) ≤ (bs + 1) tΦ̂s
β

(4.12b)

tΦ̂s
β
∈ {0, 1} (4.12c)
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(a) 5-star Mcwap instance. (b) The path packings used in the solution.

Figure 4.10: Example for incompleteness of Branching rule 2. For the single-fiber
Mcwap instance (a) with uniform form fiber spectra of size |Λ| = 3 and five light-
paths p1, . . . , p5, a fractional solution of (4.4) is given by use of the path packings
depicted in (b) each with variable value 1

2 and all others being 0, while setting ys
p = 1

whenever s = p and ys
p = 0 otherwise. This feasible solution yields α ∈ Z for any

choice of s ∈ S and β ∈ Z+ and thus does not allow to branch by Rule 2 (neither by
Rule 1, too).

Inequality (4.12a) is redundant for tΦ̂s
β

= 0, but in case tΦ̂s
β

= 1 implies that in fact

ms ≥ β must hold. In the other direction, constraint (4.12b) guarantees that tΦ̂s
β

is

set to 1 whenever ms ≥ β, and otherwise reduces to a redundant non-negativity con-
dition, too. Thereby, the maximum utilization multiplicity bs of subpath s, already
applied in the bounds (4.6d), used for the right-hand side coefficient in (4.12b) obvi-
ates tΦ̂s

β
to take values larger than 1. Condition (4.12c) restricts tΦ̂s

β
to take binary

values only and thus to serve as an indicator. In combination, this model extension
satisfies tΦ̂s

β
= 1 ⇔ ms ≥ β and thus, as intended, integrates the dual variable

value πΦ̂s
β

correctly into the pricing problem. For any further generated column, the

value ±tΦ̂s
β
, depending on which branch is considered, delivers also the coefficient of

the column in the corresponding branching constraint (4.10) respectively (4.11).
As a consequence, application of Branching rule 2 for the master problem generates
two subproblems whose corresponding pricing models grow by a binary variable
and two inequalities, increasing the complexity for generating further columns just
moderately. Clearly, iterative branchings by this rule yield iterative pricing model
extensions, too, and solving these models therefore becomes more and more com-
plex. Moreover, the rule does not provide a complete branching scheme, as proven
demonstratively by the example in Figure 4.10.
Branching rule 2 can be modified and extended in various ways. As a simple exam-
ple, branching on the selection of all path packings φ̂ with the property ms

φ̂
≤ β for

a specified subpath s can be realized similarly since the corresponding path packing
subset equals Φ̂ \ Φ̂s

β+1. So, one has just to replace β by β + 1 and tΦ̂s
β

by (1− tΦ̂s
β
)

in the pricing model extension to capture this case.
A more interesting variation is to bound a (weighted) sum of subpath multiplicities
by a constant value for characterization of a path packing category. We restrict
the explanation to cases with uniform weights. For such a case, a subpath subset
S′ ⊂ S is specified together with a multiplicity bound β ∈ Z+, and we define the
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path packing category

Φ̂S′

β :=

{
φ̂ ∈ Φ̂

∣∣∣
∑

s∈S′

ms
φ̂
≥ β

}
.

Clearly, each category with |S′| = 1 equals that defined by Φ̂s
β with S′ = {s}, and

hence the new categorization scheme generalizes the previous one. Moreover, we
obtain a further branching rule:

Branching rule 3: Branching on a subpath multiplicity sum
Given a feasible fractional solution (y∗, x∗) of the linear relax-
ation of (4.4) such that there exist S′ ⊂ S and β ∈ Z+ with∑

φ̂∈Φ∩Φ̂S′
β

x∗
φ̂

=: α /∈ Z,

branch by dividing the current problem into two subproblems de-
fined by adding

∑

φ̂∈Φ̂S′
β

xφ ≤ ⌊α⌋ in one branch, and (4.13)

∑

φ̂∈Φ̂S′
β

xφ ≥ ⌈α⌉ in the other branch. (4.14)

For breaking ties, select an arbitrary candidate set Φ̂s
β with most

fractional value α, i.e., select S′ and β such that the corresponding
sum value α minimizes |α− ⌊α⌋ − 0.5|.

As before, both constraints are violated by the actual relaxation solution, whereas
each feasible integer solution satisfies exactly one of them. Furthermore, using∑

s∈S′ ms
φ̂
≤ β as category characterizing property results in the subset Φ̂ \ Φ̂S′

β+1

of all path packings and can thus also be realized by a corresponding adaption of
Branching rule 3, as described above for the single subpath branching case.
In view of the pricing problem, a similar extension as for Branching rule 2 applies.
Now we use the indicator variable t

Φ̂S′
β

∈ {0, 1} which replaces tΦ̂s
β

in all terms in-

cluding the objective adaption, and we further add constraints (4.12) where just ms

is substituted by
∑

s∈S′ ms, and bs by
∑

s∈S′ bs. Hence, branching by Rule 3 ex-
tends the pricing model for the subproblems only by a single binary variable and two
inequalities, too. Regarding these inequalities, it is probable that those containing
more ms variables yield stronger constraints. Therefore, a further (or alternative)
criterion for breaking ties in the branching rule is to choose a largest set S′ yielding
a non-integral value α.
Unfortunately, it is open whether Branching rule 3 defines a complete branching
scheme, especially for the uniformly weighted case. In the example of Figure 4.10,
this rule allows to branch for instance by using the property mp1 + mp3 ≥ 2, i.e.,
S′ = {p1, p3} and β = 2, which yields α = 1

2 . Moreover, computational experiments
on realistic instances have shown that such a branching could always be found.
Nevertheless, as long as an existence of special instances and solutions which ren-
der application of Branching rule 3 impossible is not disproved, completeness of the
branching rules presented so far cannot be claimed. Therefore, we present a final
rule which provides a complete branching scheme.
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Complete branching rule. Both category definitions used above, for Φ̂s
β and

Φ̂S′

β , use a single condition to specify the contained path packings. Now, we consider
the more general case where multiple conditions are allowed. Let r ∈ N and con-
sider mutually different subpaths s1, . . . , sr ∈ S with associated multiplicity bounds
β1, . . . , βr ∈ Z+. Then we define the corresponding path packing category

Φ̂s1,...,sr

β1,...,βr
:=
{

φ̂ ∈ Φ̂
∣∣∣ ms1

φ̂
≥ β1, . . . ,m

sr

φ̂
≥ βr

}
(4.15)

and its counterpart as Φ̂\Φ̂s1,...,sr

β1,...,βr
. The case r = 1 corresponds again to the category

definition for Branching rule 2, and so we now obtain another generalization by the
following rule:

Branching rule 4: Branching on multiple subpath multiplicities
Given a feasible solution (y∗, x∗) of the linear relaxation of (4.4)
with non-integral part x∗, determine r ∈ N, s1, . . . , sr ∈ S, and
β1, . . . , βr ∈ Z+ defining Φ̂s1,...,sr

β1,...,βr
=: Φ̂′ for which the current vari-

able sum
∑

φ̂∈Φ∩Φ̂′ x
∗
φ̂

=: α /∈ Z is non-integral, and

branch by dividing the current problem into two subproblems de-
fined by adding

∑

φ̂∈φ̂′

xφ ≤ ⌊α⌋ in one branch, and (4.16)

∑

φ̂∈φ̂′

xφ ≥ ⌈α⌉ in the other branch. (4.17)

For breaking ties, select a candidate set Φ̂s1,...,sr

β1,...,βr
with minimum

number r of defining conditions and, among those, an arbitrary
one that yields a most fractional value α.

As already expressed in the description, this rule can be applied to cut off any
feasible solution of the linear relaxation of the path packing formulation (4.4) with
non-integral x-variables, which is formally proven by the following proposition:

Proposition 4.22 For any feasible solution (y∗, x∗) of the linear relaxation of (4.4)
that contains non-integral variables x∗, there exist r ∈ N, s1, . . . , sr ∈ S, and
β1, . . . , βr ∈ Z+ defining Φ̂′ := Φ̂s1,...,sr

β1,...,βr
by (4.15) such that

∑

φ̂∈Φ∩Φ̂′

x∗
φ̂

/∈ Z .

Proof. Consider an arbitrary variable xφ̂ with value x∗
φ̂

/∈ Z which exists by

prerequisite. The corresponding path packing φ̂ ∈ Φ is fixed in the following. Then
we set r := |S| for involving all subpaths {s1, . . . , sr} = S indexed arbitrary, but
fixed, and further define βi := msi

φ̂
for all i = 1, . . . , r.

Next, consider the associated subset Φ̂′ := Φ̂s1,...,sr

β1,...,βr
as defined in (4.15). For any

φ ∈ Φ̂′, we get φ̂ ⊂ φ due to S = {s1, . . . , sr}, and since φ̂ is inclusion-maximal by
prerequisite, φ = φ̂ follows. As a consequence, Φ̂′ = {φ̂}, and the initial selection
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yields
∑

φ∈Φ∩Φ̂′

x∗
φ = x∗

φ̂
/∈ Z

which proves the claim. �

The proof shows that Branching rule 4 can in fact be applied to branch on an
individual xφ̂-variable with non-integral value. As indicated before, this requires (in

the worst case) to use r = |S| conditions in the category definition which yields a
substantial expansion of the pricing model.
For associated adaption of the pricing problem, any branching according to Rule 4
needs for each of the r conditions to extend model (4.6) by a separate, individually
parameterized constraint set (4.12) with the contained indicator variable expressing
whether this condition is satisfied or not. Detecting whether all conditions are
fulfilled concertedly needs a further indicator variable tΦ̂′ ∈ {0, 1} set correctly by
further adding the conditions

r tΦ̂′ ≤
r∑

i=1

tΦ̂si
βi

r∑

i=1

tΦ̂si
βi

≤ tΦ̂′ + r − 1

tφ̂′ ∈ {0, 1}

to the model. Finally, ±πΦ̂′tΦ̂′ is inserted into the objective (4.6a) where ±πΦ̂′

refers to the dual variable value of the added master program branching constraint
(4.16) respectively (4.17). Hence, each application of Branching rule 4 extends the
pricing problem by r + 1 binary variables and 2(r + 1) inequalities. For minimizing
this extent, the tie breaking selects at first a minimum value for r. In addition,
some condition extensions might have been already inserted by earlier branching
steps and can then be reused. In general, however, the rule can cause a considerable
complication for pricing and should therefore be used only in case no other presented
branching rule applies.

Branch-and-price method. Proposition 4.22 shows that Branching rule 4 in
combination with Branching rule 1 provides a complete branching scheme for the
path packing formulation (4.4). Though the other branching rules need not be used
necessarily, they form preferable alternatives due to imposing least additional effort
for pricing in comparison to Branching rule 4 in general.
Altogether, the presented set of branching rules completes the definition of a branch-
and-price method for solving the path packing formulation (4.4) of Mcwap as in-
teger linear program. For any further algorithm design issue such as search tree
node selection, standard mechanisms can be applied. Theoretically, such a branch-
and-price algorithm is an exact solution method with finite running time for any
finite Mcwap instance. For computational experiments, we have also implemented
the method, using depth-first-search with backtracking as search tree exploration
scheme in order to reduce overhead for setting up the actual subproblem LP and the
corresponding pricing problems. As expected, our computational studies revealed
that the basic branch-and-price algorithm allows to optimize instances of limited
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size only, for a rough figure at most having around five wavelengths and up to sev-
eral hundreds of lightpaths if the number of different routes reduces this number
by at least a factor of two to three. Practical instances from real-world networks
are typically much larger, in particular with respect to the number of wavelengths,
and thus further research on algorithmic improvements is needed to make the ex-
act branch-and-price approach applicable to such instances, too. Nevertheless, the
main strength of our path packing formulation consists of providing a strong linear
relaxation lower bound which often proves optimality of a heuristically generated
wavelength assignment involving converters, as our computational result presented
in the next chapter confirm. Here, we close the discussion of the exact approach
by briefly reporting on preliminary computational experiences which might indicate
helpful insights for the development of further enhancements.

Preliminary computational results. In computational studies, we tested the
branch-and-price algorithm (and several variations) on instances of varying size and
structure. Regarding the branching rules, the most promising order turned out to
be as naturally expected, using Branching rule 1 whenever possible due to having
no influence on the generation of further columns, followed by the rules 2 and 3. In
fact, Branching rule 4 was never needed since one of the other rules always applied
(as long as the algorithm was run).
A helpful feature was to make use of a feasibility column as described in Section
4.4.2.1 for the initialization of the master program linear relaxation. Such a feasi-
bility column, which is not included in any branching constraint as well, provides
the advantage to guarantee for feasibility of the master program as long as suc-
cessively added branching constraints do not form an infeasible subsystem. Note
that adding a branching constraint to an optimized LP during the branch-and-price
method makes the resulting master LP subproblem often infeasible as long as no
further columns are generated. In such a situation, pricing would have to use ad-
vanced dual information which is more difficult to obtain. This is circumvented by
a feasibility column which turns infeasibility by missing columns into large objec-
tive penalties and, in case the actual LP is nonetheless infeasible, implies that this
search tree node can be pruned since adding any further columns would not turn
the program feasible.
Regarding the computational progress of the method, a major observation is that
optimal linear relaxation solutions tend to contain a large set of x-variables with
(small) positive values. A closer look on such sets shows that sometimes variable
subsets can be identified which sum up to an integer value for a yet not priced out
path packing, i.e., form a ’dispersed’ representation of the required column. We
also observed a particular situation where such a column can be described as linear
combination of other columns. As long as all these other path packings are feasible
solutions of the pricing model, such a combined column will not be priced out, since
it is no extreme point of the pricing problem polytope. In this case, only further
branchings imposing pricing model extensions cutting off combinable path packings
can make the desired column pricable. Such time-consuming subprocesses might be
avoidable by efficient methods for identification of those x-variable subsets, guiding
an accompanying generation of columns that are encoded in such a dispersed way.
Moreover, a special variant of Branching rule 3 with S′ = S (called full sum branch-
ing) can provide an interesting variation. Since all subpaths occur in the sum, the
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bound β in fact limits the cardinality of the represented path packing. Note that
such cardinalities are limited to at most

∑
ℓ∈L kℓ and at least a minimum value that

can be computed by solving (4.6) for objective min
∑

s∈S ms. We often observed
an increase in the subproblem LP optima when applying full sum branchings. As
a potential approach, initial insertion of some corresponding branching constraints
generates a subproblem with a solution space restricted to path packing selections
that fit into a certain cardinality pattern. Such a much smaller problem might be
better solvable, and a clever strategy to determine suitable patterns could be helpful
to fasten the search for good primal solutions.
Another direction for enhancements is to derive cutting planes which can be sep-
arated during the computation, extending the method to a so-called branch-and-
cut-and-price algorithm. A simple class of cutting planes is obtained by use of the
maximum utilization number of subpaths for a solution. Each path packing φ̂ ∈ Φ̂s

β

provides at least β times the subpath s, and thus more than ⌈bs/β⌉ path packings
of this type will not occur in any solution. In particular with bs/β /∈ Z, a non-trivial
feasible inequality

∑

φ̂∈Φ̂s
β

xφ̂ ≤

⌈
bs

β

⌉

is obtained for each subpath s ∈ S and each value 0 < β ≤ bs (where some values
can imply the same inequality, of course). Though these cuts, even if all were added
initially in the root node, did not brought observable improvements, detection of
further (and stronger) cuts might be more successful in this regard.
Finally, the problem and model formulations can be varied, too. We already applied
such a modification when changing from equalities to inequalities in constraints
(4.4c) (with the opposite change in constraints (4.6b)). Additionally, one could turn
the spectrum bound constraint (4.4d) to an equality since overprovision of subpaths
does not matter. Another idea is to release the restriction to inclusion-maximal
path packings while constraints (4.4c) remain inequalities. This allows to reset
pricing constraints (4.6b) to inequalities, possible making the pricing model easier
to solve. Another idea is to fill up the instance with single-link lightpaths such that
all wavelengths on each link must in fact be assigned. This way, inequalities (4.4c)
become implicit equalities.
This report documents some of the ideas and variations we experimented with.
These studies have shown that progress in solution efficiency for Mcwap is quite
hard to gain, and additional ideas will be needed until large-scale instances become
solvable this way. The discussed insights could be useful to guide further research
in this direction.
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Chapter 5

Computing survivable optical
network designs

In this chapter, we report on a comprehensive computational study to evaluate the
developed methods and ideas on realistic instances. The emphasis of this study is
twofold. On the one hand, the results document the performance of the derived
solving methods and the quality of the computed designs. On the other hand, the
generation of solutions for alternative settings does not only confirm the flexibility
of our approach, but also allows to examine and compare several options for optical
networks and their design, ranging from conceptional to technological prerequisites—
as needed for a substantiated decision support in practice.

We begin with a description of the instances and settings for the study. We intro-
duce the set of topologies used, the corresponding traffic demands and survivability
requirements, as well as the considered hardware equipment. Moreover, we present
some characteristics of the resulting network design instances.
As first part of the study, we investigate optical network designs under varying
settings. In comparison to a set of reference solutions, corresponding designs are
computed for the evaluation of alternative survivability concepts, an extended hard-
ware model, the opaque network scenario, and the special case of upgrade planning.
These case studies continue and extend previously performed studies on optical net-
work design in Zymolka et al. [178] and on survivability models in Gruber et al. [62],
Koster et al. [97], and Bley et al. [24].
In the second part, we take a closer look on the wavelength assignment subtask on
a widely expanded set of design solutions. We generate feasible wavelength assign-
ments heuristically and compute lower bounds for the number of converters.
A detailed register of the relevant outcome data of all computations can be found
in Appendix B. In the following discussions, we focus on aggregated presentations
of the results for deducing and approving interesting observations.

187
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5.1 Instances and computational environment

Practically oriented optical network design incorporates many details, alternatives,
and options. The goal to incorporate as many of these issues as possible has moti-
vated the development of highly flexible models and solution methods, as described
in the previous chapters. For a significant computational evaluation of the methods
and ideas, however, it is advisable to focus on the main aspects of interest and to
minimize undesirable influence of minor details as much as possible. To this end,
we avoid to use a confusing variety of different hardware devices, traffic matrices,
or other parameter specifications and rather focus on a plain outfit of the test set
instances.
Basically, the computational study is organized as follows. We use a set of five
network topologies each with a prespecified static traffic demand and four differ-
ent degrees of survivability to realize. This defines a total of 20 basic instances
which are used for reference and comparisons. For these reference instances, we
use a simple hardware model, no preinstalled equipment (i.e., greenfield planning),
the transparent multi-hop case as technological scenario, and the general concept
of Demand-wise Shared Protection (DSP) as survivability model. Variations of the
latter fixings are individually explored in case studies, as discussed in the next sec-
tion.
Two of the instances are supplied by our industrial cooperation partners, namely
the large Germany network (pt50) provided by T-Systems [157] and the Austria net-
work (pt20) from Telekom Austria [158]. The other three networks, the USA network
(pt14) based on the famous NSF NET topology, the small Germany network (pt17),
and the Europe network (pt28), have been published as realistic reference scenarios
within the project MultiTeraNet (cf. Betker et al. [17] and the project website [124])
under participation of T-Systems and other partners from industry and academia.
These reference networks and topologies have been used in other studies in the liter-
ature as well. Moreover, the considered topologies and traffic matrices can be found
in the instance library SNDlib [152, 167].
In the following, we give an overview on the basic instance constituents, their char-
acteristics, and the general settings for the design task and the computational envi-
ronment. Thereby, parameter namings correspond to those used in the definitions
in Chapter 2.

Network topologies. We have selected five realistic network topologies with
different sizes, covering a range from 14 nodes and 21 physical links up to 50 nodes
and 88 physical links. For all networks, the physical topologies are displayed in
Figure 5.1, and the particular sizes with some further characteristics are listed in
Table 5.1, focusing on purely topological properties. As shown in the second column,
we replace the long network names by shorter identifiers in the following. Besides
the number of nodes and physical links in the next two columns, the fifth column
provides the link density of the topologies, i.e., the physical link number as percent-
age of the number of links in a complete graph. The sixth and seventh columns
display the maximum and mean degree of nodes in the networks, and the last two
columns give the same statistics for node pair connectivities. These connectivity
values refer to all possible node pairs. In all networks, the minimum node degree is
two, and the minimum connectivity is two as well.
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(a) USA network (pt14). (b) Germany small (pt17).

(c) Austria (pt20). (d) Europe (pt28).

(e) Germany large (pt50).

Figure 5.1: The network topologies for the study.
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physical topology |N | |L| density node degrees connectivity
topology identifier (L) max mean max mean

USA network pt14 14 21 23.08% 4 3.00 4 2.74
Germany small pt17 17 26 19.12% 6 3.06 4 2.18
Austria pt20 20 33 17.37% 5 3.30 4 2.72
Europe pt28 28 41 10.85% 5 2.93 4 2.33
Germany large pt50 50 88 7.18% 5 3.52 5 2.78

Table 5.1: Characteristics of the network topologies.

All networks have a meshed physical topology, but a closer look exhibits some struc-
tural differences. The link density decreases with increasing network size. The USA
network (pt14), though with a mean node degree of only 3.0, has a well linked
structure yielding a high mean connectivity. In fact, over 72% of the node pairs
are at least 3-connected. In comparison, the small Germany network (pt17) has a
slightly higher mean node degree, but a much lower mean connectivity due to its
layout, allowing for many node cuts of size two. Here, over 80% of the potential
communication endnode pairs are only 2-connected. These two and the large Ger-
many network do not have a significant shape, while the Austrian network (pt20) is
obviously composed of some connected rings with a central hub. The larger ring is
doubled for reliability reasons and forms, together with the hub, a quite dense and
highly interconnected structure. In total, over 63% of the node pairs are at least
3-connected, and leaving out the four nodes in the attached tail towards Feldkirch,
this value increases to 100% with a mean connectivity of 3.13. The European net-
work (pt28), in contrast, has the topology with lowest mean node degree, showing a
well interconnected central region which is surrounded by some simple rings to cover
remote locations. Since most nodes on these rings have just two incident links, the
mean node degree is below three for this instance, and in total about 67% of the
node pairs are only 2-connected. Finally, the large Germany network (pt50) is the
largest instance and has, at the same time, the topology with the highest mean
node degree. Here, nearly 16% of the node pairs have a connectivity of at least four.
Altogether, the selected topologies cover a mix of different sizes and structures of
meshed networks as they occur in practice.

Demands and survivability requirements. Each topology comes with pre-
specified static traffic demands to establish in terms of optical connections. The
particular traffic matrices are listed in Appendix B.1 beginning at page 249. More-
over, we distinguish four levels of survivability. Each level is defined by a percentage
which specifies uniformly the portion of each commodity that has to be able to
survive any single link or node failure. Thereby, fractionals are always rounded up
to the next higher integer value in order to specify optical protection requirements
connection-wise. The four considered levels are 0% (unprotected traffic), 50%, 75%,
and 100% (full protection), and we abbreviately refer to these levels by s0, s50,
s75, and s100, respectively. In this setting, the particular numbers of connections
to protect for each commodity can be easily computed from the traffic matrices in
Appendix B.1 and are thus not listed explicitly. Table 5.2 subsumes some charac-
teristics of the commodities and survivability requirements for each network. Here,
the second column lists the total number of commodities, the third column holds
the commodity density as the number of node pairs to connect divided by the total
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topology |Q| total density total asked to survive
demand (Q) s0 s50 s75 s100

pt14 91 2710 100% 0 1379 2067 2710
pt17 121 1021 89% 0 535 814 1021
pt20 112 702 59% 0 395 597 702
pt28 378 1008 100% 0 629 907 1008
pt50 662 2365 54% 0 1226 2097 2365

Table 5.2: Characteristics of the traffic demands.

number of different node pairs, the fourth column shows the total demand value
summed up for all commodities, and the last four columns give the total number of
protected connections for the different survivability levels.
The instances pt14 and pt28 have a full demand matrix, i.e., each node pair defines
a commodity with traffic to establish. Nearly the same holds also for pt17 where
traffic to all other nodes exists from each location except for one node, Norden,
which has only a single commodity to Frankfurt (since Norden hosts just a second
hub for transatlantic traffic being managed in Frankfurt). In pt20, the original traf-
fic demands have been very small and thus are scaled up with a convenient factor
to balance the traffic with the hardware capabilities (avoiding to use for this one
case a separate hardware model, see below). Note that the scaling maintains the
commodity structure and was chosen such that the property of a low traffic instance
was preserved. Moreover, pt20 and pt50 do not have full demand matrices, both
hold a little bit more than half of all possible commodities. Finally, none of the
instances have a regular traffic distribution. With varying relations, there is a mix
of commodities of small and large demand values, reflecting the interaction between
metropolitan regions and areas with a more rural character. In total, the test set
combines different sizes of topologies and traffic loads and thus provides various
comparison possibilities.
In view of the survivability concept comparison and the relevance of network connec-
tivities for DSP, we refine the topological information from Table 5.1 with respect to
the particular traffic relations. For each instance, Table 5.3 shows in columns two to
five the number of commodities whose endnodes have the corresponding node con-
nectivity. In addition, column six gives the mean connectivity over all commodities,
while the mean over all commodities weighted with their demand value is displayed
in the last column. Hence, the latter values refer to the mean connectivity per
optical connection to establish. These statistics reveal the flexibility of survivable
routings for the instances. Note that the weighted means are always larger than
the mean values, indicating that commodities with higher connectivity tend to have
larger demand values, and the particular increase reflects the extent of this effect.

Hardware model. For generating comparable results, using exactly the same
hardware setting for the instances is preferable, but hampered by several aspects.
As already mentioned, one such issue is the balance of traffic flow sizes and hardware
capabilities. Operators would neither use great numbers of small capacity devices
when larger modules are available (and typically more cost-efficient due to economies
of scale), nor employ oversized devices for accommodating small flows and thus
end up with large amounts of spare resources. Therefore, the traffic in pt20 has
been increased, as already mentioned. This allows to use basically the same set of
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topology commodities of connectivity connectivity
2 3 4 5 mean weighted mean

pt14 25 65 1 0 2.74 2.79
pt17 97 23 1 0 2.21 2.32
pt20 41 55 16 0 2.78 2.91
pt28 255 121 2 0 2.33 2.35
pt50 188 330 130 14 2.95 3.03

Table 5.3: Connectivity characteristics of the commodities.

hardware modules with uniform capacities for all instances. In addition, we focus on
a small variety of devices in order not to distort main observations and conclusions.
Table 5.4 lists all hardware modules with their properties and cost values. Unless
stated otherwise, this hardware model is applied throughout all computations in
our study. With a single fiber type, physical and supply links coincide, and we use
the same link lengths in both cases. The applied cost model has been provided by
T-Systems and reflects realistic cost relations, while the individual cost values have
been scaled by an appropriate factor.
A further aspect is the limitation of the maximum optical transmission distance,
in particular in relation to the link lengths as unchangeable characteristic of the
topologies. The considered networks cover geographical regions of different sizes.
Both Germany networks pt17 and pt50 as well as the Austria network pt20 are
limited to relatively small countries, whereas the USA network pt14 and the Europe
network pt28 span continents. As a consequence, the topologies contain physical
links with lengths in different magnitudes, as illustrated in Figure 5.2. So, assuming a
uniform hardware model with a common maximum optical transmission distance for
all instances would provide predictable but undesired effects in view of the number
of required signal regenerations. Instead, we make the following distinction. In the
geographically small networks, the modules are equipped for long-haul transmissions
with an optical reach up to 1200 km, while ultra long-haul transmissions in the
large area networks enable a maximum distance of 8000 km to be bridged optically.
Reflecting the applied technologies, the transmission-relevant equipment, namely
amplifiers (and thus fibers), WDM systems, regenerators, and wavelength converters,
cause different costs in both settings. This also shifts the total cost ratio for links

module module install capacity cost
type name at pt17,pt20,pt50 pt14,pt28

fiber Fiber links 1 WDM system per km: 0.05 0.05
each 70 km: 6.00 9.00

WDM WDM40 links 40 wavelength 24.00 36.00
system channels

switch OXC64 nodes 64 ports (bidir.) 193.20 193.20
switch OXC128 nodes 128 ports (bidir.) 312.40 312.40
regenerator REG nodes 1 optical channel 2.00 3.00
converter CONV nodes 1 optical channel 2.00 3.00

reach: reach:
1200 km 8000 km

Table 5.4: Installable hardware modules.
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Figure 5.2: Overview on link lengths in the topologies, illustrated by the accumulated
link length distribution function F (ω) = | { ℓ ∈ L | ωℓ ≤ ω } | / |L| as percentage of
links with length at most ω km, and an additional mark on the mean link length in
each network.

and nodes in the designs. In the large networks, longer links and the more expensive
transmission equipment yield higher cost for installing link capacities in comparison
to the smaller networks, whereas the node capacity costs are equal in all of them.
Hence, a larger portion of total cost is to be expected in the larger networks for link
capacities.
Note that except for fibers, Table 5.4 displays for all modules the resulting total cost
per device. According to our cost model, these costs can be (and are) composed of
various cost components, like a base cost plus port cost for the OXCs, for instance.
For the fibers, these components are listed individually, as the fiber cost is length-
dependent and thus yield link-individual costs. Thereby, no fixed cost for installation
of fibers is charged. Moreover, the cost per km accounts over the full length, while
the segment cost is only incurred whenever exceeding a (multiple of) 70 km segment

length. So, for a fiber f ∈ F with cost Cf
km per km and segment cost Cf

seg, the total

cost Cf
ℓ for installation on a supply link ℓ ∈ L with a length of ωℓ km, ωℓ ∈ R+\{0},

is computed by Cf
ℓ = ωℓC

f
km + (⌈ωℓ/70⌉ − 1)Cf

seg. For example, a link of length 210
km in pt17 costs 22.5, while 211 km yield a total cost of 28.55 for a fiber.

Computing environment. For the study, all computations have been carried
out on Linux-operated PCs with a 3.2 GHz Pentium 4 HT processor and 2 GB
main memory. The described methods are implemented in C++. In addition, we
make use of the following external software libraries. We employ LEDA version 4.1
[114] for graph data structures as well as basic graph algorithms. ILOG CPLEX
version 9.130 [71] together with ILOG CONCERT technology version 2.1 is applied
for LP solving and small auxiliary subproblem ILP solving. Moreover, as described
in Chapter 3.3, the dimensioning and routing subproblem is handled by the tool
Discnet developed at ZIB and marketed by the spin-off company atesio (see also
the website of atesio [9]). Discnet also involves the use of LEDA and CPLEX (in
the above versions).

With these settings and prerequisites, our computational studies are carried out
and described in the following sections. As in any experimental work, we are aware
of the fact that the described observations and drawn conclusions are clearly re-
stricted to the particular instances and parameterizations chosen for each scenario
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and thus need not reflect general relations and properties. Nevertheless, the reported
experiences might serve as indicators for interesting issues and prepare extended ex-
aminations for further research.

5.2 Computations for optical network design

In the first computational study, documented in this section, we evaluate the per-
formance of solving optical network design problems and compare the obtained so-
lutions for different settings. Regarding the performance, we focus on the provable
solution quality. Since finding global optima cannot be guaranteed by our method-
ological approach (in a timely manner), we run the algorithms with time limits which
prevents an evaluation in terms of computation time. The comparisons for different
scenario settings are organized in case studies, where each variation is considered
individually in relation to the set of reference solutions described first. This way, we
consider alternative protection schemes, the case of upgrade planning, an extended
hardware model, and the opaque architecture.

Algorithmic outline. All computations follow the same algorithmic outline,
sketched in Figure 3.3 on page 106. The method consists of two consecutive steps,
the dimensioning and routing optimization without distinction of wavelengths, and
a subsequent wavelength assignment in case of transparent networks.
For the dimensioning and routing subtask, we apply Discnet with the modeling
by use of capacity-cost lists. These lists are generated in a preprocessing step by
dynamic programming, as presented in Section 3.3.1, and handed over to Discnet

by a file interface. The main procedure of Discnet, the branch-and-cut method
with integrated heuristics to generate integer flows (see Section 3.3.2), is then run
with a time limit of four hours CPU time, returning the best solution(s) found. Fi-
nally, a postprocessing step tries to improve the obtained routings and accomplishes
solutions for the transparent multi-hop case accordingly by placement of required
regenerators using the physical topology based method described in Section 3.3.3.2.
The subsequent wavelength assignment is performed by a short heuristic run. For
this, we apply the iterative sequential wavelength assignment algorithm as described
in Section 4.4.1.3 and depicted in Figure 4.6 on page 161 with the APRR reordering
scheme and a time limit of 15 minutes.

Total computation times. Due to the fixed time limits for the main algorithms,
the total computation times for the instances vary only marginally, and the fluctu-
ations can be easily explained. So, we only give a brief overview on these values.
The time limit for the dimensioning and routing part has been carefully set such that
substantial progress during the optimization is not cut off and a feasible solution
is found for all (reference) instances. So, the larger instances have been naturally
responsible for the actual selection. For illustration, Figure 5.3 shows the branch-
and-cut progress for some selected instances. The largest topology pt50 sometimes
awaits a longer period until a feasible design is completed, as for the full protected
case in Figure 5.3(b), and usually shows also significant progress in that time, see
Figure 5.3(a). For the smaller topologies, further improvement steps, as visible in
Figure 5.3(c), occur from time to time, while a fast initial convergence of primal and
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(a) pt50 with s75. (b) pt50 with s100.

(c) pt17 with s0. (d) pt17 with s75.

Figure 5.3: Dimensioning and routing optimization progress for some selected in-
stances, showing the primal and dual bound values over the CPU time in seconds.

dual bound can also be followed by a quite stable continuation in the following, as
in case of Figure 5.3(d).
In all computations, the branch-and-cut algorithm in the first phase occupied the
full time span of four hours plus a small period to complete examination of the last
considered search tree node before exceed of the time limit is detected. Hence, no
guarantee to have found an optimal solution of the dimensioning and routing subtask
can be given for the test set, though some instances show to be close to optimality.
The fluctuation in computation times is reasoned by the wavelength assignment al-
gorithm in the second step. Finding a converter-free solution allows to terminate
immediately, which regularly happened within the 15 minute time window. All other
instances have run the full quarter of an hour and, thus, show a total computation
time of at least 15300 seconds (= 4.25 hours), but rarely run much longer than this.
In fact, exceeding the limit sum by more than 150 seconds happens only for the
largest pt50 instances which is only due to the considerable rise of the LP size in
this case, causing longer CPU times for solving individual branch-and-cut nodes.

5.2.1 Reference solutions

At first, we report on the results obtained for the reference setting, using the speci-
fications from Section 5.1 and DSP as protection scheme. These solutions allow to
look on the achievable design qualities and to estimate the extent of quality loss
entailed by the applied decomposition approach.

Solution qualities. Our solution methodology delivers a feasible network design
with specified total cost Ĉ and a cost lower bound L̂ for any possible design satisfying
the requirements. So, as a measure for the outcome quality, we use the optimality
gap derived from these two values as that portion of the solution cost that can at
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Figure 5.4: Optimality gaps for all reference instances.

most be saved by an (unknown) optimal solution, i.e., defined as Ĉ−L̂
Ĉ

. Note that

the optimality gap is limited by 100% this way. An alternative measure often used
in the literature is to divide by the lower bound L̂, relating any gap to the optimum
approximation rather than to a solution of unknown quality. However, this variant
fails when the lower bound is zero, which happens often for the converter number
in wavelength assignment. In order to use a uniform measure, we therefore apply
the above described method, expressing optimality gaps as portion of the solution
value.
For the reference scenario, Figure 5.4 plots these values instance-wise for all four
survivability levels considered. The picture shows a clear ranking of the networks
in terms of solvability. Surprisingly, this order does not always follow the instance
size relation, since all solutions for pt28 show a lower optimality gap than those
for pt20. Note that pt20 is not only the smaller network, but carries also less traf-
fic. This issue, indeed, might give a hint that networks with low amount of traffic
hamper the derivation of helpful lower bounds, yielding bad optimality gaps though
having already good designs at hand. In network design, lower bounds are usually
drawn on estimations of unavoidable traffic throughput on (generalized) cuts in the
network and thus can suffer from high connectivity in combination with low traffic.
Another possible explanation is based on the network connectivities which, except
for pt14, increase in the order of decreasing solution qualities, cf. Tables 5.2 and 5.3.
Remind that DSP includes for each commodity the decision about the total number
of connections to establish, which drives the extent of how much to spread the final
routing. Higher connectivities in meshed networks allow for a fast growing variety of
alternative routings to take into account, which might slow down gap closing. This
effect intensifies in larger networks, and thus pt14 might profit from its smallness
which restricts routing variety with a (more than) compensating counter-effect on
tractability. However, an evident reason for the observed translation of pt20 cannot
be identified. All other instances show the expected behavior, where reaching a
certain solution quality for growing instance sizes usually requires longer executions
of the optimization procedure, typically with an exponential increase.
Comparing the solution qualities along different survivability requirements in a net-
work does not show a clear tendency. Here, any kind of slope can be observed
throughout the instances, whatever the compared levels are. Hence, solvability does
not correlate much with the portion of protected traffic.
Altogether, the obtained solution qualities are satisfactory in view of the restricted
computation duration. With this affordable effort, 70% of the generated designs
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Figure 5.5: Example for the invalidity of half a shortest cycle length as lower bound
for the length of connections protected by DSP. For a commodity q between nodes
o and d requesting vq = 3 connections of which v∗q = 1 is to be protected with DSP,
the displayed routing is feasible. No connection is longer than 1180 km, whereas the
shortest cycle has a length of 3400 km.

are closer than 15% to optimality, and among these, again over 70% show even a
gap below 10%. Besides the computed solutions as ready-to-install optical network
designs, the accessory determination of such a quality guarantee provides valuable
assistance for planners in practice. Hence, the proposed decomposition methodology
forms a suitable approach to handle this complex task.

Decomposition loss. Regarding the solution approach, a further interesting per-
formance characteristic is the quality loss suffered by the applied decomposition. An
exact evaluation would require to compare the optimal network design cost with the
cost of the best solution achievable with the decomposition method. As both val-
ues are unknown and very hard to find, we have, second best, to use a worst case
estimation. For this, we relate the cost incurred by aspects excluded from the core
optimization to the total design cost and to the difference of final solution value and
total cost lower bound, i.e., the cost corresponding to the obtained optimality gap.
With the decomposition, the relaxed aspects concern the lightpath length limita-
tions, satisfied supplementary by adding required regenerators, and the simultaneous
determination of a conflict-free wavelength assignment, which is carried out subse-
quently with possible inclusion of wavelength converters. Having a lower bound on
the number of unavoidable converters or regenerators, the corresponding cost can be
added in our setting to any total cost lower bound determined for the dimensioning
and routing subproblem, thus reducing the maximum decomposition loss, too. Such
non-trivial lower bounds for converter and regenerator numbers are indeed rarely
found. For conversions, the lower bounds presented in Section 4.4.2 refer to a pre-
fixed routing and do not apply as a general instance bound which must hold for
any feasible routing. In fact, if installable wavelength capacities are unbounded,
this bound is always zero. For the number of unavoidable regenerators, a simple
lower bound can be obtained if a shortest path for a commodity already exceeds the
optical reach. Any connection routed for this commodity will employ at least the
number of regenerators needed for a shortest path. The least length estimation can
be improved to half the length of a shortest cycle for any connection protected by
1+1 path protection. The protection scheme DSP surprisingly prohibits the use of
half the shortest cycle length as minimum connection length estimation, as proven
by the example in Figure 5.5. However, such an implication of unavoidable regen-
erators does not occur in any instance, whose maximum shortest path and cycle
lengths (over all node pairs) are listed in Table B.1 on page 252 in the appendix.
Therefore existence of network designs at the cost of the derived dimensioning and
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(a) Total cost portion Γ/Ĉ. (b) Gap cost portion Γ/(Ĉ − L̂).

Figure 5.6: Solution quality losses caused by the applied problem decomposition,
where the total cost Γ for converters and regenerators is plotted in relation to (a)
the total solution cost Ĉ, and (b) the optimality gap Ĉ − L̂.

routing lower bound without further need of regenerators and wavelength converters
cannot be excluded, and the total cost for all employed wavelength converters and
regenerators, denoted by Γ, in fact provides the worst case decomposition loss.
For the reference instances, Figure 5.6 plots the maximal decomposition loss as por-
tion of the total solution value, i.e., Γ/Ĉ as loss in absolute quality, and as portion
of the optimality gap, i.e., Γ/(Ĉ − L̂) representing the loss relative to the proven
design quality. The results show that the decomposition does not worsen the so-
lution qualities too much. For the absolute quality depicted in Figure 5.6(a), the
pt20 instances break ranks again and give the weakest results, though even here the
maximum total cost portion of the loss is less than 0.7%, whereas all other instances
show less than 0.3% potential total cost savings encumbered by the decomposition.
Remarkably, a network ranking reveals the same order as for the solution qualities
in Figure 5.4 except for pt50 with quite good results in terms of decomposition loss.
This surprising performance of pt50 becomes even more significant when changing
to the relative loss measure in Figure 5.6(b). Here, pt50 outperforms all other in-
stances except for the half-protected case (s50) of pt14. However, the former quality
ranking of the other networks disappears, although the relations among the results
for each individual network (with a single exception in the half-protected pt20 case)
kept their shape, only being stretched or compressed in scale. So, the influence of
the decomposition approach on the design qualities shows unpredictable behavior,
but to an overall small extent.
These observations allow for several conclusions. The plots reveal that the quality
loss by decomposition is quite independent of the instance size. Besides the good
performance of the largest network pt50, a further indication is given by the fact that
the total cost portions over most networks are lying close together. From this, only
the medium-size network pt20 deviates. Note that this network holds the least traf-
fic, and surprisingly, a network-wise tendency of lower total cost portions for higher
traffic amounts can be detected. Hence, higher traffic requirements seem to result in
sparser requirements for conversion. We guess that conflicts most often involve very
few lightpaths and can be dissolved when more lightpaths and thus wavelengths are
present. For instance, consider the three specific connections in a star subtopology
as shown in Figure 4.3(a) on page 153, where a converter is unavoidable. Note that
in the same example, twice the wavelength availabilities allow to accommodate twice
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Figure 5.7: Growth of the total cost with increasing protection level, normalized to
the s0 design cost for each network. In addition, each total cost bar is split into the
lower bound (bottom) and the optimality gap (top) parts.

the lightpaths without conversion, and the triple size example again requires just
a single converter, whereas the other costs increase. So, the number of converters
and thus the conversion cost portion scales well with growing wavelength multi-
plicities and lightpath numbers in these instances. In a similar manner, instances
with higher wavelength multiplicities, even if carrying more lightpaths, could better
allow to avoid conflicts and thus to reduce the total portion of lightpaths needing
conversion. This effect can reason the ranking observed in Figure 5.6(a), and we
conclude that the study results follow our conjecture by which a larger amount of
traffic correlates with a potentially decreasing cost portion for needed converters.
While such relations can be identified in the total cost portions, the mixture of val-
ues for the relative loss indicates that no correlation of gap sizes and decomposition
losses exists. Hence, we can assume that the problem decomposition has a random,
but limited influence on the quality of the computed solutions. The worst case cost
portion as the maximum quality loss suffered by exclusion of regenerator placement
and wavelength assignment is below 5% over all instances and thus occurs as rea-
sonable price for the achieved increase in solvability. The dimensioning and routing
part is obviously responsible for most of both the total cost and the solution quality.
Clearly, both aspects depend on the cost relations in the hardware model, with com-
paratively low costs for regenerators and converters. However, these relations reflect
current market prices, and most practitioners expect the relations to be stable or to
become even more advantageous by further progress in regeneration and conversion
technologies. As long as this holds, the decomposition loss will remain very low,
making this solution approach well suited for real-world application.

Cost of survivability. After considering solution qualities, we turn to the par-
ticular design cost results. While a comparison of designs for different networks is
of minor significance, an evaluation of the cost increase for higher protection levels
is of interest. Figure 5.7 illustrates these cost growths, normalizing all values to the
unprotected design cost in each network. In addition, the lower bound and the op-
timality gap portions are separated to take the design qualities into account within
the discussion.
The plots show that full protection produces typically more than twice the cost of
a design with unprotected traffic. At first sight, one might wonder whether dou-
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Figure 5.8: Cost increase in relation to the total cost of the unprotected design against
the portion of in fact protected connections at the levels s50, s75, and s100 for each
network.

bling a network’s hardware does not provide a cheaper alternative. Such a doubling,
indeed, implies to set up a completely separated network, without common use of
node equipment stations, fiber strands, or any other infrastructure endangered to
fail. Due to these requirements, a surrogate network ’copy’ would cause much more
than the original network’s cost.
When comparing the particular cost growths for the networks, some interesting
properties can be observed. In most cases, only a small additional cost is incurred
when changing from unprotected traffic to the s50 level. This results from the fact
that DSP typically needs to establish only a small number of additional backup con-
nections for protection of up to half of the traffic and the required diversification of
the routings (cf. Table 2.1 on page 91), though typically increasing mean connection
lengths, can be realized without occupying a lot of further resources. Here, DSP

profits most from its flexibility to select for each commodity those routings which
combine in the best possible way from the entire network’s perspective.
For the further changes to higher protection levels, varying slopes for the cost
growths occur. While nearly the same cost increase for each additional 25% traffic
protection is incurred in the smaller networks, the larger ones show a much higher
step from s50 to s75 than from s75 to s100. Thereby, note that the total costs and
the corresponding lower bound values behave similarly, i.e., the increase from one
level to the next is of comparable size, though the optimality gaps tend to grow with
higher protection. From this, we conclude that the achieved solution qualities have
only marginal influence on the observed effects.
An explanation for the growth differences is, though intuitively suggested, hardly
provided by the topology sizes, and most arguments in this direction contradict
other properties, like the fact that the additional cost for s100 increases follow an-
other ranking. Moreover, the observed additional cost coincide neither with traffic
volume nor connectivity relations of the instances. For example, both pt14 and pt50
have a similar total number of demanded connections and comparable connectivity
values, but discriminative slope shapes in Figure 5.7. Instead, structural properties
of the commodities provide an explanation, also for the exceptional high cost growth
for s50 in pt28.
Table 5.2 on page 191 lists for each protection level the total numbers of connec-
tions that are in fact guaranteed to survive single node or link failures. Due to
rounding of fractionals, these numbers are at least the level percentage of the to-
tal connection number and can form a substantially larger portion. Actually, the
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growths of these numbers are highly correlated with the observed cost steps. For
illustrating this correlation, Figure 5.8 puts the two issues into relation. For each
network, the cost increase from the unprotected design is plotted over the portion
of connections that is really protected at the individual protection level. Obvious
similarities over all networks appear in this measure. The low incline from s0 to
s50 has already been reasoned above. For pt28, the higher cost increase at level s50
results from effectively protecting more than 60% of the traffic, which indicates that
many commodities with small odd demand value are involved (cf. Table 2.1). At the
next level s75, both pt28 and pt50 show the highest overprotection, with more than
13% added to the requested 75% protection. This explains the larger step from s50
to s75 for these two networks as well as the subsequent much smaller increase for
completing protection for all connections in s100. Especially in pt50, s75 leaves very
few connections unprotected, and thus the reliability completion becomes achievable
with a small number of further backup connections at marginal surplus costs.

Node vs. link cost. Moreover, the relation of node and link costs is of interest
in view of the applied hardware cost models. Remind that we differentiate the op-
tical reach on the area size covered by the networks and therefore charge different
transmission hardware costs, while the node hardware costs are uniform. For all
reference instances, Figure 5.9 depicts the proportional breakdown of the total cost
into the node cost and the link cost.
First of all, the results confirm the expectation stated with the cost model descrip-
tion in Section 5.1. The small area networks show a higher node cost portion than
the US and the European network, where much longer fibers and the need for the
more expensive ultra long-haul transmission hardware result in a higher fraction for
the link costs. In fact, the node costs dominate the total design expenses in the
German and Austrian topologies. In the European network, both cost portions are
nearly balanced, and in the furthest expanded US network, the link costs become
dominating.
Within each network, the cost relations vary only marginally for different surviv-
ability levels. For the mean portion of link cost within each network, the maximum
deviation of a single value is 2.15%, and the mean deviation is 0.65%. Note also
that the traffic volume for the smaller networks pt17, pt20, and pt50 is medium,
small, and large, whereas very similar node cost portions are found for all of these

Figure 5.9: Total design cost portions for node and link equipment.
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instances. From this, we conclude that neither the protection level nor the traffic
volume drive the cost relation between link and node equipment, but this depends
basically on the applied cost model relations and the network topology. The cost
model constitutes the basic proportion, potentially shifted by topological properties.
Considering pt17 and pt28, the lower connectivity of these instances seems to push
the cost relation towards a better balance in comparison to the better interconnected
networks sharing the same cost model.
Finally, the results show that both link and node equipment can form the major part
of the total cost in designing realistic networks. As a consequence, optimization re-
stricted to either of these hardware categories might produce misleading results when
planning to set up a complete architecture. Hence, a precise evaluation of alternative
designs can only be provided by a model involving all major cost contributors.

5.2.2 Survivability model alternatives

As first setting alternative, we compare the results for using different survivability
models. Substituting DSP, we consider the two special variants 2-DSP and max-
DSP as well as 1+1 path protection which is most commonly applied in practice.

Model implementation. Both DSP variants, as described in Section 2.3.2, are
implemented as a special diversification model parameterization. 1+1 path protec-
tion is realized with the diversification routing model by an input modification as
follows. Each commodity is split into a set of (sub-) commodities. For each connec-
tion asked to survive any single link or node failure, an individual subcommodity
is set up demanding full protection. All remaining connections are grouped into
a last subcommodity which is established unprotected. This way, each protected
optical connection obtains finally a dedicated disjoint backup connection, and thus
the union of all subcommodity’s routings forms a 1+1 path protection solution for
the original commodity.
We remark that our realization of 1+1 path protection differs from the implemen-
tation usually applied in practice. There, all working and backup connections for
the protected part of each demand are typically routed on a single shortest cycle
(computed by Suurballe’s algorithm [18, 156] w.r.t. to certain length metrics), where
the working connections use the shorter of both origin-destination paths. For addi-
tional unprotected connections, Dijkstra’s shortest path algorithm is used to carry
out the routing. In contrast to this, our model does not restrict on uniform (pairs
of) paths, but allows each connection of a demand to select a route (and its backup
route) individually and independently of the other connections of that demand.
Since these selections are decided within the cost minimization, the implemented
1+1 path protection model can be seen as optimization variant, and thus our re-
sults represent conceptually a kind of lower bound for the Suurballe/Dijkstra-based
variant. In fact, any solution feasible for the scheme typically applied in practice is
obviously feasible in our model as well, but not vice versa. The cost lower bound
we compute is in particular a cost lower bound for the more restrictive concept, too.
Hence, the following discussion regarding conceptional performance carries over to
any Dijkstra/Suurballe-based 1+1 path protection scheme as well (with at least the
same significance).
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Design costs. At first, we turn to the performance comparison of the concepts in
terms of the total design costs and quality guarantees. For this evaluation, Figure
5.10 puts all these values into relation within a comprehensive overview. The bars
represent the solution costs and are subdivided into the lower bound value and the
additional cost corresponding to the optimality gap. This way, the ranges on top
of each bar mark the cost interval in which optimal solutions must lie. All values
for each instance are normalized to the unprotected DSP solution’s total cost. Note
also that the ordinate scale begins at 70% of the total cost.
First of all, the results for the unprotected case are extremely similar among in-
stances of each network. Hence, these benchmarks indicate that differences in the
computation models and their implementation have only marginal influence on the
outcome. Note further that non-overlapping gap ranges directly prove the higher
bar’s concept as worse even for its optimal solution (although not known), as its
dual bound is already higher than a primal solution value for the other concept.
This holds for 1+1 path protection throughout all half-protected scenarios and also
for the s75 instances in pt14 and pt17 which are solved to high quality. For the
remaining instances, a tendency to similar behavior can be observed, but the indica-
tion loses strength as the solution quality degrades. However, 1+1 path protection
never generated the best solution throughout all instances. Hence, we can conclude
that DSP and its variants outperform 1+1 path protection.
Interestingly, DSP outperforms all other concepts in the s75 and s100 instances of
pt14 and nearly all in s75 of pt17, while the size of its optimality gap shows the
highest increase with growing network sizes. On the one hand, these observations
confirm that DSP has the best potential for a superior concept, but is, on the other
hand, also most difficult to solve. This is best demonstrated in pt20 and pt50 for the
two highest survivability levels. Both of these characteristics of DSP are reasoned
by the same fact. Any demand routing feasible for any other concept is feasible for
DSP as well, but not vice versa, thus optimal DSP solutions will never be worse than
those for the other concepts. In fact, the idea of DSP is especially to decide about
an appropriate routing for each demand from a general perspective, with choice of
many alternatives including varying numbers of connections. This additional degree
of freedom, in turn, makes it harder to solve the model.
Comparing the variants 2-DSP and max-DSP with fixed parameters, one observes
that a more extensive spreading of the demand routings by max-DSP, minimizing
the total number of required connections, is of varying benefit. In some cases, such
as s100 for pt14, pt20, or pt50, the max-DSP approach seems to be helpful, but
becomes contra-productive in other scenarios, like for s75 and s100 in pt17 and pt28.
To interpret this effect, it does not suffice to argue only by the provided network
connectivities which are larger in the max-DSP favoring networks, as a more di-
versified routing usually requires less, but longer routing paths and thus consumes
capacity from more links and nodes. So, the observed relations indicate that the
additional capacity consumption needed by prolonged connections is overcompen-
sated by the reduced connection number, whenever the meshed networks are not too
narrow. Otherwise, exploiting a maximum connectivity can in fact require to take
overlong detours, and more but shorter connections become the better choice. The
network pt28 provides a good example where a well interconnected center is sur-
rounded by some rings covering remote areas. For some commodities, a maximum
spread forces to route some connections along these rings which therefore have to
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Figure 5.10: Comparison of solutions and their qualities for the survivability models,
subdividing the total cost bars into the lower bound value (bottom) and the cost
corresponding to the optimality gap (top). For each instance, all values are scaled
with the total cost of the unprotected DSP solution. Note further that the ordinate
scale begins at 70% of the solution cost, distorting the gap proportion to provide
better comparison capabilities.
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provide the requested capacity on all their hops, resulting in higher total cost than
by application of 2-DSP.
Furthermore, note that in the solutions of the s100 scenario for the three better
connected networks pt14, pt20, and pt50, the concepts max-DSP, 2-DSP, and 1+1
path protection show in this order growing design costs. This holds also for the cor-
responding lower bound costs except for pt50 with 1+1 path protection. In the two
other networks pt17 and pt28, exactly the contrary holds. From this, we conclude
that in fact higher connectivity favors the savings by less connections in more diver-
sified routings, whereas routings using more connections are more favorable in low
connectivity networks. Moreover, in all but the largest network, DSP is comparable
to or gives the best result due to having the choice between the solutions for all
other concepts.
In general, the plots reveal also that the survivability concept selection for the two
higher protection levels yields highest result differences for pt14, pt17, and pt50,
while the costs and bounds are much more similar for pt20 and pt28. As possible
explanation, the low amount of traffic in pt20 and the particular network structure in
combination with medium traffic size in pt28 seem to equalize the competing effects,
whereas dominating properties in the other scenarios enhance the (dis-) advantages
of particular concepts. For instance, the size and connectivity of pt50 allows to use
spare resources from installed capacities by many demand routings without large
detours, favoring a more diversified routing with less connections in total.
Finally, we observe that the cost for 1+1 path protection in s50 or s75 is often not
much exceeded by the DSP cost of the next higher protection level. This holds in
particular for the smaller networks with high solution qualities. In pt28 and pt50,
the larger cost difference from s50 with 1+1 to s75 with DSP results from the over-
protection in the latter cases, as already discussed in the previous study. The shift
in abscissa direction of the measure points in Figure 5.8 represents the extent of
this overprotection, which has to be taken into account when putting cost values (or
differences) over different survivability levels into relation. In the smaller networks,
however, the demanded levels of protection are matched quite good, making these
relations most representative. From these observations, we can altogether conclude
that DSP allows to protect much more traffic at low additional cost in comparison
to 1+1 path protection.
To summarize, the cost performance comparison of the survivability concepts re-
veals that DSP is overall most favorable, but also most difficult to solve. This
scheme has particular strength for not fully protected demands and thus suits best
for a concerted planning of protected and unprotected traffic. Moreover, networks
with higher connectivity provide structural advantages to those concepts that ac-
cept longer routing paths, but save in the total number of connections, being next
evaluated in more detail.

Total numbers and lengths of connections. The total number of connec-
tions required to realize a certain demand with particular reliability requirements
and their hop-lengths are also important issues for network operation. Clearly, the
operational effort to setup and support a lightpath configuration grows with the
number and length of connections which have to be configured, tracked for their
operability, and handled appropriately when failures happen. In addition, network
operators prefer short transmission paths in general.
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(a) Number of established backup connections in relation to the total demand.

(b) Mean hop length of all connections.

Figure 5.11: Overviews on (a) the number of backup connections established by use
of different survivability concepts as portion of the total demand, and (b) the mean
hop length of all connections in each instance.

Figure 5.11 displays in the upper part, as portion of the corresponding total demand,
the numbers of backup connections established by use of the compared survivability
concepts. Note that the number of protected connections, as listed in Table 5.2,
equals the number of additional backup connections for 1+1 path protection, where
each protected working connection gets a dedicated, disjoint backup connection.
Hence, the corresponding line marks also the total amount of protected traffic (and
indicates also the extent of overprotection).
First of all, the plots confirm the conceptionally enforced relations. The values for
2-DSP do never exceed those for 1+1 path protection and match them in the full
protected cases. Next, the backup connection numbers for DSP lie always between
those for 2-DSP and max-DSP which form the two opposite extreme variants of
the general concept. Remind that max-DSP in fact uses the minimum number of
connections per commodity for the prescribed survivability level. Moreover, the dis-
tances between each pair of extreme values, namely those for 1+1 path protection
and max-DSP, behave as expected. In relation, these distances grow strictly with
the mean (weighted) connectivity of the networks, i.e., increase in the order pt17,
pt28, pt14, pt20, and pt50. They are also largest for s50 and shrink with growing
protection requirements.
Regarding the particular values, DSP and its variants generate considerably lower
total numbers of connections to establish than 1+1 path protection, in particular
when the commodities are just to be secured partially. As mentioned earlier, the
DSP schemes typically add very few backup connections in the s50 case. For pt28
and pt20, the values are larger due to having many commodities with odd demand
values. With further increasing protection requirements, the connection numbers
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then most often grow faster than the provided protection, except for max-DSP in
most cases. However, DSP keeps on saving many transmission lines as far as the
available connectivities allow. Hence, at the price of higher recovery effort compared
to 1+1 path protection, DSP provides also advantages for the traffic management
in regular operation due to holding less connections in total.
A further observation concerns the values of the ’intermediate’ concepts 2-DSP and
DSP. While their curves nestle more to the max-DSP curve in the least connected
networks pt17 and pt28, the shapes spread more and more for increasing connec-
tivity. The spreading is quite regular for pt20 and pt14, but somehow wavering for
pt50, which probably results from the worse solution qualities. When focusing on
DSP in relation to its extreme variants, the values are closer to 2-DSP for lower
connectivities, then form a fair medium curve for pt20 as well as pt14, and show
irregular behavior for pt50. Altogether, these relations indicate that DSP, for grow-
ing alternative variety, finds better solutions when balancing diversification extent
and number of (backup) connections, rather than to favor a single extreme.
In view of the connection lengths, the bottom row in Figure 5.11 displays the mean
hop lengths of connections, ranging between 1.99 and 4.75 in the study instances.
The mean hop lengths are comparable in the three smaller networks and become
higher in the two larger networks. Especially pt28 contains long connections due to
its topological structure. Since extended ring subnetworks collect the remote loca-
tions for connection to the meshed network center, integration of protection often
forces use of extended detours for establishing backup connections. This effect in
pt28 accompanies the general trend to longer connection means in larger networks,
as observable in the plots.
When comparing the connection numbers and their mean lengths, a further observa-
tion can be made. As expected, max-DSP generates least, but often extraordinary
long connections, even if the total numbers are close together, as for pt17. Mostly
for pt28 and pt17, this effect turns max-DSP into the worst performing DSP vari-
ant. As opposite concept, the mean lengths for 2-DSP are quite comparable with
that for 1+1 path protection. For s50, the difference is larger, since 2-DSP has
to spread the much less established connections more, whereas very similar lengths
occur for higher protection levels. Between its extremes, the ranking of DSP is
remarkable. In pt50, DSP varies its tendency in terms of connection numbers with
growing protection level, but steers a middle course in the mean hop lengths. In the
other networks, DSP selects medium connection numbers, but prefers most often
shorter routing alternatives, being (much) closer to 2-DSP. From this, we conclude
that DSP in general tends more to use shorter connections with less resource con-
sumption while making clever use of the additional routing variability by selecting
a suitable number of connections. Hence, the potential cost savings achievable with
DSP are usually realized with in the mean comparable connection lengths and thus
without suffering operational complications.

Solvability and decomposition loss. After comparing the network designs
obtained by the different concepts strategically and operationally, we come back to
previously discussed evaluations. At first, we consider solvability and the decompo-
sition influence for the corresponding tasks. As in the previous section, Figure 5.12
visualizes for each instance and each concept the optimality gap and the decompo-
sition loss as portions of both the total cost and the gap cost. The DSP values are
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(a) Optimality gaps.

(b) Absolute decomposition loss as portion of total cost.

(c) Relative decomposition loss as portion of gap cost.

Figure 5.12: Measures for solvability and decomposition sensitivity of the models for
the alternative survivability concepts.

repeated for comparable presentation in uniform scales.
The figures show some new effects, but also confirm previous observations. First of
all, the network ranking regarding solvability of the instances is maintained by the
solutions for all concepts. This certifies that none of the instances offers properties
of dominating advantage for an individual concept, and thus the curves represent
the relations of difficulty of the corresponding design problems. Basically, all con-
cepts perform similar on the large scale, and in particular the plots of max-DSP

and 2-DSP have a striking similarity. However, a closer look shows some clear dif-
ferences. In fact, DSP yields the worst gap in 15 of the 20 instances, among these
nearly all with protection. So, DSP is in tendency most difficult to solve, as claimed
before. In view of the best qualities, the concept ranking is max-DSP (8 instances),
followed by 2-DSP (6), DSP (4), and finally 1+1 path protection (2), which on the
other hand never produces the worst quality. A clearly favored concept in terms of
solvability can therefore not be determined.
These conclusions are underpinned by the various mean values over the compared
concepts listed in Table 5.5. Except for s0, DSP shows the highest means in all sce-
narios, while the other concepts perform similar throughout the test set. In contrast
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DSP max-DSP 2-DSP 1+1 mean

pt14 2,63% 2,41% 1,85% 2,39% 2,32%
pt17 6,23% 5,62% 5,72% 6,14% 5,92%
pt20 15,53% 13,31% 12,13% 13,59% 13,64%
pt28 9,43% 8,02% 8,96% 8,62% 8,75%
pt50 22,63% 18,24% 18,52% 20,40% 19,95%

mean 11,29% 9,52% 9,43% 10,23% 10,12%

s0 10,25% 11,00% 11,00% 11,03% 10,82%
s50 12,09% 11,42% 10,90% 10,99% 11,35%
s75 12,13% 8,11% 7,87% 9,68% 9,45%
s100 10,68% 7,54% 7,96% 9,20% 8,85%

Table 5.5: Mean optimality gaps for the survivability concepts.

to DSP, the comparison of means for different protection levels for the alternative
concepts indicates growing qualities with increasing protection level over 50%. In
total, our solution method achieves a mean optimality gap of 10.12% over all in-
stances. As the DSP results with 11.29% are not deviating too much from this,
design tasks using this concept can still be seen as well solvable by the presented
approach.
Next, we turn to the worst case decomposition losses in solution quality. For the
absolute values, overall less than 0.75% of the total costs result from the exclusion
of regeneration and conversion issues in the dimensioning and routing optimization.
Figure 5.12(b) indicates lowest affection for 1+1 path protection comparable to 2-
DSP and marginally worse results for the other DSP variants. As main reason, the
first two concepts allow for shorter connections and thus require less regenerator de-
vices, with regenerator number means (over all corresponding instances) of 0.6 (1+1)
and 1.35 (2-DSP) compared to 5.3 (DSP) and even 29.95 for max-DSP. Regarding
converters, the concepts are affected in a restrained manner by the length effects.
Here, the mean converter numbers are 9.4 (1+1), 12.65 (2-DSP), 16.7 (DSP), and
21.95 (max-DSP), apparently closer together than for regenerators. Nevertheless,
these mean numbers are quite small compared to the total demand in the instances,
and thus we can conclude that the decomposition approach proves effective for all
considered concepts.
Putting decomposition losses into relation to the solution quality, a single peak for
max-DSP in the heaviest loaded network pt14 catches the eye. This plot exposes the
concept’s weakness to require often overlong connections. In combination with high
traffic volume, an extraordinary large number of regenerations becomes necessary
and, as not involved in the optimization objective, increases the provable optimality
gap considerably. This exceptional portion is further driven by the high solution
quality achieved for the pt14 instances. In the other cases, however, a gap portion
of 5% is rarely exceeded, independent of the concept or topology. From this, we
conclude that for any of these scenarios, the decomposition provides an effective
and suitable approach, too.
Finally, we just remark that the comparison of link vs. node cost portions gives for
any concept nearly the same values as in the DSP case. These proportions have
been displayed in Figure 5.9, and due to mean value deviations of not more than
0.65% for the other concepts, additional plots can be omitted. Interestingly, these
similarities show that the different cost models used in the study do not favor any
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of the survivability schemes concerning the decomposition loss.

5.2.3 Upgrade planning

In this case study, upgrade planning for optical networks is examined. With a
predefined network configuration, the task is to find minimum cost extension for
accommodating new traffic requirements. Since reference scenarios are typically
not provided with preinstalled equipment and real-world networks of providers are
highly confidential, we apply a special procedure to generate scenarios for an upgrade
planning study.

Scenario generation. Most often, upgrade planning of networks is demanded in
case of changed traffic forecasts derived from latest transmission measurements and
longer period development experiences. Another reason for need of adaption can be
varying traffic properties which require to resettle connections or entire commodities.
Such a property, for instance, is the portion of protected traffic (which might jump up
after customers recognize or suffer consequences of actual failure occurrences). When
network capacities have already been occupied tightly, realization of such traffic
changes, even if not varying the volume, can often be achieved only in combination
with an extension of the configuration.
In the previous studies, we have computed designs based on graded survivability
levels. Driven by the cost optimization, the obtained network configurations contain
a very low amount of spare capacity. These networks therefore offer a suitable basis
for upgrade planning when taking increasing reliability requirements into account.
The following study again focuses on a single protection scheme, namely DSP as
used in the reference case, and considers the upgrade of each but the full protected
scenario to each higher level of survivability, denoted by sl-u with l as protection
level of the originating design and u as new protection level to achieve.

Upgrade vs. greenfield planning costs. Since greenfield planning solutions
for all survivability levels have also been computed as discussed previously, it is in-
teresting to evaluate whether the designs obtained as upgrades differ fundamentally.
Before comparing the total network costs as first indicator, we take a brief view
on the solution qualities for upgrade planning. Analogous to the previous plots in
Figures 5.4 and 5.12(a), Figure 5.13 displays the optimality gaps for each scenario as
portion of the total costs. Note that this representation limits the gaps to at most
100%.

Figure 5.13: Optimality gaps for the network design upgrades.
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Figure 5.14: Comparison of design costs and qualities, represented as before by the
total cost split into lower bound and optimality gap, for greenfield planning as left
bar and upgrade planning as right bar in each pair of side by side bars, where all
values are normalized by the total cost of the upgrade’s originating design.

At first glance, the values are surprisingly high in comparison to the former solution
qualities reported. In presence of existing capacities, the solution method seems to
perform much worse than in case of greenfield planning. Such a (rash) conclusion,
indeed, might be misleading, and in fact partially even the opposite statement holds.
Before showing this in detail, a reason for the observed effect is not hard to identify.
Let us for a moment fix the difference between a lower bound and an associated
solution value. The higher the total cost is, the smaller the optimality gap will be,
though corresponding to the same absolute difference. In turn, the gap size increases
with decreasing solution value, and exactly this happens when offering many existing
capacities. Note also that the gap sizes strictly decline with growing difference in
the percentage of protected traffic in the originating and the targeted survivability
level. This confirms the presented argument, as providing more protection needs to
add more backup connections which consume further resources and this way drive
higher total cost for additionally required capacities. For this, a strong indication is
that the largest gaps occur for those upgrades where only few more backup connec-
tions in the higher level instance have been routed within the greenfield planning.
The latter property holds in particular for s0-50 and s75-100. Hence, the larger
optimality gaps need not be a sign of having found bad designs.
In fact, the upgraded designs turn out to be comparable or sometimes even better
than the greenfield planned ones (for the targeted survivability level). The key ob-
servation is that the absolute cost values corresponding to the optimality gaps are of
similar size in each scenario. For such a comparison, the total cost of the originating
design has to be added to both the lower bound and the total cost of the solutions
with upgrade planning. Figure 5.14 places these results, as usual split into lower
bound and optimality gap costs, opposite to the greenfield planning design values.
For each pair of side by side bars, all cost values have been normalized with the
total cost of the originating design for the upgrading. This value corresponds to the
’1’ on the ordinate scale, and thus the bar part above one represents the upgrade
solution lower bound and total cost similar to the previously applied manner.
The picture illustrates concisely the above statement. Both the total cost and the
optimality gap range are typically only marginally shifted in comparison to the
greenfield planned solutions, with the upgraded designs being at most 6.4% more
expensive over all scenarios. In pt14 and pt50, upgrading turns even out to gen-
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(a) pt28. (b) pt50.

Figure 5.15: Mean numbers of unused node ports and link channels in upgraded
designs and the upper level greenfield planned networks for two selected networks.

erate better solutions in some cases, saving up to 10.6% of the greenfield planning
total costs. For the largest topology, this is most probably due to the lower solu-
tion qualities achieved for the originating designs, and the savings in pt14 are not
more than 0.4% and thus minor deviations. Nevertheless, provision of preinstalled
devices makes it unnecessary to consider all module combinations for up to the ca-
pacity available for free and thus reduces the number of configurations which have to
be taken into account. The corresponding complexity reduction can allow to solve
the planning task to higher quality and this way yields better designs in the end.
Since the cost comparison is based on including the originating configuration cost,
occurrence of such an effect presumes that no preinstalled capacities are wasted, i.e.,
an existing network configuration can be fully exploited for the changed traffic, too,
which is examined next.

Capacity utilization. When the lightpath configuration in a preconfigured net-
work has to be adapted to changed traffic, decisions taken in the previous network
design might turn out as disadvantageous. In this view, underequipped links and
nodes are noncritical as upgrades are still possible, whereas oversized capacities are
annoying for the waste of resources. Avoiding such a waste best possible is therefore
desirable when optimizing network design.
In the studied instances, capacity utilization is of satisfactory degree in the majority
of cases. Mostly, the average numbers of unused channels per link range around
a value of 5, indicating an overall high occupation of the installed link capacities.
Only for pt50, these values are between 10 and 15. At nodes, spare port numbers
are naturally higher due to the link-oriented node dimensioning and a coarser gran-
ularity of installable capacities. Here, overdimensioning of typically between 20 and
35 ports occurs. Interestingly, both holds for upgraded designs as well in nearly all
cases. Figure 5.15 plots the mean numbers of unused link channels and useless node
switch ports for upgraded networks in comparison to the greenfield planned designs
for the targeted protection level for two selected networks.
In pt28, the corresponding values match nearly perfectly and show that capacity
utilization is quite good, independent of whether planned as upgrade or on the
greenfield. Such close congruences, however, occur rarely, whereas the pt50 plots
better reflect a typical behavior. Nevertheless, the amounts of unused capacity re-
main comparable for both planning types and, altogether, we can conclude that
capacity utilization is at a satisfactory level.
These conclusions are also confirmed when coming back to capacity waste in case
of upgrading. In fact, completely unused modules crop up in no more than four
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Figure 5.16: Difference in the number of established connections for the upgraded
network in comparison to the greenfield planned design of the targeted survivability
level, related to the total demand.

upgrade instances. Switches at nodes are never redundant, while two WDM sys-
tems (with the carrying fibers, of course) are not used in the s0-50 case for pt14,
pt17, and pt50, and just a single case, s75-100 in pt50, breaks ranks with in total 30
obsolete WDM systems. The latter exception results most probably from the worse
solution quality generally achieved for the largest topology. Overall, however, we can
conclude that upgrade planning is quite well able to exploit freely given capacities
in the generated scenarios. We remark that such a conclusion heavily depends on
the studied instances, and we are aware of the possibility that our instance genera-
tion process, asking just for increased protection, certainly has an influence on the
outcome. More comprehensive investigations on upgrade planning performance in
terms of capacity utilization are therefore left to further research, being beyond the
scope of this thesis, where we rather turn to other fundamental observations.

Total number of connections. The general concept DSP has the choice be-
tween a variety of possible routings for each commodity, differing in the number of
connections to establish and their necessary diversification. For each commodity,
the decision of which alternative configuration to establish is taken such that the
final design over all routings comes to an as low as possible total cost. Presence of
freely available capacities can clearly influence these decisions. For verification of
such an influence, we consider the total number of connections as indicator for a
basic change in routing selection. Figure 5.16 illustrates the difference in the total
number of connections between the upgraded designs and the corresponding green-
field planned network configurations for the targeted survivability levels.
The results show that in most cases very similar routing decisions are taken. The
difference in total connection numbers for pt14, pt17, and pt28 is less than 1.9%
of the total demand. Only for pt20 and pt50, larger differences occur, and inter-
estingly these changes show exactly opposite behavior. A possible explanation of
these effects combines two properties of the greenfield planned designs, the achieved
solution quality and the total connection number growth for increased survivability
level.
The deflection sizes shown in Figure 5.16 for the instances correlate roughly with
the solution quality ranking from Figure 5.4 on page 196. Where greenfield planned
designs are proven to be (at least) close to optimality, the upgraded designs tend
to become very similar in the DSP selected parameterization, as long as changed
prerequisites do not enforce or favor a distinct solution. As a consequence, larger
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(a) pt20 instances. (b) pt50 instances.

Figure 5.17: Number of established backup paths as portion of the total demand in
network upgrades for the topologies pt20 and pt50, extending the plots for greenfield
planning solutions of the targeted survivability levels.

variations are predominantly to be expected for scenarios with higher optimality
gaps, which leave more room for improvements by alternative protection routings.
These claims are also affirmed by a more detailed comparison of the number of es-
tablished backup connections. As extension of the corresponding plots for different
protection schemes in Figure 5.11 (upper row), Figure 5.17 illustrates these numbers
for the upgraded designs.
In pt20, the added values do not deviate much from the connection numbers found
in the greenfield planned designs. For pt14, pt17, and pt28, the corresponding plots
behave similarly, being even closer to the values for DSP in Figure 5.11. For pt50,
in contrast, a very different curve emerges, forming a much better balanced inter-
mediate way between 2-DSP and max-DSP. From this, we conclude that network
upgrades, due to their reduced complexity, allowed to identify more beneficial rout-
ings for these instances and so generated better final solutions than with greenfield
planning for the targeted scenario. Note that this does not contradict to the alter-
nating sense of the differences. In fact, the number of backup connections in s75
for pt50 occurs quite high and increases with considerably flattened slope to the s50
case with a surprisingly small backup connection number. Exactly these extremes
are leveled out in all upgrade design solutions.

Node vs. link cost. Finally, we briefly remark that the relation of node cost
vs. link cost again does not deviate considerably from the previously presented re-
sults. Though individual values are shifted of up to 6.36%, a graphical illustration
has striking similarity with Figure 5.9 on the large scale. From this, we conclude that
also presence of preinstalled equipment has no major influence on which of these cost
portions is dominating, as long as no irregular originating configuration has been
prescribed, e.g., having tightly occupied links in combination with far oversized node
equipment.

5.2.4 Extended hardware model

This case study considers optical network designs optimized for an extended hard-
ware model. The extension introduces few additional modules for the sake of com-
parability with the reference scenarios. We first describe the added devices and their
properties before discussing the obtained results.
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module module install capacity cost
type name at pt17,pt20,pt50 pt14,pt28

WDM WDM20 links 20 wavelength 14.00 21.00
system channels

WDM WDM10 links 10 wavelength 8.00 12.00
system channels

switch OXC256 nodes 256 ports (bidir.) 522.80 522.80

reach: reach:
1200 km 8000 km

Table 5.6: New modules in the extended hardware model.

Hardware extension. In general, any modification on the available variety of in-
stallable devices and their properties can influence network design results. A change
of the hardware model has therefore to be chosen carefully in order to maintain
comparability with reference results. In this study, we focus on scalability of trans-
mission and switch capacities by a slight refinement of the module type sets.
We introduce two new WDM system types and one new OXC switch type, while
keeping the entire previous hardware model without modifications. Table 5.6 lists
the new modules which are added to those subsumed in Table 5.4 on page 192. The
additional link equipment allows for installing capacities in finer granularities, with
expectation to reduce spare resources in total. Thereby, the wavelength spectra are
specified such that ΛWDM10 ⊂ ΛWDM20 ⊂ ΛWDM40 holds. At the nodes, a larger switch
type is inserted for providing further economies of scale. All costs extrapolate basic
relations where larger modules provide regular discounts on twice the cost of half-
sized modules, for the full cost in case of WDM systems, and for the base cost in case
of OXCs. The consequences of these clearly arranged extensions are next studied in
detail.

Costs and qualities. As in the previous studies, the optimization performance
in terms of the objective, minimizing total costs, and the obtained solution qualities
are primary evaluation issues. In the usual representation, Figure 5.18 illustrates
the total costs, split into lower bound and optimality gap costs, for the reference
instances on the left besides the results with extended hardware model on the right
of each pair of bars. For each network, all values are normalized with the total cost
of the unprotected reference scenario costs.
The plots show as expected that the extended hardware model enables to realize
cost savings compared to the reference instances. The total cost reductions range
between 3.8% and 14.7%, and the lower bounds decrease to a comparable extent as
well. Once again, only s75 for pt50 gives a special case with significant increase of
the optimality gap. For this instance, the design cost decrease due to the hardware
extension is quite regular compared to the other instances, whereas the lower bound
has reduced dramatically. Since experiments with longer running time have detected
much stronger lower bounds, this indeed seems to be just an exceptional case.
Altogether, we conclude for this case study that the provided capabilities to save
costs by installation of finer granularities (at graded costs) and economies of scale
could have been well exploited for finding cheaper designs, while having nearly no
impact on the quality performance of the optimization method.
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Figure 5.18: Comparison of design costs and qualities in usual representation for the
reference instances as left bar side by side to the corresponding extended hardware
model design solution as right bar in each bar pair. Network-wise, all values are
normalized by the total cost of the corresponding unprotected reference design.

Link capacity utilization. Besides cost savings, the hardware extension is also
expected to have an effect on the spare capacities in the designs. As mentioned in the
previous study, the inherent oversizing of nodes due to link-oriented dimensioning
generates indifferent spare capacities which depend only in second order on the
traversing traffic. Therefore, we focus on links where these issues are much more
closely related and the refined installation granularities let expect an observable
effect. For this, Figure 5.19 plots the change in average spare channels per link for
the instances of this study in comparison to the reference instances.
The figure reveals that the wide majority of instances in fact contains less spare
channels on links in total. In few cases, slightly increased averages per link appear,
which are evidently acceptable when finding cheaper designs in the end. Neglecting
these exceptions, the average numbers of spare channels per link from the reference
solutions decrease by a mean of about 50% when offering the refined module set.
The largest rise in link utilization is achieved for pt50, where up to 10.5 less spare
channels per link are observed. Notice that a spare channel reduction of one on
40 links is equivalent to saving of a complete WDM40 system. Typically, the total
number of installed link systems increases with the extended hardware, but the
total number of provided link channels is often considerably smaller than for the
reference instances.
Another perspective on transmission capacity utilization is provided by the portion

Figure 5.19: Absolute difference in the number of average spare channels per link for
the hardware extended instances in comparison to the reference instances.
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(a) Reference instances. (b) Instances with extended hard-
ware.

Figure 5.20: Portion of links with fully utilized capacity, i.e., no spare channels, for
(a) the reference instances and (b) the designs upon additional hardware.

of optimally utilized links, i.e., the number of fully loaded links over the total number
of links. Figure 5.20 plots these values for the reference and the hardware extended
instances.
Intuition suggests that less total spare channels basically correlate also with larger
portions of fully occupied links, forming a shift of the reference instance values.
Surprisingly, the diagrams reveal another observation. The full link portions span a
wide range from 17.1% to 72.7% in the reference instances. With extended hardware,
the values are much closer to each other, concentrating around the mean of 44.9%
which is just marginally higher than 42.4% for the left figure. The refined link
system structure hence seems to yield a better balanced link capacity utilization.

Node vs. link cost. A short final remark again concerns the composition of total
costs from link and node costs. Due to the hardware extension, these relations are
again shifted only marginally in comparison to the reference instance splittings, as
shown in Figure 5.9 on page 201, but do not change considerably on the large scale.
In fact, all link cost portions increase by values between 0.6% and 5.2%, with a mean
of 2.9%. From this, we conclude that the saving possibilities by the extended module
set are slightly less favorable for links, where overdimensioning can be reduced by
installation of finer granularities at the cost of the installation of more systems (and
thus fibers), than at nodes just with an additional large switch offering economies of
scale. Such a balance, however, depends predominantly on the specific modules and
cost values assumed in the study and therefore does not state a result in general,
but reflects a helpful analysis for particular settings planners in practice are faced
with.

Summarizing, the expected effects by provision of a refined module set have been
observed. Economies of scale and a finer capacity granularity yield cheaper network
designs with less spare capacities and better balanced link utilization. Thereby,
the performance of our solution method was unaffected by the instance variation.
For wavelength assignment, however, inhomogeneous WDM systems offer different
wavelength spectra and thus result in inhomogeneous wavelength availabilities on
the links. Consequences on solvability and the number of required converters are
discussed in Section 5.3 where we give a comprehensive report on evaluations for
wavelength assignment.
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5.2.5 Opaque scenario

As last study on varying network design settings, we consider optical networks based
on opaque technology as alternative architecture. For this, another adaption of the
hardware model is introduced.

Hardware model adaption. Opaque networks are characterized by the prop-
erty that any optical connection undergoes an o-e-o-conversion at each traversed
node. Since this function includes a possible exchange of the wavelength of op-
eration, wavelength converters are not needed anymore and thus are not further
involved explicitly.
The placement of transponders (performing the o-e-o conversion) can be based on dif-
ferent approaches: either individually on established connections only, or by means
of fully equipped transmission or switch modules, i.e., placing a transponder at
each port or transmission channel independent of its utilization in the current light-
path configuration. The first method clearly results in sparsest use of o-e-o conver-
sions, but might become troublesome for lightpath reconfigurations to accommodate
changed traffic requirements, even if no additional transmission or switching capac-
ities are needed. Following our policy of designing networks flexible in preparation
for (most) alternative routings, we rely on the second possibility. Moreover, guided
by the applied kind of link-oriented node dimensioning, we consider full equipment
of WDM systems rather than of switches. This way, any computed opaque network
design still allows for any routing reconfiguration that does not exceed the installed
link capacities.
The advantage of an opaque architecture consists of the possibility to employ elec-
tronic switching devices, introduced as DXCs in Chapter 1. Being widely used today,
this switching technology is usually somewhat cheaper than optical switching, but
is also bounded by physical limitations. Growing transmission bitrates offered by
optics thus need DXC cascades to cope with a multiplied throughput, which might
(over-) compensate the cost advantage. To evaluate such effects, we do not restrict
on a particular bitrate with corresponding device prices as market snapshots (or es-
timations), but rather analyze break-even relations based on the formerly assumed
OXC costs. For this, we leave the reference model switch modules and their prices
unchanged in the case study and appraise discount factors on node equipment that
would equal both architecture’s total cost.
As a consequence, the hardware model is just adapted as follows. Each WDM system
comes with a transponder at each offered transmission channel. As both transpon-
ders and transmission channels are bidirectional, the total number of transponders
per WDM system equals its channel number and thus is predetermined. There-
fore, the opaque hardware model holds just an increased WDM system cost of 104
(= 24 + 40 · 2) in the networks pt17, pt20, and pt50 with smaller optical reach, and
156 (= 36 + 40 · 3) in pt14 and pt28 with ultra-long haul transmissions. Installation
of individual transponders does not occur anymore, making their explicit incorpo-
ration unnecessary as for converters. Hence, we end up with a reduced hardware
model with shifted cost relations as basis for this case study.

Before discussing the results, a computation exception has to be remarked. The
dimensioning and routing optimization with four hour time limit did not succeed
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Figure 5.21: Opaque network design total cost splitting into node and link equipment
portions.

to find feasible solutions for the opaque architecture in two cases, namely scenarios
s75 and s100 for the largest topology pt50. So, we raised the time limit for these
two instances to six hours of CPU time which turned out to suffice. The following
report evaluates the finally generated network designs.

Node vs. link cost. The introduced shift in the module cost relations clearly
carries over to the total cost portions for node and link equipment in the computed
network designs. So, we first display these splits in Figure 5.21 which compare to
those for the reference instances shown in Figure 5.9 on page 201.
Due to the hardware modifications, the enlarged link cost portions do not surprise.
Now, link equipment expenses are at least roughly equal to that for nodes or even
become the dominating part. Though the more expensive OXCs are still used as
switches, the node cost portions from the reference instances reduce roughly by a
percentage ranging between a fourth and a third, with a mean of 29.2%. Notice that
replacing OXCs by DXCs saves just a portion of this part of the total costs.

Architecture costs. Turning to an architectural appraisal, Figure 5.22 presents
the opaque optical network costs and the associated solution qualities in the usual
way, repeating those for the transparent reference instances for providing better
comparability.
The opaque designs show considerably higher total cost than the corresponding ref-
erence instances, which clearly results from the simply increased prices for some
modules. As this modification varies only parameter values, but leaves the inte-
ger linear programming formulation otherwise unchanged, it does also not astonish
that comparable solution qualities are achieved for both architectures. In fact, the
optimality gaps for the opaque architecture are always smaller than for the corre-
sponding reference case. This is basically reasoned by the opposite effect than in case
of upgrade planning, where in comparison to the reference instances similar cost dif-
ferences between lower bound and solution value yield much higher optimality gaps
since being related to a much smaller solution value. However, no extraordinary gap
differences occur, which would otherwise disturb an analysis of DXC cost limits for
making the opaque architecture more favorable.
To compete with the transparent designs, DXCs have to provide sufficient cost ad-
vantages over OXCs. For this, Figure 5.23 displays the percentages of the opaque
solution node costs at which break-even in total cost is reached.
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Figure 5.22: Comparison of design costs and qualities in usual representation for the
reference instances as left bar and the corresponding opaque architecture instance as
right bar of each pair of side by side bars. For each network, all values are normalized
by the total cost of the unprotected reference solution.

When simply comparing the obtained solutions, the break-even portions are quite
regular. In the small area networks pt17, pt20, and pt50 with shorter optical reach,
a node cost reduction of around 50% suffices, i.e., the opaque design becomes favor-
able whenever DXCs are not more than approximately half as expensive as OXCs.
In the ultra long-haul equipped networks pt14 and pt28, nodes are already of lower
relevance for the total investments. Thus, a much lower portion of node costs, rang-
ing between 10% and 20%, has to be achieved to even out the cost difference between
the corresponding designs.
This comparison indeed is not complete, since transparent networks incur also fixed
costs which have been left out of the optimization and, for better comparability
of the method’s outcomes, in the preceeding break-even analysis, too. These costs
subsume equipment employed for the transformations from the accessing electronic
client layer to the optical layer at the begin and back to the electronic layer at the end
of each optical connection, as described in Chapter 1. In the opaque scenario, these
functionalities are provided by the already involved transponders. When comparing
transparent networks to such a different technological architecture, these fixed costs

(a) Computed designs. (b) With inclusion of transparent
design fixed costs.

Figure 5.23: Portion of total node costs in the opaque instances marking the total
cost break-even point to the transparent reference designs, for the computed solutions
(on the left) and with additional inclusion of the fixed cost for the e-o and o-e trans-
formations at the endnodes of each connection in the transparent reference designs
(on the right).
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have to be taken into account as well and add a transponder cost for each work-
ing optical connections, but not for backup connections (which reuse those from
disrupted connections in case of failures). For this, Figure 5.23(b) shows the break-
even relations when the fixed costs are involved within the transparent designs. This
adaption has two effects. First, the critical DXC cost percentages clearly rise, since
a smaller design cost difference has to be equalized. And second, the break-even
points are now decreasing with increasing protection level. As remarked above, the
transparent design fixed costs do not depend on the protection requirements. Nev-
ertheless, these requirements yield higher total costs and thus also higher differences
between the architectures which have to be compensated by switch cost savings. As
a consequence, the final break-even portions are not anymore (nearly) stable over
the scenarios for a network, but depend also on the demanded network reliability.
Summarizing, an opaque architecture only pays off if the available node equipment
is sufficiently cheap compared to OXCs, in particular for networks covering wide
areas. The derived limits have no general validity and depend highly on the module
price assumptions. However, such a break-even analysis is only possible if techno-
logical alternatives can be evaluated by comparable methods and can help planners
to decide whether the one or the other architecture is favorable.

Similar to an examination of break-even opacity costs, the expenses dedicated to
transparency in optical networks can as well be analyzed and compared to those
for alternative architectures. For such a study, the relevant costs vary by the re-
quired numbers of regenerators and wavelength converters, as already considered
for rating the decomposition loss of our solution methodology. Thereby, wavelength
assignments have been computed with short heuristic runs to demonstrate practical
applicability. Though the results obtained this way are already satisfying in terms of
sparse conversion requirements, potential further improvements and a deeper anal-
ysis of this mathematically interesting problem are worth a deeper evaluation, as
carried out next.

5.3 Computations for wavelength assignment

In this section, we report on the second computational study concerning the wave-
length assignment subproblem. Basically, we reuse all but the opaque network design
instances from the previous study, i.e., all results for transparent optical networks.
For these 130 instances, solutions have been completed with initial assignments gen-
erated by short heuristic runs. We begin with a summary on these assignment results
which already include a considerable number of converter-free and thus optimal so-
lutions. Since (too) few challenging wavelength assignment instances are left for
further evaluations, we extend the test set in the way described next. In total, we
end up with 634 Mcwap instances (and solutions) of which 323 lack of an optimal
assignment or its proof of optimality.
For the resulting instance set, we first report on the lower bounds on the number
of converters computed by the methods described in Section 4.4.2. Such bounds
indicate possibly still improvable assignments for which we next present results by
application of the improvement heuristic with wavelength extraction from Section
4.4.1. This finally leaves only a fraction of all instances unsolved. A report on the
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Figure 5.24: Histogram of solution numbers from the previous computational study
in Section 5.2 with converter numbers suitably classified in steps of 10 resp. 50
converters.

outcome of the exact method for selected cases and possible directions for further
improvements conclude the study.

5.3.1 Design computation results

In the first computational study, totally 130 transparent optical network designs have
been computed and evaluated. Each of these solutions includes a feasible wavelength
assignment obtained from an iterative heuristic run for at most 15 minutes. At first,
we take a closer look on the converter numbers in these solutions.

Converter numbers. Figure 5.24 shows a histogram on the converter numbers
in these assignments, each sorted into that class whose associated number is the
smallest one not exceeded by its converter number (the particular value for each
individual instance can be found in Appendix B).
The histogram reveals that for 65 and thus exactly half of all instances a converter-
free solution has been found. Interestingly, this set contains all instances for pt14,
all but one for pt17, and ten of the 15 involved s0 instances for the other networks,
hence a strong incidence of smaller networks and the unprotected scenario. For a
possible explanation, note that both of these properties, a low link number and no
protection restrictions, facilitate an establishment of short connections with respect
to the hop length. Such tendencies are also observable in the mean hop lengths plot
of Figure 5.11(b) from the survivability model evaluation, involving 80 of the consid-
ered instances. This gives an argument in combination with the natural expectation
that finding converter-free wavelength assignments is more probable for connections
with shorter hop-length, also promoted by results like Corollary 4.12 or Theorem
4.13 which identify classes of instances with the guarantee of a converter-free solu-
tion, in particular due to having only lightpaths of hop-length at most two.
Regarding the 65 non-zero solutions, a dominance of relatively small converter num-
bers can be observed in Figure 5.24, and only few outliers appear. In fact, 60% (or
absolute 39) of these instances contain at most 40 converters, while there are only
7 instances with more than 80 converters. The maximal class of size 12 refers to
assignments with a converter number between 21 and 30, where also the average of
22.8 converters per assignment over all 130 instances lies. As further observation,
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the designs based on the extended hardware model from Section 5.2.4 have a more
than doubled average of 50.2 converters per assignment, and these only 20 instances
include already 7 of 12 solutions with more than 60 converters. This indicates that
the use of inhomogeneous WDM systems indeed tends to increase the need for con-
verters.
When summing up values over all instances, the solutions in total contain 269,448
lightpaths and employ 2,961 converters, i.e., approximately one converter per 100
lightpaths. Focusing on those instances with converters, 130,679 lightpaths remain,
and thus roughly one converter occurs per 50 lightpaths. Hence, we can conclude
that the number of converters, even in the fast heuristically generated assignments,
overall scales very well with the amount of traffic to route, being a further affirmation
for the suitability of the proposed decomposition approach.

5.3.2 Instance set extension

Among the design results, half of the 130 solutions come with a converter-free and
thus already optimal solution. As this leaves only 65 instances for further exami-
nation, we extend the test set by adding up to four alternative solutions for each
design instance. We first explain how this extension is carried out, before we discuss
the enlarged instance set and its properties.

Generation of alternative solutions. The proposed solution method for op-
tical network design is not restricted to deliver a single solution only. In fact, the
dimensioning and routing optimization returns the best found solutions in a pool of
adjustable maximum size. Clearly, the postprocessing can be applied to any of these
interim solutions, generating alternative designs for the original problem instance.
In our computations, the pool size parameter was in fact set to a value of five. For
eight instances, however, less than five solutions have been found within the time
limit of 4 hours for dimensioning and routing. Not surprising, all these instances
belong to the largest network pt50. Here, just a single solution is obtained for the
DSP reference s100 instance as well as the DSP upgrade planning s0-50 instance,
three solutions for the DSP reference s75 instance as well as the DSP upgrade plan-
ning s0-75 instance, and four different solutions have been found for the 1+1 path
protection instances with s75 and s100 as well as the DSP upgrade planning s0-100
and s75-100 instances. So, 16 solutions are missing of the potential maximum of
650, and thus we end up with a total of 634 different designs, each with an indi-
vidual routing and initial assignment, as base of the extended test set for Mcwap

evaluations.

Design improvements. Before we go more into detail on the initial assignments
in these solutions, a remarkable observation is to be mentioned. All results eval-
uated so far refer always to the design generated from the best Discnet solution
for the sake of providing a best possible comparability. During these computations,
the other interim solutions of minor quality have been just stored and completed
separately afterwards.
Surprisingly, the alternative designs not seldom yield a better solution in the end.
In fact, for totally 31 of the 130 considered instances, the final minimum cost design
is not obtained from the best dimensioning and routing solution, but in 14 cases
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Figure 5.25: Histogram of solution numbers in the extended set of designs reusing
the converter number classification from Figure 5.24.

from the second best, in eight cases from the third best, again in eight cases from
the fourth best, and once even for the fifth best one. The decreasing multiplicities
indicate that such an overtaking postprocessing performance cannot be expected for
arbitrarily low ranked alternative solutions of dimensioning and routing. Moreover,
the additional savings in the detected better solutions do not always result from a
smaller number of employed converters and regenerators, which reduces in only 17
cases, remains unchanged in five cases, and even grows in nine cases. The rout-
ing improvement procedure described in Section 3.3.3.1 in fact contributes to the
final design quality by detecting reroutings which allow for capacity reductions. For
this, larger networks seem to offer more potential, as 21 advancements occur in the
two largest networks pt28 and pt50. Regarding the distribution of the improved
instances over the considered scenarios, no striking concentration appears.
In the 31 successful cases, the design costs further reduce on average by 0.65% with
a maximum of 1.88% in relation to the primary solution, and the optimality gaps
shrink on average by an absolute value of 0.51% with a maximum of 1.54%, which
corresponds to a relative gap closing by 3.01% on average and 8.43% maximally.
As a more demonstrative example, the mean optimality gap of 10.12% over all 80
instances from the survivability model evaluations, as reported in Table 5.5 on page
209, decreases to 9.97% when the primary solutions are replaced by the best alter-
native ones for the 21 instances of this set where such an improvement was found.
These observations show that the postprocessing procedures are in fact capable to
enhance dimensioning and routing solutions for the final designs. In addition, we
conclude that the proposed approach for optical network design optimization can
profit from taking more than just the best dimensioning and routing solution into
account for completion. Though not substantial, further solution quality improve-
ments can be achieved this way.

Converter numbers in the extended solution set. Preparing the following
study on Mcwap, we finally evaluate the converter numbers in the extended set of
634 initial assignments. As before, these numbers are categorized for the histogram
in Figure 5.25 which shows how many instances fall into any of the categories.
The plot reveals basic relations that are similar to those for the primary designs.
Again, roughly 50% of the assignments are converter-free and thus optimal solutions.
Among these, all but 4 solutions for the two smaller networks pt14 and pt17 as well
as still 37 of the 75 unprotected designs for the other networks are present, contin-
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uing the observed concentration for solutions with on average shorter lightpaths.
In the remaining 323 designs with converters, an exponential decrease in the number
of solutions with higher conversion requirements comes to light in Figure 5.25. Note
that the last three converter number classes are larger than the previous ones. This
appearing regularity contributes further to the expectation of rare cases which need
outstanding conversion effort, as motivated for the decomposition approach. From
all solutions needing conversions, now even more than 80% contain not more than
40 converters, corresponding to a slightly lower average of 20.5 converters per design
over all 634 instances.
In total 12,992 converters are placed on 1,423,480 routed lightpaths in the entire
test set. Interestingly, already 4,556 converters are needed just for the 100 instances
using extended hardware, from which only all those for pt14 and pt17 and an unpro-
tected pt20 instance are converter-free. The remaining 59 solutions for this scenario
thus contain an average of 77.2 converters, a strong indication that installation of
inhomogeneous WDM systems drives larger need for conversions or makes it just
more difficult to find solutions with low number of converters.

As a consequence, the test set extension brings up a considerable number of designs
with an initial assignment of unknown quality. For these 323 designs, the initial
number of converters serves as 100% gap correspondence when discussing quality
improvements achieved by computation of lower bounds and attempts for solution
improvements. In the natural order, we first determine lower bounds in order to
see whether further proofs of optimality for solutions with converters are directly
found this way and to identify the remaining designs with potentially improvable
assignments.

5.3.3 Lower bounds

In Section 4.4.2, we present two approaches to obtain lower bounds for Mcwap:
using the linear relaxation value of the dominating path packing formulation (4.4),
and the combinatorial approach from Koster [91], adapted for non-uniform fiber
spectra in Section 4.4.2.2. Both methods have been applied to all 323 instances
with a so far non-zero optimality gap for the wavelength assignment. The results
are discussed subsequently, beginning with the LP based approach.
In the following, we discuss the outcome of the computations. Thereby, we use
some abbreviations to refer to networks, scenario settings, and solution indices for
simple notation of individual designs. As familiar, the networks are denoted by their
topology identifier and survivability levels as before by s0, s50, s75, and s100 as well
as the introduced combinations used for upgrade planning. Moreover, the applied
survivability schemes are indicated by ’max’ for max-DSP, ’two’ for 2-DSP, ’dsp’
for the general DSP scheme, and by ’1+1’ for 1+1 path protection. Next, we differ
the usual (reference) hardware setting marked by ’w1’ and the extended hardware
setting by ’w3’, corresponding to the number of WDM system types involved. And
finally, the up to five solutions for each instance are numbered sol1,sol2,. . . according
to increasing cost of the solution obtained from Discnet.

Lower bounds by the LP optimum. For solving the linear relaxation of the
path packing formulation by column generation most efficiently, several strategies
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Figure 5.26: Converter numbers for all instances whose optimality is directly proven
by the LP optimum lower bound.

are evaluated in Section 4.4.2.1. In this computational study, we exclusively use the
strategies which have turned out to be most promising, an initialization with the
basic column and application of restricted pricing as long as possible.
Interestingly, all LP relaxations of the path packing formulation for the 323 instances
have an integral optimum value. This, however, does not reflect a general property
(cf. page 238). In 197 cases, the LP value is zero and thus does not contribute to
close the optimality gap, whereas the remaining 126 LPs return a valuable lower
bound. In fact, a proof of optimality for the solution at hand is directly achieved in
25 cases this way. For this instance set, Figure 5.26 visualizes the computed lower
bounds equal to the solution converter numbers.
Inspecting the particular instances, we observe that all directly proven optimal as-
signments occur in the same topology pt20. Even more, 119 of all non-zero lower
bounds are obtained for this network scenario, while only 6 for pt28 and a single
non-zero lower bound for pt50 are found. As a possible explanation for this striking
concentration, pt20 excels by a typically higher link utilization and larger portion of
fully occupied links compared to pt28 and pt50. For some cases already depicted in
Figure 5.20, a comparison of all sol1 solutions in this study reveals that the average
portion of completely utilized links is 48.95% for pt20, 42.03% for pt28, and just
27.93% for pt50, whereas the average number of spare channels per link increases
from 4.29 for pt20 to 5.12 for pt28 and even up to 10.42 for pt50. So, wavelength
multiplicities tighter to the wavelength requirements seem to facilitate identifica-
tion of unavoidable converters. A further contributing factor could be the fact that
pt20 holds the least total traffic amount among the networks, and note that most
instances in Figure 5.26 have none or low-level survivability requirements, keeping
the total lightpath number low as well. Establishment of more connections needs
increased link capacities offering larger wavelength multiplicities which blow up the
solution space of feasible assignments and make unsolvable conflicts harder to de-
tect.
A next observation is that the unprotected s0 designs have the same lower bounds
for ’1+1’, ’max’, and ’two’, but different ones for ’dsp’. For the first three schemes,
this follows simply from the fact that the models are identically parameterized in
case of no protection, and thus the same solution is found, though the results have
been distinguished due to slightly different dimensioning and routing lower bounds.
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In contrast, ’dsp’ is based on a different routing model with further freedom degrees,
and the distinct lower bounds show that obviously other designs are found this way
though the previous ones are feasible, too. As soon as protection is requested, all
schemes generate individual models and solutions for which varying lower bounds
occur.
Moreover, Figure 5.26 reveals also that the obtained lower bounds are not restricted
to very small values only. In context of coloring-like problems, non-trivial lower
bounds are typically hard to gain at all (see, for instance, bounds on interference
in frequency assignment reported in Eisenblätter [42] and Koster [90]). In case of
Mcwap, however, optimality for solutions with up to 17 converters has been proven,
and lower bounds up to a value of 51 unavoidable converters have been found. Fig-
ure 5.27 gives a histogram on the lower bound values for all 323 instances, reusing
the previously applied categorization.
As expected in relation to the converter numbers displayed in Figure 5.25, the cate-
gory sizes decrease with increasing lower bound values in a similar way. Among the
non-zero results, nearly half of the instances have a lower bound of more than ten,
with an average value of 14.29 over all 126 cases. This already indicates that the
determined lower bounds do not only serve to identify instances without converter-
free assignments, but indeed give valuable information to guide further improvement
attempts, except for already proven optimal solutions, of course.
For the remaining 101 instances, Figure 5.28 illustrates the progress in terms of
solution quality achieved by the lower bound values. Similar to the design cost eval-
uations in the previous section, the diagram bars reflect the converter numbers in
the initial solution assignments, split into the lower bound value at the bottom and
the resulting optimality gap at the top of each bar.
Since proven optimal solutions are excluded from this overview, each instance has
a strictly positive optimality gap. The gap sizes indeed vary much, ranging in ab-
solute values between one and 74 converters with an average of 16.38. Apparently,
a concentration of larger differences occurs for the 19 ’w3’ instances with extended
hardware model, for which the average absolute gap size raises to a value of 26.89.
This increase can only by explained by a worse quality of the lower bounds or of the
solutions (or both) for this scenario. In view of the path packing formulation, how-
ever, non-uniform wavelength spectra seem unlikely to worsen the resulting bound
quality, and in fact the average lower bound is 15.53 and thus quite comparable to
the average of 15.96 over all considered instances. Hence, we conjecture that the
increased gaps are caused by less good solutions found for these instances, which

Figure 5.27: Histogram of the lower bounds obtained as optimum value for the linear
relaxation of the path packing formulation.
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corresponds to the previous observation of typically much higher converter numbers
in the initial assignments for instances with inhomogeneous WDM systems.
A similar, but less obvious observation concerns the gap distribution over different
survivability levels. Such an evaluation discloses that the average absolute gap of
16.38 converters splits into a value of 20.01 for the 67 instances with the two higher
and of only 9.21 for the 34 instances with the two lower protection levels. Hence, the
gaps for designs providing no or half protection are overall considerably smaller than
for those with the two higher portions of protected traffic. But in this comparison,
the lower bound qualities differ as well. While a slightly decreased average lower
bound of absolutely 14.13 converters occurs for the solutions designed for predom-
inantly survivable traffic, all instances protecting at most half of the connections
find lower bounds with an absolute average of 19.56 converters which is quite strong
compared to the overall average of 15.96. From this, we infer according to previ-
ous indications that lower survivability levels and thus lower numbers of lightpaths
established in a less diversified way allow to expect both better lower bound and

Figure 5.28: Lower bounds and solution converter numbers for all instances with
non-zero LP optimum.
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prot. # y-variables # priced x-variables
level pt20 pt28 pt50 pt20 pt28 pt50

s0 885 4,452 7,636 151 189 430
s50 2,449 12,927 19,291 236 346 713
s75 3,198 13,324 23,851 383 336 665
s100 2,947 13,442 32,611 424 380 901

Table 5.7: Examples for the number of y-variables and the number of priced x-
variables for the sol1 Mcwap instances of the DSP scenario (except for s0 in pt50
using sol4 since sol1 has a converter-free assignment).

solution qualities for Mcwap.
Altogether, the plots in Figure 5.28 exhibit also that the lower bound values are not
seldom close to the solution value, even for higher converter numbers and throughout
the test set. Moreover, though larger differences seem to dominate, the lower bound
portion is on average 50.45% of the solution converter number over all depicted 101
instances. So, whenever non-zero lower bounds are found, we can conclude that on
average a considerable optimality gap closing is achieved.

Column generation performance. After the quality evaluation of the lower
bounds, we next turn to the performance for their computation by solving linear
programs using the proposed column generation algorithm. For such measures,
however, capabilities of the applied linear programming solver play a dominant role,
and thus we restrict to some most significant facts. Thereby, we count with mean
iteration numbers in the w3 scenarios having up to three pricing problems due to
the resulting spectrum subsets (in fact, a single instance does not employ any WDM20

system and thus has only two wavelength subsets to distinguish), whereas the com-
putation times are, in contrast, always summed up.
As expected, each linear program with zero optimum is solved by exclusive use of
restricted pricing. This does not surprise since the pricing in the restricted variant
generates exactly those columns (or lightpath packings) that are needed for com-
position of a converter-free solution. The corresponding LP solutions are clearly
integral in all y-variables, but typically contain many x-variables with non-integral
values and therefore do unfortunately not encode feasible (integer) wavelength as-
signments. A less expected observation is that all these computations terminate
without a single exact solving of the pricing problem, instead using the objective
value as final stop criterion. As a consequence, new columns are priced out quite
efficiently, and up to few hundred iterations (see Table 5.7 for typical numbers) al-
ways suffice to reach the zero optimum value, consuming on average a total time
portion of only 12.15%. The lion’s share of time is indeed spent for resolving the
path packing linear program after each iteration which typically becomes more and
more challenging with growing number of columns and when approaching the op-
timum value. In addition, the LP solvability depends heavily on the network size,
best illustrated by the average total running time per instance of 9.02 sec. for pt17,
14.68 sec. for pt20, 593.83 sec. for pt28, and even 5,994.35 sec. for pt50. This results
from the exploding variety of different routing paths (and thus partial paths, too)
in meshed networks of increasing node and link number, blowing up the LP size as
well. Table 5.7 lists some exemplary numbers of y-variables confirming this growth.
However, the average LP solving times per iteration are usually (much) lower for the
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instances with non-zero optimum, and so we conclude that reoptimizing the LPs is
in particular difficult near zero as final objective value. As this occurs mostly for the
large networks, it is not surprising that a portion of more than 96% of all total run-
ning times together is spent for the 197 zero-bound determinations, and over 85% for
pt50 instances only. This gives a good figure for ranking the overall performance of
the column generation algorithm, having most to struggle with the largest network
scenario which in fact is of challenging size, whereas the other practical instances
are solved quite efficiently, in particular in case of detecting a non-zero lower bound.
Whenever a strictly positive LP optimum is found, at least two exact pricing steps
are carried out in each computation, one for finishing the restricted pricing mode
and one for the final confirmation of optimality. Theoretically, restricted pricing can
suffice for these instances, too, but non-zero optimal solutions are rarely composed
of such restricted path packings only, and we observe that at least one improving
non-restricted path packing is always generated. Nevertheless, restricted pricing
succeeds on average in over 60% of the iterations which fastens the generation of
new columns. Moreover, more than two obligatory exact pricing steps are not often
carried out, with up to totally ten such steps in 16 and more than ten steps in only
nine of the 126 instances. Since solving the integer linear program of the pricing
problem exactly takes clearly more time than a heuristical step, the portion of the
average running time for pricings increases to 50.57% over these instances and thus
nearly equals the LP resolving times. This balance indeed shows that the additional
pricing effort does typically not dominate the performance. In fact, while most exact
steps terminate rather quick, we find just three exceptional cases with quite hard
integer pricing programs, one for the pt20 reference instance with w1 and DSP for
full protection s100, and two for pt50 upgrade planning s75-100 using w1 and DSP

as well. In these computations, the majority of pricings finishes regularly fast, but
a couple of times the integer linear program needs up to around 15 minutes to be
solved exactly, raising the portion of the pricing time to over 98%. In order to make
the lower bound determination more efficient for such rare cases as well, further
research on multi-set packings for speeding up the exact solution process is needed.
At last, we analyze the LP optimization effort dependent on the particular design
scenario. For better comparability, we select in either case, among the instances with
zero and those with non-zero optimum, the most dominant network in view of the
sums of total running time, being pt50 and pt20, respectively. In case of pt20, we
also exclude the three highlighted instances with extraordinary exact pricing effort
to obtain a scale which makes meaningful comparisons for the more regular cases
possible. So, for in total 77 pt50 and 116 pt20 instances, Figure 5.29 illustrates the
average CPU time in seconds per instance separately for different planning settings
and protection levels (or targeted levels in case of upgrade planning).
Though the time scales differ by magnitudes, a comparison reveals similar relations
in both plots. For s0, the computation times are negligible, and the effort typically
grows with increasing protection level. This is explained by the fact that requesting
higher survivability imposes an establishment of more (different) lightpaths in total,
and the corresponding LP size increase prolongs the optimization duration. In view
of the planning settings, we observe that ’max’ instances are typically among the
most time consuming ones, while those applying ’two’ or ’1+1’ are solved fastest on
average, and the ’dsp’ are in between. Here, a similar argument applies, based on the
lightpath hop-lengths which are largest in ’max’ instances and smallest in scenarios
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(a) pt50 with zero bounds. (b) pt20 with non-zero bounds.

Figure 5.29: Average CPU times per instance for different scenarios and protection
levels, restricted to the most dominating network among the instances (a) with zero
bounds (pt50), and (b) non-zero bounds (pt20 without three exceptional cases).

’two’ and ’1+1’, see also Figure 5.11. The longer lightpaths are, the more partial
paths are contained, generating larger LPs as well. Further, the interdependencies
increase for longer lightpaths. Finally, the average running times for the ’dsp’ sce-
narios used as reference, with extended hardware, and for upgrade planning show
less regular performance relations. The instances with extended hardware hold in
parallel up to three pricing problems to be solved in each iteration. Often, less iter-
ations than for the corresponding reference instances are required, but a larger total
number of columns is generated, which explains the higher running times. Surpris-
ingly, non-zero bound instances with full protection perform very well, though exact
pricings have to be carried out, too. In these instances, the corresponding column
set subdivision possibly offers better opportunities for finding compatible column
combinations. By upgrade planning, lightpaths can follow unexpected (long) routes
selected for exploiting some free capacities. Such structural properties can influence
the LP solvability, too, and are probably responsible for the observed deviations.
As concluding summary, the solution times for the path packing LP relaxation turn
out to be highly sensitive against both the optimum value, whether being zero or
strictly positive, and the LP size, driven by the problem size and structure. This
holds in particular for resolving the LP after each iteration. In rare cases, exact
pricing by solving of integer linear programs can become time-consuming, too, but
typically the column generation procedure delivers quite fast, and many successful
restricted pricing steps contribute also to limit the pricing effort. Altogether, deter-
mination of the path packing formulation lower bound remains challenging for the
largest network, but succeeds most often in reasonable time for all other instances.

Combinatorial lower bound. The approach by Koster [91] presented in Section
4.4.2.2 provides a combinatorial alternative to obtain lower bounds for Mcwap.
Focusing on any node as center of the surrounding star subnetwork, a transformation
of the corresponding Mcwap subinstance to a special edge coloring problem allows
to interpret an estimation on the number of uncolorable edges as lower bound for
the number of unavoidable converters in the central node. As a major advantage,
these estimations can be carried out very quickly, returning the lower bound B in
far less than a second for any of the test set instances. Due to this fast response,
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Figure 5.30: Converter number from the solution, the LP lower bound, and the
combinatorial lower bound for all instances where the lower bounds differ.

the method qualifies in particular for integrated application within any method that
can benefit from the delivered information.
Regarding the strength of the combinatorial lower bound, preliminary evaluations
in Koster [91] on a small set of practical instances show no differences to the LP-
based lower bounds. Theoretically, the dominance of the path packing formulation
approach is diagnosed by Theorem 4.20 on page 174, and in the present study, first
practical instances show this property, too.
Clearly, any Mcwap instance with a zero lower bound as LP optimum will also
have a zero combinatorial lower bound, so we can restrict the comparison to the
set of designs with positive LP optimum, which are listed in Figures 5.26 and 5.28.
Among these 126 instances, a still surprisingly high number of 120 instances yield
the same positive bound values by both approaches. The differences in the remaining
six cases are illustrated in Figure 5.30, represented in a stacked way between the
combinatorial bound value and the optimality gap filling up to the solution converter
number.
This comparing plot visualizes that various relations in terms of small and large
differences between both bounds and the solution value occur, though only a handful
of instances is considered. For example, very similar bounds occur in the second and
fourth bar, but the gap to the solution is once small, once large. The third bar shows
an LP bound very close to the solution while the combinatorial bound is much worse.
Further, both bounds do also not correlate in being positive or not. The two most
right bars reflect a zero combinatorial bound where the LP optimum is non-zero,
even reveals a solution’s optimality in one of these cases. Such irregular relations
avoid clear statements on the occurring differences and potential reasons.
Nevertheless, two conclusions can be drawn for a qualitative bound comparison.
First, the combinatorial lower bound turns out to be equivalent in the wide majority
of cases, therefore proves in fact to suit well for a quick bound estimation and
could be applied as (fast responding) subroutine of other methods. Second, the
occurrence of bound differences not only for artificial, but also for practical instances
demonstrates that computation of the LP-based lower bound is to prefer whenever
a best possible quality ranking is required.

Terminating lightpaths. The observed influence of terminating lightpaths on
the combinatorial lower bound from Section 4.4.2.2 provides another argument for
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the fact that most non-zero bounds are found for pt20 instances. In this network
scenario, the least total traffic is routed, and as a geographically small topology,
regenerators (also terminating lightpaths) are sparsely employed, too. In fact, the
least average regenerator number per instance occurs for pt20 in the actual test set.
Both other networks pt28 and pt50 require more regenerators on average and, in
particular, have higher total demands. The nearly comparable quality of both lower
bounds indicates that the same effects have a comparable influence on the LP-based
lower bound, too. Experiments with a larger spectrum confirm the observed relation.
We recomputed solutions for the reference instances and those using survivability
schemes for pt50 with a doubled spectrum size, i.e., using a WDM system that pro-
vides 80 wavelengths at twice the cost of a 40 wavelength WDM system. As a result,
most converter lower bounds now found for these designs are non-zero, with some
exceptions only for the highest protection level with most lightpaths established.
So, in combination with the earlier detected indication that need for conversions is
driven by higher mean hop lengths of the lightpaths, a good explanation for the ob-
served distribution of converter-free solutions and zero lower bounds over the study
instances is obtained.

Summarizing, we can conclude that the described methods yield good lower bounds
for Mcwap which offer in many cases a substantial contribution to rank the quality
of the assignments. For 25 solutions, even a direct proof of optimality is found
thereby. However, this leaves still 298 designs whose initial assignment either is
optimal but lacks of a confirmation or, more probably, is non-optimal and thus still
improvable.

5.3.4 Improving solutions

Within the design computations, initial assignments have been generated by short
runs of an iterative heuristic. This way, optimal solutions have already been found for
336 of all 634 instances. For the remaining cases, we also make use of the advanced
methods proposed in Section 4.4. We begin with longer runs of an enhanced heuristic
including wavelength extraction. After that, we report on a special way to apply the
exact branch-and-price method to seek for better solutions for instances of practical
size, before closing this computational study on Mcwap by a concluding summary.

Enhanced heuristic outline. As enhanced heuristic, we apply the iterative
method with extraction of wavelengths, described in Section 4.4.1.4. All iteration
steps reorder the lightpath sequence again by use of the most promising strategy
APRR (all converted lightpaths are pushed in front of the sequence in reverse or-
der). Wavelength extractions are thereby initiated and carried out in different ways
depending on the initial number of converters and whether having a positive (com-
binatorial) lower bound or not (which is in fact recomputed initially to avoid setting
of individual runtime-parameters).
The lower bound value influences the selection of candidate wavelengths for ex-
traction. In case of a zero bound, only unconverted wavelengths are extracted.
Otherwise, we know in advance that some conversions are unavoidable and there-
fore allow also for extraction of wavelengths which are converted just once, provided
the remaining spectrum after some extractions is small enough such that not too
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many converters are fixed thereby. The extractions become this way more flexible
to search for optimal assignments with converters.
According to these rules, the set of extractable wavelengths is determined at each
iteration. The size of this set is then used as criterion for deciding whether an ex-
traction is initiated. This decision is taken depending on the converter number in
the initial assignment, which serves as indicator for the difficulty to find extractable
wavelengths at all and thus to enable extraction steps. On the one hand, we clearly
prefer to reduce the problem as often as possible, but on the other hand do not want
to get stuck in small regions of the search space by allowing consecutive extractions
too easy. Therefore, we make the following distinction. If the initial assignment
contains more than 20 converters (half of the spectrum size), extractions of wave-
lengths are probably not often possible, and thus we facilitate such steps by initiation
whenever at least two extractable wavelengths are found. Moreover, we allow for an
investigation of the generated subproblem within a time limit of 0.25 seconds in com-
petition with an iteration limit of at most 200 iterations. These limits account just
for each individual subproblem and do not include time or iterations spent in further
extractions which are initiated during the subproblem’s investigation. Using such
competing limits aims to balance the examination effort for subproblems of different
sizes, since smaller ones process iterations much faster than the larger ones. With at
most 20 converters in the initial assignment, more unconverted wavelengths can be
expected to occur regularly, and we would like to avoid to extract too easily. So, an
extraction is only initiated if at least an eighth of the current subproblem spectrum
can be removed. For example, at least five wavelengths have to be extracted at once
from the initial spectrum of 40 wavelengths, whereas a subproblem with only 23
wavelengths left does not initiate extractions removing less than three wavelengths.
Furthermore, quicker subproblem investigations are enforced by allowing for at most
0.2 seconds or 125 iterations to spent on a subproblem, which is further reduced to
at most 0.15 seconds or 100 iterations in case the initial wavelength assignment con-
tains not more than 10 converters.
In any of the described application modes, no extraction is allowed during the first
200 iterations in order to avoid too rash plunging into less promising subproblems at
the beginning. Whenever a new best solution is found in an extracted subproblem,
the successful (sub-)sequence ordering is overtaken by the invoking instance. Finally,
we set a CPU time limit of 1800 seconds for each run of the enhanced heuristic in
the computational study evaluated next.

Heuristically improved assignments. The enhanced heuristic in fact suc-
ceeds to find solutions with less converters for most of the instances. Thereby, the
reduction in the number of required converters often shrinks the optimality gap con-
siderably, with an average of 35.84% over all instances. In more detail, Figure 5.31
presents the histogram of the percentages by which the optimality gap is closed by
the new solutions found.
The plot shows that the initial assignment remains the best known solution for 82
instances, whereas in all other 216 cases the enhanced heuristic delivers improved
solutions. Restricted to the latter set, an average saving of 8.7 converters per in-
stance is achieved. This corresponds to an average gap closing of 49.45%, which
splits nearly equally to 48.68% for the 143 instances with zero lower bound and
50.96% for the other 73 instances with non-zero lower bound. Hence, we can con-
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Figure 5.31: Histogram of gap closing percentages by the improved solutions found
with the enhanced heuristic.

Figure 5.32: Solution converter numbers for newly proven optimal instances with
non-zero lower bound.

clude that the lower bound value does not influence the improvement potential of
the enhanced heuristic. Regarding the individual histogram classes, the lower but
non-zero percentages can only refer to instances with sufficiently large gaps and thus
high converter numbers, which often have zero lower bounds as observed in the pre-
ceeding evaluation. In these instances, unconverted wavelengths occur rarely, and
hence extractions cannot be carried out very often. Nevertheless, these extractions
yield subproblems which allow for detection of further converter savings. Moreover,
we observe that larger gap closing percentages are not seldom realized. In partic-
ular, further 59 instances have been solved to optimality. In 47 of these cases, a
converter-free solution is found by the enhanced heuristic, whereas the non-zero LP
lower bound proves the remaining 12 solutions to be optimal. For these 12 instances,
Figure 5.32 visualizes the detected optimal converter numbers in relation to those
in the initial assignments.
Now, optimality for solutions with even up to 33 converters is proven by the lower
bounds. A special case worth to mention is the solution sol3 for unprotected pt20
with extended hardware w3 setting which already occurred in Figure 5.30 since the
corresponding lower bounds differ. So, optimality for this successfully improved so-
lution is only confirmed by the path packing LP optimum. However, comparing
all results in Figure 5.32 reveals that the additional conversion reductions by the
enhanced heuristic are of varying size, ranging from a single converter up to 22
converters saved. Thereby, larger reduction amounts are not restricted to instances
with small lower bounds only, confirming that potential improvements are not cor-
related with the values of the lower bound. A similar observation holds also for the
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other successfully improved instances with non-zero bounds. For these instances,
Figure 5.33 subsumes the converter values of both solutions, the initial assignment
and the improved solution determined by the enhanced heuristic, together with the
associated lower bound in the usual representation by overlaying bars.
For this set, the enhanced heuristic effectuates an average gap closing of 41.31%,
where the absolute converter number reductions span a range between one and 21
converters similar to that for the optimized instances. Since the optimal solutions
have been left out, each of the displayed instances keeps a strictly positive opti-
mality gap, though some of them have become quite small. Still larger remaining
optimality gaps occur predominantly for high protection levels for the scheme ’max’
as well as w3 instances with extended hardware, which have already been identified
as those for which low converter numbers are harder to obtain.
As in comparison to lower bound values, the achieved reductions do also not stand
in an obvious correlation to the initial gap sizes. A mix of various ratios occurs in
this regard, and it cannot be seen that, for instance, large advancements are only
possible for those instances with a large gap for the initial assignment. Such a cor-
relation can however be observed for the (targeted) protection levels. A closer look
exhibits that the instances with higher survivability requirements typically allow
for more improvement. In fact, the average number of saved converters is 9.2 over
all full protected s100 solutions in Figure 5.33, decreasing to 7.0 for the s75 cases,
3.82 for s50, and only 1.5 for s0 without protection. A strict decrease, though with
other slopes, occurs also for the set of zero-bounded instances and, hence, over all
improved solutions in common, too. This correlation suggests that instances with
more diversified routings and a higher number of lightpaths hold better chances for
detecting better assignments when putting a focus on particular subsets of conflict-

Figure 5.33: Bounds and solution converter numbers for those instances where the
improvement does not completely close the optimality gap to a non-zero lower bound.
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ing lightpaths and wavelengths.
Altogether, we can conclude that the heuristic enhanced by wavelength extractions
moves the number of required conversions in many cases a good piece towards the
lower bounds. In particular, the improvements bring several instances quite close to
optimality. Especially such cases are welcome candidates for the more sophisticated
exact approach.

Exact method application. For promising but still unsolved instances, we fi-
nally apply the exact branch-and-price method, though in a special way in order
to increase the probability of finding improvements. As already mentioned, prelim-
inary computational experiments with the exact method were successful for small
instances only, in particular containing just few wavelengths. So, a plain application
to the study instances with spectra of 40 wavelengths is not advisable, typically
generating huge branching trees.
Instead, we carry out the investigation as follows. At first, we restrict ourselves to
promising instances close to optimality, i.e., those instances with a remaining opti-
mality gap of at most three. A small gap increases the chance to be able to early
prune branching subtrees. In total, 30 instances apply to this criterion, of which
21 have a non-zero lower bound. Next, we initialize the branch-and price master
integer linear program with the so far best solution found, which is transformed to
a set of 40 initial columns. Furthermore, we insert the feasibility column which is
not contained in the spectrum bound constraint and helps to avoid initial LP infea-
sibility in search tree nodes with added branching constraints. Now, we restrict the
problem in a way inspired by the recent local branching approach of Fischetti and
Lodi [49]. The goal of this generic approach is to try to improve the primal bound
as fast as possible, i.e., seek for good integer solutions fastly. For this, Fischetti
and Lodi propose to use asymmetrical branching rules which do not subdivide a
problem into subproblems of comparable size (as most commonly in use), but into a
small subproblem—in fact, one that can quickly be solved exactly—with as high as
possible probability to contain a better integer solution, and the complete remaining
problem as second branch. If the primary investigated small subproblems in fact
bring up feasible solutions of high quality, further processing can prune wider areas
of the still not visited search tree. We make use of this idea and start by consid-
ering just one such subproblem defined by adding a single constraint, namely the
restriction to reuse at least 38 of the 40 solution columns. Obviously, the restricted
problem contains (at least) one integer solution, and the freedom to exchange up to
two path packings (without specification which ones) leaves some room for reaching
alternative solutions, too. As particular advantage, the added constraint need not
be taken into account within the column generation, since all further priced columns
get a zero coefficient in the inserted constraint.
When approaching such a restricted problem, the main target is to find better in-
teger solutions as fast as possible. For stimulating this, we implement a special
ordering of branching rules. In experiments, some variants of branching on sums
of subpath multiplicities as defined in Branching rule 3 on page 181 with uniform
weights (of value one) for all subpaths have turned out to be most helpful in gener-
ating solutions with less fractional x-variables. The most promising of such rules is
the already mentioned full sum branching with S′ = S. Therefore, this branching
rule is applied first. If no possibility for such a branching is given, we next con-
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sider branching on y-variables according to Branching rule 1. If this fails, too, a
next attempt is undertaken with two further variants of the sum branching rule.
In the first variant, the sum is built over all subpaths traversing a node n, i.e.,
S′ = { s ∈ S | n ∈ N(s) }, whereas the second variant takes all undominated sub-
paths, i.e., S′ = { s ∈ S | L(s) 6⊂ L(s′) ∀ s′ ∈ S \ {s} }. If still lacking of a branching
after that, we continue with branchings on a single path multiplicity as defined in
Branching rule 2, branchings on sums of two paths, and, for final completeness,
branchings on multiple subpath multiplicities in parallel specified by Branching rule
4. However, the latter rule has never been required in any computational experi-
ments, and in the actual study, the two previous ones are never applied either.

Branch-and-price algorithm results. For this study, we set a time limit of
again four hours of CPU time for each computation. Within the provided run-
ning time, the branch-and-price algorithm performs differently on the selected 30
instances of varying size, which are as usual listed in Appendix B with the corre-
sponding results. In total, the branch-and-price method successfully solves seven
restricted problems to proven optimality, while the remaining 23 runs are stopped
by timeout.
The observed durations to determine the LP lower bound already indicate that lim-
ited progress is to expect, especially for the larger instances. In addition, restricting
to a subproblem seems to make optimizing the linear programs harder. The results
indeed show ten cases in which solving the root LP already exceeds the time limit,
unsurprisingly both pt50 instances among them. In the 20 computations where the
root LP optimum is successfully determined in time, we find 14 integral optimum
values all matching the original LP lower bound, whereas the other six ones have
become non-integral. For two of the latter cases, such an increased lower bound
(for the restricted problem) allows to terminate directly by decreasing the absolute
value of the root gap to less than one. Here, the subproblem restriction reveals as
too tight for including solutions with less converters. So, for totally 18 instances
the branching procedure is finally initiated. The higher LP resolving effort however
prevents in most cases from finishing many branching tree nodes and thus interrupts
the search too soon by timeout, but in five cases the algorithm terminates regular
and returns in fact better assignments as optimal subproblem solutions. For these
instances, Figure 5.34 gives an overview on all determined lower bound and solution
values. The stacked values have now been slightly shifted in order to increase sepa-
rability in case the used colors do not contrast sufficiently with each other.
The figure reveals that up to two converters are saved by the newly generated
solutions. So, a final absolute gap of a single converter remains in three cases,
whereas a global optimal solution has been detected this way for two more in-
stances. Both proofs of optimality are again provided by the determined non-zero
lower bounds, once indeed only by the LP-induced bound which thereby further
confirms its strength. The overall success rate of the branch-and-price algorithm,
however, is still improvable and advises further investigation, in particular on acceler-
ating LP (re-)solving. Nevertheless, this experimental study shows that this method,
in combination with good lower bounds, is a promising approach for Mcwap, also
on instances of practical size. Thereby, the presented way of application, by use of
local branching or similar ideas, can be a good inspiration for continuing research
on this topic.
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Figure 5.34: Value overview for instances improved further by the exact branch-and-
price algorithm.

Summary of achieved Mcwap results. Closing the computational study on
Mcwap, we give a brief overview on the overall achieved results. In the end, an
optimal solution has been determined for totally 397 of the 634 instances in the
test set. In most cases, the developed heuristics are able to generate a converter-
free assignment, whereas optimality of the best known solution with converters is
confirmed for 39 instances or roughly 10% of cases by the LP lower bound. We
remark that optimality of a solution with a number of converters larger than the
lower bound could not be proven so far. In the test set, a non-zero lower bound has
been found for a total of 126 instances and contributes also in the 87 still unsolved
cases substantially to a better figure of the quality of a solution at hand. This
way, further 28 instances are identified with an absolute gap of not more than three
converters left and thus to be quite close to (just their proof of?) optimality.
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Conclusions

In this thesis, mathematical optimization methods for the cost-efficient design of
survivable optical networks have been studied. The development was guided by the
intention to catch the practical situation best possible for twofold benefit: to allow
for helpful support of planners in their daily doing as a ready-to-use planning tool
which has been delivered to Telekom Austria, and to serve as a flexible base for
various studies on and evaluations of alternative devices, architectures, or concepts,
as carried out in cooperation with T-Systems International. In either case, analyzing
and comparing computed designs would be somehow random without the knowledge
of their individual quality. This purpose especially entailed to seek for approaches
which do not only produce good solutions, but offer further information to assess
their quality, too.

Models and concepts. We have provided a flexible framework that enables
an accurate representation of different network architectures and have formulated
mathematical models encoding the corresponding problem to find cost-efficient de-
signs. Three characteristic layouts of optical networks have been discussed in detail:
opaque networks, transparent networks with single-hop routings, and transparent
networks with multi-hop routing. A couple of extensions and adaptations have been
exemplified, too, and carrying over models as well as algorithms to directed net-
works, demands, and routings is straightforward. In addition to this, there exist
further variations with practical background which are less easy to implement. As
an example, costs dedicated to individual routing paths are not integrated so far and
would enable, for instance, to take costs for selective mounting of ports at switches
or wavelength interfaces at multiplexers more precisely into account. Though frame-
work and models are simply extendible for this, the solution methods need major
changes and further research to maintain the achieved tractability.
Moreover, we contributed the new survivability concept Demand-wise Shared Pro-
tection (DSP), a path protection approach tailored to optical networks. As compro-
mise between capacity-intensive dedicated path protection and operationally com-
plicating shared path protection schemes, DSP constitutes a special balance between
low backup resource requirements and small effort for network management and re-
covery. Applicability to scenarios with multiple failures has been proven as well.
Further enhancements to reduce capacity consumption might be achievable when
sharing of backup capacities by connections from different demands with a common
endnode is explored. For instance, a backup connection from A to B via C could
simultaneously serve to protect a part of traffic for a demand from C to B, if some
disjointness relations hold. Exploitation of such capabilities with adequate formal-
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ization and integration into the presented schemes requires further investigations.

Solution methodology. We have developed an appropriate solution method-
ology to meet the claimed requirements regarding closeness to reality, flexibility, a
quality guarantee of solutions. In order to make the comprehensive task compu-
tationally tractable, we proposed to decompose the models in such a way that two
individually hard subproblems are decoupled, while quality assessment by a still fea-
sible lower bound on the total cost is maintained and only limited solution quality
is sacrificed. Rather than routing of wavelengths, we explicitly separated the wave-
length assignment from connection routing. We thus obtained on the one hand a
dimensioning and routing part which has beneficial similarity to non-optical network
design, and on the other hand a coloring-like problem for assigning the wavelengths
to routed lightpaths using as few converters as possible.
In view of the dimensioning and routing part, we carried out suitable pre- and
postprocessing transformations which enable us to access existing know-how and
sophisticated methods for solving this well-known core task. A special note for
application as planning support is to be remarked. Much faster provision of alter-
native dimensioning and routing solutions can be achieved by shrinking the sets of
installable capacities to restricted selections, an idea we implemented in our tool by
means of parameterized heuristic levels. With a correcting postprocessing on the un-
restricted sets, the quality of solutions obtained with substantially shorter running
time typically suffers limited loss. As a drawback, the lower bound reported when
using restricted capacity sets is not valid anymore for the original problem, but a
single run on the unrestricted setting can supply the desired information. Moreover,
we have discussed different solver integrations and suggest for particular scenarios
of interest to carry out further comparative evaluations to explore which way of
application suits best.
For solving the subsequent wavelength assignment problem, the new and character-
istic feature of optical network design, we followed combined approaches from both
primal and dual side. We developed and enhanced heuristics for a fast construction
of feasible assignments, accompanied by methods for determination of lower bounds
on the number of required converters. In this regard, the path packing formulation
has been shown to be a suitable model for getting strong lower bounds as well as
a base for an exact branch-and-price method, but might still cause high effort for
solving corresponding linear relaxations. Further progress on accelerating this pro-
cess is therefore required. A similar remark holds for the exact branch-and-price
method, where a promising idea based on local branching has been indicated. Such
and other improving ideas might help to enlarge the range of successfully solvable
instances. Additionally, a development of further heuristics with emphasis on cases
with many unavoidable converters might provide valuable insights and enrich the
algorithmic variety.

Computational study. Finally, we carried out comprehensive computational
studies following two goals: to evaluate the performance of the solution methodology,
and to exemplify the offered possibilities for planning support and design analyses.
For this purpose, our industrial partners provided us with several practice-relevant
instances from small to challenging size together with realistic settings for hardware
and cost relations.
The obtained results indicate the potential of our approach, models, and algorithms
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and reveal that practically applicable optical network designs of high quality can be
determined within reasonable time. Moreover, DSP has proven to be a promising
concept, with particular strength when requesting partial protection, for achieving
survivability cost savings at similar operational effort compared to 1+1 path pro-
tection as most widely applied concept in practice. Among its variants, the most
general DSP scheme provides the highest potential, but also adds further complexity
to the problem. Methodological advancements to master the reduced tractability
are needed, and we strongly believe that the concept’s outcome performance would
benefit from this further.

Outlook. As final outlook, some more general research directions for network de-
sign enhancements are to be mentioned. A main aspect for future work consists of
the integration of traffic grooming capabilities with respect to different bitrate light-
paths or even to optical in parallel to other technologies. Such a concerted planning
of multiple layers of networks, known as multi-layer design, forms an interesting,
though very complex extension of the design problems.
Another generalization stipulated by practice consists of a comprehensive approach
for coordinated planning of infrastructure over longer periods of time, known as
multi-period planning. Keeping our methodology open for upgrade planning pur-
poses is a first step in this direction. Nevertheless, taking network migration along
multiple subsequent reorganizations explicitly into account remains a challenging
task.
Moreover, network providers often complain about an experience they make repeti-
tively: the uncertainty of demands. Neither highest care in taking decisions nor even
provably optimal designs rolled out in the networks rule out the danger that traffic
predictions are fooled, and the established infrastructure turns out to be suboptimal
for the demands arising in reality. Therefore, providers regularly urge for develop-
ment of methods that take prediction inaccuracy explicitly into account. Network
designs with high probability of adequacy in most relevant future scenarios have top
priority on the wishlists.
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Appendix A

Notation

The following overview gives a brief summary on notation used throughout the thesis.
Some profound introductions into relevant areas are provided by Lorentz [106] for
linear algebra, Papadimitriou [136] and Garey and Johnson [52] for complexity the-
ory, Diestel [38] for graph theory, Jensen and Toft [79] for graph coloring problems,
Ahuja et al. [2] for networks and flows, Chvátal [32] for linear programming, and
Nemhauser and Wolsey [127] for integer and combinatorial optimization. Finally, we
remark the handbooks by Grötschel et al. [58] and Schrijver [150] as comprehensive
compilations of knowledge and literature in combinatorial optimization.

Sets and algebra

A set is a collection of unique items of any type. In contrast, a multi-set , also
known as family, is an arbitrary collection of items of any type, i.e., allows for
repetitive occurrence of items. We call the number of items equal to s in a multi-
set S the multiplicity of s in S, denoted by mS(s) as multiplicity function defined
on any possible item (while only items contained in the multi-set S have non-zero
multiplicity). If the referred multi-set S is clear, we also write abbreviately ms :=
mS(s). The cardinality of a set or multi-set S is the total number of contained (not
necessarily different) items and denoted by |S| . The empty set (or multi-set) is
denoted by ∅.
Some standard notation is used for sets. For two sets A and B, we write A × B
for their Cartesian product, A ∪ B and A ∩ B for their union and intersection,
respectively, and A \ B for the set difference. Moreover, A ⊂ B and A ( B stand
for set inclusion respective proper set inclusion. The same notation carries over to
multi-sets as follows. For two multi-sets C and D, the union S = C∪D is a multi-set
where each item s has the multiplicity mS(s) = mC(s) + mD(s). In the intersection
multi-set S = C ∩ D, each item has multiplicity mS(s) = min{mC(s),mD(s)}.
The multi-set difference S = C \ D contains each item with multiplicity mS(s) =
max{0,mC(s)−mD(s)}. Finally, multi-set C is included in multi-set D, i.e., C ⊂ D,
if mC(s) ≤ mD(s) holds for all items s ∈ C, and properly included, i.e., C ( D, if
mC(s) < mD(s) holds for at least one such item.
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We use the well-known notion of R, Q, and Z for the sets of all real, rational,
and integer numbers, respectively. The restrictions to the corresponding subsets of
non-negative numbers including zero are denoted by R+, Q+, and Z+. For strictly
positive numbers, additional exclusion of zero is indicated for integers by use of the
set of natural numbers N := Z+\ {0} and otherwise stated explicitly.
Given any real number a ∈ R, we refer to the minimum integer number larger
than or equal to a by ⌈a⌉, and to the maximum integer number smaller than or
equal to a by ⌊a⌋. Let k, n ∈ Z+, then k! is equal to 1 if k = 0 and equal to
1 · . . . · k otherwise, and

(
n
k

)
is equal to n!

k!(n−k)! if 0 ≤ k ≤ n and 0 otherwise. Let
f : Z+ → Z+ be an arbitrary function on non-negative integers. Then the set
O(f) := { g : Z+ → Z+ | ∃ b, c,N ∈ Z+ : g(n) ≤ b + c · f(n) ∀ n ≥ N } contains
all such functions whose growth is asymptotically bounded by that of f .

Complexity

The complexity classes P and NP contain those decision problems which can be
solved by a deterministic respectively a non-deterministic Turing machine in poly-
nomial time (in the size of input). The complexity class ZPP contains all decision
problems which can be solved by a probabilistic Turing machine in expected poly-
nomial time (in the size of input).
A decision problem is called NP-complete if it is in NP and any other problem in
NP can be reduced to it in polynomial time and size. An optimization problem is
called NP-hard if its associated decision problem is NP-complete.

Graphs and networks

An undirected graph G = (V,E) (or simply graph) is a pair of two finite sets, a non-
empty set V 6= ∅ of vertices and a set E ⊂ { {v,w} | v,w ∈ V, v 6= w } of unordered
pairs of different vertices, each such pair called an edge. If E constitutes a multi-set
of edges, we call G = (V,E) an undirected multi-graph (or simply multi-graph). In
the following, we introduce further notation in common for an arbitrary graph or
multi-graph G = (V,E) and distinguish between both cases only where necessary.
Given an edge e = {v,w} ∈ E, we also write abbreviately e = vw and say that v
and w are the endvertices of e, vertex v is adjacent to w (and vice versa), while edge
e is incident to v and w (and vice versa). (Note that the specification of an edge by
its endvertices is only unique for graphs, not for multi-graphs.) Two different edges
with the same endvertices in a multi-graph are called parallel . For a vertex v ∈ V ,
we call each adjacent vertex w ∈ V a neighbor of v (in G) and denote the set of
all neighbors of v by V (v) := { w ∈ V | {v,w} ∈ E }. Similarly, we denote the set
of all edges incident to v by E(v). The number of incident edges of a vertex v in
G is called the degree of v (in G), and the degree of G, denoted by ∆(G), is the
maximum degree over all vertices in G.
We call G′ = (V ′, E′) with V ′ ⊂ V and E′ ⊂ E a subgraph (or multi-subgraph) of
G. Special subgraphs are obtained by removal of edges, which are simply deleted
from the edge set, and removal of nodes, which are removed from the node set to-
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gether with a removal of all incident edges from the edge set. For W ⊂ V , the
subgraph induced by W (or multi-subgraph induced by W ) is the (multi-) subgraph
G[W ] = (W,E[W ]) with E[W ] := { e ∈ E | e = {v,w}, v, w ∈W }.
A mapping ω : E → R is called an edge weighting (on G), and the values ωe := ω(e)
associated with the edges are called edge weights. Similarly, a vertex weighting (on
G) is a mapping ω : V → R and ωv := ω(v) are the vertex weights.
A path (in G) is an alternating sequence of vertices and edges in G of the form
p = (v0, e1, v1, e2, v2, . . . , eh, vh) where v0, . . . , vh ∈ V and e1, . . . , eh ∈ E such that
ei = vi−1vi for all i = 1, . . . , h. The vertices v0 and vh are the endvertices of p. If
G has edge weights ω, the length of p (w.r.t. ω) is defined as ω(p) :=

∑
e∈L(p) ω(e).

Moreover, we define the path vertex set V [p] := {v0, . . . , vh}, the path inner vertex
set V (p) := {v1, . . . , vh−1}, and the path edge set E(p) := {e1, . . . , eh}. A path p′ is
a subpath of p if there are 0 ≤ k < l ≤ h such that p′ = (vk, ek+1, vk+1, . . . , el, vl). A
path p is called closed or a cycle if v0 = vh. A path p is called simple if it does not
contain a subpath p′ 6= p being a cycle.
We call two vertices v,w ∈ V connected , if there exists a path with v,w as endver-
tices. We call G connected if any two different vertices v,w ∈ V are connected. The
maximal connected induced subgraphs of G are the components of G.
For two vertices v,w ∈ V , an v,w-edge cut (in G) is a (multi-) subset Γ ⊂ E of
edges whose removal disconnects v and w, i.e., the (multi-) subgraph G′ = (V,E \Γ)
does not contain a path with v, w as endvertices. Similarly, an v,w-node cut (in
G) is a subset Γ ⊂ V of vertices whose removal disconnects v and w. A generalized
v,w-cut (in G) is a (multi-) subset Γ ⊂ V ∪ E of vertices and edges whose removal
disconnects v and w.
A vertex coloring (of G) is a mapping C : V → {1, . . . , c} from vertices to a set
of colors, represented by the numbers 1, . . . , c, such that any two adjacent vertices
have different colors, i.e., C(v) 6= C(w) holds for any edge e = vw ∈ E. The chro-
matic number of G is the minimum number of colors for which a vertex coloring
of G exists and denoted by χ(G). Similarly, an edge coloring (of G) is a mapping
C : E → {1, . . . , c} from edges to a set of colors, represented by the numbers
1, . . . , c, such that any two edges incident to a common vertex have different colors,
i.e., C(e) 6= C(f) holds whenever there exists a vertex v indicent to e and f . The
chromatic index of G is the minimum number of colors for which an edge coloring
exists and denoted by χ′(G).
A hypergraph G = (V,E) is a pair of finite sets, with a non-empty set V 6= ∅ of
vertices and a set E ⊂ 2V := { V ′ | V ′ ⊂ V } of unordered subsets of vertices called
hyperedges.
A digraph (or directed graph) D = (V,A) is a pair of finite sets, a non-empty set
V 6= ∅ of vertices as in graphs and a set A = { (v,w) | v,w ∈ V, v 6= w } of ordered
pairs of different vertices called arcs. With A being a multi-set, D = (V,A) is called
multi-digraph. The arcs can be interpreted as directed edges, where an arc a = (v,w)
starts at its tail v and ends at its head w. A digraph is called bidirected if for each arc
a = (v,w) ∈ A, the opposite arc (w, v) ∈ A is also contained (with same multiplicity
in case of multi-digraphs). A directed path from v0 to vh in a digraph D = (V,A)
is an alternating sequence of vertices and arcs p = (v0, a1, v1, a2, v2, . . . , ah, vh) with
v0, . . . , vh ∈ V and a1, . . . ah ∈ A such that ai = (vi−1, vi) for all i = 1, . . . , h. A
(v,w)-arc cut (in D) is a (multi-) subset Γ ⊂ A after whose removal no directed
path from v to w exists.
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We remark that the well-known theorems of Menger [118] as well as of Ford and
Fulkerson [50] for edge cuts can be carried over to generalized cuts by using the
following transformation. For this, we consider the theorem variants on digraphs,
where (multi-) graph G is transformed to a (multi-) digraph D by substituting each
edge e = vw by the two arcs (v,w) and (w, v) (with same multiplicities in case of
multi-graphs). For the transformation, we replace each vertex v by a pair of vertices
v1, v2, where each arc (v,w) with tail v is replaced by an arc (v2, w) with v2 as
tail, and each arc (w, v) with v as head is replaced by an arc (w, v1) with head v1.
Moreover, an additional arc (v1, v2) from v1 to v2 is inserted. Then each generalized
cut in G containing a vertex v can be transformed to an arc cut in the constructed
(multi-) digraph containing the arc (v1, v2), and vice versa. We implicitly use this
correspondence when applying the theorems appropriately adapted to generalized
cuts.
In connection with telecommunication infrastructures, we deal with networks (and
topologies) which are used synonymously to multi-graphs. Moreover, we denote a
network by N = (N,L) and use the namings nodes instead of vertices and links
instead of edges. By use of these replacements, all notations introduced for graphs
apply synonymously to networks, topologies, nodes, and links as well. For stating
explicitly that a network does not refer to a multi-graph, but to a graph, we call the
network simple.
Some special classes of graphs and networks are to be mentioned. As our definitions
carry over literally to multi-graphs (with optional addition of ’multi’ to the naming),
we restrict the description to graphs. Moreover, we use the same names for reference
to the corresponding networks (with optional addition of ’network’).
A chain is a connected graph where each vertex has at most two neighbors. A for-
est is a graph which does not contain any simple cycle with at least three edges as
subgraph. A tree is a connected forest. A star is a connected graph with at most
one vertex that has two or more neighbors. A spider is a connected graph with
at most one vertex that has three or more neighbors. A ring is a connected graph
where each vertex has exactly two neighbors. A (multi-) graph is series-parallel if
it arises from a forest by repetitive replacement of an edge by parallel edges or by a
series of edges. A graph is bipartite if it does not contain a cycle with odd number of
edges. A clique is a graph where each pair of vertices is connected by an edge. The
clique number of a graph G, denoted by ω(G), is the maximum number of vertices
in an induced clique subgraph of G. A graph G is perfect if χ(G′) = ω(G′) holds
for each induced subgraph G′ of G. An interval graph is the intersection graph of
a multi-set I of non-empty intervals on the real line, i.e., the graph has a vertex vI

for each interval I ∈ I, and two vertices vI , vJ are adjacent if and only if I ∩ J 6= ∅.
Similarly, a circular-arc graph is the intersection graph of a multi-set of non-empty
intervals on a circle. Finally, the Petersen graph is shown below.
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Appendix B

Numerical data and results

This appendix contains a compilation of the numerical data and results which have
been subsumingly reported, evaluated, and interpreted in Chapter 5. The structur-
ing follows the chapter’s presentation. We first provide as input data the demand
matrices together with all link lengths and list further topology information. Then
we summarize the numerical results, beginning with the results from the first inves-
tigation on optical network designs in the same order of case studies, and followed
by the results on wavelength assignments.

For reference to individual instances, we reuse the abbreviation scheme introduced
in Chapter 5. We refer

• to networks by the topology identifiers pt14, pt17, pt20, pt28, and pt50,

• to survivability schemes by the symbols ’1+1’ for 1+1 path protection, ’two’ for
2-DSP, ’max’ for max-DSP, and ’dsp’ for the general DSP scheme,

• to protection levels by the percentage indicators s0, s50, s75, s100 for greenfield
planning and their originating-targeting level combinations s0-50, s0-75, s0-100,
s50-75, s50-100, and s75-100 for upgrade planning scenarios,

• to hardware settings by ’w1’ for the regular and by ’w3’ for the extended trans-
parent case as well as by ’opq’ for the opaque case, and

• to alternative solutions by the numbering sol1, sol2, . . . for each instance.

B.1 Traffic and topology data

The complete input data for each instance consists of the hardware specifications, the
network topology, and the traffic demands. In Chapter 5, the hardware devices have
already been described in full detail, and all module types can be installed arbitrarily
often. Hence, the data input is to be completed by the particular demand values
and link lengths, which we next present in a combined matrix for each network. The
demand values refer to symmetric and thus undirected traffic requirements and are
shown in the upper right triangle matrices. The lower left triangle matrices contain
the link lengths in kilometers for all involved physical links.
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Bischofshofen 3 3 3 6 3 3 3 3 3 3 3 3 3 3
Dornbirn 6 3 15 3 3 3 3 9 3 3 3 3 3
Eisenstadt 9 9
Feldkirch 25 3 3 3 3 3 3 3 3 3 3 3 3

Graz1 190 3 21 3 6 3 3 3 3 27 9 6
Graz2 1 6

Innsbruck1 170 12 3 3 3 6 3 3 9 6 3
Innsbruck2 200 290 3 6 6
Klagenfurt1 190 150 3 3 3 3 3 3 12 6 3
Klagenfurt2 290 5 6 6

Liezen 160 3 3 3 3 3 3 3 3
Linz1 120 27 24 3 6 30 9 3
Linz2 10 6 3 6 3 9 3

Salzburg1 50 150 6 3 36 3 3
St.Johann 10 200 210 130 3 3 3 3
St.Poelten 130 190 12 12 3

Wien1 70 170 80 66 15
Wien2 70 5 9

W. Neustadt 50 190 60
Salzburg2 190 5 150
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Duesseldorf 30 76 25 3 6 2 2 5 4 2 2 2 2 2 2 15 2 2 2 2 2 2 19 4 2 2 2 33 2 2 2 2

Koeln 34 13 10 2 5 4 2 11 3 2 2 2 2 2 5 2 2 2 2 2 12 2 2 2 2 28 2 2 2 2 5
Dortmund 31 2 6 2 5 2 2 5 2 2 2 2 2 2 3 2 2 2 2 2 2 15 8 2 2 2 6 2 2 2
Aachen 61 2 2 2 2 2 2 2 2 2 2 3 2 2

Muenster 51 2 2 2 2 2 2 2 2 2 5 2 3 3
Koblenz 78 2 2 2 2 2 2 2 2 2 2 6 2 2 2 2
Siegen 81 64 2 2 2 2 2 2 2
Wesel 35 103 2 2 2 2 2 2 2
Berlin 20 11 3 2 3 7 4 23 2 2 2 2 25 2 2 2 2 16 2 2 2 2 2
Leipzig 145 10 11 3 2 6 2 17 3 2 2 4 2 2
Dresden 162 99 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Erfurt 102 189 2 2 6 2 2 2 2 2 2 2 5 2 2 2

Chemnitz 60 136 2 2 2 2 2 2 2 2 2
Schwerin 176 2 2 8 2 3 2 2 2 2

Magdeburg 123 102 163 2 2 2 2 2 2 3 2 2
Greifswald 175 135 2 2 2 2 2 2
Hamburg 97 13 14 2 3 3 2 71 3 2 2 2 11 2 2 2
Bremen 2 4 2 2 3 11 2 2 2 2 2 2 2 2 2

Kiel 119 85 2 3 2 2 2 2 2 2 2 2
Oldenburg 197 39 2 2 2 2 2 2
Flensburg 65 2 2 2 5

Bremerhaven 52 147 2 2 2
Norden 219 84 2 2 2 2

Hannover 115 55 25 5 3 6 49 2 2 2 2
Bielefeld 61 133 82 2 4 3 3 2 2 2

Braunschweig 77 149 98 138 2 2
Osnabrueck 44 96 88 2

Kassel 142 114 127 2 2 2 2
Frankfurt 81 25 35 2 9 2
Darmstadt 27 4 2 2 3
Mannheim 44 4 2 2

Kaiserslautern 103 80 2
Giessen 56 100 51
Trier 120 94
Fulda 86 85 71

Saarbruecken 56 65
Stuttgart
Karlsruhe 53 66

Ulm
Konstanz
Freiburg

Muenchen
Augsburg
Kempten
Passau

Nuernberg
Bayreuth 164 135

Wuerzburg 153
Regensburg

continued on next page
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Essen 2 2 2 2 2 2 2
Duesseldorf 2 2 5 2 2 2 4 2 2 2 2

Koeln 2 2 7 2 2 2 2 3 2 2 3 2 2 2
Dortmund 2 2 2 2 2 2 2 2 2 2
Aachen 2 2 2 3 2

Muenster 2 2 2
Koblenz 2 2 2 2
Siegen 2 2 2 2
Wesel 2 2 2
Berlin 2 2 3 2 2 2 2 4 2 2 3 2 2
Leipzig 2 2 2 3 2 9 2
Dresden 2 2 2 2 2 2 2 2 2 2 2
Erfurt 2 2 2 2 2 2 2 2

Chemnitz 2 2 2 2 2 2 2
Schwerin 2 2 2 2 2 2

Magdeburg 2 2 2 2 2 2 2
Greifswald 2
Hamburg 2 2 3 2 2 2 6 2 2 2 2
Bremen 2 2 2 2 2 2

Kiel 2 2 2 2 2 2 2
Oldenburg 2 2
Flensburg

Bremerhaven
Norden 2 2 2 2

Hannover 2 2 2 2 2 2 2 2 2 4 2
Bielefeld 2 2 2 2 2 2 2 2 2 2

Braunschweig 2 2 2
Osnabrueck 2 2

Kassel 2 2 2 2 2
Frankfurt 2 5 19 8 5 3 2 3 2 2 2 23 2 3 2
Darmstadt 2 2 2 2 2 2 2 2 2 2
Mannheim 2 5 5 4 2 2 2 2 2 2 2 2 2

Kaiserslautern 2 2 3 2
Giessen 2 2 2 2 2 2
Trier 2 2 2 2
Fulda 2 2 2 2 2 2

Saarbruecken 2 2 2 2 2 2
Stuttgart 35 11 4 6 30 2 2 2 35 2 2 2
Karlsruhe 101 62 2 2 5 4 2 2 2 2 2

Ulm 72 2 2 2 2 2 2
Konstanz 123 3 5 2 2 2
Freiburg 119 107 2

Muenchen 20 2 5 32 2 3 2
Augsburg 66 55 2 2 2 2
Kempten 85 103
Passau 148 2 2 2 2

Nuernberg 149 5 10 9
Bayreuth 67 3 3

Wuerzburg 86 125 172 90
Regensburg 103 108 91

In Section 5.2, we discuss estimations on unavoidable regenerators, deduced from the
length of a shortest path or, in case of connections protected by 1+1 path protection,
of a shortest cycle connecting the endnodes of a commodity. For each considered
network, Table B.1 lists the maxima over all node pairs of these values together with
the optical reach, confirming that no need for regenerations is implied this way.

max. length of
topology a shortest optical

path cycle reach

pt14 (USA) 6940 km 12100 km 8000 km
pt17 (Germany small) 951 km 1976 km 1200 km
pt20 (Austria) 883 km 2155 km 1200 km
pt28 (Europe) 5154 km 13875 km 8000 km
pt50 (Germany large) 970 km 2067 km 1200 km

Table B.1: The maximum length for connection of any pair of different nodes by
a shortest path (also known as network diameter) and by a shortest cycle in each
considered network, together with the specified optical reach.
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B.2 Numerical results

In the following, we list the major numerical output data which has been discussed
and illustrated in Chapter 5. Clearly, many further information has been generated
by the computations, including all obtained optical network designs in full detail as
well as computational progress logs. On request, any of these data can be accessed
through the author.

B.2.1 Optical network design solutions

We begin with the results for the reference instances listed in the first table. The
first two columns specify the instance, indicating the scenario group-wise in the first
column (scenario) and the requested protection level individually in the second
column (prot. level). The following two columns show the solution costs split
into the cost sum over all nodes (nodes) and over all links (links) which sum up to
the total design cost. The fifth column lists the corresponding cost lower bound value
(lower bound) which yields the quality guarantee, i.e., no feasible design satisfying
all requirements can cost less than this value. The next two columns give the total
number of regenerators (reg.) and wavelength converters (conv.) employed in
each computed design. Column eight (# backup conn.) holds the total number of
established backup connections to achieve the requested protection, i.e., to ensure
that each single link or node failure is survived by at least as many connections as
specified for each demand (and summed up in Table 5.2 on page 191). The last
column provides the average hop number per connection (avg. hops / conn.).

sce- prot. total cost for lower total # of # backup avg. hops
nario level nodes links bound reg. conv. conn. / conn.

s0 21,155.8 32,075.20 51,761.894 1 0 0 2.03
pt14

s50 26,972.2 44,405.40 69,483.005 1 0 30 2.79
w1

s75 37,817.0 63,521.70 98,728.137 11 0 1,050 2.86
dsp

s100 49,295.6 83,166.40 129,085.545 24 0 2,211 2.86

s0 9,668.0 2,963.80 11,742.553 0 0 0 2.38
pt17

s50 12,464.4 3,732.75 15,073.298 15 0 42 3.18
w1

s75 17,414.0 5,486.45 21,706.382 5 0 575 3.09
dsp

s100 21,703.2 6,923.75 26,989.179 8 0 946 3.15

s0 7,412.0 1,707.90 7,964.941 0 25 0 2.38
pt20

s50 9,674.0 2,356.65 9,747.184 0 40 57 3.03
w1

s75 13,406.4 3,345.60 14,089.507 4 36 384 3.13
dsp

s100 14,966.4 3,739.35 15,981.308 0 39 595 2.97

s0 13,517.8 11,734.10 22,687.352 0 9 0 3.34
pt28

s50 20,020.6 19,261.50 35,120.533 1 34 230 4.52
w1

s75 27,616.6 27,069.95 49,611.817 1 12 783 4.46
dsp

s100 29,704.4 29,090.05 54,273.870 1 53 974 4.40

s0 29,020.4 6,726.20 29,086.034 0 0 0 3.00
pt50

s50 34,560.0 8,467.00 33,868.362 2 24 52 3.79
w1

s75 60,075.6 15,580.10 54,691.036 12 23 1,742 4.21
dsp

s100 62,622.8 15,576.75 60,295.710 20 39 1,880 4.19

In comparison to these references, the first study comprises the evaluation of de-
signs obtained with different survivability concepts, and the numerical results for all
alternative schemes are completed by the next table in exactly the same form.



254 B. Numerical data and results

sce- prot. total cost for lower total # of # backup avg. hops
nario level nodes links bound reg. conv. conn. / conn.

s0 21,226.8 32,680.50 51,762.662 0 0 0 2.00
pt14

s50 26,362.4 44,500.50 69,633.998 6 0 16 2.79
w1

s75 36,179.4 69,754.80 103,560.603 179 0 634 3.20
max

s100 46,878.6 90,724.30 135,302.176 235 0 1,668 3.19

s0 9,906.4 2,898.90 11,749.571 0 0 0 2.41
pt17

s50 12,464.4 3,785.45 15,207.497 15 0 38 3.22
w1

s75 17,800.4 5,880.95 22,832.892 42 0 490 3.43
max

s100 22,037.6 7,076.25 27,883.544 49 7 873 3.38

s0 7,407.2 1,670.95 7,973.305 0 0 0 2.38
pt20

s50 9,628.0 2,462.85 9,887.559 0 17 34 3.13
w1

s75 12,872.8 3,481.90 14,487.641 0 26 283 3.51
max

s100 14,577.2 3,939.15 16,402.006 2 13 440 3.48

s0 13,416.8 12,085.25 22,723.844 0 0 0 3.32
pt28

s50 19,933.4 19,071.75 35,800.127 1 94 208 4.63
w1

s75 27,600.4 27,381.45 51,160.547 4 68 691 4.75
max

s100 29,463.0 29,838.35 55,738.056 1 52 875 4.63

s0 29,628.8 6,603.15 29,082.200 0 0 0 3.03
pt50

s50 35,432.8 8,483.60 34,024.734 2 0 23 3.77
w1

s75 55,232.4 14,341.50 58,206.970 20 33 1,040 4.70
max

s100 59,650.8 15,592.55 64,430.437 43 129 1,463 4.66

s0 21,226.8 32,680.50 51,762.617 0 0 0 2.00
pt14

s50 26,656.8 44,358.10 69,900.856 0 0 48 2.80
w1

s75 39,226.8 66,252.20 104,455.944 0 0 1,424 2.79
two

s100 51,024.0 86,810.50 136,625.912 0 0 2,710 2.77

s0 9,906.4 2,898.90 11,749.703 0 0 0 2.41
pt17

s50 12,450.4 3,768.75 15,191.697 8 0 49 3.14
w1

s75 17,410.0 5,613.55 22,126.990 3 0 607 3.09
two

s100 21,824.4 6,951.15 27,511.381 9 0 1,021 3.05

s0 7,407.2 1,670.95 7,973.878 0 0 0 2.38
pt20

s50 9,438.8 2,392.45 10,076.163 0 19 88 3.07
w1

s75 12,944.0 3,323.15 14,693.224 0 39 492 2.93
two

s100 15,158.0 3,753.10 16,668.651 3 27 702 2.83

s0 13,416.8 12,085.25 22,722.500 0 0 0 3.32
pt28

s50 20,053.8 19,237.25 35,491.363 2 29 250 4.41
w1

s75 27,662.6 26,993.75 50,042.087 1 52 806 4.41
two

s100 29,705.4 28,987.00 54,695.978 1 78 1,008 4.35

s0 29,628.8 6,603.15 29,082.363 0 0 0 3.03
pt50

s50 35,373.2 8,577.10 34,235.641 0 1 87 3.70
w1

s75 55,825.2 14,160.05 58,539.587 0 0 1,829 3.74
two

s100 61,435.6 15,496.55 64,719.593 0 8 2,365 3.67

s0 21,226.8 32,680.50 51,762.848 0 0 0 2.00
pt14

s50 36,846.8 60,466.10 94,889.736 0 0 1,379 2.52
w1

s75 44,006.2 74,885.80 116,489.476 1 0 2,067 2.67
1+1

s100 51,262.4 86,788.60 136,591.413 0 0 2,710 2.77

s0 9,906.4 2,914.95 11,741.661 0 0 0 2.43
pt17

s50 16,035.2 5,091.50 19,723.638 0 0 535 2.85
w1

s75 19,206.4 6,152.20 24,118.478 1 0 814 2.96
1+1

s100 21,812.4 6,951.15 27,442.906 3 0 1,021 3.06

s0 7,407.2 1,670.95 7,974.378 0 0 0 2.38
pt20

s50 12,337.2 3,056.85 12,810.464 0 11 395 2.71
w1

s75 14,286.8 3,561.35 15,495.029 2 24 597 2.82
1+1

s100 15,180.8 3,792.35 16,652.533 0 27 702 2.84

s0 13,416.8 12,085.25 22,727.886 0 0 0 3.32
pt28

s50 23,359.2 23,236.45 42,404.855 3 9 629 4.10
w1

s75 28,320.4 27,446.05 51,594.082 1 63 907 4.32
1+1

s100 29,560.4 29,276.70 54,654.239 1 5 1,008 4.23

s0 29,628.8 6,603.15 29,082.629 0 0 0 3.03
pt50

s50 46,424.4 11,164.15 46,040.330 0 0 1,226 3.42
w1

s75 58,812.0 14,872.20 58,336.572 0 28 2,097 3.77
1+1

s100 62,353.6 15,740.80 61,698.055 0 21 2,365 3.78
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The two tables on this page contain in similar outline the study results on upgrade
planning and on the extended hardware setting, where the new columns show the
average numbers of spare switch ports per node (ports) and spare channels per link
(ch.s) resp. the number of links with fully occupied capacity (# full links).

sce- prot. total cost for lower total # of # backup avg. spare
nario levels nodes links bound reg. conv. conn. ports ch.s

s0-50 5,919.2 12,898.10 17,638.307 0 0 28 20.14 6.00
s0-75 17,008.4 31,675.10 45,705.792 12 0 1,081 29.29 6.86

pt14
s0-100 28,025.4 50,977.30 76,110.644 15 0 2,224 17.43 8.00

w1
s50-75 11,215.8 19,443.40 27,576.980 35 0 1,051 21.86 3.57

dsp
s50-100 22,643.6 37,946.90 57,980.038 16 0 2,253 34.00 2.95
s75-100 11,804.6 19,330.90 28,064.927 23 0 2,207 32.29 4.76

s0-50 3,578.0 1,022.60 3,493.916 5 0 47 24.12 8.96
s0-75 7,894.0 2,522.65 9,391.857 5 0 568 24.24 2.81

pt17
s0-100 12,321.2 3,923.55 14,660.444 3 0 946 24.82 2.00

w1
s50-75 5,639.6 1,863.30 5,966.914 2 0 561 21.88 3.54

dsp
s50-100 9,508.8 3,154.60 11,232.394 17 0 952 24.82 1.58
s75-100 4,511.2 1,376.55 4,344.719 3 0 953 24.82 1.46

s0-50 2,866.0 670.30 1,281.533 3 18 50 28.50 6.61
s0-75 6,239.6 1,658.70 5,327.395 0 4 405 25.90 6.00

pt20
s0-100 8,156.8 1,959.75 7,221.165 0 11 571 30.60 5.48

w1
s50-75 3,821.2 971.75 2,500.579 4 26 400 23.50 3.91

dsp
s50-100 5,707.6 1,305.80 4,297.185 2 34 558 29.40 3.30
s75-100 2,364.4 373.05 554.509 2 58 554 32.60 3.70

s0-50 7,142.0 7,611.95 10,812.439 1 75 232 29.93 4.59
s0-75 14,731.8 15,440.40 24,962.793 3 64 774 33.50 4.07

pt28
s0-100 16,725.6 17,589.10 29,463.116 2 50 969 36.86 4.66

w1
s50-75 8,364.8 7,655.75 11,256.042 4 48 764 34.07 7.10

dsp
s50-100 10,877.0 9,885.45 15,881.097 1 80 965 39.14 3.39
s75-100 2,679.8 2,057.10 1,832.960 1 40 966 36.86 5.54

s0-50 7,394.8 2,006.00 1,673.717 0 4 48 25.84 12.76
s0-75 25,110.0 6,788.90 21,080.045 7 54 1,395 25.08 8.90

pt50
s0-100 31,026.4 8,177.95 26,877.984 11 63 1,999 29.72 7.95

w1
s50-75 21,425.2 5,094.70 14,597.520 2 54 1,428 33.40 8.92

dsp
s50-100 25,506.4 6,294.90 20,472.328 6 60 1,928 28.76 9.01
s75-100 6,005.6 1,016.05 559.741 0 0 2,074 33.08 30.03

sce- prot. total cost for lower total # of # backup avg.sp. # full
nario level nodes links bound reg. conv. conn. ch.s links

s0 17,789.4 32,783.10 48,197.735 3 0 0 1.86 9
pt14

s50 23,449.0 44,977.30 65,116.689 3 0 29 2.76 8
w3

s75 32,268.0 63,776.40 92,717.726 22 0 1,071 3.19 9
dsp

s100 41,324.8 82,838.50 121,253.788 14 0 2,207 3.67 8

s0 8,584.8 2,939.90 10,361.191 0 0 0 1.31 14
pt17

s50 11,210.4 3,770.40 12,815.121 0 0 41 1.27 12
w3

s75 14,956.0 5,623.95 18,824.346 0 0 544 3.65 15
dsp

s100 18,582.0 6,953.90 23,395.994 9 0 978 1.38 15

s0 7,003.2 1,679.20 7,097.076 0 2 0 1.30 15
pt20

s50 8,596.4 2,361.10 8,862.384 0 60 48 2.52 14
w3

s75 11,766.0 3,414.65 12,369.920 3 73 375 1.61 19
dsp

s100 12,750.8 3,800.60 14,129.536 5 32 547 4.06 14

s0 12,028.0 12,117.40 20,854.055 0 2 0 2.73 15
pt28

s50 18,481.2 19,288.85 32,616.670 1 97 241 2.12 24
w3

s75 22,964.2 27,757.30 45,630.636 1 72 761 3.51 14
dsp

s100 25,763.2 29,477.05 49,973.684 1 105 970 1.88 21

s0 25,360.4 6,493.30 25,872.429 0 27 0 3.91 30
pt50

s50 30,816.0 8,248.90 30,195.681 0 144 52 3.44 36
w3

s75 49,794.0 14,740.20 34,098.571 40 182 1,450 4.32 29
dsp

s100 52,512.4 15,328.55 51,959.355 4 208 1,927 2.55 39
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Since the values for spare capacities and full links in the previous table are also
compared to those for the reference instances, the latter ones are complemented in
the next table.

sce- prot. avg. spare # full
nario level ports ch.s links

s0 24.43 0.62 14
pt14

s50 33.29 2.95 14
w1

s75 24.71 5.38 6
dsp

s100 29.43 5.05 7

s0 15.00 5.04 11
pt17

s50 26.94 0.65 17
w1

s75 24.24 2.65 15
dsp

s100 22.47 3.12 17

s0 20.70 2.67 24
pt20

s50 28.50 5.58 16
w1

s75 24.70 4.94 14
dsp

s100 24.20 4.42 11

s0 30.00 3.71 20
pt28

s50 26.21 6.80 8
w1

s75 34.93 7.12 7
dsp

s100 36.86 4.95 14

s0 26.18 9.91 25
pt50

s50 24.56 10.53 24
w1

s75 27.96 14.84 16
dsp

s100 35.32 10.61 27

The last study in Section 5.2.5 on opaque optical networks restricts to cost compar-
isons, for which the associated table below shows the opaque scenario results in the
corresponding subset of already explained columns.

sce- prot. total cost for lower
nario level nodes links bound

s0 21,226.8 48,617.80 68,001.876
pt14

s50 26,537.6 67,583.50 92,277.640
opq

s75 37,278.4 96,755.70 130,741.764
dsp

s100 48,837.2 125,840.50 171,032.676

s0 9,787.2 8,080.40 16,866.616
pt17

s50 12,434.4 10,532.75 22,030.080
opq

s75 17,404.0 15,486.45 31,706.458
dsp

s100 21,687.2 19,359.50 39,392.418

s0 7,407.2 5,110.95 11,481.505
pt20

s50 9,668.0 7,298.60 14,318.392
opq

s75 13,416.8 10,314.60 20,692.089
dsp

s100 14,933.6 11,753.55 23,404.826

s0 13,638.8 22,241.00 32,978.419
pt28

s50 19,960.8 36,731.35 51,780.068
opq

s75 27,310.4 51,679.00 73,161.695
dsp

s100 29,304.0 55,554.60 80,034.897

s0 29,480.8 22,311.60 42,967.879
pt50

s50 35,087.6 28,869.35 50,548.949
opq

s75 55,200.4 47,067.30 82,885.410
dsp

s100 60,346.8 51,206.20 90,170.927
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B.2.2 Wavelength assignment data

The second computational study focuses on minimum converter wavelength assign-
ments and is based on an appropriately extended set of 634 instances. The initial
assignments for 311 of these instances have been converter-free and thus already
optimal, hence we neglect these cases in the following. For each of the remaining
323 instances, the next table subsumes the values evaluated in various ways in Sec-
tion 5.3. The particular Mcwap instance is specified in the first three columns,
with a group-wise scenario indication (scenario), the associated protection level
(prot. level), and the solution number (sol nr.) of the particular design. The
fourth column (total cost) holds the total cost of the initial design of each in-
stance. The next two columns list the total number of converters in the initial
design (init.) and the assignment returned by the enhanced heuristic (impr.). In
comparison to this, the following two columns show the lower bounds obtained by
solving the linear relaxation of the path packing formulation (LP) and by the combi-
natorial method (comb.). Performance measures for the LP solving are shown in the
two last columns, which contain the CPU time seconds for the total computation
(total) and for all pricing steps in sum (pricing).

sce- prot. sol total # conv. lower bounds LP seconds
nario level nr. cost init. impr. LP comb. total pricing

s100 1 29,113.85 7 0 0 0 8.6 2.5
pt14

2 29,121.70 5 0 0 0 8.4 2.4
w1

3 29,152.10 1 0 0 0 9.3 2.3
max

4 29,153.25 8 0 0 0 9.9 2.6

s0 2 9,185.35 8 8 8 8 1.0 0.6
pt20

3 9,189.10 1 1 1 1 0.6 0.3
w1

4 9,226.60 10 10 10 10 1.0 0.6
1+1

5 9,262.10 8 8 8 8 1.1 0.7
s50 1 15,394.05 11 11 11 11 15.3 6.7

2 15,140.40 5 5 5 5 12.4 4.7
3 15,458.35 34 33 32 32 17.9 8.1
4 15,357.85 6 6 6 6 11.0 5.0
5 15,172.40 5 5 5 5 13.7 5.0

s75 1 17,848.15 24 14 12 12 21.8 9.2
2 17,840.40 20 13 11 11 17.6 7.7
4 17,696.15 6 1 0 0 10.2 4.4
5 17,890.95 5 5 2 2 10.2 3.4

s100 1 18,973.15 27 27 21 21 24.5 10.0
2 18,779.25 37 18 16 16 21.6 9.4
3 18,771.75 28 27 14 14 23.9 10.9
4 19,060.15 45 40 27 27 32.2 11.7
5 18,964.70 21 21 13 13 24.9 12.2

s0 2 9,185.35 8 8 8 8 1.2 0.6
pt20

3 9,189.10 1 1 1 1 0.7 0.4
w1

4 9,226.60 10 10 10 10 1.2 0.7
two

5 9,262.10 8 8 8 8 1.1 0.7
s50 1 11,831.25 19 10 10 10 23.5 13.0

2 11,921.50 64 64 51 51 18.0 8.5
3 12,011.85 40 38 32 32 55.3 45.9
4 12,079.70 38 33 33 33 11.8 5.2
5 12,043.35 8 8 8 8 10.5 5.4

s75 1 16,267.15 39 36 14 14 23.2 10.0
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sce- prot. sol total # conv. lower bounds LP seconds
nario level nr. cost init. impr. LP comb. total pricing

2 16,412.80 36 25 6 6 13.8 4.8
3 16,540.50 37 17 17 17 17.1 7.8
4 16,571.40 24 19 6 6 22.7 10.8
5 16,594.05 23 10 10 10 19.8 8.9

s100 1 18,911.10 27 22 17 17 19.0 9.0
2 18,949.45 17 9 5 5 14.7 5.9
3 18,870.45 6 5 2 2 8.7 3.3
4 19,024.45 35 31 18 18 17.2 10.3
5 18,926.95 10 8 8 8 22.1 10.0

s0 2 9,185.35 8 8 8 8 1.3 0.7
pt20

3 9,189.10 1 1 1 1 0.7 0.3
w1

4 9,226.60 10 10 10 10 1.2 0.7
max

5 9,262.10 8 8 8 8 1.2 0.6
s50 1 12,090.85 17 17 17 17 25.3 12.9

2 11,868.00 26 25 24 24 28.7 15.8
3 12,185.95 24 24 21 21 28.5 12.1
4 12,173.65 17 17 17 17 17.4 6.6
5 12,187.15 3 3 3 3 22.1 9.0

s75 1 16,354.70 26 21 7 7 87.9 35.1
2 16,431.20 37 20 3 3 45.9 15.5
3 16,386.35 14 1 0 0 27.7 11.5
4 16,435.70 16 14 4 4 48.7 16.9
5 16,399.35 15 7 7 7 56.3 24.3

s100 1 18,516.35 13 9 4 4 37.8 14.6
2 18,719.05 82 67 8 8 84.2 37.2
3 18,763.80 75 70 23 23 102.6 41.3
4 18,715.35 36 31 18 18 104.2 61.7
5 18,501.60 16 16 3 3 49.7 16.7

s0 1 9,119.90 25 25 22 22 2.0 1.3
pt20

2 9,094.15 8 8 8 8 1.3 0.8
w1

3 9,120.45 12 12 10 10 2.1 1.3
dsp

4 9,124.85 6 6 3 2 1.6 0.9
5 9,200.15 15 15 14 14 1.3 0.9

s50 1 12,030.65 40 34 33 33 14.7 7.0
2 12,150.65 62 59 49 49 25.6 13.3
3 12,120.15 33 20 16 16 24.6 11.6
4 12,116.45 25 25 23 23 19.6 7.4
5 12,194.10 41 34 23 23 26.6 11.1

s75 1 16,752.00 36 36 17 17 50.1 26.5
2 16,822.50 38 20 6 6 27.2 10.5
3 16,989.40 51 45 33 33 35.0 16.2
4 17,015.40 34 34 26 26 51.2 29.0
5 17,014.10 26 26 9 9 37.7 16.2

s100 1 18,705.75 39 33 23 23 316.9 297.6
2 18,795.30 29 24 16 16 2,956.5 2,927.4
3 18,967.35 57 43 39 39 27.1 11.4
4 18,968.00 51 41 36 36 28.2 12.2
5 18,915.15 22 21 16 16 26.6 12.2

s0-50 1 3,536.30 18 17 17 17 14.6 6.4
pt20

2 3,808.40 14 13 9 9 21.7 9.0
w1

3 3,826.45 13 12 11 11 20.1 7.5
dsp

4 3,924.85 24 23 23 23 24.9 12.1
5 3,927.60 17 17 17 17 223.6 213.1

s0-75 1 7,898.30 4 4 4 4 24.9 10.1
2 8,047.75 48 43 27 27 52.2 28.8
3 8,063.00 38 31 13 11 59.2 31.7
4 8,121.00 25 25 17 17 249.1 230.3
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sce- prot. sol total # conv. lower bounds LP seconds
nario level nr. cost init. impr. LP comb. total pricing

5 8,187.75 8 0 0 0 12.8 5.3
s0-100 1 10,116.55 11 11 10 10 35.4 10.8

2 10,270.45 45 37 34 34 44.8 19.9
3 10,343.70 34 30 13 13 35.8 13.8
4 10,292.85 14 0 0 0 18.6 8.1
5 10,341.65 34 33 32 32 31.5 15.0

s50-75 1 4,792.95 26 23 3 3 27.5 8.7
2 4,953.90 20 10 5 5 29.4 8.7
3 5,056.85 12 1 0 0 18.1 6.7
4 5,072.15 14 5 5 5 36.9 13.2
5 5,137.60 18 6 6 6 37.4 12.1

s50-100 1 7,013.40 34 24 6 6 34.2 14.1
2 7,174.75 8 0 0 0 14.8 7.3
3 7,366.25 33 21 6 6 43.4 15.3
4 7,328.95 12 5 4 4 38.1 16.6
5 7,434.40 50 38 31 31 355.2 332.3

s75-100 1 2,737.45 58 39 24 24 68.4 33.9
2 3,032.15 46 46 20 20 8,332.6 8,308.5
3 3,115.35 56 44 27 27 191.4 163.3
4 3,115.35 51 36 27 27 50.4 33.2
5 3,091.85 31 31 17 17 2,377.3 2,348.9

s0 1 8,682.40 2 2 0 0 0.7 0.4
pt20

2 8,739.65 28 27 26 13 1.3 0.9
w3

3 8,778.25 8 7 7 6 1.1 0.6
dsp

4 8,783.85 6 6 6 6 1.0 0.6
5 8,782.10 1 1 1 0 0.9 0.5

s50 1 10,957.50 60 58 37 37 30.9 19.2
2 10,948.15 60 60 29 29 26.0 13.7
3 10,974.25 57 57 30 30 36.6 24.3
4 10,969.60 54 49 24 24 24.7 14.7
5 10,999.15 59 59 29 29 48.9 32.9

s75 1 15,180.65 73 71 33 33 79.4 51.3
2 15,165.00 48 38 11 11 50.2 28.0
3 15,116.30 37 36 9 9 61.2 40.4
4 15,176.85 65 65 24 24 87.3 61.0
5 15,130.50 42 38 7 7 49.4 29.7

s100 1 16,551.40 32 20 6 6 47.4 25.2
2 16,587.40 48 28 2 2 25.9 14.9
3 16,552.60 32 17 3 3 22.0 11.7
4 16,583.35 43 22 6 6 44.3 22.0
5 16,562.35 24 2 2 2 17.0 9.8

s0 3 25,535.95 10 10 4 4 34.8 9.2
pt28

s50 1 46,595.65 9 0 0 0 407.8 21.9
w1

2 46,629.20 9 0 0 0 409.2 30.0
1+1

3 46,639.25 9 0 0 0 423.4 24.1
4 46,726.90 17 17 0 0 408.7 24.6
5 46,700.10 5 0 0 0 267.5 21.0

s75 1 55,766.45 63 62 0 0 677.7 34.8
2 56,045.20 57 57 0 0 795.2 37.4
3 56,074.50 21 21 0 0 645.8 34.0
4 56,158.00 42 42 0 0 553.5 34.6
5 56,321.60 26 14 0 0 333.8 26.3

s100 1 58,837.10 5 0 0 0 333.6 24.2
2 59,194.50 91 90 0 0 850.0 49.1
3 59,093.20 37 22 0 0 452.2 34.2
4 59,050.75 15 15 0 0 382.4 30.5
5 59,117.30 33 33 0 0 582.4 36.0
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sce- prot. sol total # conv. lower bounds LP seconds
nario level nr. cost init. impr. LP comb. total pricing

s0 3 25,535.95 10 10 4 4 39.6 11.0
pt28

s50 1 39,291.05 29 21 0 0 290.8 30.8
w1

2 39,242.05 13 0 0 0 288.7 30.4
two

3 39,378.10 11 8 0 0 269.7 26.9
4 39,418.05 2 2 0 0 190.4 21.7
5 39,485.05 24 22 0 0 334.1 33.2

s75 1 54,656.35 52 49 0 0 456.4 41.2
2 54,534.40 10 0 0 0 305.6 26.3
3 54,749.45 26 26 0 0 366.6 31.4
4 55,055.45 116 116 0 0 795.2 46.5
5 54,719.80 3 0 0 0 299.7 34.1

s100 1 58,692.40 78 74 0 0 656.8 38.1
2 58,860.05 15 12 0 0 357.0 29.2
3 59,127.95 22 22 0 0 535.2 33.9
4 59,179.35 4 0 0 0 266.3 24.7
5 59,216.40 4 0 0 0 309.6 27.2

s0 3 25,535.95 10 10 4 4 40.5 11.3
pt28

s50 1 39,005.15 94 82 0 0 824.3 52.5
w1

2 38,838.15 90 85 0 0 889.5 62.3
max

3 39,210.00 92 77 0 0 847.1 53.7
4 39,136.70 54 47 0 0 505.0 41.0
5 39,173.25 53 53 0 0 595.0 51.8

s75 1 54,981.85 68 68 0 0 1,140.2 60.5
2 54,996.95 76 76 0 0 1,037.9 61.3
3 55,036.75 52 52 0 0 835.2 55.7
4 55,063.95 61 57 0 0 735.9 59.0
5 55,206.25 98 93 0 0 1,023.2 65.2

s100 1 59,301.35 52 48 0 0 1,285.9 59.9
2 59,638.85 43 35 0 0 938.3 54.8
3 59,715.95 59 50 0 0 812.8 52.5
4 59,748.20 66 50 0 0 879.1 54.4
5 59,711.10 51 46 0 0 793.9 48.6

s0 1 25,251.90 9 9 4 4 22.3 7.1
pt28

2 25,287.50 4 2 1 1 23.4 7.3
w1

3 25,395.85 2 1 0 0 17.9 6.3
dsp

s50 1 39,282.10 34 34 0 0 360.3 37.6
2 39,295.70 24 24 0 0 319.1 35.0
3 39,401.55 43 43 0 0 344.6 30.8
4 39,681.50 113 113 0 0 673.3 55.1
5 39,780.60 130 130 0 0 1,106.9 62.4

s75 1 54,686.55 12 12 0 0 334.2 29.9
2 55,051.70 61 61 0 0 399.2 34.3
3 54,626.35 46 46 0 0 557.0 37.7
4 55,206.05 16 16 0 0 528.8 37.8
5 55,265.65 3 0 0 0 392.4 39.4

s100 1 58,794.45 53 53 0 0 440.3 36.7
2 58,895.15 12 0 0 0 403.2 33.6
3 59,021.05 49 49 0 0 576.2 37.4
4 59,303.90 80 80 0 0 576.9 43.9
5 59,170.30 27 27 0 0 482.4 33.2

s0-50 1 14,753.95 75 69 0 0 906.6 47.0
pt28

2 14,832.95 46 36 0 0 460.3 40.5
w1

3 14,853.65 46 33 0 0 512.5 37.8
dsp

4 14,985.80 32 29 0 0 473.7 41.2
5 14,908.70 5 0 0 0 404.0 32.5

s0-75 1 30,172.20 64 64 0 0 561.1 33.8
2 30,382.15 78 78 0 0 497.7 37.8
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sce- prot. sol total # conv. lower bounds LP seconds
nario level nr. cost init. impr. LP comb. total pricing

3 30,427.35 88 88 0 0 825.1 42.9
4 30,563.85 17 13 0 0 495.4 37.6
5 30,419.90 2 0 0 0 394.2 33.5

s0-100 1 34,314.70 50 50 0 0 620.5 38.2
2 34,526.30 42 42 0 0 658.3 37.4
3 34,629.10 68 66 0 0 715.6 39.0
4 34,599.60 34 30 0 0 435.0 30.5
5 34,725.90 49 46 0 0 737.4 39.4

s50-75 1 16,020.55 48 40 0 0 440.8 35.4
2 15,957.05 21 21 0 0 466.9 39.2
3 16,312.65 28 28 0 0 436.8 34.7
4 16,429.85 20 20 0 0 459.2 35.1
5 16,473.55 27 19 0 0 539.7 34.1

s50-100 1 20,762.45 80 78 0 0 835.2 44.6
2 20,531.90 91 88 0 0 671.2 45.9
3 21,543.65 106 96 0 0 1,249.0 52.4
4 21,459.75 78 78 0 0 815.5 48.5
5 21,390.35 31 30 0 0 421.4 35.8

s75-100 1 4,736.90 40 31 0 0 623.4 37.6
2 4,707.75 27 24 0 0 524.6 36.5
3 4,734.90 12 0 0 0 420.6 31.5
4 4,978.85 43 43 0 0 608.1 39.6
5 4,995.00 46 31 0 0 641.7 38.2

s0 1 24,145.40 2 0 0 0 16.2 6.5
pt28

2 24,280.95 17 1 0 0 16.7 6.9
w3

3 24,395.60 12 10 0 0 15.8 6.9
dsp

5 24,461.65 10 10 6 0 14.5 5.5
s50 1 37,770.05 97 91 0 0 658.9 62.0

2 37,911.60 108 102 0 0 423.2 64.5
3 37,866.85 67 67 0 0 386.5 66.5
4 37,840.50 60 51 0 0 364.0 60.8
5 38,059.45 85 85 0 0 348.6 62.3

s75 1 50,721.50 72 65 0 0 485.9 66.5
2 51,018.60 77 66 0 0 425.3 62.6
3 50,861.95 45 45 0 0 358.7 54.7
4 50,990.05 73 68 0 0 427.7 60.9
5 50,911.70 87 78 0 0 469.5 68.5

s100 1 55,240.25 105 81 0 0 573.9 65.5
2 55,166.85 63 63 0 0 548.1 66.8
3 55,350.70 102 89 0 0 526.6 60.4
4 55,383.90 88 81 0 0 488.8 65.6
5 55,428.85 92 66 0 0 555.7 65.3

s75 1 73,684.20 28 0 0 0 3,549.7 402.8
pt50

2 74,601.45 6 0 0 0 2,458.8 295.0
w1

3 74,608.60 4 0 0 0 3,007.2 329.3
1+1

4 75,556.70 23 0 0 0 3,972.6 373.2
s100 1 78,094.40 21 5 0 0 2,052.6 260.4

2 79,006.55 9 0 0 0 4,191.8 369.2
3 78,775.10 13 0 0 0 4,002.5 337.9
4 80,108.20 11 0 0 0 4,875.2 458.9

s50 1 43,950.30 1 1 0 0 1,545.8 176.3
pt50

3 43,555.95 1 0 0 0 1,283.3 150.0
w1

4 43,368.90 5 0 0 0 1,406.9 189.3
two

5 43,601.10 4 4 0 0 1,866.2 216.5
s75 2 69,453.60 13 10 0 0 1,812.7 246.0

3 70,523.30 17 0 0 0 1,473.1 215.0
4 70,627.65 26 9 0 0 1,720.5 196.4
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sce- prot. sol total # conv. lower bounds LP seconds
nario level nr. cost init. impr. LP comb. total pricing

5 70,314.35 5 0 0 0 1,326.6 199.9
s100 1 76,932.15 8 0 0 0 1,611.0 191.8

2 77,216.65 12 0 0 0 2,273.4 259.9
3 76,248.75 14 0 0 0 1,675.5 209.3
4 77,217.35 8 0 0 0 1,549.8 227.0
5 77,665.15 16 0 0 0 2,679.6 267.1

s75 1 69,573.90 33 33 0 0 11,071.0 639.6
pt50

2 70,297.45 39 24 0 0 21,870.4 987.7
w1

3 69,902.00 37 33 0 0 12,251.2 628.4
max

4 69,320.75 64 46 0 0 13,129.5 648.8
5 70,214.95 45 38 0 0 12,099.0 615.4

s100 1 75,243.35 129 107 0 0 25,581.8 1,060.7
2 76,658.85 74 34 0 0 12,590.4 800.4
3 76,250.75 79 63 0 0 11,738.6 624.8
4 75,465.25 95 60 0 0 26,697.8 1,069.8
5 76,405.20 105 69 0 0 21,510.7 975.5

s0 4 35,958.05 13 3 0 0 172.0 30.6
pt50

s50 1 43,027.00 24 11 0 0 2,151.4 288.2
w1

2 43,683.75 2 0 0 0 1,272.2 173.9
dsp

3 43,710.00 4 0 0 0 1,625.0 223.2
4 43,547.65 14 14 0 0 1,952.5 208.1

s75 1 75,655.70 23 0 0 0 3,375.6 439.5
2 77,644.90 43 29 0 0 7,835.2 907.2
3 76,585.30 13 0 0 0 2,457.8 291.3

s100 1 78,199.55 39 24 0 0 8,564.3 641.4

s0-50 1 9,400.80 4 0 0 0 2,141.4 222.2
pt50

s0-75 1 31,898.90 54 53 0 0 7,098.0 544.8
w1

2 33,777.70 49 39 0 0 6,515.3 524.2
dsp

3 34,216.15 47 47 0 0 8,872.4 609.3
s0-100 1 39,204.35 63 35 0 0 7,562.5 582.9

2 39,459.40 23 16 0 0 4,525.9 438.2
3 39,587.40 18 0 0 0 3,659.1 298.2
4 39,604.25 17 6 0 0 6,883.0 429.2

s50-75 1 26,519.90 54 52 0 0 7,799.2 667.4
2 26,022.45 12 0 0 0 5,867.7 487.5
3 26,800.50 25 23 0 0 4,422.5 441.8
4 27,517.50 61 58 0 0 9,159.3 632.4
5 27,752.70 25 22 0 0 6,037.3 586.2

s50-100 1 31,801.30 60 27 0 0 6,326.3 534.9
2 33,060.20 28 28 0 0 6,202.9 476.9
3 32,373.55 20 7 0 0 5,698.2 487.6
4 32,769.40 43 41 0 0 7,667.5 571.0
5 32,789.25 32 16 0 0 6,794.7 477.6

s0 1 31,853.70 27 23 0 0 191.9 64.5
pt50

2 31,865.20 24 16 0 0 143.0 52.7
w3

3 31,988.15 18 7 0 0 128.3 54.2
dsp

4 31,774.50 1 0 0 0 69.2 29.4
5 32,168.95 26 26 4 4 552.1 131.8

s50 1 39,064.90 144 143 0 0 2,801.3 489.2
2 38,951.60 108 108 0 0 2,451.5 441.0
3 38,673.75 122 122 0 0 2,934.3 502.3
4 39,625.20 125 125 0 0 2,548.7 452.7
5 39,227.80 161 160 0 0 2,931.1 512.0

s75 1 64,534.20 182 174 0 0 14,447.8 1,449.8
2 66,169.05 156 156 0 0 5,454.2 863.1
3 66,979.15 145 134 0 0 5,869.3 1,016.7
4 67,063.25 176 176 0 0 7,695.6 1,160.0
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sce- prot. sol total # conv. lower bounds LP seconds
nario level nr. cost init. impr. LP comb. total pricing

5 66,261.35 173 169 0 0 4,804.5 870.5
s100 1 67,840.95 208 205 0 0 11,508.3 1,419.6

2 70,199.45 162 162 0 0 10,531.8 1,141.9
3 72,008.25 188 181 0 0 8,211.0 1,350.9
4 72,244.00 193 177 0 0 11,369.7 1,493.6
5 71,860.30 176 165 0 0 5,959.5 939.2

The last table documents the computations with the branch-and-price method which
has been carried out for 30 instances with a gap of less than three between the LP
lower bound and the best solution known. These instances are specified in the first
five columns (instance). Next, two columns show the converter number in the so far
best known assignment used for initialization (init) and in the assignment returned
by the branch-and-price method (final), highlighting improvements in bold face.
For simpler comparison, the next column repeats the previously reported LP lower
bound (LP bound), and here bold values indicate new optimal solutions. The last
three columns document the performance of the branch-and-price method, showing
the number of visited search tree nodes (nodes) and those still unfinished (left) as
well as the total CPU time in seconds (time (sec.)).

# converters LP B&P performance
instance init final bound nodes left time (sec.)

pt20 w1 1+1 s50 sol3 33 33 32 19 16 14,411.8
pt20 w1 1+1 s75 sol1 14 14 12 1 1 14,422.5
pt20 w1 1+1 s75 sol2 13 13 11 1 1 14,408.3
pt20 w1 1+1 s75 sol4 1 1 0 1 0 150.9
pt20 w1 1+1 s75 sol5 5 5 2 1 1 14,413.0
pt20 w1 1+1 s100 sol2 18 18 16 1 1 14,412.5
pt20 w1 two s100 sol3 5 5 2 4 4 14,405.6
pt20 w1 max s50 sol2 25 25 24 8 7 14,411.4
pt20 w1 max s50 sol3 24 24 21 1 1 14,415.3
pt20 w1 max s75 sol3 1 1 0 5 4 14,408.2
pt20 w1 dsp s0 sol1 25 23 22 497 0 4,102.6
pt20 w1 dsp s0 sol3 12 11 10 40 0 420.6
pt20 w1 dsp s0 sol4 6 4 3 139 0 670.4
pt20 w1 dsp s0 sol5 15 15 14 1757 889 14,403.3
pt20 w1 dsp s50 sol1 34 34 33 14 11 14,403.5
pt20 w1 dsp s50 sol4 25 25 23 1 1 14,403.9
pt20 w1 dsp s0-50 sol3 12 11 11 2 0 2,753.3
pt20 w1 dsp s0-100 sol1 11 11 10 25 20 14,421.9
pt20 w1 dsp s0-100 sol2 37 37 34 1 1 14,413.2
pt20 w1 dsp s0-100 sol5 33 33 32 17 14 14,432.5
pt20 w1 dsp s50-75 sol3 1 1 0 13 11 14,409.0
pt20 w1 dsp s50-100 sol4 5 5 4 1 1 14,405.1
pt20 w3 dsp s0 sol1 2 2 0 1 0 3.4
pt20 w3 dsp s0 sol2 27 26 26 357 0 11,206.9
pt28 w1 two s50 sol4 2 2 0 4 4 14,411.9
pt28 w1 dsp s0 sol2 2 2 1 3 2 14,421.5
pt28 w1 dsp s0 sol3 1 1 0 5 4 14,408.6
pt28 w3 dsp s0 sol2 1 1 0 5 4 14,413.1
pt50 w1 two s50 sol1 1 1 0 1 1 14,524.3
pt50 w1 dsp s0 sol4 3 3 0 1 1 14,417.9



264 B. Numerical data and results



Bibliography

[1] K.I. Aardal, C.P.M. van Hoesel, A.M.C.A. Koster, C. Mannino, and A. Sas-
sano. Models and solution techniques for the frequency assignment problem.
4OR, 1(4):261–317, 2003.

[2] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algo-
rithms, and Applications. Prentice Hall, 1993.

[3] D. Alevras, M. Grötschel, and R. Wessäly. A network dimensioning tool. ZIB
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for telecommunications networks. In Plenaries and Tutorials: Proc. of Joint
15th EURO/34th INFORMS, Barcelona, Spain, 1997.

[5] M. Andrews and L. Zhang. Wavelength assignment in optical networks with
fixed fiber capacity. In Proc. of ICALP, number 3142 in Lecture Notes in
Computer Science, pages 134–145. Springer-Verlag, 2004.

[6] M. Andrews and L. Zhang. Complexity of wavelength assignment in optical
network optimization. In Proc. of IEEE INFOCOM, Barcelona, Spain, 2006.

[7] K. Appel and W. Haken. Every planar map is four colorable. Part I. Discharg-
ing. Illinois J. Math., 21:429–490, 1977.

[8] K. Appel, W. Haken, and J. Koch. Every planar map is four colorable. Part
II. Reducibility. Illinois J. Math., 21:491–567, 1977.

[9] atesio GmbH. Discnet. http://www.atesio.de/solutions.

[10] V. Auletta, I. Caragiannis, L. Gargano, C. Kaklamanis, and P. Persiano.
Sparse and limited wavelength conversion in all-optical tree networks. Theo-
retical Computer Science, 266(1–2):887–934, 2001.

[11] V. Auletta, I. Caragiannis, C. Kaklamanis, and P. Persiano. Efficient wave-
length routing in trees with low-degree converters. In Multichannel Optical
Networks: Theory and Practice, volume 46 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pages 1–14. American Math-
ematical Society, 1998.

[12] B. Beauquier, J.-C. Bermond, L. Gargano, P. Hell, S. Pérennes, and U. Vac-
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[19] D. Bienstock, S. Chopra, O. Günlük, and C.-Y. Tsai. Minimum cost capacity
installation for multicommodity flows. Mathematical Programming, 81:177–
199, 1998.

[20] D. Bienstock and G. Muratore. Strong inequalities for capacitated survivable
network design problems. Mathematical Programming, 89:127–147, 2001.

[21] G.A. Birkan, J.L. Kennington, E.V. Olinick, A. Ortynski, and G. Spiride.
Making a case for using integer programming to design DWDM networks.
Optical Networks Magazine, 4(6):107–120, 2003.

[22] G.A. Birkan, J.L. Kennington, E.V. Olinick, A. Ortynski, and G. Spiride.
Robust solutions for the WDM routing and provisioning problem: Models and
algorithms. Optical Networks Magazine, 4(2):74–84, 2003.

[23] G.A. Birkan, J.L. Kennington, E.V. Olinick, A. Ortynski, and G. Spiride. Prac-
tical integrated design strategies for opaque and all-optical DWDM networks:
Optimization models and solution procedures. Telecommunication Systems,
31:61–83, 2006.
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A. Zymolka. Availability and cost based evaluation of demand-wise shared
protection. In Tagungsband der 7. ITG-Fachtagung Photonische Netze, pages
161–168, Fachhochschule der Deutschen Telekom, Leipzig, Germany, 2006.

[71] ILOG. CPLEX version 9.130, 2005. http://www.ilog.com/products/cplex.

[72] M. Iri. On an extension of the maximum-flow minimum-cut theorem to mul-
ticommodity flows. Journal of the Operations Research Society of Japan,
13(3):129–135, 1971.



270 Bibliography

[73] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial
algorithm for minimizing submodular functions. Journal of the ACM, 48:761–
777, 2001.

[74] B. Jaumard, C. Meyer, and B. Thiongane. Comparison of ILP formulations
for the RWA problem. Les cahiers de GERAD G–2004–66, GERAD, 2004.

[75] B. Jaumard, C. Meyer, and B. Thiongane. ILP formulations for the RWA
problem — symmetric systems. Les cahiers de GERAD G–2004–95, GERAD,
2004.

[76] B. Jaumard, C. Meyer, and B. Thiongane. On column generation formulations
for the RWA problem. Les cahiers de GERAD G–2004–94, GERAD, 2004.

[77] B. Jaumard, C. Meyer, and B. Thiongane. On column generation formulations
for the RWA problem. In Proc. of INOC, volume 1, pages B.52–B.59, Lisbon,
Portugal, 2005.

[78] B. Jaumard, C. Meyer, and X. Yu. Of how much wavelength conversion allows
to reduce the blocking rate?, 2005.

[79] T.R. Jensen and B. Toft. Graph Coloring Problems. Interscience Series in
Discrete Mathematics and Optimization. John Wiley & Sons, Inc., 1995.

[80] B.G. Josza and D. Orincsay. Shared backup path optimization in telecom-
munication networks. In Proc. of DRCN, pages 251–257, Budapest, Hungary,
2001.

[81] S. Junghans and Ch. M. Gauger. Architectures for resource reservation mod-
ules for optical burst switching core nodes. In Tagungsband der 4. ITG-
Fachtagung Photonische Netze, pages 109–117, Fachhochschule der Deutschen
Telekom, Leipzig, 2003.

[82] C. Kaklamanis. Recent advances in wavelength routing. In Proc. of SOFSEM,
volume 2234 of Lecture Notes in Computer Science, pages 58–72. Springer-
Verlag, 2001.

[83] E. Karasan, O.E. Karasan, and G. Erdogan. Optimum placement of wave-
length interchanging nodes in optical networks with sparse conversion. In
Proc. of 9th International Conference on Networks & Optical Communica-
tions, Eindhoven, Netherlands, 2004.

[84] R.M. Karp. Reducibility among combinatorial problems. In Complexity of
Computer Computations, pages 85–103. Plenum Press, 1972.

[85] R.M. Karp. On the complexity of combinatorial problems. Networks, 5:45–68,
1975.

[86] J.L. Kennington, E.V. Olinick, A. Ortynski, and G. Spiride. Wavelength rout-
ing and assignment in a survivable WDM mesh network. Operations Research,
51(1):67–79, 2003.



Bibliography 271

[87] H. Kerivin, B. Liau, and T.-T.-L. Pham. Survivable capacitated networks -
Comparison of shared protection mechanisms. In Proc. of Networks, pages
379–388, Munich, Germany, 2002.

[88] J. Kleinberg and A. Kumar. Wavelength conversion in optical networks. In
Proc. of 10th SODA, pages 566–575, Baltimore, USA, 1999.

[89] M. Kneser. Aufgabe 360. Jahresbericht der Deutschen Mathematiker-
Vereinigung, 58:27, 1955.

[90] A.M.C.A. Koster. Frequency Assignment—Models and Algorithms. PhD the-
sis, Universiteit Maastricht, 1999.

[91] A.M.C.A. Koster. Wavelength assignment in multi-fiber WDM networks by
generalized edge coloring. In Proc. of INOC, pages 60–66, Lisbon, Portugal,
2005.

[92] A.M.C.A. Koster and A. Zymolka. Stable multi-sets. Mathematical Methods
of Operations Research, 56(1):45–65, 2002.

[93] A.M.C.A. Koster and A. Zymolka. Minimum converter wavelength assignment
in all-optical networks. In Proc. of ONDM, pages 517–535, Ghent, Belgium,
2004.

[94] A.M.C.A. Koster and A. Zymolka. Linear programming lower bounds for
minimum converter wavelength assignment in optical networks. In Proc. of
INOC, pages 44–51, Lisbon, Portugal, 2005.

[95] A.M.C.A. Koster and A. Zymolka. On cycles and the stable multi-set polytope.
Discrete Optimization, 2(3):241–255, 2005.

[96] A.M.C.A. Koster and A. Zymolka. Provably good solutions for wavelength
assignment in optical networks. In Proc. of ONDM, pages 335–345, Milan,
Italy, 2005.

[97] A.M.C.A. Koster, A. Zymolka, M. Jäger, and R. Hülsermann. Demand-wise
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