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Chapter 1

Introduction

A standard problem in network optimization is to find a routing of traffic demands
from sources to destinations using a given network infrastructure. This problem is
also known as a multicommodity flow problem or traffic assignment problem. A cost is
associated with every arc of the network, which is usually a function of the arc flow.
Most of the optimization models assume a central planer controlling the whole system
and determining the best possible routing accordingly. This routing is also called the
system optimum. For many real-world applications, this assumption is problematic with
respect to several aspects: It is not always assured that (i) a central planer has access
to the necessary information (information problem), (ii) the best possible solution is
efficiently computable even if the needed information is accessible (complexity problem),
(iii) the individual traffic sources agree to a proposed solution (implementation problem).

A tremendous amount of effort has been invested in designing efficient routing
algorithms to cope with the above problems. As an example for the information prob-
lem, consider a traffic assignment problem, where demands arrive sequentially in time
in an online fashion. An algorithm that routes these demands without knowledge
about future demands is called an online algorithm. The common theoretical concept to
evaluate the efficiency of an online algorithm is based on competitive analysis coming
from the online optimization field. An online algorithm is called competitive, if its
cost is never larger than a constant factor times the cost of an optimal offline solution.
Another research area that covers the complexity problem is concerned with deriving
efficient algorithms for solving (NP-hard) optimization problems. Of particular inter-
est is the notion of an approximation ratio for a heuristic to solve such optimization
problems. The approximation ratio is defined as the largest ratio of the objective value
obtained by the solution of the heuristic and that of an optimal solution. The imple-
mentation problem can be analyzed within the algorithmic game theory field. Here,
one tries to quantify the efficiency loss caused by selfish users compared to the system
optimum. The cost of this lack of coordination has been coined “price of anarchy” by
Koutsoupias and Papadimitriou in [61]. While the approximation ratio and competi-
tive ratio measure the worst case loss in solution quality due to insufficient computing
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power and information, respectively, the price of anarchy measures the worst case loss
due to insufficient ability to control and coordinate the actions of selfish individuals.

All three issues are exemplified by several practical applications that have moti-
vated the topics covered in this thesis. For instance, billions of packets traverse the
world wide web along routes that are decided on by Internet routing protocols. This
routing is done in an online fashion without knowledge about future traffic changes.
The size of the Internet and the heterogeneity of Internet applications contribute to
the computational complexity of finding the best possible routing. Furthermore, a
centrally coordinated implementation usually contradicts security requirements of In-
ternet users. Another example for the implementation problem is the road traffic
network, where the majority of traffic follows routes that are chosen based on selfish
interests of the individuals. It is well known that some users would have to take long
detours in a system optimal routing, which makes such a solution unattractive for the
affected users.

The main topic of this thesis is to study multicommodity flow problems that ex-
hibit a combination of the afore mentioned three problems. In particular, we focus
on online multicommodity routing problems, selfish routing problems, and a combi-
nation of these two problems. Thus, the theoretical concepts that we use to analyze
the corresponding routing patterns stems from competitive analysis and bounding
the price of anarchy. Indirectly, these concepts also provide an approximation ratio,
since a solution produced by an online algorithm or a solution produced by selfish
individuals constitutes an approximation for the optimal solution of an optimization
problem.

1.1 Online Multicommodity Flow Problems

In the first part of this thesis, we study online multicommodity routing problems,
where demands have to be routed sequentially in a network. The cost of a flow is
determined by dynamic load dependent price functions on links. We make four crucial
assumptions: (i) demands for commodities are revealed in an online fashion and have
to be routed immediately; (ii) demands can be split along several paths; (iii) once a
demand is routed, no rerouting is allowed; (iv) the routing cost on an arc is given by
the integral over the arc flow with respect to the corresponding price function. Since at
the time of routing a commodity, future demands are not known, this yields an online
optimization problem that we call the Online Multicommodity Routing Problem.

This problem arises in an inter-domain resource market in which multiple service
providers offer network resources (capacity) to enable Internet traffic with specific
Quality of Service (QoS) constraints, see for example Yahaya and Suda [87] and Ya-
haya, Harks, and Suda [89]. In such a market, each service provider advertises prices
for resources that he wants to sell. We assume that prices are determined by load
dependent price functions. Buying providers reserve capacity along paths to route
demand (coming from own customers) from sources to destinations via domains of
other providers. The routing of a demand along paths is fixed by establishing a con-
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tract between the source domain and all domains along the paths. Prices in the market,
however, are only valid for a predefined bundle size, that is, after the routing of flow
with this bundle size, the arc prices are updated. In the limiting case, where the bun-
dle size tends to zero, the routing cost on an arc is given by the integral over the arc
flow with respect to the corresponding price function.

Contributions (Chapter 3)

We investigate such multicommodity online routing problems and allow for arbitrary
continuous and nondecreasing load dependent price functions defining the routing
costs. We investigate a greedy online algorithm, called SeQ, for this setting and in-
vestigate, in which cases this algorithm is competitive. Our main finding is that for
polynomial price functions with nonnegative coefficients, the competitive ratio of SEQ
can be bounded by a constant factor that only depends on the maximum degree of
the polynomials but is independent of the network topology and demand sequence.
For the single-source single-destination case, we show that this algorithm is optimal.
Without restrictions on the price functions and network, no algorithm is competitive.
We also investigate a variant in which the demands have to be routed unsplittably. In
this case, the offline problem is NP-hard. As in the splittable case, in general there
exists no competitive deterministic online algorithm. For linear price functions, any
deterministic online algorithm has a competitive ratio of at least 2. Finally, we present
a computational study for unsplittable routings for a realistic network topology and
stochastically generated demands. Our empirical findings state that the efficiency loss
is significantly smaller in this case compared to the provable upper bounds for the
splittable online routing SEQ. The online algorithm SeQ and the ONLINEMCRP can be
viewed as a first step towards a methodology for analyzing the efficiency of general
inter-domain routing strategies. These results are presented in Chapter 3.

1.2 Network Games

Second, we study the impact of selfish behavior on social welfare in network games.
We are interested in the degradation of system performance if players select routes
based on selfish interest. Consider a network of arcs that are used by individuals to
route demand from sources to destinations. A common approach is to model conges-
tion on arcs by nondecreasing latency functions mapping the flow on an arc to the
time needed to traverse this arc. Since individuals share the same network, congestion
effects on arcs generate interdependencies between the routing decisions. In this re-
gard, non-cooperative game theory provides the appropriate concepts to analyze such
interdependencies. In a non-cooperative game, players compete for shared resources
and the utility of each individual player depends on the number of players that choose
the same or some overlapping strategy, see Rosen [77]. In the network routing context,
the strategies correspond to the available routes and the utility of a player is its total
travel time. A classical approach to describe the outcome of a non-cooperative game is
to analyze an equilibrium situation. The most popular notion of such an equilibrium
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is the Nash equilibrium: a stable point from which no individual has an incentive to
deviate unilaterally. In nonatomic network games in which a single individual player
has only a negligible impact on the travel time of others, Wardrop [86] characterized
such an equilibrium in his first principle as follows. All path flows between a single
source and a single destination have equal latency. A Wardrop equilibrium can be
interpreted as a Nash equilibrium in this case.

A fundamental question that has already been raised in 1920 by Pigou [74] and
later on in the 1950’s by Wardrop [86] and Beckmann, McGuire and Winsten [11] is
the following: How efficient is the performance of a Nash equilibrium compared to
the best possible outcome? As already noted, the cost of this lack of coordination is
called price of anarchy. For the Wardrop traffic model, Roughgarden and Tardos [83]
proved in a seminal paper that the total travel time of a flow at Nash equilibrium
does not deviate too much from the minimum total travel time. In particular, they
proved that the price of anarchy is bounded by 4/3 provided affine linear latency
functions are considered. By introducing the so called anarchy value x(L) for a class
L of latency functions, Roughgarden [80] proved the first tight bounds on the price of
anarchy for general polynomial latency functions. Correa, Schulz, and Stier-Moses [24]
introduced a different parameter (L) that allows to relax some previous assumptions
on allowable latency functions. They proved that their bound implies all bounds of
Roughgarden by using the relation a(£) = (1 — B(L)) -

Even though we have just argued that the outcome of a Nash equilibrium is not too
inefficient, there has been a recent trend towards using route guidance devices for im-
proving the individual travel time. The current position of each driver is determined
via the Global Positioning System (GPS) at the beginning of a trip. A central computer
calculates then an “optimal” route for this trip based on digital maps and on available
knowledge of traffic congestion on the streets. In game theoretic language, a route
guidance operator is an atomic player since a significant (non negligible) part of the en-
tire demand is controlled. Roughgarden [82] and Correa, Schulz, and Stier-Moses [25]
claimed that the price of anarchy in an atomic network game does not exceed that of
the corresponding nonatomic one. Interestingly, this turned out to be wrong, as re-
ported by Cominetti, Correa, and Stier-Moses in [23]. Based on the work of Catoni and
Pallotino [19], they presented an example in which the price of anarchy in a network
game with atomic players is larger than that of the corresponding nonatomic game.
Moreover, they showed that the cost for an atomic player may even increase compared
to the nonatomic game. Such a counter-intuitive phenomenon can also arise from the
perspective of single individuals: a nonatomic player competing with an atomic player
may face lower cost compared to the situation in which the atomic player is replaced
by nonatomic ones. Cominetti, Correa, and Stier-Moses showed that the price of an-
archy for the atomic network game can be bounded for special latency functions. In
particular, they proved upper bounds of 1.5,2.56, and 7.83 on the price of anarchy
for affine linear, squared, and cubic latency functions with nonnegative coefficients,
respectively. For polynomials with nonnegative coefficients and higher degree, their
approach fails to generate upper bounds on the price of anarchy.
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Contributions (Chapter 4)

For network games with nonatomic players, we introduce the parameter w(£, A) for
bounding the price of anarchy. This value generalizes the anarchy value (L) and the
value B(L). Using our value, we reprove the existing tight bounds on the price of
anarchy and present a novel proof for monomial latency functions showing that the
price of anarchy is one in this case.

For network games with atomic players, we improve all previously known bounds
for polynomial latency functions with nonnegative coefficients, except for affine linear
latency functions. These results are presented in Chapter 4.

1.3 Online Network Games

Combining the online aspect with selfish behavior of individuals, we investigate an
online routing problem called online network games. In this problem, we assume a se-
quence of network games ¢ = (1,...,n) that are released consecutively in time in an
online fashion. A network game is characterized by a set of commodities that have to
be routed in a given network. Arcs in the network are equipped with load dependent
latency functions defining the routing cost. By the time of routing commodities of
game i, future games i + 1,...,n are not known. We further assume that once com-
modities of a game are routed, this routing remains fixed, that is, the routings are
irrevocable. We analyze two online algorithms, called NSEQNAsH and ASEQNASH.
These algorithms produce a flow consisting of a sequence of Nash equilibria for the
corresponding games with nonatomic and atomic players, respectively. As usual, we
analyze the efficiency of an online algorithm in terms of competitive analysis.

The online variant of network games is motivated by the application of selfish
routing to the source routing concept in telecommunication networks, see Qiu, Yang,
Zhang, and Shenker [75] and Friedman [42] for an engineering perspective and Rough-
garden [79] and Altman, Basar, Jimenez, and Shimkin [5] for a theoretical perspective
on this topic. In the source routing model, sources are responsible for selecting paths
to route data to the corresponding destination. The arcs in the network advertise their
current status that is based on the current congestion situation. If the costs on arcs
correspond to the expected delay, minimum cost routing is a natural goal for real-time
applications.

As described in the last section, the main focus of the line of research that studies
source routing is to quantify the price of anarchy. Here, one assumption is crucial:
if the traffic matrix changes, all sources may possibly change their routes and form a
new equilibrium. This assumption, however, has some important implications: Each
source would have to continuously maintain the current state of all available routes,
which in turn introduces additional traffic overhead by continuously signaling this
needed information. Furthermore, frequent rerouting attempts during data transmis-
sion may not only produce transient load oscillations but may also interfere with the
widely used congestion control protocol Tcr that controls the data rate, as reported by
La, Walrand, and Anantharam in [62]. For these reasons, frequent rerouting attempts
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in reaction to traffic changes in the network are not necessarily beneficial. Time critical
applications, such as Internet telephony or video streaming may suffer severe perfor-
mance degradation.

Contributions (Chapter 5)

In this regard, we propose and investigate a new model, called Online Network Games,
in which sources starting at the same time select their routes only during connection
setup phase. We then study the extreme case in which flows fix their routing decisions
once they are at equilibrium. Thus, continuously gathering information about the
state of available routes is not necessary after this initial routing game. Relying on
competitive analysis, we analyze online algorithms that produce a flow that is at Nash
equilibrium for every game out of a sequence of games. The cost function is given by
the total travel cost after all games have been played. Our main result states that for
polynomial latency functions with nonnegative coefficients, the competitive ratio of
both NSEQNAsH, and ASEQNAsH can be bounded by a constant factor, which depends
on the maximum degree. This result holds independently of the network topology
or game sequence. We also prove lower bounds. In particular, we show that for a
sequence of two network games and affine linear latency functions, our upper bound
for the NSEQNAsH is tight. Furthermore, we prove for a given sequence of games and
parallel arcs that the competitive ratio of the online algorithm NSEQNAsH does not
exceed the price of anarchy of a complementary nonatomic network game in which
all commodities of the sequence of games are considered at the same time.

1.4 Thesis Organization

After describing the motivation and background for this thesis in Chapter 1, we
present in Chapter 2 the basic concept of competitive analysis in online optimiza-
tion. In Chapter 3, we present the framework ONLINEMCRP in which we study the
online algorithm SeQ. In Chapter 4 we focus on network games with nonatomic and
atomic players, respectively. Finally, we combine network games with online aspects
in Chapter 5.

We note that the “Contribution and Chapter Outline” section at the beginning of
Chapter 3, 4, and 5 gives an overview and road map about the results presented in
that chapter. We further recommend that Chapter 4 is read prior to Chapter 5. Except
for introducing the notation for multicommodity flow problems, Chapter 4 and 5 can
be read independently from Chapter 3.



Chapter 2

Preliminaries

In this chapter, we introduce the theoretical concept for analyzing online algorithms
that cope with incomplete information. In the first section, we introduce the concept
of online optimization by means of a request answer game as defined by Ben-David et
al. in [12]. The second section deals with the concept of competitive analysis that we
are going to use throughout the thesis.

2.1 Online Optimization

Static optimization approaches assume complete knowledge about all problem data in
advance. These problems are also called offline optimization problems. Online optimiza-
tion problems are a special class of optimization problems in which the input instances
are not given completely in advance. Instead, an instance arises step-by-step and de-
cisions have to be made based only on the information revealed so far. Each decision
leads to a cost or profit and the task is to minimize the total cost or to maximize the
gained profit. In this thesis only minimization problems are considered. Therefore,
all definitions in this section refer to minimization problems. However, the definitions
can easily be adapted for maximization problems.

Most online optimization problems can be formalized as a request-answer game,
which was introduced by Ben-David et al. in [12].

Definition 2.1 (Request-Answer Game)

A request-answer game consists of a request set R, a nonempty and finite answer set
A, and cost functions cost, : R" x A" — R™ U {co} for n € N. Let C denote the
set of functions cost, for all n € N. An instance is given by a request sequence
o = r,r2,...,1, of n € N requests from R. The task is to find an answer se-
quence (a1, ay,...,a,) € A" such that the cost cost,(r1,72,...,7n,a1,a2,...,4,) is mini-
mized. A request-answer game is given by the triple (R, A,C).

A request-answer game itself does not define an online optimization problem since
no restriction is made on the way the answers have to be given. An online algorithm
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has to serve a request right after it arises according to the specific rules of a request-
answer game. We remark here that it is common in the literature to assume a finite
answer set A’. In this thesis, however, the answer sets that we consider are continuous
sets containing infinitely many elements. As stated by Borodin and El Yaniv [15], the
finiteness requirement is not of conceptual importance for the principles of competitive
analysis. They show that an infinite answer set can be approximated by a sufficiently
large finite answer set.

Definition 2.2 (Deterministic Online Algorithm)

Let (R,A,C) be a request-answer game. A deterministic online algorithm ALG is a se-
quence of functions f1, f2,..., where f; : Ri - A Ifo=r,ry...,1isa sequence of
n € N requests from R, then the output of ALG for this sequence is

ArG[o] = (my,az,...,a,) € A", where a; = fi(r1,72,...,7i).
The cost incurred by ALG on ¢ is denoted by ALG(c) and defined as
ALG(0) = cost, (0, ALg[r]).

Note that the answer a; may only depend on the requests rq,7o,...,7; for i =
1,2,...,n. Therefore, the definition of a deterministic online algorithm meets the
requirement that such algorithms have to make decisions based only on partial in-
formation.

Besides the class of deterministic online algorithms, there exists the class of ran-
domized online algorithms. These algorithms use a probability distribution over a set of
deterministic online algorithms to generate an answer for a given request. Therefore,
the answer sequence as well as the cost are random variables. Even though we will
not use the concept of randomized online algorithms in this thesis, we briefly present
the main ideas for completeness.

Definition 2.3 (Randomized Online Algorithm)
A randomized online algorithm RALG is a probability distribution over deterministic on-
line algorithms ALG, (x may be thought of as the coin tosses of the algorithm RALG).

Note that the definition points out that every deterministic online algorithm is a
randomized online algorithm with probability 1 on a certain outcome. Hence, the
class of deterministic online algorithms is included in the class of randomized online
algorithms.

Online algorithms provide for each sequence of requests an answer sequence which
comes along with a cost. Usually, the task is to generate an answer sequence that
minimizes this cost.

2.2 Competitive Analysis

The standard technique for analyzing the performance of an online algorithm is com-
petitive analysis. This method measures the performance of an online algorithm
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against an optimal offline solution. An optimal offline algorithm has access to the com-
plete input instance in advance and serves it at a minimum cost, called optimal offline
cost.

Definition 2.4 (Optimal Offline Cost)
Let (R, A,C) be a request-answer game and ¢ = ry,12,...,1, a sequence of n € N
requests from R. Then the optimal offline cost is defined as

Ort(0) = min{cost,(c,a) | a € A"}.

2.2.1 Deterministic Online Algorithm

Using competitive analysis the performance of a deterministic online algorithm is mea-
sured as follows.

Definition 2.5 (Competitive Deterministic Online Algorithm)
Let (R, A,C) be a request-answer game and ¢ > 1 a real number. A deterministic
online algorithm ALG is called c-competitive if there exists a number b > 0 such that

Arg(o) <c-Opt(0) +b
holds for any request sequence ¢. If b = 0, ALG is called strictly c-competitive.

In the reminder of this thesis we omit the term "strictly". For all presented results
we have b = 0.

Given a deterministic online algorithm ALG, we are interested in the smallest con-
stant ¢ > 1 such that ALG is c—competitive.

Definition 2.6 (Competitive Ratio)
The competitive ratio of a deterministic online algorithm ALG is the infimum over all ¢
such that ALG is c-competitive.

Note that the definition does not make any restriction on the computational com-
plexity of a deterministic online algorithm. The only scarcity in competitive analysis
comes from lack of information. The concept of competitive analysis is based on a
worst case analysis for online algorithms. The performance guarantee must hold for
each request sequence. In this regard, competitive analysis can be seen as a game be-
tween the online algorithm and a malicious adversary. The malicious adversary tries
to generate a request sequence such that the online algorithm performs as “bad” as
possible compared to the optimal offline cost. In doing so, the malicious adversary
has knowledge about the algorithm. That is, he knows for any request sequence all
answers of a deterministic online algorithms in advance.

2.2.2 Randomized Online Algorithm

The answer sequence as well as the cost of a randomized online algorithm are random
variables. Therefore, the competitive ratio of a randomized online algorithm depends
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on the amount of information an adversary has access to. In the standard adversary
model, the adversary has knowledge about the probability distribution of a random-
ized online algorithm but does not know the exact outcome for each request sequence.
Hence, an adversary has to choose an entire request sequence before an online al-
gorithm starts processing the chosen sequence. Such an adversary is called oblivious
adversary in the literature.

Definition 2.7 (Oblivious Adversary)

An oblivious adversary has to generate the entire request sequence in advance based
only on the description of the randomized online algorithm but before any request is
served by the randomized online algorithm.

As mentioned before, the definition of the competitive ratio of a randomized online
algorithm depends on the class of allowable adversaries. For the purpose of introduc-
ing competitive analysis, we restrict ourselves to an oblivious adversary, which is the
weakest of those introduced by Ben-David et al. in [12].

Definition 2.8 (Competitive Randomized Online Algorithm)

Let (R, A, C) be a request-answer game and ¢ > 1 a real number. A randomized online
algorithm RALG with a probability distribution X over a set {ALG,} of deterministic
online algorithms is said to be c-competitive against the oblivious adversary if

E[ALGy(0)] < ¢-Opr1(0)

holds for each sequence . Here the expression E[ALG,(0)] denotes the expectation
with respect to the probability distribution X over {ALG,} which defines rarG. The
competitive ratio of RALG is the infimum over all c such that RALG is c-competitive against
the oblivious adversary.

The above definition reduces to Definition 2.5 in the case of a deterministic online
algorithm. Since the oblivious adversary is not as powerful as in the deterministic
case, randomized online algorithms usually provide a better competitive ratio than
deterministic online algorithms.

Of course, lower bounds on the competitive ratio of online algorithms are also of
interest. In order to obtain such a lower bound for an online algorithm, a request
sequence has to be constructed such that this algorithm performs “bad” compared to
the optimal offline cost. Besides a lower bound on the competitive ratio of a certain
online algorithm, it is also of interest to find a lower bound which holds for any online
algorithm of the considered online optimization problem. In the deterministic case, it
is comparatively easy to find suitable request sequences. Since the cost of a random-
ized online algorithm is a random variable, it can be difficult to bound the competitive
ratio from below. In such cases Yao’s Principle is an approach to find lower bounds on
the competitive ratio of any randomized online algorithms for the considered online
problem, see Borodin and El Yaniv [15], Motwani and Raghaven [69], and Albers [4].



Chapter 3

Online Routing Problems

Resource intensive real-time applications, such as video or Internet-telephony, are in-
creasingly dominating traditional Internet traffic, for example e-mail, file transfer, and
web-browsing. This causes significant changes regarding the interaction of Internet
service providers. Currently, loose peering agreements between neighboring domains
regulate the data transmission across domain boundaries: Each domain agrees to
route messages between any of its two neighboring domains; this routing is done
free of charge and on a best effort basis. One of the main reasons why most service
providers agree with this policy is because traditional Internet traffic does not require
any Quality of Service (QoS). Therefore, the “free through-passing” policy only incurs
low additional cost to each service provider.

Future Internet applications, however, pose diverse QoS requirements on the Inter-
net traffic, e.g., bounded packet delay and jitter ! for video or Internet-telephony, see
Gharavi and Partovi [44]. Moreover, users expect that their access provider delivers
this type of service. Presently, Internet service providers can offer such services within
the domains which they control. Still, providing traffic with QoS requirements for
other domains is considerably more expensive than the above mentioned traditional
Internet applications. As a consequence, service providers are no longer willing to
support this service at no cost. Hence, the deployment of end-to-end inter-domain
traffic with QoS requires trading and negotiating for resources between different ser-
vice providers. This opens a new market with a multitude of strategically acting and
selfishly behaving participants.

In this regard, a novel inter-domain resource exchange architecture (iREX) for the
automated deployment of Internet traffic with QoS requirements has been proposed
by Yahaya and Suda [87, 88] and Yahaya, Harks, and Suda [89]. The iREX architecture
is based on the “Posted Price Competition” economic model in which providers inde-
pendently choose prices that are publicly communicated to resource consumers on a
take-it-or-leave-it basis, see Abbink [1] for an introduction to this economic model. In
the iREX context, domains are both resource providers and resource consumers at the

itter is defined as the variation of inter packet arrival times.



16 Chapter 3. Online Routing Problems

same time. Since domains have resources that they can sell, they also need to buy re-
sources to deploy inter-domain traffic with QoS requirements for their own customers.
Thus, the iREX architecture establishes a market for Internet traffic with QoS require-
ments. In this market, each service provider advertises prices for resources that he
wants to sell. Buying providers reserve capacity along paths to route demand (com-
ing from own customers) from source to destination via domains of other providers.
The routing of a demand along paths is fixed by establishing a contract between the
source domain and all domains along the chosen paths. According to Yahaya and
Suda [87, 88], we assume that providers determine prices according to predefined
load dependent price functions. Such prices, however, are only valid for a predefined
demand size (bundle size), that is, routing flow of bundle size prompts an update of
arc prices. The reason for this is that scarce resources are priced higher (lower) if the
load increases (decreases). In the limiting case, where the bundle size tends to zero,
the routing cost on an arc is given by the integral over the arc flow with respect to the
corresponding price function. As the user behavior and resulting traffic changes in the
Internet are hard to predict, we assume that future demands are unknown.

In this chapter, we model the interaction of service providers via online multicom-
modity routing problems. In online multicommodity routing problems, commodities
of a multicommodity flow have to be routed sequentially in a network. The cost of
a flow is determined by dynamic load dependent price functions on links. We as-
sume that the price functions are continuous and nondecreasing. The commodities
arrive sequentially in time and have to be routed with lowest cost, since participat-
ing providers are assumed to act rational. We make four crucial assumptions for the
considered model: (i) demands for commodities are revealed in an online fashion; (ii)
demands can be split along several paths; (iii) once a demand is routed, no rerouting
is allowed; (iv) the routing cost on an arc is given by the integral over the arc flow with
respect to the corresponding price function. Since at the time of routing a commodity,
future demands are not known, this yields an online optimization problem that we
call the Online Multicommodity Routing Problem (ONLINEMCRP).

We study a greedy online algorithm SEQ that routes a newly revealed commodity
by solving a convex optimization problem that only depends on the previously routed
demands. We investigate cases in which SEQ is competitive, that is, its cost is at most
a constant factor larger than the cost of an optimal offline solution for which all com-
modities are known. We see SEQ and the ONLINEMCRP as a first step towards an
analytical methodology for analyzing the efficiency of general inter-domain routing
strategies.

Multicommodity routing problems have been studied in the context of traffic en-
gineering, see Fortz and Thorup [38, 39]. There, the goal is to route given demands
subject to capacity constraints in order to minimize a convex load dependent penalty
function. In this setting, a central planer has full knowledge of all demands, which is
not the case in our approach.

Another related line of research is the investigation of efficient routing in decentral-
ized noncooperative systems. This has been extensively studied using game theoretic
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concepts, cf. Roughgarden and Tardos [83], Correa, Schulz, and Stier Moses [24], Alt-
man, Basar, Jimenez, and Shimkin [5], and the references therein. In these works the
efficiency of Nash equilibria are studied. Hence, rerouting of demands is allowed in
this context. In our model, once a routing decision has been made, it remains un-
changed.

The main topic in online routing has been call admission control problems. An
overview article about these problems is given by Leonardi in [32]. Perhaps closest
is the paper by Awerbuch, Azar, and Plotkin [9], where online routing algorithms are
presented to maximize throughput under the assumption that routings are irrevocable.
They restrict the analysis to single path routing and present competitive bounds that
depend on the number of nodes in the network.

3.1 Contributions and Chapter Outline

We first introduce in Section 3.2 the formal model for the ONLINEMCRP which is
followed by the definition of the greedy online algorithm SeQ and the optimal offline
solution.

Then, in Section 3.3 we show using competitive analysis that no online algorithm
for the ONLINEMCRP is competitive for general networks and price functions. If the
price functions and the network are restricted, however, one can obtain competitive

2
competitive, where K is the number of commodities, as shown in Section 3.3.1. Fur-
thermore, we prove a lower bound of % on the competitive ratio for any deterministic
online algorithm in this case. For SEQ, we prove a lower bound of % For polyno-
mial price functions with nonnegative coefficients, we prove upper and lower bounds
on the competitive ratio of SEQ that both grow exponentially in the degree of the
considered polynomials.

If we restrict the structure of the network to have a single-source and single-
destination only, Section 3.4 shows that SEQ returns an optimal solution, i.e. SEQ is
1-competitive.

We also study the variant of the ONLINEMCRP in which the demands have to
be routed (unsplittably) along a single path. In Section 3.5, we prove that the corre-
sponding offline problem is NP-hard. We further show that in general no competitive
deterministic online algorithm exists. Finally, we present a lower bound of 2 on the
competitive ratio for any deterministic online algorithm if the price functions are lin-
ear.

These results are preceded by a formal problem description. This includes the
optimality conditions for the convex problems that have to be solved by SeQ and to
determine an optimal offline solution (Section 3.2).

In Section 3.6, we introduce an unsplittable variant of SEQ with expiring demands
and study its performance via simulating real world networks and traffic demands.
This joint work together with Yahaya and Suda [89] provides empirical evidence for
the efficiency of the iREX protocol in an inter-domain QoS market. It turns out that

results. For affine linear price functions the greedy online algorithm SEqQ is
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the real-world instances perform better than the derived worst case analytical bounds.
In other words: Simulations show that for realistic networks and demands, the ef-
ficiency of an online single path routing compared to the best possible outcome is
significantly smaller than the provable worst case bounds. We close this chapter with
further comments and open questions in Section 3.7.

The results for affine linear price functions, single commodity networks, and un-
splittable routings are joint work with Heinz and Pfetsch [51]. The computational
study is joint work with Yahaya and Suda [89].

3.2 Problem Description

An instance of the Online Multicommodity Routing Problem (ONLINEMCRP) consists of
a directed network D = (V,A) and nondecreasing and continuous price functions
pa : Ry — Ry for each link a € A. These functions define the price of reserving
capacity on a link depending on the current load, as described below. For convenience,
we will sometimes use the words arc and link, vertex and node interchangeably. The
arcs are ordered pairs of vertices @ = (i, j), where the first vertex i represents the tail
of an arc and the second vertex j represents the head. Thus, an arc is directed from its
tail to its head. We also allow for parallel arcs, which means that we allow for several
distinct arcs with the same tail and head.

Furthermore, a sequence ¢ = 1, ..., K of commodities must be routed one after the
other. We assume that K > 2 and denote the set of commodities by [K] := {1,...,K}.
Each commodity k € [K] has a demand d; > 0 that has to be routed from a source
sy € V to a destination f;, € V. We denote vertices sq1,--- ,Sk as sources, that is,
these nodes are the source of traffic demand dy, - - - ,dg. The vertices t1, - - - tx denote
destination nodes, where the traffic from the sources terminate.

To shorten notation we use the following convention: When we speak of a sequence
o0 =1,...,Kof commodities, we refer to the full specification (dy,s1,t1), ..., (dk, Sk, tk)-

The routing decision for commodity k is online, that is, it only depends on the
routings of commodities 1,...,k — 1. Once a commodity has been routed it remains
unchanged.

A routing assignment, or flow, for commodity k € [K] is a nonnegative vector
fk € R%. This flow is feasible if for all v € V holds that

Y i Y fi=q(v), (3.1)

acét(v) acé—(v)

where 67 (v) and 6~ (v) are the arcs leaving and entering v, respectively; furthermore,
y(v) = dy if v = s, v(v) = —dy if v = t, and y(v) = 0 otherwise. Note that splitting
of demands is allowed. We say that (f',..., fX) is a multicommodity flow.

An alternative formulation uses a path flow for each commodity k € [K]. Let Py be
the set of all paths from s to t; in D. A path flow for commodity k is a nonnegative
vector (f%)pep,. The corresponding flow on link a € A for commodity k € [K] is then
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given by
=L fr

P>a

The aggregated flow of all commodities on link 2 can be written as
ok
f a = Z f a-
k=1

In the sequel of this thesis, we use the bold notation, i.e. fi, when we refer to a vector
of numbers and normal font, i.e. f,, when referring to a single real number. We define
Fi with k € [K] to be the set of vectors (f',..., f) such that f’ is a feasible flow for
commodities i = 1,...,k. If (f1,..., fX) € Fi, we say that it is feasible for the sequence
of commodities 1,...,k. The entire flow for the sequence 1,...,K of commodities is
denoted by f = (f!,..., fX). Furthermore, the cost of a flow f¥ on link a € A of
commodity k is defined by

st fi )= [ (s ) e 62)

For convenience, we will sometimes write CX(f¥) instead of Ck(fX; f1,..., f&=1). Note
that Ck(-) is a convex function, because p,(-) is nondecreasing. Furthermore, the flow
values f1,..., f¥=1 of previously routed commodities are fixed parameters for the cost
function of commodity k.

Remark 3.1. The cost function in (3.2) can be obtained as the limiting case of a single
path routing: Assume that demand dy is split into N equal pieces and the pieces
are routed consecutively along a single path. The cost of this path is obtained by
evaluating p,(-) at the flow on link 4 arising from the previous routings. Let z!, be the
flow on arc a € A arising from piece £ € [N], i.e., zi = % if a is on the path and z£ = 0

otherwise. Then we have:

lim ZPa(ZfﬁZ £z = ChUS L T,

where f¥:= YV | 2" is a feasible flow for commodity k. Hence, the integral represents
the fact that an infinitesimal amount of flow increases the price for each consecutive
piece. Figure 3.1 illustrates the arc costs for demand divided into three pieces. Note
that the above described single path routing for a discrete bundle size corresponds to
the working mechanism of the iREX protocol as specified by Yahaya and Suda [87, 88].

Given flows fl, .. .,fkfl, the cost for flow fk is

CSf - Y = G far - fah).

acA
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z} zZi+22 Zl 422+ 23
Figure 3.1: Illustration of the motivation for the cost function defined in (3.2). The shaded

area corresponds to the arc cost for N = 3. For the case N — oo the shaded area
converges to the exact integral.

To shorten the presentation, we write

() = CE S f 7).

The total cost over all commodities is defined by

C(f) =Y (Y.

ke[K]

Note that the total cost of all commodities is given by the sum of the individual cost of
the single commodities. In this regard, the cost function is separable in the commodi-
ties. Loosely speaking, the flow of later commodities do not affect the individual cost
of former ones. In the following we derive a nice simplification of the total cost.

Remark 3.2. The total cost can be represented in terms of the aggregated arc flow:

K

K fa
)= LM =L L Ch=E L cith = ¥ [ p)de
= 0

k=lacA a€Ake[K] acA

The above cost representation implies that the order of commodities plays no role
when determining an optimal routing.

3.2.1 The Greedy Online Algorithm Seq

In this section, we study the greedy online algorithm SEQ that for a given sequence
c=1,...,K, sequentially routes the requested demands with minimum cost.
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Definition 3.3 (Seq for the OnlineMCRP)
Consider an instance of the ONLINEMCRP with a sequence ¢ = 1,...,K. The deter-
ministic conline algorithm SEQ solves for every k € [K] the following convex program

min  CF(fY)
s.t. ) k- ) ¥ =q(v) VoeV (3.3)
acét(v) aedé~(v)
fi=0 Vae A,

where the vectors f,..., ff ! are fixed by solving the first k — 1 problems.

Note that the above problem may admit several optimal solutions with the same
objective value. Problem (3.3) can be efficiently solved within arbitrary precision in
polynomial time (see Grotschel, Lovész, and Schrijver [48]).

Using the relation

Sl ko
oft (f) = pﬂ(;fa)'

we state in the following lemma necessary and sufficient optimality conditions of the

above K problems.

Lemma 3.4. A feasible flow f = (f,..., f) € Fx solves (3.3) if and only if for all k € [K]
the following two equivalent conditions are satisfied:

k )
. i k k or all feasible flows x*
f) Z p”( Zf”) (fo — %) <0 }cor COﬂ{mOditszC 34)
acA i=1 ’
y £ ko forall P,Q € Py,
if) ;}Pa(iﬂ f”) = anQ pa(i;f“) P flow carrying w.r.t. fk. (35)

A formal proof of the equivalence of the above statements can be found in Dafer-
mos and Sparrow [27]. In fact, the second condition is simply the Kuhn-Tucker con-
dition of problem (3.3). Then, the only important ingredient is the convexity of the
objective function. Since we are using the variational inequality 3.4 throughout the
thesis, we only prove that condition (3.4) implies optimality.

Proof. Assume the flow fk satisfies condition (i). Let x* be an arbitrary feasible flow.
By assumption, the cost function C¥(-) is convex. Hence, we can bound the cost
function from below by a linear approximation in f* (see Figure 3.2 for a graphical
illustration of the linear approximation):

k
Y, Colxa) = ) Gilfa) + pa( Lo f2) (36— fa)-
acA acA i=1
By assumption, the last term is nonnegative, see inequality (3.4). Hence, the cost of
the flow x* is greater than or equal the cost of fk. Since x* was chosen arbitrarily, the
flow f* solves problem (3.3). O
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Figure 3.2: Illustration of the linear approximation L¥(-; f) in the point f of the convex func-
tion CK(-) with L¥(x; f) < C¥(x).

3.2.2 The Optimal Offline Solution

An optimal offline flow is given by a solution f* of the following convex optimization
problem:

min  C(f)
s.t. Y. A Y A=) YoeV, keK (3.6)
acét(v) acé—(v)
fE=0 Vae A, kek.

We denote by Ort(0) the optimal value of this convex problem.
As Problem (3.3) the above problem can be efficiently solved within arbitrary preci-
sion in polynomial time (see Grotschel, Lovész, and Schrijver [48]). Using the relation

aC K

() =p 1)

9 f,f a ( ; f a)
the necessary and sufficient optimality conditions of the above problem are the fol-
lowing.

Lemma 3.5. A flow f = (f',..., fX) is offline optimal if and only if for all k € [K] the
following two equivalent conditions are satisfied:

i) Z pa( if;) (fk— x5y <o for all feasible flows x (3.7)
acA i=1
K K
. i ; forall P,Q € Py,
i) u; Pl i=1 f) < aé Pl Z;f”) P flow carrying w.r.t. f*. (3.8)

Note that the only difference to the optimality conditions in Lemma 3.4 is the
summation in the price function up to commodity K instead of k. This reflects the
offline aspect since all demands are known.
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3.3 Competitive Analysis

For a given sequence of commodities ¢ = 1,...,K and a solution f produced by an
online algorithm Arg, we denote by ALG(c) = C(f) its cost. According to the notation
introduced in Chapter 2, the online algorithm ALG is called (strictly) c-competitive, if
the cost of ALG is never larger than c times the cost of an optimal offline solution. The
competitive ratio of ALG is the infimum over all ¢ > 1 such that ALG is c-competitive,
see for instance Borodin and El-Yaniv [15] and Fiat and Woeginger [32].

Remark 3.6. If the price functions p,(z) are constant for every arc a € A, the algorithm
SEQ is optimal for the offline problem, i.e., its competitive ratio is 1. This holds because
in this case the routing problems are independent from each other. In fact, each routing
decision is just a shortest path problem with respect to the constant costs. Furthermore,
the offline problem is a min-cost flow problem without capacity constraints. Hence,
both problems can be solved more efficiently than in the general case.

Clearly, also in the case K = 1, the competitive ratio of SEQ is 1.

We start with a simple example motivating the impact of routing demands in an
online fashion.

Example 3.7. Consider the network displayed in Figure 3.3. Assume that all arcs have
the linear price function p,(z) = 2z. From Equation (3.2) it follows that the cost on
every arc 4 is given by (2s, + z)z, where s, is the amount of flow that is already routed
on arc 4.

Assume that a demand of one unit from node 1 to node 4 is revealed first. The
online algorithm SEQ splits the demand evenly along the two possible paths incurring
a cost of 1. Then the second demand of one unit starting in node 1 and terminating in
node 2 is released. Here, only arc (1,2) can be used, leading to a cost of 2. Hence, the
total cost of SEQ for these demands is 3.

For an optimal offline routing, the entire demand sequence is known. It is optimal
to route 2 of the first demand along the upper path (1,3,4) and only 1 along the lower
path (1,2,4), cf. Lemma 3.5. This incurs a cost of 1.25. Now the second demand leads
to a cost of 1.5. Therefore, the total offline cost is 2.75, which is strictly smaller than
the cost for the routing generated by Skq.

The rationale of the optimal offline routing is to sacrifice some cost (compared to
SEQ) for the first demand in favor of saving cost for the latter. This example also shows
that the algorithm SeQ does not have a competitive ratio less than 1.09.

First, we show that there exists no competitive deterministic online algorithm, if
neither the network nor the price functions are restricted. Therefore, we generalize the
above example.

Proposition 3.8. In general, there exists no competitive deterministic online algorithm for
the ONLINEMCRP.
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Figure 3.3: Graph construction for the proofs of Propositions 3.8, 3.33, and 3.34, and for the
Example 3.7.

Proof. Consider the network depicted in Figure 3.3. For all arcs a in the network,
the price function is set to p,(z) = m-z""! with m > 2. Let ALG be an arbitrary
deterministic online algorithm. The first commodity of sequence ¢ has demand d; = 1
and has to be routed from node s; = 1 to node t; = 4. There are two possible paths
for this commodity: path P; = (1,2,4) and path P, = (1,3,4). Because of symmetry,
we can assume that ALG sends a flow of < a < 1 over path P; and (1 —a) along
path P». Now commodity 2 arises with demand d, = 1, source s; = 1, and target
tp = 2. Algorithm ALG has to route this demand on the only possible path P; = (1,2).
For this sequence o, ALG produces a total cost of

1
ArG(0o) :2-zx’”—|—2-(1—0c)m+/ m(a+z)" Lz
0
=2-a"4+2-(1—a)"+ (a+1)" —a™

Routing the first commodity completely over path P, and the second over path P;
leads to the total cost 2- 1" + 1™ = 3 > Or1(0). Letting m tend to infinity shows that
in this case ALG is not competitive. ]

Despite the negative result of Proposition 3.8, we obtain competitive results in the
following two sections. We first restrict the price functions to be affinely linear, then,
we allow for general polynomial price functions, and finally, we study networks with
a single source and a single destination.

3.3.1 Affinely Linear Price Functions

In this section, we assume that the price functions are affinely linear and show that

SEQ is %-competitive in this case.

For affinely linear price functions p,(z) = g, -z +r, with g, > 0,7, > 0fora € A,
we have for a feasible flow (f',..., f*)

k=1
ChfSf ) =aa ( ;f; + I fE 4 ra fE.
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It follows from the optimality conditions (3.4) that if (f*,..., fk) is generated
by SkqQ, then

k
Y (4a ) fatra) (fi —xb) <0, (3.9)

acA i=1

for all feasible flows x*.

Theorem 3.9. If the price functions are affinely linear, SEQ is (
LINEMCRP.

1 " I<)2 -competitive for the ON-

Proof. We use the following useful relation at several places in the proof:

K K K k=1
k_Zl ;f; fE=2 k_Zl ( ;f; + 3 fr (3.10)

Let (x1,...,xk) € Fk be any feasible flow and let (f,,..., fx) € Fx be the solution
produced by SEQ. We start by considering the following inequality for arbitrary non-
negative real values «, B satisfying 1 < a < g < 2:

Ko Ko \2
0< (a) fi-pY )

k=1 k=1

K K " K K . K K .
Y YA mpY Y kY Y

k=1i=1 k=1i=1 k=1i=1

Using (3.10) for the first and last term, multiplying with q,, and adding over all arcs
yields:

K k— K K
osZAqa(sz1 Zfa )i~ 2w L) fot
+2p? f x;+ x)xk) (3.11)

i=

,_;

For the next step, consider the inequality

K
o<y 2 2= B8) 1o f + (287 — 2aP) 1o xf)
acAk=1
K K
=Y Y (20®rq fF —2aBro xf +2B%r b)) — 2p Yo ¥ ra sk (3.12)
acAk=1 acAk=1

This inequality holds, because K > 2 and hence

20&2—#220&2—&[7’20,
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since 1 < a < B <2 and therefore 2o — B > 0. Furthermore, it follows that
287 —2aB > 2p* —2p* =0
Adding Inequality (3.12) to (3.11) leads to:

0 <24*C(f Zaﬁzz qazfa—i—rux—i—Zﬁ C(x)

ac€Ak=

BT Y

acAk=1

We drop part of the second term and apply (3.9):

0<2a*C(f 204322 qaZfaJrra X r2p%C(x)

acAk=

:<2“2_2‘xﬁ) _‘xﬁ Z% qufa +25 C( )

acA k=1
K
ks DI

acAk=1

Using the inequality of Cauchy-Schwarz and (3.10) yields:

K
0 < (202 —2aB) C(f) + 282 C(x) — £ Y qa( Zfa o DI

acA acAk=1
= (207 — 208) C(f) + 28> C(x) — ZEC(f).
This is equivalent to:

cp<—F cw.
—DCZ —+ Déﬁ + x

We now take « = (14 #) and B =2 to get C(f) < % C(x), i.e., the desired bound

(if we let x be an optimal offline solution). O

Remark 3.10. The parameters « and § in the previous proof are optimal solutions to
the following minimization problem:

‘BZ
min ——
1<a<p<2 g2 4 qf+ % ap’
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Figure 3.4: Graph construction for the proof of Proposition 3.11.

We do not know whether the result in Theorem 3.9 is tight. The best known lower
bound for any deterministic online algorithm is the following.

Proposition 3.11. In case of linear cost functions, no deterministic online algorithm for
the ONLINEMCRP is c-competitive for any ¢ < %.

Proof. Consider the network displayed in Figure 3.4. Each arc a leaving node 1 has
the same price function p,(z) = 4z. All the other arcs (leading to node 5) have price
function p,(z) = 0. Let ALG be an arbitrary deterministic online algorithm. The first
commodity with demand 1 has to be routed from s; =1 to t; = 5.

First, assume the algorithm behaves like SEQ. This means that the demand gets
evenly divided into three pieces: one third is routed over path P, = (1,2,5), an-
other over path P, = (1,3,5), and the final third over path P;s = (1,4,5) (compare
Lemma 3.4). Then, we reveal commodity 2 with demand 1 between nodes 1 and 2.
The algorithm ALG has to route this demand on the only possible path P, = (1,2).
Therefore, the cost of ALG for this sequence ¢ is:

ALG(0) =SEQ(0) =3-4-(3-3) -3 +4-(3+3-1)-1=4,

An optimal offline solution is to route half of commodity 1 over path P,, the other half
over path P3, and commodity 2 along P, (compare Lemma 3.5). Therefore,

Orr(c) =2-4-(3-1)-1+4.(3-1)-1=3.
This leads to
Arg(o) 4

Orr(0) 3

If ALG does not behave like SEQ for the first commodity, we can assume by symme-
try that ALG routes a flow of a > % over path P;. Hence, a demand of 1 — & is routed
over path P, and P;. The best way to do this is to route (1 — «)/2 over each path. Then
commodity 2 is released as above, again leaving no routing choice. The cost of ALG
for this sequence ¢ is

Arc(o) >4- (3 a) w424 (152 0 g gy l1) 1> 4
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Figure 3.5: Graph construction for the proof of Proposition 3.12.

since & > . Because Op1(0) = 3, we have

Arg(o)
Ort(0)

S 4
3

Therefore, ALG cannot have a competitive ratio less than %. ]
The following proposition provides an improved lower bound for SkQ.

Proposition 3.12. In case of affine linear cost functions the online algorithm SEQ for ON-

LINEMCRP has a competitive ratio greater or equal to ZKK 1

Proof. Consider the network shown in Figure 3.5 with the following price functions:
Pes, 0(2) =0, puiy(z) = 0, p(s,p)(z) = i, and p(sp(z) = z fori = 1,...,n. For
i =1,...,n we consecutively release a demand of size 1 from s; to ¢;. Using Lemma 3.4,
we see that SEQ routes every demand over arc (s, t). The cost for these n demands is:

n
I+ (A4 1+ (n—14+3)1=) 2
i=1

N\*—‘

The (1 4 1)-st demand of size d > 1 is released from s to t and incurs the following
cost:
(n+1d)d =nd + 1d*.

Thus, the total cost for SEQ is given by:
SEQ(c) = 1(n* +2nd + d*).

In an optimal offline solution the first n demands are routed along the arcs (s;, t;) and
the last demand is routed on (s, t). Hence, the total cost is:

Ort(0 Zl + 1d2 ”H) + %dz.
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Figure 3.6: Upper bound % versus lower bound 251 on the competitive ratio of Seq for

affine linear price functions.

Setting d = n + 1 and substituting n = K — 1 yields

SEQ(0) n? + 2nd + d? _1+42n  2K-1

Orr(c) n2+n+d>  1+n K

4

which proves the theorem. O

Remark 3.13. The value d = n + 1 solves the following optimization problem with
respect to d:

max n? + 2nd + d? _1+2n

i>1 n24n+d2 1+n°

This yields the best lower bound for the network in the proof of Proposition 3.12.

Figure 3.6 illustrates the lower and upper bounds on the competitive ratio of the
online algorithm SEQ for affine linear price functions. The bounds asymptotically
converge to 2 and 4, respectively, for K tending to infinity.

A characteristic of SEQ is that it splits demand and distributes it onto several paths.
We close this section by showing that only algorithms that split demand can be com-
petitive.

Proposition 3.14. Every deterministic online algorithm for the ONLINEMCRP that routes
all demands unsplittably is not competitive, even for linear cost functions.

Proof. Consider the network shown in Figure 3.7. This network contains n + 2 nodes
and n paths from node s to node t. The price functions are p,(z) = 2z for all arcs a.
Let ALG be an arbitrary deterministic online algorithm that does not split demands.
We consider a single commodity with demand 1 between nodes s and t. Since ALG
does not split, the cost of its routing is independent from the chosen path:

AiG(o) =2-(3-1)-142-(3-1)-1=2.
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An optimal solution splits the demand into n evenly divided pieces and sends each
piece over a different path. This leads to an optimal cost of

Orr(e) =n(2-(4-3) L 42-(3- 1) ) =n-2 (A = 2

n

Therefore, the competitive ratio of ALG is not smaller than n. Since this holds for all
n € N, ALG is not competitive. ]

3.3.2 General Price Functions

In this section, we extend Theorem 3.9 to allow for general nondecreasing price func-
tions. Before we start with the technical exposition, we motivate the approach. For
every commodity k, we use the variational inequality (3.4). Summing this inequality
over k € [K] yields an inequality in terms of the entire flow f and an arbitrary feasible
flow x. Then, the challenge is to associate part of this expression with the total cost of
f and the remaining part with the total cost of x.

Definition 3.15
For a given sequence of commodities ¢ and a flow f that is produced by SeqQ, we
define

Vi(fl, Zpa Zfﬂ x _fa

acA
V(f,x,K): ZV x'),

where x!, ..

L aK e Fris any feasible flow.
Lemma 3.16. A feasible flow f for a sequence o that is produced by SEQ satisfies:
V(f,x,K) >0, forall feasible flows x for o.

Furthermore,

V(f,%,K) =Y Va(f, %, K),

aceA

@\@

Figure 3.7: Graph construction for the proof of Proposition 3.14.
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pa(fa + f2+ 13)

pa(fa + f2)
palfa) |

) |

0 fo fatfe fatfitfl

Figure 3.8: Illustration of the value 9X(p,, f) in the Definition 3.17 for K = 3. The shaded area
corresponds to the value —8K(p,, f).

where V,(f ,, x4, K) is defined as

farxur Zpa(Zfa) x _fu

Proof. From Lemma 3.4 we know that Vi(f!,..., f,x') is nonnegative for all i =
1,...,K. Summing over i proves the first claim. The second claim follows by changing
the summation order. O

Definition 3.17
For a feasible flow f € Fk, we define

ﬂK (Pa, f /Pu dz—Zpa Zfa fa

Remark 3.18. For nondecreasing price functions, the value 9X(p,, f ,) is nonpositive
for any feasible flow f. The value captures the difference between the exact integral
over f, with respect to p,(-) and the right-hand Riemann sum, which is greater than
or equal to the integral provided nondecreasing price functions are considered. See
Figure 3.8 for a graphical depiction of this value.

In the following, we reduce the entire analysis to considering the cost on a single
arc. Then, by taking the supremum over all arcs, the results carry over to the general
case. We define for every a € A, nonnegative vectors f,,x, € RX, and nonnegative
real number A > 0 the following values:

i KA) e sup | Palfa) = Apa(xa)) o+ O (pa, £)
(pu,K, )\) = fﬂ,xu}’;o [ Pa(fu)fu ] 7

0(pa) :=sup |:pﬂ(fu)fa (/Ofﬂ pa(z)d2> 1] ) (3.14)

faz=0

(3.13)
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We assume 0/0 = 0 by convention. For a given class C of nondecreasing price func-
tions, we further define

w(C;K,A) :==supw(ps; K,A),  6(C) := sup d(pa)-
pa€C pa€C

Note that a similar value B(C) without the term 9X(p,, f,) and with A = 1 was first
defined in Correa, Schulz, and Stier-Moses [24] and also, similarly, by Roughgarden in
[83] with the relation «(C) = (1 — w(C;K,A))~!. For a detailed discussion about the
differences between these similar approaches, we refer to Section 4.3.5 in Chapter 4 .

We define the following feasible set for the parameter A.

Definition 3.19 (Feasible Scaling Set)
The feasible scaling set for A is defined as

A:={leR"|(1-6(C)w(C;K,A)) >0}.
Equipped with these rather technical definitions, we present our main result.

Theorem 3.20. Let f € Fk be a flow generated by SEQ. Then, the competitive ratio of the
online algorithm SEQ is at most

inf (/\ 5(C) (1-6(C) w(C; K,A))*l)

for the ONLINEMCRP.

Proof. Let x € Fk be any feasible flow for ONLINEMCRP. Then, the following inequal-
ities hold:

C(f)= C(f) + Z[/\ Pa(Xa) Xa — A pa(xq) Xa]

acA
< C(f) + ZA[A pa(xa) Xa — Apa(xa) Xa] + V(f,x, K) (3.15)
< ZA[A Pa(Xa) Xa + (Pa(fu) - )‘Pa(xa)) Xg + ﬂg(iga/fu)] (3.16)
< Z}q[)‘ Pa(xa) Xa +w(C; K, A) pa(fa) fal,

< AS(C)C(x) 4 8(C) w(C; K, A) C(f),

where inequality (3.15) follows from Lemma 3.16. Inequality (3.16) follows since the
considered price functions are nondecreasing. The last two inequalities follow from
the definition of w(C; K, A) and 6(C), respectively. O

Whenever A = @, the above approach does not provide a bound on the competitive
ratio of SEQ.
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In the following, we consider the class C; of polynomials with nonnegative coeffi-
cients and degree at most d € N:

:{adxd—i—---—i—alx—i—ao :a;>0,s=0,...,d}.

Note that polynomials in C; are nonnegative for nonnegative arguments, nondecreas-
ing, and convex. We first derive a bound on the value §(C;), depending on d.

Lemma 3.21. If the price functions of the ONLINEMCRP are in Cy, the value 6(Cy) is at most
d+1

Proof. We start with the definition of the value §(p,) for polynomials in C,.

d

— sup Zaz fa z+1 Z fa 1+1 ]
f20 iz i + 1
d _ d
S sup [( Zai(fa)l+1 ( l+1 }
fa20 =0 i=0
SR
d+1/ ’
where the second inequality follows since 4; > 0 and f, > 0. O

Lemma 3.22. If the price functions of the ONLINEMCRP are in Cj and A > 1, then, the value
w(Cy; K, A) is at most max j — A pttl,
<p

Proof. By Remark 3.18, we have

. B, (Pa(fa) = Apa(xa)) X0 + 85 (pa, f,)
Wpa K A) = f,,,x};o pa(fa) fa

(Pa(fa) — A pa (xa)) Xa
= T ) fe

(3.17)

Defining
- {;Z, for f, >0

0, else,

we have to solve

(Pa(fa) = Apa(p fa)) 1 fa
max
O<p Pa(fa) fa
to bound w(p,; K, A) from above. Without loss of generality, we can reduce the analysis
to monomial price functions p,(x) = a;x/ of degree j < d. The reason is that we can
subdivide each arc a in d arcs aj, 0 < j < d with monomial price functions p;(x) = a; x/
for every arc, see Figure 3.9 for a graphical illustration. Consider now the monomial
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a0+u12+a222

H—O @—O—O—@

Figure 3.9: Reduction of polynomials to monomials for the proof in Lemma 3.22. By introduc-
ing the two nodes v and w, the arc (s, t) is partitioned into three separate arcs with
monomial price functions.

price function p,(x) = a; xl of degree j. To bound the value w(p,; K,A) from above,
we have to solve:
] Aa: ]
max (afa = Ao, ﬁlfa)) #ha _ =maxp — Ap/ Tl (3.18)
0<pu a]- fﬂ]i 0<u

The condition A > 1 implies that # < 1 for an optimal solution in (3.18). Thus, it is
easy to see that for lower degrees j < d, the optimal value becomes smaller. O

For polynomials in C; and a proper choice of A, we can prove a bound on the value
w (Cd ; K , )L) .
Proposition 3.23. For price functions in Cqand A := (d+1)@=1 > 1, the value w(Cy; K, 1)
is at most ﬁ.
Proof. We start with equation (3.18) given in the proof from Proposition 3.22 and using
the highest degree d.

w(Ci; K, A) < maxp — A = maxp — (d + 1)@ p4+1,
0<u 0<p

The unique solution is given by u* = d%—l' Evaluating the objective leads to:

1 d
(d-1) d+1 _
A+ (5T (d+1)%

This proves the claim. O

w(paKid) € 717 = (

With the above prerequisites we can prove a constant factor bound on the compet-
itive ratio that depends on the degree d of the considered polynomials.

Theorem 3.24. If the price functions of the ONLINEMCRP are in Cy, then, the online algo-
rithm SEQ is (d + 1)4F1 -competitive.

Proof. Let the flow f be produced by the online algorithm SEQ and let x be an arbitrary
feasible flow for the ONLINEMCRP. We define A := (d + 1)1 and apply Proposi-
tion 3.23, which yields w(Cy; K, A) < @ e +1) In order to apply Theorem 3.20, we have

to verify that A € A. What remains to be shown is that

(d+1)d

1= as1e

>0
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holds, where the value §(C;) is replaced by d + 1. This inequality is equivalent to

1
—— >0,
i+r1"

which is trivially true. Then, applying Theorem 3.20 yields
(d+1)"1 (d+1)
(1= (d+1) i)

Taking x as the optimal offline solution proves the claim. O

C(f) < C(x) = (d + 1) C(x).

The above theorem incorporates Theorem 3.9 as a special case. Note that we also
get a bound of 4 for degree 1 polynomials. In Theorem 3.9, however, we incorporated
the value 9X(p,, f,) in the analysis giving slightly better bounds that depend on the
number of commodities.

3.3.3 Lower Bounds for Polynomial Price Functions

In this section, we derive lower bounds for price functions in C;. Consider the network
presented in Figure 3.5 with the following price functions: p, ¢ (z) = 0, p(4,)(z) =0,
Psit)(2) = i“,i=1,...,k and Pisp(z) = z%,d € N. We consecutively release demands
of size 1 froms; to t;, fori = 1,..., k. Due to the choice of the affine terms i?, SEQ routes
every demand over the arc from s to t. The cost for these k demands is:

Zk;i((i—1)+1)d“— U ooqyr = L gan
1 d+1 iri

—~

Then, we release the
the following cost:

k 4+ 1)-th commodity with demand x from s to ¢, which generates

1 dy1 1 d+1
s L M o [

Thus, the total cost for SEQ is given by:

k+x

1
SeQ(0) = / s (2)dz = m(k—&— x)dH.
0

The optimal offline algorithm OpPT routes the first k demands along the direct arcs from
s; to t; incurring cost of:

k

y il

i=1
The last demand is routed from s to t with cost (d%rl)xd“. The total cost for Opt is
given by:

1
- d+1
OPT(U)—E i+ 5 1x*.

k
i=1



36 Chapter 3. Online Routing Problems

In order to evalute the ratio of the cost of SEQ and Ort, respectively, we need the
following lemma.

Lemma 3.25. The sum of the d-th power of numbers from 1 to k is a polynomial in k given
by:

k a+1
) 1 d+1 ;
E:d }: d+1—

i=1 =0\ ]
where B; are the Bernoulli numbers.

A proof for this lemma can be found in Graham, Knuth, and Patashnik [47, Ch. 7].

Theorem 3.26. In case of price functions in Cy, the online algorithm SEQ for ONLINEMCRP
has a competitive ratio greater than or equal to 2°.

Proof. We have to show that the competitive ratio fulfills:

SEQ(0)
Ort(0) >2"

We follow the construction of the above discussion,

a+1
SEQ(0) o
Or1(0) ~ k—oo

(k+x)

. :
(d+1) ¥ i+ xdt1
i=1

We set x = k which yields:

d+1
SEQ(0) o y; (26)
OPT(0) ~ k—oo @+1) iid—kkd“
i=1
d+1
2k
— khm ( ) — zd’

0 d+1 )
d+I\p 1.d+1—
2jcd+1 + jgl ( ; )B]k +1—j

where the equality follows from Lemma 3.25 and the fact that the highest degree
coefficient is By = 1.
O

3.4 Single Commodity Networks

Restricting the considered networks to only contain a single source and a single desti-
nation, i.e.,, sy = --- = s and t; = - - - = t;, we can show that SEQ returns an optimal
solution. To get insight into the techniques required to prove this result, we start with
the simpler case of a network consisting of two nodes connected by parallel arcs.
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3.4.1 Parallel Arcs

We now consider the parallel arc case, i.e., D consists of two nodes and parallel arcs
only. Recall from Lemma 3.4 and 3.5 that a flow x solves the offline problem (3.6)
and f is generated by SEQ if and only if for all 2,4 € A and k € [K] follows

K
o Y xk>0=pu(
k=1

xle

. K .
x) < pa( X x3)
i=1

1

o >0 (LA < pal T ).

1

1

Lemma 3.27. Given a sequence 0 =1,...,K and let f be the flow generated by SEQ. Define
Afi={acA: ff>0}

for k € [K]. Then,
k+1 k+1

pu(zf;) < pﬁ(Zfé)/
i—1 i—1
forallae Af,ae A andk=1,...,K—1.

Proof. Leta € A} . First assume thata € A/" ;. Then by the optimality conditions from

above for (fl, . ,ka) the claim follows.

Now assume a ¢ A;’H. Then we have for all 4 € A:

k+1

pdgﬁ%wdgﬁ)

The first inequality follows from the optimality condition for the flows (f1,..., f), and
the second comes from the assumption that the price functions are nondecreasing. [

Proposition 3.28. Given a sequence of commodities and let f be the flow generated by SEQ
for this sequence. Then, C(f) < C(x) for any feasible x, i.e., f is also an offline optimum.

Proof. For the last commodity K we have the following optimality condition:

K

pa( Y fi) < pa(k;f};), (3.19)

I~
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foralla € A{ and 4 € A. Using Lemma 3.27 for k = K — 1 we obtain:

K

b (3 £) < :Zlfé)/

i=1

forall a € A} ; and @ € A. Inequality (3.19) and applying Lemma 3.27 iteratively
K —1 times yields the optimality conditions (3.5) for the offline optimum. O

3.4.2 Arbitrary Digraph

We know allow for an arbitrary digraph between a single source node s and a single
destination node ¢t. For this more general setting, we show that SEQ computes an
optimal solution.

Theorem 3.29. Consider an instance of the ONLINEMCRP, where all commodities share the
same source s and destination t. Then, SEQ computes an optimal routing.

Proof. The proof uses induction on the number of commodities K. For the case K =1,
the claim follows since by definition SEQ routes one commodity with minimum cost.
Therefore, assume that the claim holds for any sequence containing K — 1 commodi-
ties.

For the sake of contradiction, further assume that the flow f that is generated by
SEQ for a given sequence with K commodities is not offline optimal. Hence, this flow
does not satisfy the conditions of Lemma 3.5. Therefore, there exist paths P,Q € P,
where P is flow carrying, with

Yora( Y fa) > Y pa( Y f)- (3.20)

K K
aeP =1 aeQ =1
By the induction hypothesis the routing computed by SkqQ for the first K — 1 com-
modities is optimal. Therefore, Lemma 3.5 holds. Inequality (3.20) is only valid if
KX > 0. To see this, assume f5 = 0. Then, it follows that P is flow carrying with re-
spect to the first K — 1 commodities. Invoking the optimality conditions in Lemma 3.5
for the first K — 1 commodities (induction hypothesis) leads to:

K

NANWOESWAOWAES WASWAED WA WL

acP i=1 acP i acQ i=1 acQ i=1

where the last inequality follows because the price functions p,(-) are nondecreasing.
Since this contradicts (3.20), we have fX > 0. In particular, fX > 0 for all a € P. For

small enough ¢ > 0, we define the nonnegative flow x := (f',..., f<1,xK) with

fi —e a€P\Q
xki=fKie acQ\P
fK otherwise.
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By construction this flow is feasible.
We obtain for the difference of costs:

fize x4 , fi xa 4
cw-ct= L | [ n(L Az [n(L i+
acP\Q L } i=1 5 i=1
fa+e

K-1 Iy K-1
+ Z [/Pa(;f;+z)d2—/]?a(§f£+z)dz]

acQ\P

fK fK+£

__ /pa Zfa+z Ydz+ Y /Pu Zfﬁz

acP\Q R e acQ\P K
K K
:/<— Y ra(Yfatz—e)+ ) pa(2f5+z))dz. (3.21)

We now define

- ) Pa(ZfaJrz—s + ) pa(qu+Z

aeP\Q i=1 acQ\P i=1

By (3.20) we have g(0,0) < 0. Since p,(+) is continuous, g is continuous, too. Hence,
g(z,€) <0 for all zand § with 0 < z,& < 4, if ¢ is small enough. Therefore, the right
hand side of (3.21) is strictly smaller than 0. It follows that C(x) < C(f). This is a
contradiction since x and f only differ with respect to the last commodity K and SeQ
solves problem (3.3). Hence, SEQ computes an offline optimal solution. O

3.5 Unsplittable Routings

In this section we study the variant of the ONLINEMCRP with unsplittable routings,
i.e., the demand of each commodity has to be routed on a single path. Such a restric-
tion often occurs in practice, for instance in single path routing problems in telecom-
munication networks. It is possible to formulate a mixed integer convex program for
this setting. In contrast to the splittable case, however, the offline problem is NP-hard.

Proposition 3.30. The offline problem for the ONLINEMCRP with unsplittable routings is
NP-hard, even when the price functions are linear.

Proof. Consider an instance of the minimum sum of squares problem, which is known
to be NP-complete in the strong sense (see Garey and Johnson [43]). Here, are given
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Figure 3.10: Construction for the proof of Proposition 3.30.

nonnegative integers dy,...,dx and positive integers N < K and J. The question is
whether there exists a partition of [K] into N sets Ay, ..., Ay such that

y(ra)<r

i=1 “keA;

For the reduction to the offline problem, we construct a network D with node
set {s1,...,5k,u1,...,un,t} and the following arcs: For each k € [K] and i € [N] we
have an arc (sk, u;) with price function 0. For each i € [N] we add an arc a = (u;,t)
with price function p,(z) = 2z; see Figure 3.10. Furthermore, for k € [K] there are
demands d; between s; and ¢.

We claim that there exists an unsplittable solution to the offline problem of value at
most | if and only if the answer to the minimum sum of squares problem is positive.
To see this, first assume that A;,..., Ay is the wanted partition. Then if k € A;, we
route commodity k along u; to t. Using (3.10), we obtain the following costs:

N 1 N N 2
2y Y (Ld+yd)di=Y Y Ydd=Y (¥ )"
i—1ked; jeA; i=1KEA; jeA; i=1 “keA;

j<k

This proves the forward direction of the claim. Conversely, assume that there exists
an unsplittable flow of value |. Fori = 1,...,N, let A; be the set of indices kK whose
corresponding demands are routed over the arc (u;, t). Again the cost is given as above,
which shows that there exits a solution to the minimum sum of squares problem. [J

Remark 3.31. The unsplittable variant of (3.3) can be computed in polynomial time
since it amounts to solving a shortest path problem.

To see this, consider the set of arcs within the path system P, of commodity k.
For this set, we evaluate the arc cost CK(dy; fL,..., ff=1) with respect to the demand
di. Defining these values as routing weights, the solution of the unspittable variant
of (3.3) amounts to a shortest path problem with respect to the routing weights.
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Remark 3.32. When the price functions are constant, both the unsplittable variants
of (3.3) and (3.6) can be written as (integer) min-cost flow problems. Hence, they can
be solved in polynomial time, see e.g. Schrijver [84, Ch. 12].

The following two results show that the additional requirement of unsplittable
routings does not improve competitiveness properties of the ONLINEMCRP. The first
is the unsplittable version of Proposition 3.8.

Proposition 3.33. In general there exists no competitive deterministic online algorithm for
the unsplittable variant of the ONLINEMCRP.

Proof. Consider again the network shown in Figure 3.3, where each arc a4 has the price
function p,(z) = m-z"~! for some m > 2. Let ALG be an arbitrary deterministic online
algorithm. We first reveal a commodity with demand d; = 1, source s; = 1, and target
t1 = 4. Without loss of generality, we can assume that ALG uses path P; = (1,2,4) to
route this demand. We then release commodity 2 with demand d, = 1, source s, =1,
and target t, = 2. The algorithm ALG has to route this commodity on the single
path P, = (1,2). Hence, for this sequence o, ALG yields the cost

1
ALc(0) :2-1m+/ ml4+2z)"tdz=2+1+1)"-1" =1+2"
0

The optimal cost is Opr(0) = 3, which is achieved by routing commodity 1 over
path P; = (1,3,4) and commodity 2 along path P,. Therefore, for m going to infinity
it follows that ALG is not competitive. O

We can also improve the lower bound of Proposition 3.11 from 3 to 2.

Proposition 3.34. If we consider only linear price functions in Cy, no deterministic online
algorithm has a competitive ratio less than 2 for the unsplittable variant of the ONLINEMCRP.

Proof. Consider the network shown in Figure 3.3, where each link 4 is equipped with
the same price function p,(z) = 2z. Let ALG be an arbitrary deterministic online
algorithm. We first reveal commodity 1 with demand d; = 1, source s; = 1, and
target t; = 4. Without loss of generality this commodity is routed over path P; =
(1,2,4). Then we release one commodity from node 1 to 2 and one commodity from
node 2 to 4. Both have a demand of 1. Since for each of the last two commodities there
exists only a single path, the assignment by ALG for this sequence ¢ leads to a cost of

ALG(o) =2-2-(3-1)-1+2-(1+3-1)-1+2-(1+3-1)-1=8

An optimal routing is achieved by routing commodity 1 along path P, = (1,3,4) and
commodity 2 and 3 over their single paths. Since the optimal cost for ¢ is Ort(0) = 4,
the competitive ratio of ALG is at least 2. O
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Figure 3.11: Very High Performance Backbone Network Service (vBNS) network topology. Ev-
ery node represents and Internet service provider.

3.6 Computational Study

In the previous sections, we introduced the framework ONLINEMCRP in order to an-
alyze the efficiency of online multicommodity routing strategies for networks with
nondecreasing price functions. In particular, we studied the greedy online algorithm
SEQ that routes a commodity with minimum cost. The framework is based on the
assumption that every demand can be split into infinitesimal small pieces that can be
routed consecutively and each piece prompts an update of arc prices. In other words,
the bundle size can be arbitrarily small. The derived analytical results are based on
competitive analysis coming from the classical toolbox in the online optimization field.
It is inherent to the concept of competitive analysis that the competitive ratio of an on-
line algorithm holds for every instance. Worst-case instances, however, maybe very
rare or even not possible to construct in practice. To assess the efficiency of the rout-
ing strategies in practical environments, we present a computational study for more
realistic settings.

In particular, we present an empirical case study under the following assumptions:
(i) we consider the Very High Performance Backbone Network Service (vBNS) network
topology that connects all major cities and universities in the US, see Figure 3.11; (ii)
network arcs are equipped with finite capacities; (iii) traffic demands are generated
stochastically over time; (iv) demands expire over time; (v) each demand has a discrete
bundle size and is routed along a single path. In the reminder of this section, we
empirically quantify the efficiency loss of a greedy online routing algorithm modeling
the iREX protocol.
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3.6.1 Online Routing with Expiration

As in the previous sections, we consider a set [K] := {1,...,K} of source-destination
pairs that represent the inter-domain reservation requests (demands). For each k € [K],
a demand of d; must be routed from the source s, to the destination t;,. Without loss
of generality, we assume that all demands have the same normalized bundle size.
A demand value that is larger than this bundle size can be represented by several
demands of bundle size. We introduce a starting time 7, that specifies the release
time of commodity k. Furthermore, every demand k has a duration time E;. Without
loss of generality, we assume the time points are ordered 71 < .. < 1x. We define
[K(7)] C [K] to be the subset of commodities that are active just after time 7. Formally,
the set is defined as [K(7)] := {i € [K]| T € (7, T; + E;]} . We further define [K(7)] :=
{i € [K]|T € [5, T + Ei]} to be the set of commodities that are active at time 7. The
resource arcs a € A of the network are equipped with finite resource capacities ¢ =
(caya € A).

We focus in this section on the greedy online algorithm SeQ with a discrete bundle
size as discussed in Remark 3.1. This algorithm models the iREX protocol as specified
by Yahaya and Suda in [87, 88]. According to this protocol, every commodity k € [K]
is routed along the cheapest feasible path. This is equivalent to solving the following
linear min cost flow problem:

(L) min Yop( X f)A

acA " ie[K(x)
st Y. b Y bi=n(o), VoeVv (3.22)
acdt(v) acd—(v)
f¥ = di b Vae A
Y, fi<c vk e {0,1}, VacA,
i€[K(7)]

where 67 (v) and 6~ (v) are the arcs leaving and entering v, respectively; furthermore,
7% (v) = 1if v = s, Y(v) = —1if v = t;, and Y, (v) = 0 otherwise.
The value ¥ ic k(g fi captures the aggregated demand that is active at time 7;. The

terms p, ( Yic[K(%)] f;) are constant, hence Ly is a linear program. A solution is simply
the cheapest feasible path for commodity k.

3.6.2 The Offline Optimum

In Section 3.2.2, we defined the optimal offline solution as the flow that minimizes
total routing cost for a given sequence of commodities. Beside considering monetary
cost, network congestion is also an important metric as suggested by Yahaya and
Suda [87, 88]. They presented simulations with nondecreasing price functions and
showed that the iREX protocol performs with less network congestion when compared
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to the current existing methods for deploying end-to-end inter-domain traffic with QoS
requirements.

Our goal is to analyze the efficiency of this algorithm compared to some global
optimum. Since the total traffic load varies over time, we evaluate the efficiency of the
iREX protocol at different time points 7. Our measure of efficiency is again based on
competitive analysis coming from online optimization. We will present two variants
of an offline optimum. In the first variant, the offline optimum corresponds to a
minimum cost flow, if the demands are nonexpiring and the price functions are used
to model congestion on the network arcs. In this regard, all analyical results derived
in the previous sections carry over to the congestion metric under the above described
conditions. In the second variant, we focus on the most congested arc in the network,
see Fortz and Thorup [37] for models and algorithms for minimizing congestion in
telecommunication networks.

Congestion Functions

We evaluate the iREX protocol with respect to network congestion. One way to define
a minimum congestion network is to assign a nondecreasing congestion function /, to
each arca € A. These functions are typically nonlinear, positive, and strictly increasing
with flow, see Patriksson [72]. In practical applications, the most frequently used func-
tions are polynomials, whose degrees and coefficients are determined from real-world
data through statistical evaluation methods, see Patrikkson [72] and Branston [17]. The
total congestion cost for a flow f is defined as

O(f) = Z Ca(fa) fa- (3.23)

acA

The idea is that it will be cheap to send traffic over an underutilized arc, but as the
load on the arc increases the cost for this arc will grow super linearly, penalizing high
congestion. Hence, minimizing convex load dependent cost functions are well suited
to balance the load in a network, see also Fortz and Thorup [37].

2The current method for deploying end-to-end inter-domain traffic with QoS requirements is the
Service Level Agreement (SLA) method. A detailed description of the SLA method can be found in the
Frame Relay Forum [41] and in Goderis et al [85]. The SLA method is for resource consumer domains to
negotiate with a neighboring resource provider domain and create a business level document called the
Service Level Agreement (SLA)[41][85]. The SLA document defines the expectations and responsibilities
of both the resource consumer and the resource provider domains. This includes the specifications of
the QoS service negotiated for in the form of a technical document called the Service Level Specification
(SLS)[46]. When an agreement is reached at the business level, the service specifications defined by the
SLS are then installed as policy by the network administrator of the resource provider domain. There are
two major problems with the SLA method. First, consumer domains cannot choose transit inter-domain
resource provider domains beyond the first inter-domain hop. This constitutes a lack of control and can
negatively impact the interest of a resource consumer. Secondly, the manual SLA process is very slow
(in the order of days). Thus, it is impossible to take advantage of some knowledge of the network state,
since by the time the choice is deployed, the network state would have changed.
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A flow that minimizes congestion in a network at time 7 solves the following
optimization problem:

(P1) min D(f)

s.t. Y. ffi— Y ff=q(k) VoeV, ke [K(1)] (3.24)
aest(v) acdé=(v)
fa < cq, F>0 Vae A, ke [K(1)],

where 7(v) is defined as in (3.1).

The solution of problem P is the offline optimum, where all demands dy, k € [K(7)]
that are active at time T are taken into account. Since problem P; has a convex objective
and linear constraints, a global optimum exists and can be computed with arbitrary
precision in polynomial time, see Grotschel, Lovasz and Schrijver [48]. If P; has a
strictly convex objective, the global optimum is also unique. Note that P; allows for
splitting demands along different paths. Incorporating binary variables b% € {0,1} for
each resource arc and demand, the condition f¥ = d; b¥ together with replacing (3.24)
with

1, if v = s

Yook Y =< lifo=k

a€dt (v) a€s™(v) 0, otherwise,
accounts for single path routing. We call this type of problem SP;.

Remark 3.35. Problem SP; is N"P-hard.

It is known that single path (unsplittable) multicommodity flow problems with
capacities involving a linear objective are NP-hard as shown by Kleinberg in [58].
So this holds certainly for convex objectives. However, we have the following rather
trivial bounds:

Proposition 3.36. Let f = (f*,k € [K(7)]) be a feasible flow that is produced by the solutions
of problem Ly at time T. Let g and h be optimal flows of Py and SP;, respectively. Then, the
following inequalities are satisfied:

(g) < (h) < O(f). (3.25)
Proof. Each flow f* routes the demand di on a single path. Hence, f is feasible for
problem SPj, i.e.,, ®(h) < O(f). Furthermore, h is a feasible flow for P;. Therefore,
(g) < (). 0

To evaluate the performance of the solutions of L;, we numerically solve P; and
SP;, which provides us with the lower bounds ®(g) < ®(h) < ®(f). Furthermore, we
can empirically quantify the gain of the fractional routing compared to the unsplittable
variant.
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Minimizing the Most Congested Arc

Another way to define a minimum congestion network is to minimize the load on the
most congested arc. This leads to:

(P2) min I'(f)= max Ca(fa) fa
s.t. Y. A=Y A=) VoeV, ke [K(T)]

acét(v) acé=(v)

fa<c  fi >0 Vae A, ke [R(7)),

where v(v) is defined as in (3.1). The drawback of this formulation is that once the
bottleneck of the network (i.e. the most congested arc) is identified, the routing on re-
maining resource arcs does not affect the objective. This might lead to inferior routing
decisions in terms of the metric used in P;. Using the same arguments as before, we
have the following bound:

Proposition 3.37. Let f = (f*,k € [R()]) be a flow produced by the solutions of Ly at time
T. Let g and h be optimal flows of P, and (SP,), respectively. Then, the following inequalities
are satisfied:

[(g) <T(h) <T(f). (3.26)

Here problem SP; is the single path variant of problem P,.

3.6.3 Numerical Results

We simulate the iREX protocol with the iREX simulator under different traffic loads,
see Yahaya and Suda [87, 88] for a description of this simulator. Then, we evaluate
network congestion at different times T and compare the resulting flow of these snap-
shots with four lower bounds for each snapshot. These lower bounds are derived by
solving the four associated offline optimization problems P;, SP; and P, SP.

For completeness, we also conducted simulations with the current Service Level
Agreement (SLA) method for deploying end-to-end inter-domain traffic with QoS re-
quirements.

The Simulator

The iREX simulator implements the iREX protocol and a simplified Border Gateway
Protocol (BGP). The BGP protocol is needed to simulate the SLA method. The sim-
ulator performs packet level simulation for control packets used for iREX and BGP
signaling, and flow level simulation for the deployment of flows with QoS constraints.

We have used iREX simulation sub-configurations based on the type of price func-
tion used by domains to price their resources. The linear sub-configuration prices
resources uniformly according to the affine linear function p(z) = ag + a3z. The
squared sub-configuration prices resources uniformly according to the squared poly-
nomial p,(z) = agz + a1z + axz%. The random sub-configuration randomly assigns
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each domain one of three price functions - linear, squared or cubed (p(z) = apz +
a1z 4 a» 2% + a3z%). All coefficients a; are assumed to be nonnegative. These coeffi-
cients are randomly assigned for the random sub-configuration. The topology chosen
for the simulations is the Very High Performance Backbone Network Service (vBNS)
topology with each point of presence representing an Internet service provider (ISP)
domain. ISP domains are assumed to be connected with OC48 optical fiber arcs to
its neighbors and the length of each arc is calculated to be the actual beeline distance
between the cities. Figure 3.11 illustrates the chosen topology. Inter-domain reserva-
tion requirements within the simulator are viewed as bundles of traffic sized 0.1% of
line speed (about 2.4mb/sec) with a 5 minute average reservation duration (Ey). The
traffic load (total projected bandwidth usage) is determined according to a percentage
of each domain’s actual total egress capacity in the topology from 0% to 100% in 4%
steps. To generate demands, we used a simple Poisson arrival model with parameters
derived from a M /M /oo analysis.

Mathematical Solutions

To efficiently compute solutions for all problems of type P;, SP;, and P, SP, we used
CPLEX 10.0, that is equipped with Linear (LP), Quadratic (QP), Mixed Integer Problem
(MIP), and Quadratic Integer (QIP) solvers. For modeling purposes, we used the
ZIMPL modeling language, see Koch [59]. In total, more than 2600 problems of type
Py, and P, are solved to optimality. We solved the problems SP;, SP, involving integer
constraints within 1% of optimality. Average running time on a Pentium 4 (3GHz) for
the problem type P;, P, was about 1 second and for problem types SP;, SP, about 30
seconds.

Metrics

We present efficiency results using two metrics, the efficiency loss compared to solu-
tions of P; and SP;, and compared to solutions of P, and SP,. These results are from 4
simulation runs for the linear and squared sub configurations, and 16 runs for the ran-
dom sub configurations, with individual runs having approximately 500,000 simulated
reservations. To compare the simulation results with the lower bound of P;, SP;, and
P,, SP,, we evaluated congestion for a simulated flow f by evaluating ®(f) and I'(f)
at time points 7. For all graphs, we define efficiency loss to be the percentage differ-
ence between the network congestion of the iREX protocol simulation results and the
computed optimal solutions as defined by the problems P; and SP; and the problems
P, and SP,. That is, if the iREX protocol produces a flow f, and the optimal flow for
problem P; is denoted by f*, the efficiency loss with respect to P; is given as:

ici — 2()-2(f")
Efficiency loss = o) X 100.

We show the numerical results in reference to the multiple and single path solutions.
Each graph in this section has two curves, which show the efficiency loss with respect
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Figure 3.12: Efficiency of the iREX protocol for linear price functions with respect to offline
optimum of type P; and SP;.
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Figure 3.13: Efficiency of the iREX protocol for squared price functions with respect to offline
optimum of type P; and SP;.

to a solution that uses multiple paths depicted by (Multipath), and the efficiency loss
with respect to a solution that only uses a single path depicted by (Singlepath). The
simple average of the difference between the two curves is also included. While the
single path routing describes the iREX protocol, the multipath solution is an absolute
reference bound for all possible methods (including future multipath iREX protocol
improvements).

Simulation Results

Figures 3.12, 3.13, and 3.14 show the efficiency loss of the iREX protocol compared
to optimal solutions of problems P; and SP; using linear, squared, and random price
functions under varying traffic load. For nominal to high traffic loads of 50% or more,
the worst case (random) efficiency loss to the single path SP; metric is about 16%,
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Figure 3.14: Efficiency of the iREX protocol for random price functions with respect to offline
optimum of type P; and SP;.
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Figure 3.15: Efficiency of the iREX protocol for linear price functions with respect to offline
optimum of type P, and SP;.

and the “best” worst case among the three sub configurations is about 12% (squared).
Price functions determine the speed of a domain’s response to increasing load situa-
tions. The “faster” squared price function allows for faster use of alternative paths,
thereby making the squared sub configuration perform better. To further expose this
behavior, we refer to the squared (Figure 3.13) sub configuration’s smaller distance to
the optimal solution in comparison to the linear (Fig. 3.12) sub configuration’s more
pronounced efficiency loss peaks at traffic loads 36%, 60%, 72% and 88%. The ran-
dom (Figure 3.14) sub configuration, which represents the most realistic scenario, per-
formed worse than the domains in the uniform price function sub configurations. This
may be caused by the diversity of price functions. We note, however, that the worst ef-
ficiency loss difference between the random and the best (squared) sub configuration is
only about 5%. We also observe that the efficiency loss with respect to the single path
metric SP; is consistently and recognizably lower than the efficiency loss with respect
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Figure 3.16: Efficiency of the iREX protocol for squared price functions with respect to offline
optimum of type P, and SP;.
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Figure 3.17: Efficiency of the iREX protocol for random price functions with respect to offline
optimum of type P, and SP,.

to the multi path metric P; with the difference averaging between 4.52% to 4.61%. In
all cases, efficiency loss decreases with increased traffic load. The reason is that as
traffic load increases, the search space for “good” paths decreases. Figures 3.15, 3.16,
and 3.17 show the efficiency loss to P, and SP, for iREX using the linear, squared, and
random price functions respectively under varying traffic load. We again observe that
the efficiency loss with respect to the single path metric SP, is consistently and recog-
nizably lower than the efficiency loss with respect to the multi path metric P, with the
difference between the single SP, and the multi P, path averaging between 8.38% to
8.42%. And again in all cases, efficiency loss decreases with increased traffic load. The
differences in the sub configurations are small due to the nature of the metric.
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Comparison with Current SLA Method

In contrast to the the iREX protocol, the SLA method exhibits an efficiency loss of
150% which increased to a maximum of 340% in the same traffic load range as seen
in Fig. 3.18. The constant increase in efficiency loss is due to the static nature of this
method.
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Fig. 3.18: SLA Efficiency loss to to offline optimum of type P; and SP;
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Fig. 3.19: SLA Efficiency loss to offline optimum of type P> and SP,

The SLA method stays at about 70% efficiency loss across the same traffic load
ranges as seen in Fig. 3.19. This efficiency loss does not increase because usage on the
most congested arc has reached maximum capacity.

3.7 Discussion and Open Problems

We see the framework introduced in this chapter as a first step towards modeling of
real world online multicommodity routing problems. In practice, however, there are
many more additional requirements. For instance, routings have to consider capacities,
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which we ignored in our theoretical approach. With capacities, however, one can
easily construct examples in which any online algorithm does not even produce a
feasible solution. Further requirements in practice include path length restrictions
and survivability issues. Another important point is that in practice routings are only
valid until a given time, after which they disappear. This has effects on the cost for
future routings. We plan to study this problem in the future. It is also an open issue,
whether the competitiveness bound in Theorem 3.9 and Theorem 3.24 are tight, and
whether there exists a competitive online algorithm for the unsplittable variant of the
ONLINEMCRP.

As the last section suggests, for realistic network and traffic instances, the proposed
online algorithms are expected to perform better than the provable bounds.
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Network Games

In the last chapter, we presented an online routing problem in which demands in a
network have to be routed consecutively. In this chapter, we investigate selfish routing
problems or network games. In a network game, players route demand in a network
with minimum cost. Congestion on an arc is modeled by a nondecreasing latency
function. Such functions map the total flow on an arc to the time needed to traverse
this arc. In practical applications, the most frequently used functions are polynomials
whose degrees and coefficients are determined from real-world data through statistical
evaluation methods, see Patrikkson [72] and Branston [17]. The cost on an arc is
defined as latency times flow on that arc. The total cost of routing flow is defined by
the sum over all arc costs.

Rosenthal [78] introduced the atomic unsplittable model, where players have to route
their demands along a single path. He showed that a Nash equilibrium in pure strate-
gies exists when all players control the same amount of flow. Conversely, a Nash equi-
librium need not exist when players control different amounts of flow. Milchtaich [66]
studied the nonatomic model, where a large number of players is assumed, where each
player only controls an infinitesimal part of the entire flow. He showed that this vari-
ant arises as the limit of a sequence of atomic unsplittable network games, where the
number of players goes to infinity. The atomic splittable model, where some players
may control a significant part of the entire demand, was first considered in the trans-
portation literature, see Catoni and Pallatino [19]. Subsequent work in this area can be
found in Orda, Rom, and Shimkin [71] and Roughgarden and Tardos [83]. All these
models can be seen as special cases of general non-cooperative congestion games. In
non-cooperative games, players select strategies that are subsets of resources, and the
utility of a player only depends on the number of players choosing the same or some
overlapping strategy, see Rosenthal [78].

In this chapter, we focus on nonatomic and atomic splittable network games, which
we call nonatomic and atomic network game, respectively. Recall that a system opti-
mum is a multicommodity flow with minimum total cost, while a Nash equilibrium
amounts to a flow, where no player can improve by switching flow to another path
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under the prevailing conditions.

The most prominent application of nonatomic network games is the road traffic
network in which travelers, usually drivers of vehicles, choose routes from their origins
to their destinations. Of particular interest are traffic equilibrium models to describe
and predict the arc flows and travel times resulting from an outcome of selfish route
selection. The behavioral assumption for nonatomic travelers, known as the Wardrop
principle, postulates that the travel times along the used routes for a given source-
destination pair are equal to or less than those on unused routes. It can be shown
that such “user-optimized” flows are actually Nash equilibria for the corresponding
nonatomic network game.

In atomic network games, some players may control a significant part of the en-
tire demand. Aggregating, controlling, and coordinating demand applies to many
real-world examples. For instance, route guidance systems are becoming increasingly
popular for car drivers. They enter their current position determined via the Global Po-
sitioning System (GPS) at the beginning of a trip. Then, a central computer calculates an
“optimal” route for this trip based on digital maps, and based on available knowledge
of traffic congestion on the streets. Since a route guidance operator controls the ag-
gregate traffic of its customers, such an operator is an atomic player in game theoretic
terminology.

Logistic and freight companies use trucks, trains or ships to carry goods from
source to destination points. These vehicles have to traverse parts of a network that is
also shared by other competitors and civil traffic. Some companies may control many
such vehicles which makes these companies control a significant part of the overall
traffic. Furthermore, the market share of a single player may even increase if freight
companies subcontract services from a single logistic company.

We study the competition of atomic players using non-cooperative game theory.
Note that the case of a nonatomic player emerges as a special case in which infinitely
many atomic players are allowed each of them controlling a negligible amount of
flow. In non-cooperative game theory, we rely on the classical equilibrium concept of
Nash [70] to analyze an atomic network game. At Nash equilibrium, no player can
reduce its cost by switching flow to another path provided all other players keep their
routing fixed. In contrast to the nonatomic case, a Nash equilibrium in the atomic case
does not necessarily coincide with a Wardrop equilibrium [86]. A trivial example for
this is to consider a single atomic player. The Nash equilibrium in this case is equal
to the system optimum which does not always hold for a Wardrop equilibrium. The
Pigou instance (see Fig. 5.6 for a graphical illustration) is a prominent example for this
possibility [74].

4.1 Related Work

In the last years, there has been an exciting development in algorithmic game theory,
aiming at quantifying the efficiency loss of Nash equilibria (user equilibria) in non-
cooperative games. The fact that there exists an efficiency loss of the user equilibrium
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compared to a system optimum is well known in the transportation literature, see
Braess [16] and Dubey [28]. A first result for exactly quantifying the price of anarchy
was given by Papadimitriou and Koutsoupias [61] in the context of a load balancing
game in communication networks. Roughgarden and Tardos [83] were able to bound
the price of anarchy in nonatomic network games. In particular, Roughgarden and
Tardos [83] proved for a set of separable affine cost functions a bound of % on the
price of anarchy. A series of several other papers analyzed the price of anarchy for
more general cost functions and model features; see for example Correa, Schulz, and
Stier-Moses [24, 25], Czumaj and Vocking [26], Perakis [73], and Roughgarden [79].
By introducing the so called anarchy value a(L), Roughgarden [80] proved the
first tight bounds on the price of anarchy for nonatomic network games and general
nondecreasing, continuous and s-convex latency functions.! Correa, Schulz, and Stier-
Moses [24] introduced the value B(L£) and only assumed that latency functions have to
be continuous and nondecreasing. They proved that if the anarchy value exists, their

bound implies all bounds of Roughgarden by using the relation a(£) = (1 — (L)) -

Even though the bounds obtained by Roughgarden are shown to be tight for classes
L that contain constants functions, there exist classes £ of homogenous latency func-
tions, i.e. £,(0) = 0, Va € A, where the anarchy value a(£) and the value (L) do
not lead to tight upper bounds. Consider for example monomial latency functions
My = {agx? : ay > 0}, of arbitrary degree d > 1. Using a variational inequality
characterizing a Nash flow, it can be shown that the price of anarchy is exactly one
in this case, that is, the Nash equilibrium is an optimal flow. But neither the anarchy
value a(M,), nor the parameter B(M,) gives the correct upper bound as also men-
tioned by Roughgarden in [80]. In this regard, Dumrauf and Gairing [29] improved
bounds on the price of anarchy for classes M, = {agx® + -+ + a5 x° : aj > 0,j =
s...,d}, where s > 1 is the minimum degree and d > s is the maximum degree. Their
result, however, is tailored to this particular class and does not provide bounds for
more general homogenous latency functions.

Using the parameter (L), Correa, Schulz, and Stier-Moses[24] also showed that
for capacitated networks, all known bounds on the price of anarchy without capacities
are valid, provided a special Nash equilibrium, called the Beckman equilibrium [11],
is under consideration. As described by the same authors, for selfish routing prob-
lems with capacities several Nash equilibria may exist. Furthermore, they presented
instances, where the efficiency loss of a Nash equilibrium is unbounded. Larsson and
Patriksson [63, 72] and Marcotte, Nguyen, and Schoebel [64] proposed to include ex-
plicit arc capacities as an obvious way to improve the quality of traffic assignment
models. Indeed, the widely used link delay formula proposed by the Bureau of Public
Roads includes a capacity parameter [18]. A frequently used way to implicitly incor-
porate capacities is to use the so called volume delay formulas that tend to infinity
as the arc flow approaches the arc capacity, see Branston [17] for a discussion. In a
related application, the introduction of capacities can be used to derive tolls for the
reduction of flows on overloaded links, see Hearn and Ramana [53]. Further work

LA function £(x) is called s-conve, if the function £(x) x is convex.
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on network tolls as a way to improve the performance of the user equilibrium can
be found by Cole, Dodis, and Roughgarden [21, 22]. In particular, they prove that
in case users have different valuations of delay, there exists a set of optimal tolls for
a single commodity network. Fleischer, Jain, and Mahdian [35] extended this result
to general networks. Jahn, Mohring, and Stier-Moses [54] empirically investigate the
performance of user equilibria with latency constraints for users. All models men-
tioned so far, assume static multicommodity flow networks. Only a few results are
known for time dependent multicommodity flow problems, see for instance Kohler
and Skutella [60] and Hall, Langkau, and Skutella [50].

For atomic network games and unsplittable flow, Roughgarden and Tardos exam-
ined the price of anarchy [83]. Awerbuch, Azar, and Epstein [10] and Christodoulou
and Koutsoupias [20] studied the price of anarchy in the unsplittable variant for linear
latency functions. Aland et al. [3] then proved exact bounds on the price of anarchy
for general polynomial latency functions in this case.

The splittable atomic case was first considered by Orda, Rom, and Shimkin in [71].
They prove the existence of Nash equilibria by relying on the classical result about
concave games obtained by Rosen in [77]. Further results about the uniqueness of
Nash equilibria are presented by Milchtaich [67, 68] and Richman and Shimkin in
[76]. Hayrapetyan, Tardos, and, Wexler [52] presented bounds on the price of an-
archy for splittable flows in special network topologies. Fotakis, Kontogiannis, and
Spirakis [40] studied algorithmic issues in the same setting. Roughgarden [82] intro-
duced the value aX (L) and proved that the cost of a flow at Nash equilibrium is upper
bounded by this value for general networks. Correa, Schulz, and Stier-Moses [25]
proposed the value BX(L£) and showed that for classes £ in which aX (L) exists, the
relation aX (L) = (1 — pX(L£))~! is valid. Both groups claimed that the price of anar-
chy in the atomic network game does not exceed that of the corresponding nonatomic
one. This turned out to be wrong as discovered by Cominetti, Correa, and Stier-Moses
in [23]. Based on the work of Catoni and Pallotino [19], they presented an example,
where the price of anarchy in a network game with atomic players is larger than that
of the corresponding nonatomic game. Moreover, they showed that by aggregating
and controlling demand the cost for this aggregate may even increase compared to the
game without aggregation. Such a counter-intuitive phenomenon can also arise from
the perspective of single individuals: players outside the cartel may face lower cost
compared to the situation, in which this player competes with the individuals instead
of the cartel.

Despite the possible increased efficiency loss of equilibria in atomic network games
compared to the nonatomic counterpart, Cominetti, Correa, and Stier-Moses showed
that the price of anarchy can be bounded for special latency functions in this case. In
particular, they proved upper bounds on the price of anarchy for affine linear, squared,
and cubic latency functions of 1.5,2.56, and 7.83, respectively. They obtain these re-
sults by correctly analyzing the value BX(L). For general polynomials, however, their
approach fails to generate upper bounds.
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4.2 Contributions and Chapter Outline

We study network games with nonatomic and atomic players and spittable flow. For
network games with nonatomic players and for a class of functions £, we introduce the
parameter w (L, A) that generalizes the anarchy value a(£) and the value B(£). Using
this value, we reprove the existing tight bounds on the price of anarchy and present a
novel proof for monomial latency functions showing that the price of anarchy is one
in this case.

For network games with atomic players, we introduce the value w(L;K,A) that
generalizes the previous parameters aX(£) and BX(L£) proposed by Roughgarden [82]
and Correa, Schulz, and Stier-Moses [25], and Cominetti , Correa, and Stier-Moses [23],
respectively. For classes £ for which a®(£) and pX(L) exists, the relation w(£;K,1) =
BX(L) is fulfilled. With a proper choice of A, however, we are able to improve all
existing bounds, except for the case of affine linear latency functions. In the case of
affine linear latency functions, we show that indeed A = 1 is the best choice in our
approach.

We start in Section 4.3 by introducing the basic traffic model for nonatomic network
games. In Section 4.3.4, we present a generalized method for bounding the price of
anarchy that extends previous work of Roughgarden [80], and Correa, Schulz, and
Stier-Moses [24].

In Section 4.4 we study network games with atomic players. The response strategy
of an atomic player can be described by an associated optimization problem, where
the objective is to minimize the individual cost. Under mild assumptions on feasible
latency functions this problem is a convex problem. This type of problem can be
solved within arbitrary precision in polynomial time. In Section 4.4.2, we present a
technique to bound the price of anarchy for atomic network games. This technique also
generalizes concepts from Roughgarden [82], Correa, Schulz, and Stier-Moses [25], and
Cominetti , Correa, and Stier-Moses [23]. Equipped with this technique, we present
bounds on the price of anarchy for polynomial latency functions with nonnegative
coefficients that improve all previous results, except for affine linear latency functions.
For an overview of these results see Table 4.3.

4.3 Nonatomic Network Games

The traffic model for selfish network games is similar to the multicommodity flow
problem presented in Chapter 3. The main difference is that commodities are not
released online but are considered at the same time in parallel. Furthermore, the con-
sidered cost function is different. In Chapter 3, the routing cost on an arc a is defined
as the integral over the aggregate flow on a with respect to a nondecreasing price func-
tion p,(-). There, the costs represent monetary costs for routing the commodities. In
this chapter, arcs are equipped with latency functions ¢,(-) and we define the routing
cost on an arc as the latency multiplied with the total flow on that arc.

In the following, we use the same notation as in Chapter 3. An instance of the
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nonatomic network game is given by the triple (D, d, (), where D = (V, A) represents
a directed graph. Furthermore, we are given a set of commodities [K] := {1,...,K},
where each commodity k € [K] has a demand d; > 0 that has to be routed from a
source s; € V to a destination ¢, € V. The latency or delay on an arc a € A is given by
a nondecreasing continuous and separable latency functions ¢, : Ry — R. A latency
function ¢, (-) is called separable if the latency of a feasible flow f on arc a depends on
the total flow f,; on a only.

In many cases, it is convenient to assume that the expression ¢,(z)z is a convex
function, or s-convex, see Bergendorf, Hearn, and Ramana [13]. Whenever s-convexity
is required, we indicate this.

In network games with nonatomic players, it is assumed that the flow f* of com-
modity k is carried by a large number of agents each controlling an infinitesimal frac-
tion of the entire demand dy. Thus, the route choice of a single agent does not affect
the travel time of others. The travel time for the flow f on the path P is given by

gP(f) = E Ea(fu)-

aeP
We define the total travel time as the sum of travel times on arcs of the network:

Definition 4.1 (Total Cost)
The total cost for a flow f is given by:

C(f) = )_ tr(f) fr- (4.1)

PeP

The total cost can also be represented by the sum of arc costs:

Yt fe= L (Ltalf)) o= X (X fo) lalf) = X Lalfo) fi

peP PeP "acP acA " PeP acA
acP
The first equation holds since latency functions are assumed to be separable. The
second and third equation follows from changing the summation order. Hence, we
have
C(f) = Z ga(fa)fa-
acA
We used that the path decomposition of a flow defines a unique decomposition
into arc flows. Conversely, an arc decomposition of a flow may be represented by
several path decompositions.

4.3.1 The Nash Equilibrium for Nonatomic Players

The basic assumption in this thesis is that users (players) act selfishly. This means that
players are solely interested in maximizing their own individual utility rather than
caring about social welfare.



4.3 Nonatomic Network Games 59

To analyze the outcome of such individual behavior, one usually tries to analyze
an equilibrium situation: a stable point from which no player deviates unilaterally. A
flow for the nonatomic network game is a Wardrop equilibrium, if for every source-
destination pair the latency for the used routes are equal to or less than those on
unused routes. This concept was introduced by Wardrop (1952) in his first principle
[86].

Definition 4.2 (Wardrop Equilibrium [86])
A feasible flow f is a Wardrop equilibrium if

Ip(f) <lg(f) forall k € [K] and all paths P,Q € P, such that fp > 0. 4.2)

A similar concept for general non-cooperative games was proposed at the same
time by Nash [70]. A flow (strategy distribution) is at Nash equilibrium if no player
has an incentive to unilaterally deviate from the current strategy. This triggers the
following definition in the context of nonatomic network games, see also Roughgar-
den [81].

Definition 4.3 (Nash Equilibrium [70])
A feasible flow f is at Nash equilibrium, if routing of a small bundle of flow along
another path does not strictly decrease the travel time along this path. Formally, we
define for every k € [K], and every two paths P,Q € Pk, such that fp > 0, and
0 <e < fp,aflow f by

frR—€ ifR=P

fs=3frt+e ifR=Q (4.3)
fr otherwise,

where P € P. Then, a feasible flow f is a Nash equilibrium if Ip(f) < lo(f¢) for all
€ & [O,fp].

It can be shown that a Nash flow f solves the following convex optimization prob-
lem, see for example Roughgarden and Tardos [83].

fa
min Y. [ la(z)dz
/

acA

s.t. Y oA Y =9 YoeV, ke K] (4.4)
acét(v) acé~(v)
fa>0 Vae A, kelK],

where v(v) is defined as in (3.1).
Note that convexity already follows from the assumption that latency functions are
nondecreasing.
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Remark 4.4. The above characterization of a flow at Nash equilibrium implies that
every instance (D,d, () admits a Nash equilibrium. To see this, consider the convex
program (4.4). This problem has a continuous objective and a bounded and closed
feasible region. Hence, the existence of an optimal solution is assured. Furthermore,
the convexity of the objective implies that the optimal value is unique. Thus, every
flow at Nash equilibrium has the same cost.

The following conditions are necessary and sufficient to characterize a Nash equi-
librium for a nonatomic network game.

Lemma 4.5. A feasible flow f is at Nash equilibrium if and only if it satisfies:
Y la(fa) (fa — xa) <0 for all feasible flows x. (4.5)

acA

The proof is based on the first order optimality conditions and the convexity of the
cost function in (4.4), see Dafermos and Sparrow [27].
4.3.2 The System Optimum

A central network manager would try to find a routing assignment f that minimizes
the total travel time for all commodities. Formally, such a flow solves the problem:

min Z Ca(fa)fa

acA

s.t. Y A=Y =90 YoeV, ke[K] (4.6)
acdt(v) a€dé=(v)
fa>0 Vaec A, ke K],

where v(v) is defined as in (3.1).

If the latency functions are s-convex, this problem can be efficiently solved within
arbitrary precision in polynomial time using the ellipsoid method, see Grotschel,
Lovéasz, and Schrijver [48]. For latency functions that are s-convex, the following con-
ditions are necessary and sufficient to characterize a system optimal flow.

Lemma 4.6. Let the latency functions be s-convex. A feasible flow f solves (4.6) if and only if
it satisfies:

) (fa (fa) +2,(fa) fg) (fa — xa) < 0 for all feasible flows x. 4.7)

acA

The proof is based on the first order optimality conditions and the convexity of the
objective function, see Dafermos and Sparrow [27]. Note that the only difference to
the characterization of a flow at Nash equilibrium is the term ¢} (f,) f, arising from
the derivative of /,(f,) fs. In this regard, Dafermos and Sparrow [27] proved that for
latency functions satisfying

ga(fa) + f; (fa) fa - Kga (fa)/
for some nonnegative number «, the cost of a flow at Nash equilibrium is equal to the
system optimal cost.
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Table 4.1: Price of Anarchy for different polynomial latency functions. All coefficients a; are
assumed to be nonnegative.

Allowable cost functions £ Example Price of Anarchy a(L)

affine linear functions a1x + agp 1.334
quadratic functions 2 X! 1.626
cubic functions Yo gaxt 1.896
polynomials of degree 4 t o aixt 2.151
polynomials of degree 4 y4  ax %

4.3.3 Price of Anarchy

A natural question that arises in the context of a Nash equilibrium is: How efficient
is a Nash equilibrium compared to the system optimum? For answering this question
for network games, we need to analyze the worst case ratio between the cost of a
flow at Nash equilibrium and that of a system optimal flow, see Papadimitriou and
Koutsoupias [61] and Roughgarden and Tardos [83].

Definition 4.7 (Price of Anarchy)
Let (D,d,?) be an instance of a nonatomic routing game. The price of anarchy of the
instance (D, d, () is denoted by p(D, d, ¢) and defined as:

p(D,d, t) = g(%- (4.8)

If 7 is the set of all instances, then the price of anarchy of 7 is:

p(Z) = sup p(D,d,¢).
(D,d0)eT

The first tight bounds for general polynomial latency functions were presented by
Roughgarden and Tardos [83] and Roughgarden [80]. For a given class £ of latency
functions that are continuous, nondecreasing, differentiable, and s-convex, Roughgar-
den defined the so called anarchy value a(L) as

a(l,) == sup balfo) fo 4.9)

Xa,fa>0 Ca(xa) Xa + (fa — xa) La(fa)

a(L) := sup a(l,).
l,eL

Equipped with this definition we restate his result.
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Figure 4.1: Illustration of the value w(¢;; A) in equation (4.11) with 1 < A < 7 g )) The gray-

shaded area corresponds to the value w(4;; A).

Theorem 4.8 (Roughgarden [80]). Let L be a set of latency functions with anarchy value
a(L), and (D,d,£) an instance with latency functions in L. Then, the price of anarchy for
this instance is at most a(L).

In Table 4.1 the exact price of anarchy for polynomial latency functions is shown.
Correa, Schulz, and Stier-Moses [24] defined a similar value B(L).

( a(fa a(x ))xa

B(ly) := up l?<_ T (4.10)
B(L) = sup B(La).
l,eL

For classes £ for which a(L) exists, these two values are related by the equation

a(L) = (1- ﬁ(ﬁ))fl. In the next section, we present a detailed discussion about
these values.

4.3.4 Bounding the Price of Anarchy

In the following, we derive upper bounds on the price of anarchy by introducing the
parameter w(L, A) that generalizes the anarchy value a(£) and the value B(L). With
this value, we reprove the existing tight bounds on the price of anarchy and present a
novel proof for monomial latency functions showing that the price of anarchy is one
in this case.

For every arc 4, latency function ¢,, and nonnegative number A, we define the
following nonnegative value:

e e falfa) = Ala(x)
)= fono ta(fa) fa '

We assume by convention 0/0 = 1. For a given class £ of nondecreasing latency

(4.11)
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functions, we further define

w(L;A) == sup w(ly; A).
el

See Figure 4.1 for a graphical illustration of this value. Before we state the main
theorem, we define the following:

Definition 4.9
We define the set of feasible A > 0 as

AL):={AeR"|(1-w(L;7)) >0}

Theorem 4.10. For latency functions in L, the price of anarchy for the nonatomic network
game is at most
inf |A(1—w(LA)7.
Jdnf (20— w(g0) ]
Proof. Let f be a flow in Nash equilibrium, and let x be any feasible flow. Then, we
have

C(f) = Z ga(fa)fa

acA

<Y la(fa) Xa (4.12)

acA

= Z fa(fa)xa +/\£a(xu)xa _/\gﬂ(xﬂ)xﬂ

acA

<AC(x) +w(L;A) C(f). (4.13)

Here, (4.12) follows from the variational inequality stated in Lemma 4.5. The last
inequality (4.13) follows from the definition of w(£; A). Taking x as the optimal offline
solution and since A € A(L), the claim is proven. O

The last step in the proof justifies the rather cryptic definition of A(L). Note that
the infimum in Theorem 4.10 can be infinite and the set A(L) can be empty.

4.3.5 Comparison with Previous Results

Let £ be a class of latency functions. In the following we relate the value w(£;A) to
the anarchy value «(L£) introduced by Roughgarden in [80] and to the parameter (L)
introduced by Correa, Schulz, and Stier-Moses in [24]. In the original setting of Rough-
garden, he assumed for the definition of (L) that the class £ consists of continuous,
nondecreasing, differentiable, and s-convex functions. For this class he showed that
the anarchy value a(L) is tight by presenting matching lower bounds. Correa, Schulz,
and Stier-Moses relaxed the assumptions of differentiability and s-convexity by only
assuming that latency functions have to be continuous and nondecreasing (in fact only
lower semi continuity is required as shown in Correa, Schulz, and Stier-Moses in [24]).
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For classes £ in which (L) exists, they proved that their bound implies all bounds
of Roughgarden by using «(£) = (1 — B(L)) ! Moreover using B(L), they extended
the analysis to capacitated networks.

Our definition of w(L;A) is equal to B(L) if we set A = 1. In this regard, the
parameter w(L; A) is as general as B(L) in that we only require continuity and mono-
tonicity for feasible latency functions. We will show, however, that for a wide class of
latency functions the assumption A = 1 leads to tight bounds, if the class of allowable
latency functions contains the constant functions. A prominent example highlighting
this issue are the class of monomial latency functions My = {¢(x) = a;x? : a; € RT}
of arbitrary degree d € N. Using the variational inequality stated in Lemma 4.5 it can
be shown that the price of anarchy is exactly one, see Dafermos and Sparrow [27]. But
neither the anarchy value a(M;), nor the parameter (M) gives the correct upper
bound as also mentioned by Roughgarden in [80]. With our approach, we obtain the
correct bounds for monomial latency functions as shown in Section 4.3.7.

In the following, we consider the class £; of polynomials with nonnegative coeffi-
cients and degree at most d € N:

‘Cd = {adxd++glx—|—g0 . aszolszo,...,d}.

Furthermore, we analyze latency functions that are represented by monomials with
nonnegative coefficients:

My ={l(x) = agx?iay € R*},d>1.

4.3.6 Affine Linear and Linear Latency Functions

To demonstrate the potential of Theorem 4.10, we reprove the bound on the price
of anarchy for latency functions in £;. Thereby, we explicitly show that A = 1 is
an optimal choice for affine linear latency functions. Note that for A = 1 we have
a(L) = (1-w(£;1)) P and B(L) = w(L;1).

Theorem 4.11 (Roughgarden and Tardos [83]). Let f be a Nash equilibrium of a nonatomic
network game with latency functions in L. Then,

C(f) < 5 C(x),

for any feasible flow x.

Proof. We present a proof along the lines of Theorem 4.10. We assume latency func-
tions of the form ¢,(z) = g,z +t4 ga > 0, v, > 0. By the definition of w(L; ), we
have:

o) — sy Lalfa) = Ala(xa)) 2o
(Ea,/\) B fas/xago Eu(fa)fa
o (= Age) 5ot (= Are) 3
N fg,xf;o Ga (fa)? + 74 fa '
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Figure 4.2: The price of anarchy for linear latency functions as a function of the parameter A.

The term (rﬂ —A ra) x, inside the supremum leads to the condition A > 1, since other-
wise we can set g, = 0 and let x, tend to infinity to make the supremum unbounded.
Hence,

AL)={AeR|A>1}

For A > 1 we can bound the supremum as follows.

—Axg)x
w(fa;A) < (fa(fa);)u < ﬁ-
Applying Theorem 4.10 yields
C(f) < inf —— () = inf 2 c()
A211 — A>14A -1
Finally, an easy calculation computes the infimum
2
mun 4?— 1 %‘ (414
The optimal value is A* = 1, which proves the claim. O

It is easy to show that the main restriction A > 1 in the proof also holds for
general latency functions if constant terms are allowed. The proof indicates that there
is potential in improving upper bounds on the price of anarchy for latency functions
without affine terms, i.e.,, r, = 0. Figure 4.3.6 shows the function ﬁ%zl inside the
infimum in (4.14). To precisely quantify this potential, we reprove a well known result

obtained by Dafermos and Sparrow [27].

Corollary 4.12 (Dafermos and Sparrow [27]). Let f be a Nash equilibrium of a nonatomic
network game with latency functions in M. Then,

C(f) < C(x),
for any feasible flow x.
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Proof. We start with (4.14) in the preceeding proof. Analyzing the feasible set A(L),
we have that (1 — ;) > 0, leading to A > ;. Thus, we have:

4 /\2
M1 b
where we have used the optimal value A* = 1. O

4.3.7 Monomial Latency Functions

Proposition 4.13. Consider latency functions in My and assume A > 0. Then, the value
w(€g; A) is at most
d

(d+1) ((d4+1)A)
Proof. By the definition of w(¢,; A), we have

) — s (falfa) = A La(xa)) %4
o) = fasrxugo Ca(fa) fa '

=

(4.15)

f,forfa>0
0, for f, =0,

we have to solve

Defining p := {

(aafd —Aagpd f))ufa d+1
B = e, 416)

Since this is a strictly convex program, the unique global optimum is given by

= ()

Note that u* > 0 for A > 0. Inserting the value y* into (4.16) yields the claim. O

Theorem 4.14 (Dafermos and Sparrow [27]). Let M, be the class of allowable latency
functions. Then, the price of anarchy for the nonatomic congestion game can be bounded by
one.

Proof. By Proposition 4.13 we can bound w(¢,; A) by
d

w(lgA) < T
(d+1)((d+1)A)7
By taking A* := 71; we have w({;;A) < 7% and hence A* € A(M,). Then, applying
Theorem 4.10 proves the claim. O

Note that most previous proofs for monomial latency functions use the fact that the
variational inequality given in Lemma 4.5 coincides with the conditions of the system
optimum.
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4.4 Atomic Network Games

In atomic network games, players control and coordinate the entire flow of their de-
mand. The routing strategy of an atomic player amounts to solving an optimization
problem, where the objective is to minimize the cost of the demand that the atomic
player controls. In this regard, the structure of such a problem is similar to the sys-
tem optimum presented in Section 4.3. A strategy distribution or flow f is at Nash
equilibrium, if no player has an incentive to unilaterally change his strategy. It is
straight forward to check that the best reply strategy for player k is the optimum of
the following optimization problem, see for example Roughgarden and Tardos [83].

min Y G(fa) fi

acA

s.t. Y. A=Y A=) VoeV, ke[K] (4.17)
acét(v) acé—(v)
fE=0 Vae A, ke K|

where 7, (v) is defined as in (3.1). In order to have a precise characterization of the
solution of the above problem we assume that allowable latency functions are s-convex,
that is, ¢,(z)z is a convex function for all @ € A. Then, the following conditions
are necessary and sufficient to characterize a Nash equilibrium for an atomic routing
game.

Lemma 4.15. A feasible flow f is at Nash equilibrium if and only if for every k € [K] the
following inequality is satisfied:

Y" (Ca(fa) + €, (fa) £3) (f¥ — x5) < 0 for all feasible flows x*. (4.18)

aceA

The proof is based on the first order optimality conditions and the convexity
of ¢,(z) z, see Dafermos and Sparrow [27]. Intuitively, the second term in the deriva-
tive of the cost function ¢} (f,) f¥ accounts for the ability of player k to coordinate the
flow that it controls.

Remark 4.16. The above characterization of a flow at Nash equilibrium implies that
every instance (D, d, /) admits a Nash equilibrium. This follows from a classical result
of Rosen [77] that requires convexity of the objective. By the same argument the cost
of a flow at Nash equilibrium is unique.

4.4.1 Known Upper Bounds on the Price of Anarchy

The price of anarchy in network games with atomic players and splittable flow has
been investigated by Rouhghgarden [82], and Correa, Schulz and Stier-Moses [25]. We
summarize in the following the main known results in this field. Roughgarden [82]
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defined for a given class £ of latency functions the following value (0/0 = 0 by as-
sumption):

Ca(fa) fo
= fx0>0 La(x) Xa + keZ[K] (f5 — x5) (La(fa) + 2,(f) £5)° (4.19)

where the constraint f, > 0 is defined as

f&>0, forallk € [K] with Y ff=f. (4.20)
ke[K]

Roughgarden proved that aX(£) := sup aX(¢,) is an upper bound on the price of
el
anarchy of atomic network games.

Proposition 4.17 (Roughgarden[82]). Consider an atomic network game with K players
and latency functions in L. Let f be a Nash equilibrium and let x* be a social optimum. Then,

C(f) < a®(£)C(x").

Proof. Using the definition of X (L), it is easy to see that

C( Z CKK(ﬁ + Z (fﬂ)+£/(fﬂ)fa)
ke[K]
since the last term is nonnegative due to the variational inequality in (4.18). O

Cominetti, Correa, and Stier-Moses [23] define

(ga(fa) - Ea(xa)) xXa + £y (fa) (kez[:K][f;{ x’; - (fof)z])

K(t,) :== su (4.21)
B"(la) fﬂ/xﬂgo Ca(f) fa
and BX(L) := sup BX(¢,). This value is nonnegative, i.e,, BX(£) > 0 and fulfills the
leL

relation (1 — ﬁK(ﬁ))_l

assumed that (1 — gX(L))

= afK(L) when BX(L) < 1. For the case BX(£) > 1, it is
! = co. This leads to the following result.

Proposition 4.18 (Roughgarden[82]). Consider an atomic network game with K players
and latency functions in L. Let f be a Nash equilibrium and x* be a social optimum. Then,

C(f) < (1-BX(L)) ' clx).

Although Roughgarden [82] and Correa, Schulz, and Stier-Moses claimed inde-
cently that the price of anarchy in the atomic case can not exceed that of the nonatomic
case, it has been shown in Cominetti, Correa, and Stier-Moses [23] that this is not true.
In fact they show an instance with atomic players and affine linear latency functions,
where the price of anarchy is approximately 1.343. Correct upper bounds according to
the results obtained by Cominetti, Correa, and Stier-Moses [23] are shown in Table 4.2.
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Table 4.2: Price of Anarchy for different polynomial latency functions obtained by Cominetti,
Correa, and Stier-Moses [23]. All coefficients a; are assumed to be nonnegative.
The values a® (L) and f®(L) define the values X(L£) and BX(L) for an arbitrary
number of players K € N U {oo}.

Set L of allowable Price of Anarchy a®(L)
cost functions Example pB*(L)  arbitrary # of players
linear functions a1x + agp % 1.5
quadratic functions 2 omixt 061 2.564

cubic functions Yo paixt  0.87 7.826
polynomials of degree 4 $ oaxt 113 00
polynomials of degree 5 > omx 138 00
polynomials of degree d Y4, a;x’ 00

4.4.2 Improved Bounds on the Price of Anarchy

Based on ideas of the analysis of nonatomic network games in the previous section,
we introduce the parameter w(L, K, A) for network games with K atomic players. The
main difference between the values w(£,A) and w(L, K, A) is that the flow decompo-
sition into commodities plays an important role in the latter case. The reason for this
is the ability of atomic players to coordinate the flow that they control.

For every arc a, latency function /,, and nonnegative parameter A, we define the
following nonnegative value:

() = A ax)) -+ 505) (T [F55 = (752
WllarK,A) = sup LU T,

We assume 0/0 = 1 by convention. For a given class £ of latency functions, we further
define

(4.22)

w(L;K,A) :=supw(ly; K, N).
lel

Moreover, we define the following set:

Definition 4.19
The set of feasible A > 0 is defined as

ALK):={A e RT|(1 - w(L;K, 7)) >0}

Equipped with the feasible scaling space A(L, K) of the parameter A we state the
main theorem.
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Theorem 4.20. For latency functions in L, the price of anarchy for the atomic network game
is at most

inf  [A(1—w(L;K A,
ne[Aa—eter T

Proof. Let f be a flow at Nash equilibrium, and let x be any feasible flow.

C(f) < Y lalfa) fa+ Z[ (Ca(fa) + € (fa) £5) (xk = £3) (4.23)
ke K

acA ]

= Y Glfo) 2t ) Gilfa) fa (56— f2)

acA ke[K]

= Y A la(xa) Xa+ (Ga(fa) = Malxa)) xa+ Y €0(fa) fE (k= £5)

acA ke[K]
§AC(x)+w(£;K,/\) C(f) (4.24)

Here, (4.23) follows from the variational inequality stated in Lemma 4.15. The last
inequality (4.24) follows from the definition of w(L;K,A). Taking x as the optimal
offline solution and since A € A(L, K), the claim is proven. O

Our definition of w(L;K,A) originates in a similar definition of the parameter
,BK (L) in Cominetti, Correa, and Stier-Moses [23] and ak (L) in Roughgarden [82].
For a class of latency functions £ in which pX(L) exists, we have the relation X (L) =
w(L£;K, 1) and aX(L) = (1 — w(L;K,1)) 1. However, neither the anarchy value a* (L),
nor the parameter X (L) provide upper bounds for polynomial latency functions with
nonnegative coefficients. Furthermore, the existing bounds derived by analyzing the
value BX(L) are not known to be tight. As we show in the next section, using Theo-
rem 4.20 it is possible to improve all previous known bounds for this class of latency
functions, except for affine linear latencies.

4.4.3 Linear and Affine Linear Latency Functions

We start with reproving a result obtained by Cominetti, Correa, and Stier-Moses [23]
for the class £1. We present a proof for completeness showing that the best bound can
be achieved by setting A = 1. For this value of A we have BX(Ly) = w(Ly;K,1).

Theorem 4.21 (Cominetti, Correa, and Stier-Moses [23]). Let f be a flow at Nash equi-
librium of an atomic network game with latency functions in Lq. Then,

3
C(f) < 5 C),

for any feasible flow x.
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Figure 4.3: The price of anarchy for affine linear price functions as a function of the scaling
parameter A.

Proof. We assume latency functions of the form la(z) = Gaz+714, go >0, 7, > 0. We
start with the definition of w(¥,; K, A):

(éa(fa) - Aga(xu)) Xq +€;(fa) kez[:K](ﬂf Icg _f;(fa]z()
wlaked)= 2%, LU g

Note that we are using the notation f, > 0 according to (4.20). Using

1
ki fh < L (2

because .
(Exl‘; —f? >0,

and

Z <x§)2 < (xa)zr

ke[K]

we get the following bound:

2
(qllfa - /\qg xd) Xa + (rﬂ — /\ra) X + qa (XZ)
w(ly; K,A) < su .
( ) fu/xal;;o Qa (fa)2 + Ya fa

Here, we use f, > 0 indicating that the flow decomposition into commodities becomes
irrelevant. The term (ra —A ra) x, inside the supremum leads to the condition A > 1,
since otherwise we can set g4, = 0 and let x, tend to infinity to make the supremum
unbounded. For A > 1 we can simplify the supremum.

2
(fa— Axa) xq + —(xi) s 1
. <
w(lg; K, A) fus;};o AL = rrﬂlgé( (p—Ap*+ T ),
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where p 1= % if f, > 0 and u = 0 otherwise. The unique optimal solution is given by

u* = 2. Inserting this value into the objective leads to

1
; < . .
Applying Theorem 4.20 yields:
41 -1 3
< 1 = 1 = —
C(f) < min p—— Clx) =min A = C(x) = 5 Clx),
where the optimal value is A* = 1. O

For purely linear latency functions, i.e. latencies in M3, we can further improve

the best known bound of % by varying A below 1. The function ﬂ:; is plotted in

Figure 4.3.

Corollary 4.22. Consider latency functions in My. Then, the price of anarchy is at most

12+v2)(1+Vv2) V2~ 146

Proof. We can start with inequality (4.25). Analyzing the feasible set A(M3, K) we get
ﬁ < 1, which is equivalent to A > % Applying Theorem 4.20 yields:

C(f) < min 15— C) :%(z+ﬁ) (1+v2)V2C(x),

where we set A = %4— % V2.

4.4.4 Lower Bounds

In the following, we establish a lower bound on the price of anarchy for purely lin-
ear latency functions. These bounds demonstrate that in contrast to the nonatomic
counterpart the price of anarchy may be larger than 1 for linear latency functions. The
following instance is taken from Cominetti, Correa, and Stier-Moses [23].

Proposition 4.23. In case of linear latency functions, the price of anarchy for the atomic
network routing game is bounded from below by 1 %

Proof. Consider the network given in Figure 4.4. Note that all latency functions have
¢,(0) = 0. We assume that a nonatomic player (N) wants to route one unit from node sq
to node t;. On the other hand, one atomic player (A) wants to route one unit from s, to
node t,. For both players, there exist possible paths: the direct path (s1,t1) and (s, t2)
or the path along the shared arc (s, t). If x and y denote the amount of flow for player
N, and player A, that is routed along the direct arc (s1,t1), and (s, t2), respectively.
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) ©)
Figure 4.4: Graph construction for the proof of Proposition 4.23.

The response strategies are given by the following two optimization problems. For
player N we have:

mr2s i na-
in > x -|-2(1 ) +(1-x)(1—y). (4.26)

Note that is assumed that player A sends 1 — y units flow along the middle arc. Hence,
Lispy(z+ (1 —y)) = z+ (1 — y). The optimal solution to problem (4.26) is given by

x* = min {max{zgy,O},l}.

Orgyiglay“r (1=x)+(1~y)1-y). (4.27)

o 3—x
v —mm{max{w,()},l}.

Plugging both solutions together and assuming ; < a yields:

For player A we have:

The solution is given by

*=_——  and x*—4a+1
¥ = 4ax3 T 4043

If we denote the entire flow by f, then the cost in equilibrium is given by

3242432442
Cf) = (4a+3)2

Now the optimal flow x* solves:

[min P+ ((1-x)+(1- y))z +ay?. (4.28)
o§§§1
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Here, the optimal solutions are given by

o2 and x* = 24
Y = oarr 2a+1
4a
*\ __
C¥) = 3017
Setting a := 1 yields
%

proving the claim. O

Optimizing over the paramers used in the above example, we are able to raise the
bound to 1.17. This bound has already been established by Cominetti, Correa and
Stier-Moses [23].

4.4.5 General Latency Functions

We start this section with bounding the value w(/;; K, A) for s-convex latency func-
tions. Some of the following results (Lemma 4.24, Lemma 4.25, and Proposition 4.26)
are based on results obtained by Cominetti, Correa and Stier-Moses [23]. In contrast to
their results that are based on analyzing the parameter X(L), we need to keep track
of restrictions on the parameter A. For this reason, we also present complete proofs.

Lemma 4.24. Assume that A > 0 and {,(-) is a continuous nondecreasing latency function.
Then, the following inequality is valid:

, (La(fo) = A la(xa)) Xa + £3(f2) 5
w(ly; K A) < fsjlclgo T, i

Proof. We start with the definition of w(¢,; K, A):

(4.29)

ke[K]

(Calfa) = Malw)) o+ (fa) (T (fxk = £ £5)
wlly; K,A) = su .
( ’ ) xa,fago Bﬂ(fﬂ)fll
First, we bound the last difference in the numerator:

1
k .k k ck k
axa_fu fa < 1(3‘:11)2/

since
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This yields:

k
a

(talF) — Mol +24(5) (& 5F)

ke[K]
wll; K, A) < su
(kA< sup (o) fo

Finally, using ¥ (x¥)? < (x,)? and ¢,(f,) > 0 proves the lemma. O
ke[K]

We define w(l,;00,A) to be the limit of w(¢,; K, A) for K tending to infinity under
the condition that x, and f, are kept constant (and hence w(/,; K, A) stays finite). Then
it follows that w(4,; K, A) < w(¥,;00,A). We focus in the following on the general case
K € NU {oo}.

Lemma 4.25. If A > 1 and {,(f,) fa is a convex function, then the value w({,;00,A) is at
most:

- 60 su (fa(fa)—)\éa(xa)) x“+€;(fa) (xi)2
A W) fo -

Proof. Consider the function h(x,) defined as the numerator of the supremum in (4.29).
To prove that the solution satisfies x, < f,, we show that #’(x,) < 0if x, > f,. Using
that 1 (x,) = la(fa) — Ala(xa) — Axa 0 (xa) + 3 ;(fa), the derivative is negative if and
only if

(4.30)

Calfo) + 5 ) < A (fala) + %o Lo (xa)-
By assumption 4,(f,) f, is convex, hence,
Ca(fa) +La(fa) fa < La(xa) + €4 (xa) Xa
for x, > f,. Since furthermore A > 1, the proof is complete. O

The following characterization of w(/,;K,A) via a continuous and differentiable
function s : [0,1] — [0, 1] is based on ideas of Cominetti, Correa, and Stier-Moses [23].

Proposition 4.26. Let L be a class of continuous, nondecreasing, and convex latency functions
ly(-). Furthermore, assume that A > 1 and €,(x fo) > s(x) €a(fa) for all x € [0,1], where
s :[0,1] — [0,1] is a differentiable function with s(1) = 1. Then,

w(lg;00,A) < max u (1 —As(u)+s'(1) E). (4.31)

0<u<il 4

Proof. We start with the characterization of w(¢,;00,A) given in Lemma 4.24:

(Calfa) = Malxa)) o + L) (3F)
wlheod) = figgo 0a(fa) fa .
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For z > z/, we can bound 7 (z):
0a(2)) = £a(Z2) > 5(2) Le(2) z. (4.32)

Furthermore,

(e ,
() = im U H = lalhd) o L) ) U

e—0 € e—0 € fa

Thus, we conclude

Ca(fo) (1 — 2petad 4 (D)

w(lg;00,A) < sup

0<x,<fa (fﬂ)fa
X, (1— As(Ee) 4+ L%
< sup ( G+ an ),
ngngfa fa

where we used (4.32) for the second inequality. Defining 0 < u := f <1 yields

< — 1) Y.
w(ly;00,M) ax u (1—As(u)+5'(1) 4)
O
Corollary 4.27. If latency functions are in Ly, d > 1, the price of anarchy is at most
-1
inf [/\ (1— maxu(l—/\u +d-= )> ] (4.33)
AEA(Ly,K)NR=1 0<u<1

Proof. All assumptions of Proposition 4.26 are satisfied with s(f) = f?. Therefore,
s'(1) =d and

< — .
w(ly;00,A) Joax u (1—Au?+d— ) (4.34)
Applying Theorem 5.34 yields the claim. O

In Table 4.3, we present results for squared, cubic, and degree four, and five poly-
nomials. Note that all results improve previously known bounds, except for the affine
linear case. The results itself have been obtained by optimizing the expression in (4.33)
over the parameter A € A(Ly, K) NR=1

Theorem 4.28. If latency functions are in Ly, d > 1, then, the price of anarchy is at most
(1 + d)d+1
i)
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Table 4.3: Upper and lower bounds on the price of anarchy for network games with atomic
players. Considered are polynomial latency functions. Coefficients 4; are assumed to
be nonnegative. The bound 1.5 for affine latency functions and the lower bounds for
affine linear and linear latencies are due to Cominetti, Correa and Stier-Moses [23].
The lower bounds for degree larger than 1 are the matching lower bounds for
nonatomic network games. The value w(L; 00, A) is defined in (4.22).

Set L of allowable =~ Example UB LB
latency functions w(L;00,A) A arbitrary # of players
linear functions a1x 0.41 0.85 1.46 1.17 [23]
affine functions a1x + ag % 1 1.5 [23] 1.34 [23]
quadratic functions 2 X! 0.58 1.08 255 1.63 [80]
cubic functions 213:0 a;xt % 1.69 5.06 1.90 [80]
polynomialsd <4 Y} ja;x! Z 38 113 2.15 [80]
polynomials d <5 Y2 ;a;x! z 9.69  29.07 2.39 [80]

Proof. We start the proof by bounding the value w(/,;00,A) from above. Recall from
Equation (4.34) that

w(lg;00,A) < max u (1—/\ud—|—d%).

0<u<1
Setting u = 1 in the last term yields

d

w(lg;00,A) < max u (1 —Aut+ Z)'

T 0<u<i1

This problem is a standard concave program on a compact interval. Hence, it admits
a solution. For d > 1 the objective is strictly concave implying that the solution is
unique. The necessary and sufficient optimality condition for a global optimum that
satisfies u € (0,1) is given by

d
1

Hence, the optimal solution is given by

= min{mes{ (2 5) o) 1)

4vd d
IA (d+1)

1+ —@d+1D)Aut=0.

We assume 1 < A < co which implies 0 < u* =
into the objective leads to

w(la;00,A) < <4,\4(jl__i 1))31 (f(il—:df» '

< 1. Inserting this solution
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We construct a function 1 < A(d) < oo such that for all 4 > 1 the following equation

holds . ,
<4A<3>+<dd+ 1>>d <f éfii‘%) B dj—l

Solving the above equation with respect to A(d) yields

(4 + d>d+1

V) = g

Thus, by Construction we have
((7(6 , 00 /\*(d)) < —
ar 7 — d + ] .

Applying Theorem 5.34 with A := A*(d) and w(#,; 00, A*(d)) < % leads to

c(f) < f_“:’_gl Cx) = (@ + DA (@) Cx) = (1+ D) o).

O

Note that a similar technique can be applied to strengthen the bounds on the price
of anarchy. The idea is to construct a function A(d) such that

_ LA,

02152(1”(1 Ad) u +d4) 3

holds for all 4 > 1. Then, the price of anarchy can be bounded by 3 A(d). The function
A(d) behaves asymptotically like O(exp(Z log(d))).



Chapter 5

Online Network Games

The network games presented in the previous chapter are special cases of congestion
games introduced by Rosenthal [77]. In a congestion game, players select strategies
that are subsets of resources, and the utility of a player only depends on the number
of players choosing the same or some overlapping strategy.

A direct application of network games is the source routing concept in telecom-
munication networks, see Qiu, Yang, Zhang, and Shenker [75] and Friedman [42] for
an engineering perspective and Roughgarden [79] and Altman, Basar, Jimenez, and
Shimkin [5] for a theoretical perspective on this topic. In the source routing model,
sources are responsible for selecting paths to route data to the corresponding sink.
The links in the network advertise their current status (price) that is based on the cur-
rent congestion situation. If the link prices correspond to the expected delay on that
link, minimum cost routing is a natural goal for time critical real-time applications. If
sources select routes based on such selfish interests, the flows converge to a Nash equi-
librium, as observed by Qiu, Yang, Zhang, and Shenker [75]. The main focus of the
research done so far regarding the source routing concept is to quantify the efficiency
loss of a Nash equilibrium compared to the system optimum. Here, one assumption is
crucial: if the traffic matrix changes, all sources may possibly change their routes and
converge to a new equilibrium, see Even-Dar and Mansour [31] for a further discus-
sion about the convergence behavior. This assumption, however, has some important
implications: Each source would have to continuously maintain the current state of
all available routes, which in turn introduces additional traffic overhead by signal-
ing these needed informations. Furthermore, frequent rerouting attempts during data
transmission may not only produce transient load oscillations but may also interfere
with the widely used congestion control protocol Tcp that determines the data rate, as
reported by La, Walrand, and Anantharam in [62]. For these reasons, frequent rerout-
ing attempts in reaction to traffic changes in the network are not necessarily beneficial
and efficient. Time critical applications, such as Internet Telephony or video streaming
may suffer severe performance degradation.

To overcome some of the above stated problems, we investigate in this chapter a
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new model in which sources starting at the same time select their routes only during
a predefined time frame. In this model, we assumes that sources starting within the
same time frame converge to an equilibrium before new sources appear. Then, we in-
vestigate the extreme case in which flows once they are at equilibrium fix their routing
decisions. Thus, continuously gathering information about the current network state
is not necessary after this initial routing game. We can interpret this model as follows.
We introduce a cost for each player quantifying the cost of rerouting after the time
frame. If this rerouting cost is sufficiently large for each player, then, fixing the initial
equilibrium routing is the best response strategy.

To analyze this model we introduce the concept of online network games. In this
concept, we assume a sequence of network games ¢ = 1,...,n that are released con-
secutively in time in an online fashion. By the time of releasing game i, future games
i+1,...,n are not known. We assume that once commodities of a game are routed,
they remain fixed. We analyze two online algorithms, called NSEQNAsH and ASEQ-
NasH in this setting. These algorithms produce a flow consisting of a sequence of
Nash equilibria for the corresponding games with nonatomic and atomic players, re-
spectively. As usual, we analyze the efficiency of an online algorithm in terms of
competitive analysis. The optimal offline solution in our model is derived by minimiz-
ing the total routing cost for all games. The total routing cost is defined as in Chapter 4
by summing over all arc costs. The cost of an arc is defined as the product of latency
and flow on that arc. Note that for deriving the optimal offline solution, the sequence
o is known a priori. It turns out that a combination of the online optimization field
with algorithmic game theory provides a fruitful way to analyze the efficiency of NSk-
oNasH and ASEQNASsH in this framework. The main result in this chapter states that
the inefficiency of the sequence of Nash equilibria can be bounded by a constant factor
for polynomial latency functions with nonnegative coefficients regardless of the player
types. Although the constants in general are large, these results indicate that the above
routing model does not lead to situations that are arbitrary far from the best possible
situation. We are aware that some of our assumptions are quite restrictive. Neverthe-
less, we believe that our model approximates the dynamics of a real system such as the
Internet. In this regard, we interpret our results as a first step towards understanding
the dynamic behavior of network flows beyond the single static equilibrium concept.

The online model in this chapter is closely related to the model in Chapter 3, see
also Harks, Heinz, and Pfetsch [51], where online multicommodity routing problems
are considered. There, however, we studied a greedy online algorithm for a different
convex cost function. Recall that in the ONLINEMCRP the cost for a commodity is in-
dependent of the routing of later commodities even if later commodities use the same
arcs than the former commodity. In online network games, this is not the case. Routing
decisions of commodities in later games may affect the cost of commodities of previous
games if the chosen routes have overlapping arcs. Furthermore, for a given sequence
of games, the online algorithm that produces a flow at Nash equilibrium for every
game is not of greedy type. Consider for instance a sequence ¢ with a single game, or
equivalently, a single commodity in the ONLINEMCRP setting. For the ONLINEMCRP
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it is easy to show that SEQ is optimal. A flow at Nash equilibrium, however, is known
to be inefficient for most instances. Very recent, Engelberg and Naor [30] drew connec-
tions between online optimization and algorithmic game theory. In their framework,
they present different examples in which a player has to choose an online algorithm
in order to minimize its individual competitive ratio. Work on the convergence behav-
ior of flows for the parallel link setting can be found in Even-Dar and Mansour [31]
and Fischer and Vocking [33] and Fischer, Ricke, and Vocking [34]. Further work
on convergence to a Nash equilibrium for a setting in which flows sequentially join
the network can be found in Blum, Even-Dar, and Ligett [14]. None of these works,
however, analyze the efficiency of flows arriving sequentially without adapting to the
common static Nash equilibrium.

5.1 Contributions and Chapter Outline

We introduce the framework Online Network Games (ONLINENG) to analyze online
routing problems. For the online algorithm NSEQNAsH that is characterized by selfish
routing of nonatomic players for a sequence of network games, we obtain the following
results. The online algorithm NSeQNAsH that produces a flow that is at Nash equi-
librium for every game is 2?;1 -competitive for affine linear latency functions, where
n is the number of games within a given sequence. This result contains the bound
on the price of anarchy of 3 for affine linear latency functions of Roughgarden and
Tardos [83] as a special case of our model, where n = 1. We prove a lower bound
of -2 of nonatomic NSEQNAsH showing that for n = 2, the upper bound is tight.
For linear latency functions, we further improve this bound to %. For polynomial
latency functions with nonnegative coefficients, we prove lower and upper bounds on
the competitive ratio of NSEQNAsH that grow both exponentially in the degree of the
considered polynomials. We further show that for parallel arcs, the competitive ratio
is significantly lower. In particular, we show that in this case the competitive ratio of
the NSEQNAsH does not exceed the price of anarchy of a complementary nonatomic

network game in which all games of a given sequence are considered at the same time.

Furthermore, we consider the online algorithm ASEQNAsH that models the selfish
behavior of atomic players. Our main results for this variant are summarized in the fol-

lowing. The online algorithm ASEQNAsH that produces a flow that is at Nash equilib-

. s . N 2 1
rium for every game within a given sequence of games is min{ Kg’:iy)g 1 SICKjSl, 492}-

competitive for affine linear latency functions, where K denotes the total number of
players and 7 is the number of games within a given sequence. For general polyno-
mial latency functions, we prove lower and upper bounds on the competitive ratio of
ASEQNAsH that grow both exponentially in the degree of the considered polynomials.

The chapter is organized as follows. In Section 5.2, we introduce the basic model
of online network games. Then, in Section 5.3, we study the efficiency of NSEQNAsH
for a sequence of network games with nonatomic players. We extend the analysis in
Section 5.4 to online network games with atomic players.
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5.2 Online Network Games

An instance of the Online Network Game (ONLINENG) consists of a directed network
D= (V,A) together with nondecreasing continuous latency functions ¢, : Ry — R
for each arc a € A. Furthermore, a sequence ¢ = 1,...,n of network games are given.
A network game i is characterized by a set of commodities [K;] := {il,...,in;}. For
each commodity ij € [Ki], a flow of rate d;; > 0 must be routed from the origin s;; to
the destination t;;. The routing decision for game i is online, that is, it only depends
on the routings of previous games 1,...,i — 1. Once the commodities of a game have

n
been routed they remain unchanged. Let [K] = U [K;] denote the union of the sets
i=1
[K1], ..., [Ky]. The total number of commodities is given by K = Y"1 | n;.
A routing assignment, or flow, for commodity ij € [K;] is a nonnegative vector

£ € R%. This flow is feasible, if for all v € V

Y - L f =), (5.1)

acdét(v) acé—(v)
where 6 (v) and § (v) are the arcs leaving and entering v, respectively; furthermore,

dl‘]', if v = Sl']',
7ij(0) = { —dij, if v =ty (5.2)
0, otherwise.

Alternatively, one can consider a path flow for a commodity ij € [K;]. Let P;; be the

set of all paths from s;; to t;; in D. A path flow is a nonnegative vector ( fIl,] )pep,- The
corresponding flow on link a2 € A for commodity ij € [K;] is then

Ji= Y f

P>a

We denote by
fo= XA
l]G[KJ
the aggregated flow of game i on link a. The total aggregate flow on link a is given by

n

fa = Zf;

i=1

We define F; with i € [n] to be the set of vectors ( f1,..., f') such that f/ is a feasible
flow for games j =1,...,i. If (f',..., f') € F;, we say that it is feasible for the sequence
of network games 1, .. .,i. The entire flow for the sequence 1, ..., n of games is denoted

by £ = (f',.... f"):
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The current cost of a feasible flow for game i on link a € A is defined by

CLUF Flene s ) =t LAV

j=1

This expression can be obtained as the routing cost on arc a for a feasible flow for game
i, given the flows (f',..., f!) of previous games 1,...,i — 1 and without knowing
about future games j = i+1,...,n. The individual current cost for commodity ij € [K;]
on arc a is given by

CIff . fi) =:£a<i;fZ) H
L

Note that this individual current cost on arc 4 may increase if later commodities are
routed on a. The current cost for game i is given by the sum of arc costs

Cff . f = Y Gt fa o fh).

acA

The total cost on arc a is defined as

Ca(fa) = Ea(fﬂ)fﬂ-

The total cost of all sequentially played games is given by:

ch=La=Luthi=Lu(LA)(Lh) 69

acA aceA acA i=

This cost function reflects the routing cost provided all commodities of the entire
sequence of games have been routed. Thus, the cost of routing commodities of a
sequence of games is not separable with respect to the games. That is, if an online al-
gorithm routes flow for the gamesi+1,...,n along arcs that are used by commodities
of games 1,.. ., 1, the latter commodities may face higher individual cost on these arcs
compared to their current routing costs.

5.2.1 Player Types

Motivated by the source routing model in communication networks, we focus in this
chapter on selfish behavior of players routing the demands d;j, ij € [K]. In the fol-
lowing, we use the word commodity ij interchangeably with player ij to indicate that
this player decides on the routing assignment f”/ for the demand dij. In the nonatomic
routing variant, we assume infinitely many agents carrying the flow of a player, where
each agent controls only an infinitesimal fraction of the flow. This is in contrast to
the atomic routing variant, where it is assumed that each player ij controls and coor-
dinates the entire flow for his demand d;;. For a sequence of games, we investigate
in this chapter the online algorithm NSEQNasH and ASEQNAsH (a formal definition
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K]t (K] N

I ] ] ] ]
r T T T T

1 f1+1 ) b+ ty+ T

Figure 5.1: Illustration of the applicability of the considered online model to the source routing
concept in the Internet. The times f; and f; are the release times of the sets of
commodities [K;j] and [K;] and the values 71, T are the times to converge to the
corresponding Nash equilibrium.

time

follows), which produce a sequence of feasible flows fl, ..., f" € Fu, where each fi is
at Nash equilibrium for the corresponding network game i. We focus on the efficiency
of NSEQNAsH and ASEQNAsH compared to the offline optimum OrT using competi-
tive analysis coming from the online optimization field. Throughout the chapter we
assume that splitting of flow is allowed for every commodity. Figure 5.1 describes the
needed assumptions for modeling the outcome of distributed selfishly behaving users
by such online algorithms. We assume that users arrive in groups [K;] and converge
to a Nash equilibrium within time 7; before new groups arrive. If no player is will-
ing to reroute its flow even if the traffic on used arcs changes, this yields an online
algorithm that we call NSEQNAsH and ASEQNAsH for nonatomic and atomic players,
respectively.

5.2.2 Nash Equilibria for Nonatomic Players

A flow for game i is at Nash equilibrium, if no player has an incentive to unilaterally
change his strategy. We assume that players of game i decide on their strategies with-
out taking future games j = i +1,...,n into account. It is straight-forward to check
that a Nash flow f’ for nonatomic players is the optimum of the following convex
optimization problem, see for example Roughgarden and Tardos [83].

min ) / Ca( Z fi+z)d (5.4)

aeA

s.t. ) fa E f = 7ii(v VoeV,ije K]
acst(v) a€d~(v)
>0 Vac A, ij€ K],

where 7;j(v) is defined as in (5.1). The following conditions are necessary and suffi-
cient to characterize a Nash equilibrium for game i.

Lemma 5.1. A feasible flow f' for the nonatomic game i is at Nash equilibrium if and only if

it satisfies:

PIRA Z 5 (fi — x1) < 0 for all feasible flows x' for game i. (5.5)

acA k=1
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The proof is based on the first order optimality conditions and the convexity of the
objective in (5.4), see Dafermos and Sparrow [27].

Definition 5.2 (NSeqNash for the OnlineNG)

Consider an instance of the ONLINENG with a given sequence ¢ of n network games.
The deterministic online algorithm NSEQNAsH produces a feasible flow denoted by
f=(fY...,f") € Fy, such that each flow f* solves problem (5.4), that is, each f* is
at Nash equilibrium for the corresponding games k € [n].

Note that problem (5.4) is well defined and admits an optimal solution with a
unique objective value. Hence, NSEQNAsH is also well defined by this property. Since,
problem (5.4) may have several different solutions (with the same objective value), the
flow that NSEQNAsH produces is not necessarily unique. As this might contradict
the notion of a deterministic online algorithm, we can advise a selection rule to make
the flow unique. We omit this issue in the following, since our results hold for every
sequence of Nash flows for the games 1, ..., n.

5.2.3 Nash Equilibria for Atomic Players

In network games with atomic players, some players may control a significant part
of the entire demand. In the following, we characterize the strategy of an atomic
player. A flow for game i is at Nash equilibrium when no player ij has an incentive to
unilaterally change his strategy. It is straightforward to see that a best reply strategy
for player ij of game i is to solve the following convex optimization problem.

i

min Z la( 1fé) ;j

acA  j=

s.t. Y - Y fi=v; YoeV, ije[K] (5.6)
aedst(v) aes(v)
f[ﬁj >0 Vae A, ij € [Ki],

where 7;; is defined as in (5.2). The following conditions are necessary and sufficient
to characterize a Nash equilibrium for game i.

Lemma 5.3. A feasible flow f for the game i is at Nash equilibrium if and only if for every
player ij € [K;] the following inequality is satisfied:

Y (t( X M+ ) (== <o, 57)
a€A k=1 k=1
for all feasible flows x'I for game i.

The proof relies on the convexity of ¢,(z)z. See also the proof of Lemma 3.4 in
Chapter 3.



86 Chapter 5. Online Network Games

Definition 5.4 (ASeqNash for the OnlineNG)

Consider an instance of the ONLINENG with a given sequence ¢ of n network games.
The deterministic online algorithm ASEQNAsH produces a feasible flow denoted by
f=(f',...,f") € Fn, such that each flow f7, ij € [Ki], i € [n] solves problem (5.6),
that is, each f is at Nash equilibrium for the corresponding games i € [n].

Since we assume s-convex latency functions, problem (5.6) is well defined and
admits an optimal solution with a unique objective value. Then, the existence of a flow
at Nash equilibrium is guaranteed by the result of Rosen [77]. Hence, the ASEQNAsH
is also well defined by this property.

5.2.4 Total Offline Optimum

Finally, the total offline optimum is characterized by:

min  C(f)
s.t. ) f Z fa = 7ii(v VoeV,ije K, i€ n] (5.8)
acdt(v) acé=(v)
7>0 Vae A, ije[K], i€ n],

where 7;i(v) is defined as in (5.1).
For a given sequence ¢, we denote by Opr(c) the optimal value of this convex
problem.

5.3 Competitive Analysis — The Nonatomic Case

For a solution f produced by an online algorithm ALG for a given sequence of games
o, we denote by ALG(c) = C(f) its cost.

In order to derive competitive results for NSEQNAsH, we use a similar technique
as in Chapter 3. We apply the variational inequality 5.5 several times. For this reason,
we define the following function.

Definition 5.5
For a given sequence of games ¢ with n games and a flow f that is produced by
NSEQNAsH, we define

V(f,x,n):= i%(fl,...,fi,xi),

where x', ..., x" is any feasible flow.
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Lemma 5.6. A feasible flow f for a sequence of games o that is produced by NSEQNAsH
satisfies:

V(f,x,n) >0, forall feasible flows x for c.

Furthermore,

V(f,x,n) = ZV (f, %a 1),

acA

where Vy(f,, x4, 1) is defined as

n

fa/xll/ Zea Zfa x _fa

i=1

Proof. From Lemma 5.1 we know that Vi(f!,..., ), x) is nonnegative for all i =
1,...,n. Summing over i proves the first claim. The second claim follows by changing
the summation order. O

We use a simple technique to derive upper bounds on the competitive ratio for
NSEeQNAsH. The idea is to add the nonnegative function V(f, x,n) given in Lemma 5.6
to the cost of the flow f produced by NSEQNAsH. We define for every a € A and
nonnegative vectors f,, x, € R the following values (we assume by convention 0/0 =
0):

w(lg;n,A) ;= sup (5.9

a)
farxa>0 Cﬂ (fll)

For a given class £ of latency functions and a nonnegative real number A > 0, we
further define

w(L;n,A) :=sup w(ly;n,A).
el

We define the following feasible set for the parameter A.

Definition 5.7 (Feasible Scaling Set)
The feasible scaling set for A is defined as

AL,n):={AeRY(1—-w(L;n,A)) >0},

Theorem 5.8. Consider a sequence o of n games and latency functions in L. Then, the
competitive ratio of NSEQNASsH for the ONLINENGIs at most

. ) -1
\nt [A (1—w(L;n,A) )] .
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Proof. Let f be the flow generated by NSEQNAsH and let x be any feasible flow for a
given sequence of games ¢ = 1,...,n. Then, we obtain:

C(f) < C(f) +AC(x) —AC(x) + V(f,x,n) (5.10)
- Z% [Ca(fa) + A Cal(xa) — A Ca(xa) + Valf, Xa,1)]
<AC(x) +w(L;n,A)C(f). (5.11)

Here, (5.10) follows from the variational inequality stated in Lemma 5.6. The last
inequality (5.11) follows from the definition of w(L;n,A) and since A € A(L,n). Tak-
ing x as the optimal offline solution yields the claim. O

Using the notation:
81 (ba ) = Lal il fo— Y ta( 1o £5) S
i=1 k=1
we can simplify the value w(L;n, A).

Lemma 5.9. The value w(¥,;n,A) is at most

sup {{aUe) = Ma(xa))xa + 85 (b £,)
Xa,f, >0 lq <fa )fu '

(5.12)

Proof. First note that

Calfa) + ValFurxarm) = (L £) + fya( Z £y
< 192(£urfa> + La(fa) Xa,

where the last inequality is valid since latency functions are nondecreasing. Then,
using

Ca(fa) xa — A Ca(xa) = (ﬁa(fa) - Aga(xa))xal
yields the claim. m

Figure 5.2 illustrates the value ¢} (¢,, f,) for n = 3.

5.3.1 Affine Linear Latency Functions

In the following, we bound the value w(L;n,A) for the class £; of polynomials with
nonnegative coefficients and degree at most d € IN:

L= {adxd+---+ﬂ1x+ﬂ0 tas>0,s=0,...,d}.

We start with the class £; but first present some useful prerequisites.
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afa + f3+ £2)

Ca(fa + f2)
la(f2)

0 | x
0 fi fi+fF fa+fE+f3

Figure 5.2: Illustration of the value 97 (¢,, f) for n = 3. The shaded area corresponds to the

value 0% (¢q, f).

Lemma 5.10. For parameters x1,x2 > 0 and any numbers x,y > 0 the following inequality

is valid:

Proof. We use the inequality

0< (le—xzy)z =2 x% — 2K Ko X Y + K3 Y2

Dividing by 2 k1 k2 yields the claim.

Lemma 5.11. For latency functions in Lq the value w(L1;n,1) is at most 22—=

Proof. First, by using equation (3.10), we have that

8 (Lo £2) = 40 b2 — 0 1 Y (£

k=1

Then, we obtain

Ga (fa — Xa) Xa + qa %ff —%% g(ff)z

w(la;n,1) = sup

Xa,f, >0 qﬂfaz +rﬂfll
n
(fa — xa) xa + %faz - % ) (ff)Z
< sup . k=1
Xa,f, >0 fa
-1 2
< sup (fﬂ_xﬂ)x;+;127 a
Xa,fa>0 fa
3n—2
— 4” 7

(5.13)

(5.14)

(5.15)

(5.16)

where (5.14) is valid since 7, > 0. Inequality (5.15) follows from Cauchy-Schwarz
inequality and (5.16) follows from Lemma 5.10, where we set x = f,,y = x5,61 = 1,

and xp, = 2.

O]
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Equipped with the above lemma, we can prove an upper bound on the competitive
ratio of NSEQNAsH for affine linear latency functions.

Corollary 5.12. If the latency functions of the ONLINENG are in L1, the online algorithm

NSEQNASsH is 4«?2 competitive, where n is the number of games.

Proof. We bound w(L1;1,1) by #.-2 using Lemma 5.11. Therefore, choosing A = 1 €
A(L4,n) and applying Theorem 5 3 yields the desired result. O

For n = 1, we obtain the bound of 3 for nonatomic network games involving affine
linear latency functions presented in Theorem 4.11.
Now, we analyze the case of purely linear latency functions, i.e. the class M;.

Lemma 5.13. For latency functions in M, we have

n+2An—-2A

n,A) <
w(Main, A) < 4 An

Proof. The proof proceeds along the line of the proof of the preceeding lemma.

n
(fo—Axa) X+ 2fd =5 L (fi)?
w(lg;n,A) < sup k=1

Xa,f,2>0 f2
—A
< sup (fa —Axa) ;‘a + fa
xarfaZO a
i n n—1
—4A 2n

The last inequality follows from Lemma 5.10, where we set x = x,,y = f;, k1 = A, and
k2 = 3. Rewriting yields the result. ]

Corollary 5.14. For latency functions in M, the online algorithm NSEQNASH is (n4+1)

competitive, where n is the number of games.

Proof. We bound w(Mi;n,A) from above by %. In order to find an optimal A
in Theorem 5.8, we need to ensure that A € A(M,n). Hence, we need

n+2An—2A <1
4 n '
This condition leads to A > (n 1y Setting A := ;15 and applying Theorem 5.8 yields
470%n c 4n?

C(f) < An—nioA (x) = mc(x>-
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@\

G—36

o

Figure 5.3: Graph construction for the proofs of Proposition 5.16

Remark 5.15. The value A = ;5 solves the following minimization problem with
respect to A:
min 47A%n
in ——mm—.
Ayt 2An—n+2A

Interestingly, we get the same upper bound as for the online algorithm SeQ within
the framework ONLINEMCRP for affine linear price functions.

5.3.2 Lower Bounds
We start with a result that holds for any deterministic online algorithm.

Proposition 5.16. In case of latency functions in My no deterministic online algorithm for
ONLINENG is c-competitive for any ¢ < %.

Proof. Consider the network displayed in Figure 5.3. Each arc a leaving from node 1
has the same latency function ¢,(z) = 3z. All the other (those leading into node 5) have
the latency function /,(z) = 0. Let ALG be an arbitrary deterministic online algorithm.
We first present ALG commodity 1 with demand 1 that has to be routed from s; =1
to t; = 5. First, assume the algorithm behaves like the NSEQNAsH. This means
that the demand gets evenly divided into three pieces: one third is routed over path
Py = (1,2,5), another over path P, = (1,3,5), and the later over path P; = (1,4,5). In
this case, we reveal commodity 2 with demand 1 between 1 and 2. For this commodity
there exists a unique path. Therefore, ALG yields for this sequence ¢ the cost:

ALG(0) = NSEQNAsH(0) =2-3- -3 4+3- (3 + 1)2 = 6.

An optimal offline solution is to route half of commodity 1 over path P, and the other
half over path P; and commodity 2 along its unique path. Therefore,

Orr(c) =2-3-1-1+3-1-1=3.
This leads to

Airg(o) 4
Orr(c) 3
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010 0

Figure 5.4: Graph construction for the proof of Theorem 5.17.

If ALG does not behave like NSEQNAsH for the first commodity, ALG has to route more
than one third of the demand over path P;, path P, or path P;. If it is path P;, then
we present commodity 2 as above. If its path P,, then we reveal a commodity 2 with
demand 1 between 1 and 3. Otherwise, we present a commodity 2 with demand 1
between 1 and 4. Let a be the demand greater than one third. In all three cases the
cost of ALG for the sequence ¢ is

Arc(o) >2-3- (1522 43 (a+1)* > 6.

since & > 1. The optimal cost stays the same as above. Hence,

ALG(0o)
Ort(0)

S 4
3

For NSEQNAsH we can further lift the lower bound.

Theorem 5.17. In case of latency functions in Ly, the online algorithm NSEQNASH for the
ONLINENG has a competitive ratio greater than or equal to =2, where n is the number of
games.

Proof. We consider the network presented in Figure 5.4 with the latency functions:
Uis,s)(2) = 0, Ly (2) =0, L5, 1) (2) =1,i=1,...,k and £, ;)(z) = z. We consecutively
release a sequence of games (1,...,k), where in each game j, there is a single player
type j1. The demand of player type j1 is 1 that has to be routed from s; to t;, for
i =1,...,k. Due to the choice of the affine terms i, NSEQNAsH routes for every game
the corresponding demand over the arc from s to t. Then we release the (k+ 1)-th game
with demand d from s to t. Thus, the total cost for the sequence o = (1,...,k+ 1) for
NSeQNaAsH with the new cost function is given by:

NSEQNasH (o) = (k +d)>.
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upper bound —
lower bound -----

Competetivity
n
6]

2 4 6 8 10 12 14 16 18 20
Number of games

Figure 5.5: Upper bound % versus lower bound 2.-2 on the competitive ratio of NSEQNAsH
for affine linear latency functions.

The optimal offline algorithm OpT routes the demands of the first k games along the
direct arcs from s; to t; incurring cost of:

k(k+1)

k
.Zi: 2

The last demand in game k + 1 is routed from s to t with cost d2. The total cost for the
sequence 0 = (1,...,k+ 1) for Oprt is given by:

k(k+1)

dz.
5+

Orr(0) =
Replacing k = n — 1 and setting d = 7 yields

NSeoNasu(o)  2(k+d)>  3n-2 5.17)
Orr(c)  k(k+1)+242  n ~’ '

which proves the theorem. O
Remark 5.18. For n = 2, the upper bound given in Corollary 5.12 is tight.
In the following, we present a lower bound for latency functions in M;.

Corollary 5.19. For latency functions in M, the online algorithm NSEQNASH for ONLINE-
33+5/33

NG has a competitive ratio greater than or equal to EOTNVEER

Proof. We consider the network presented in Figure 5.4 with modified latency func-
tions: £(5,5)(z) = 0, £(4)(2) = 0, £(5,10(2) = iz, i =1,...,k and {5 (z) = z. We
consecutively release a sequence of games (1,...,k), where in each game j, there is a
single player type j1. The demand of player type j1 is 2 that has to be routed from s; to
ti, fori =1,...,k. Due to the choice of the linear terms i z, NSEQNAsH routes for every
game the one unit of the demand over the arc from s to t and the other unit along the



94 Chapter 5. Online Network Games

direct arc from s; to t;. To see this, consider the j-th game. Let the flow of player j1
along the middle arc be denoted by x. Then, using the characterization of a Nash flow
given in (5.4), the nonatomic player j1 sends flow x* along the middle arc according
to the solution of the following problem

N 1, 2
i, 5 jx +(]—1)x+§](2—x) .
The solution to this concave program is given by x* = 1, independently of ;.

Then, we release the (k + 1)-th game with demand d from s to t. Thus, the total
cost for the sequence 0 = (1,...,k+ 1) for NSEQNASH is given by:

=

) k(k+1)

NSEQNasH(0) = Y i+ (k+d) 5

i=1

+ (k+d)>.

The optimal offline algorithm Opt routes the demands of the first k games along the
direct arcs from s; to t; incurring cost of:

1=

(i-2)-2=2k(k+1).
i=1

The last demand in game k + 1 is routed from s to ¢ with cost d2. The total cost for the
sequence 0 = (1,...,k+ 1) for Opr is given by:

Orr(o) =2k (k+1) +d°

Replacing k = n — 1 and setting d = }n+ 3 + 1 V3312 — 281 + 4 yields

NSEQNAsH(0) > lim Z(n) = 33 +5+/33 ~ 159
Ort(0) ~ n—oo 33 ++/33 ’

where we define

Z(n) = 3312 — 281 +5ny/33n2 — 281+ 4+4 —2+/33n2 — 2871 + 4
C33n2—28n+nV33nZ —28n+4+4+2V33n2 —28n+4

This proves the claim. O

Remark 5.20. The parameter d in the previous proof is the optimal solution to the
following maximization problem with optimal value Z(k + 1):

2
k(1) 420k +d)

a1 4k(k+1)+24d? = Z(k+1).

The table below summarizes the main results for (affine) linear latency functions.
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Table 5.1: Competitive Ratio for the online algorithm NSEQNAsH for affine linear latency func-
tions ¢(x) = ayx+ag, a9 > 0,a7 > 0. The first row shows known results for
nonatomic network games. The % result is due to Roughgarden and Tardos [83]. UB
and LB abbreviates upper bound and lower bound, respectively.

# games 2,(0) =0 0,(0) arbitrary, A =1
A UB LB UB LB
4 4
1 1 1 1{ 4 4
2 7 54215
3 1 217+13/217 2 1
3 i 23 7isvar 25 23
4n? 4 3
n T 1 Z(n) e =
33+54/33
00 1 4 BrY 4

5.3.3 Polynomial Latency Functions

In this section, we investigate the case, where we allow for polynomial latency func-
tions in L;.
We start with a useful observation.

Lemma 5.21. For latency functions in L4, we can bound sup 0} ({4, f,) as follows:
faz0

sup 8; (Lo, f,) < sup 8; (4o, f,) < Ca(fa) far
£,>0 £,>0

where O} (Ly, f,) = Um 07 (L, f,).

Proof. Recall the definition of 9} (4, f,):

% (o, fo) = La(fa) fa Z Zfa fa

Since polynomials with nonnegative coefficients are nondecreasing functions, the fol-
lowing inequalities hold

n

i ) i fa
inf [} £ Zfﬂ fi] > inf [Zza(sz;)f;] > /l(z) dz.

f.20 i=1 fa=0 i=1
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Hence, we have

fa
sup 87 (¢, £,) < sup 03 (Lo, £,) < Lu(fa) fu— [ 12) . (5.18)
f420 f420 5

d .
Let ¢,(z) = Y a;z' be a polynomial of degree d > 1. Then, it follows that

i=0
fa d . d
G(f) fo= [ 1042 = L ()™ = 1 () ()

=0

(]

i=0
d_ i+1
< 2)!
<77 L)
d
T A+l a(fa) fa
Using inequality (5.18), the claim is proven. O

Lemma 5.22. If the latency functions of the ONLINENG are in Lz, d > 1 and A > 1, then,
the value w({,,n; A) is at most

max [ — A pT] +

0<u d—|—1.

Proof. By Lemma 5.12, we have

w(l su (Ca(fa) = Ala(xa)) Xa + 87 (L, £,)
(ba,m; M) Sfﬂ,xf;o XA .

Then, using Lemma 5.21 we have that

(gu(fa) - /\ga(xa)) Xq + diﬂ ga(fa)fa

w(l,n;A) < sup

faxa>0 gﬂ(fﬂ)fﬂ
o () A () x| d
N fu,xago Ca(fa) fa S

Defining y := f for f, > 0 and zero otherwise, we have to solve

max (Ca(fa) = Ala(p fa)) 1 fa
0<pu Ea(fa)fa

to bound w(¥,,n;A) from above. The rest of the proof follows from the proof of
Lemma 3.22 in Chapter 3. O
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Proposition 5.23. For latency functions in Ly and A := (d + 1)@=V > 1, the value

) ' 42424
w(L;n,A) is at most (dﬁ)

Proof. We start with Lemma 5.22.

d d
< d+1 | _ (d-1) , d+1 '
w(Lain,A) rgféy A d—|—1 0<;?§1y (d+1) e d+1

The unique solution is given by u* = d%l' Evaluating the objective proves the
claim:
1
T

1
(d—1) d+1
(d+1) (d+1) +

d _ d>+2d
d+1  (d+1)¥

w(ly,m;A) <
O

With this lemma we can prove a constant factor bound on the competitive ratio
that depends on the degree d of the considered polynomials.

Theorem 5.24. Consider the ONLINENG with latency functions in L;. Then, the competitive
ratio of the online algorithm NSEQNASH is at most (d + 1)4+1.

Proof. Let the flow f be produced by the online algorithm NSEQNAsH and let x be
an arbitrary feasible flow for the ONLINENG. We define A := (d +1)*~1) and apply
Proposition 5.23, which yields w(Lg4;1,A) < Eidilz)d In order to apply Theorem 5.8, we
have to verify that A € A(Ly,n). What remains to be shown is that

d*> +2d

holds. This inequality is equivalent to

1

—— >0,
i+r1”

which is trivially true. Then, applying Theorem 5.8 yields

d + 1 d—1
c(f) < U ) = @+ 1) cw).
(1- (d+1)2)
Taking x as the optimal offline solution proves the claim. O

By optimizing over A € A(Ly4,n), we get the following bounds for polynomial
latency functions as shown in Table 5.2.
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Table 5.2: Competitive ratio of NSEQNAsH for different polynomial latency functions. Coeffi-
cients 4; are assumed to be nonnegative.

Set L of latency

functions Example w(L;00,A) A UB LB

linear functions aix + ag % 1 4 3

quadratic Y2 ! 0.93 2.18 19.6 7.5

cubic Yo yaxt 15 64 256 17.32
d , )

degreed  Lax E20 @) @eytn g

5.3.4 Lower Bounds for Polynomial Latency Functions

Consider the network presented in Figure 5.4 with the following latency functions:
E(si,s)(z) =0, e(t,t,‘)(z) =0, E(si,ti)(z) = id, i=1,...,k and g(s,t)(z) = Zd,d € N. We
consecutively release games with a single player type i1, where a demand of size 1
has to be routed from s; to t;, for i = 1,...,k. Due to the choice of the affine terms
i1, NSEQNASH routes every demand over the arc from s to . Then we release the
(k + 1)-th game with demand x from s to t. The total cost for the flow generated by
NSEQNAsH is given by:
NSeQNasH(0) = (k + x) i

The optimal offline algorithm Ort routes the demands of the first k games along the
direct arcs from s; to ;. The last demand is routed from s to t. The total cost for Opt
is then given by:

k

Orr(o) = Y i + x4+,

i=1
From Lemma 3.25, we know that the d-th power of the sum of numbers from 1 to k is
a polynomial in k given by:

k d+1
1 1 .
Zid _ = Z (d+ ) Bjkd+1f],
i=1 d+1 5\ J
where B; are the Bernoulli numbers.

Theorem 5.25. In case of latency functions in L;, the online algorithm NSEQNAsH for ON-
LINENG has a competitive ratio greater than or equal to % 2041,

Proof. We have to show that the competitive ratio fulfills:

NSEQNasH4(0) _ d+1 ;.4
> 247,
Ort,(0) d+2
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We follow the construction of the above discussion,

NSEQNAsH,(0) lim (k+ x)d+1
Ort,(0) T koo fid—kxd“

i=1

We set x = k which yields:
NSEQNAsH, () lim (2k) A+
Orty,(0) ~ k—oo § i g
i=1
d+1
2k
= lim (20) _ it e

Cd+2

k—oc0

d+1
d _
d}-l KA+l 4 fd+1 4 j;l ( —]H) B]' ka+1-j

where the equality follows from Lemma 3.25 and the fact that By = 1.
O

Note that the derived lower bounds are larger than the lower bounds obtained for
the greedy online algorithm SEQ for the ONLINEMCRP in Chapter 3.

5.3.5 Parallel Networks

For graphs that consist of two nodes and parallel arcs, we can show that NSEQNAsH
performs not worse than a Nash flow for the entire game sequence that is played
in parallel. In other words, for a given sequence of games, we compare the cost of
NSEQNAsH to the cost of a Nash flow of a complementary game, where all players of
the entire game sequence route their demands simultaneously.

Definition 5.26
For a given instance of the ONLINENG involving a sequence of games ¢, we define
the complementary game ¢ as a single game that contains all players of the sequence
simultaneously.

Recall from the Wardrop condition (4.2) that a flow f is at Nash equilibrium if and
only if the following condition is satisfied:

Lemma 5.27. A feasible flow f for the game & is a Nash equilibrium if and only if:

Ca(fa) < La(fa), forall arcs a,d € A such that f, > 0. (5.19)

Note that for nonatomic network games, Nash equilibria and Wardrop equilibria
are the same. A similar condition holds for the flow that is produced by NSEQNasH.
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Figure 5.6: Graph construction for a matching lower bound for Theorem 5.29.

Lemma 5.28. A feasible flow f for the sequence of games o is produced by NSEQNAsH if and
only if for all k € [n]:

=

iy < E@(Zf;), for all edges a,a € A, such that f* > 0. (5.20)
i=1

Theorem 5.29. Let D = (V,A) with V = {s,t} and A a set of edges from s to t. We are

given a sequence of games ¢ = 1,...,n. Let f be a flow produced by NSEQNAsH for the

ONLINENG with a single nonatomic player routing d; from s to t in every game i € [n]. Let

f* be a flow at Nash equilibrium for the corresponding game & with a single player routing
Y., d; fromstot. Then, C(f) = C(f*).

Proof. We prove that the flow f satisfies all conditions of Lemma 5.27 for the game &.
By the uniqueness of the cost of a Nash equilibrium the claim is proven.

The latency of the flow f on edge a is equal 4;(f,). By contradiction assume that
there exist edges 2,4 € A with

Let k € [n] be the largest index with f¥ > 0. The existence of such an index k is granted

n .
since f; = ) f; > 0is assumed. As in games k+1,...,n, the edge a is not used any
i=1

more, we have that £,(f,) = £a( vk, f1). Using the assumption that latency functions
are nondecreasing it follows that £5(fa) > 44 ( Yk, f1). By Lemma 5.28 for game k, we

have (3 ( Ly f3) > La( Xy fi), thus

a contradiction. ]

A trivial example showing that the above upper bound is tight is to consider a
sequence ¢ that only contains a single game. In this case, it is well known that for
classes £, which contain constant terms, the anarchy value a(£) is tight. Matching
lower bounds can be derived via Pigou instances, as shown in Figure 5.6. Based on an
example given in Correa, Schulz, and Stier-Moses [24], we now show that the upper
bound on the competitive ratio of NSEQNAsH in Theorem 5.29 is tight for an arbitrary
number of games.
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Figure 5.7: Braess Graph.

Consider the Pigou instance in Figure 5.6, see Pigou [74]. Assume that the sequence
o contains n games, where in each game we are given a demand d;, i = 1,...,n.
We denote by d = Y I ; d; the aggregated demand. We are given a variable latency
functions ¢(x) and a constant latency function ¢(d). The online algorithm NSEQNAsH
routes all demands along the cheaper upper arc. Hence, after routing the last demand
d,, the latency of the resulting flow f is equal on both arcs. Thus, the cost of the flow
is given by C(f) = d ¢(d). The system optimum can be evaluated as follows:

C(x*) = min {x/l(x)+¢(d)(d —x)} =d¢(d) — max {x (£(d) — £(x)) x}.

0<x<d 0<x<d

Evaluating the ratio between the cost of a flow at Nash equilibrium and the optimal
cost yields

Clx") d0(
= (1-w(£,1)™" = (1-B(

Since Theorem 5.29 ensures that the cost of the flow f is upper bounded by the price
of anarchy a(L) for the corresponding game 7, these upper bounds are tight by def-
inition. The intuition of the above proof fails, however, for general networks with a
single source and a single destination. To see this, we present an instance, where the
cost of a flow f produced by NSEQNAsH is larger than that of the corresponding Nash
flow f* for the game &.

C(f) maxp<y<g{x (£(d) — £(x)) x}\ 7'
:<1‘ = )
L) =a(L).

Example 5.30. Consider the graph of Braess’s paradox in Figure 5.7 and two games
that are released consecutively. Each game has a single nonatomic player routing one
unit d; = 1, dp = 1 from s to t. The path system P; for the first player contains
Py = (s,a,t), P, = (s,a,b,t), P3 = (s,b,t). A flow that is at Nash equilibrium for the
first game routes 1 unit of flow on P,, having path latency ¢;(f!) = 2. In the second
game, we route 3 unit on P; and 3 on P;, both having path latency ¢>(f) = 2.5. Now
E%Z (f) = 3. Thus, the total costis C(f) =1 x 2.5+ 1 x 3 = 5.5. However, for the game
o we route 2 units of flow from s to t. Then, a flow f* at Nash equilibrium routes one
unit along paths P; and P;. The path latencies are ¢p, (f) = ¢p,(f) = 2, thus the total
costis C(f*) =2x2=4.
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This example shows that we can derive a lower bound on the competitive ratio of
NSEQNAsH in this setting evaluating to 5.5/4 > 1. We do not know if it is possible to
improve the upper bound of NSEQNAsH for the s-t setting.

5.4 Competitive Analysis — The Atomic Case

In this section, we study the online algorithm ASEQNAsH, which is the atomic counter-
part of NSEQNAsH. The only difference is, that commodities of game i are controlled
and coordinated by the corresponding players. Our used techniques follow along sim-
ilar lines of the previous sections. Before we state the main result, we need some useful
prerequisites.

Definition 5.31
For a given sequence of games ¢ and a flow f that is produced by ASEQNAsH, we
define

i

VI(f,. L fa) = (0 (2 )+ 0 ( qu D)l = 1),

acA =
Vi(fl,“'/fi,xi,lCi) — Z Vz] 1’ 1),
ije[Ki]
V(fxKon) =Y VI, fla, K, (5.21)
i=1

1

where x*, ..., x" € F, is any feasible flow.

Lemma 5.32. A feasible flow f for a sequence of games o that is produced by ASEQNAsSH
satisfies:

V(f,x,IC,n) >0, for all feasible flows x for o. (5.22)

Furthermore,

VI, Kom) = Y Valf 5 Km),

acA

where V,(f ,, x4, KC, n) is defined as

Vil 3 K) = 1 (fa(iff)w(kiff) ) el = £,
=1

i=11ije[K;] k=1

Proof. From Lemma 5.3 we know that VI (f',..., f',x') is nonnegative for all ij € [K;]
and i = 1,...,n.. Summing over ij € [K;] and i = 1,...,n proves the first claim. The
second claim follows by changing the summation order. O
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We define for every a € A, for any nonnegative vectors f,,x, € R¥ the following
values (we assume by convention 0/0 = 0):

w(lg,n,IC;A) := sup Calfo) = ACalxa) + V”<f”'xa), (5.23)

farXa>0 Cﬂ (fﬂ)

where the notation f, x, > 0 is defined in (4.20).
For a given class £ of latency functions and a nonnegative real number A > 0, we
further define

w(L;n, IC,A) = sup w(ly,n,IC;A).
l,eL

We define the following feasible set for the parameter A.

Definition 5.33 (Feasible Scaling Set)
The feasible scaling set for A is defined as

AL, K):={AeR"|(1-w(L;n K, A))>0}.

Theorem 5.34. Consider an instance of the ONLINENG involving a sequence of n games with
IC players and latency functions in L. Then, the competitive ratio of ASEQNASH is at most

. ) ~1
AeAl(Ign,/C) [/\ (1 —w(Lin, K’A)) ] ’

Proof. Let f be the flow generated by ASEQNAsH, and x be any feasible flow for a
given sequence of games ¢ = (1,...,n).

) < Y [Calfa) + Va(f o %a, K, 1)] (5.24)
acA

= Z [ (fa) + A Calxa) — /\Ca(xa)-FVa(fu,xu,lC,n)]
acA

<AC(x)+w(L;n, K, A)C(f). (5.25)

Here, (5.24) follows from the variational inequality stated in Lemma 5.32. The last
inequality (5.25) follows from the definition of w(L;n, IC, 7). O

With this result, we can investigate the above infimum expression for different
classes of latency functions. The most important and natural functions are polynomials
in £;. We will, however, pay increased attention to linear and affine liner latency
functions in the following.

Using the notation:

0, := Y (fixd —fi ),
ije[Ki]

we can simplify the value w(L;n, K, A).
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Lemma 5.35. The value w(l,,n,kK; A) is at most

(o) = Mealr) 830 £) + £ (1 F1)
sup — —

Xa,f,>0 Ca(fa)fa (5.26)

Proof. First note that

n

Cﬂ(fﬂ)+vﬂ(fa'xﬂ):ﬁt};(gﬂ'fa +,Z E/ Zfa 91_"@ Zfa

i=1

<" (ly, f,) Zfa ) 0% + €a(fa) Xa,

1

where the last inequality is valid since latency functions are nondecreasing. Then,
using

Ea(fa) Xg — )\Ca(xa) = (ga(fa) - )\Ea(xa))xar

yields the claim. O

Note that for A = 1 and n = 1 the value w(¥,,1, ;1) is equal to the value BK(¢,)
defined by Cominetti, Correa, and Stier-Moses in [23]. For n > 1, that is, the sequence
o of games contains more than one game, the main difference between ,BK (¢,) and
w(ly,n,IC;A) are the values A > 0 and &} (¢, f,). The value &} (4,, f,) penalizes the
efficiency of ASEQNAsH for multiple games. The value A admits a further degree of
freedom to strengthen the analysis.

5.4.1 Affine Linear Latency Functions

We analyze in the following the value w(L4;n, K, 1) for affine linear latency functions
in ﬁl.

Lemma 5.36. For latency functions in L1 and A > 1 the value w(Lq;n, K, A) is less than or
equal to éﬁ +P

Proof. We start with equation (5.26) for latency functions in £1. The value w(¥,,n,IC; A)
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is at most:

Ga(fa — AXa) X0 + G0 (fa)? — ii1<kil ) i+ a, é oi

sup

X, f,>0 qa(fa)* + 14 fa
(fo=rx)xa+ § (R =3 L2+ Lol

= o e 627
(fo=Axa)ra+3(f)? =3 £ (7 + fle;;

= ho G - 529
(fo=Axa)xa+ 3 (fa + T (F) =3 (1))

_ Z]G

a xi}t};O (fa)2 ’

where (5.27) follows from (3.10) and r, > 0. Note that to obtain the first inequality
we have used that 7, — Ar, < 0 since A > 1. Inequality (5.28) is valid since the
sum of powers is less than the power of the sum. Without loss of generality, we can

assume that f; := m?’%(] fg . Since the individual components x; appear linearly in the
ije

. 1 1 .
expression fa] xa] , we can set x; := (x1,0,...,0) to bound the above expression from
above. Thus, we have:

faxh = AR+ 3 ()2 + flxh = L (A

z]elC

w(l,n, IC;A) < sup 5
0<f1<fu1>0 (fo)

Because of symmetry in the last sum of the numerator, we can set fa = Kf ‘

foxb = A G2+ 1 (fa)? + £k — 3(f1)2 — Lo hif
AL |

w(ly,n,K) < sup
hp<h,

x>0

For any choice of f,, f1, the optimal value for x] is exactly x} = = foth “+f .. Inserting the
value yields:

(+ &)l + (5 — 3 12+ 12 fu— HachaL
(fa)?

w(l,n,IC;A) < sup
<,

We replace f} = y f, with u € [,1] and solve:

N2
wW(la,m, K A) < max (3+ ) + (= D)7 + 31— 3l (5.29)
pelg Al
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Now we set A := 1. Then, the optimal choice is 4 = 57 This leads to:

—

4(K-1
w(Ly;n K1) < 5(K+1 .

Applying Theorem 5.34 with the above value leads to the following result.

Corollary 5.37. If the latency functions of the ONLINENG are in L1, the online algorithm

ASEQNASH is 5,?:_“51 -competitive, where K is the total number of players.

Proof. Applying Theorem 5.34 with A = 1 yields:

CUf) < gy ) = 3 Clx).

T BK+1

This proves the corollary. O

Corollary 5.37 gives abound that only depends on the total number of players
in the sequence o of games. This bound states that ASEQNAsH is asymptotically 5-
competitive for online atomic network games.

If we optimize over the parameter A € A(Lq,n,K), we can derive even better
bounds. For ease of presentation we focus on the asymptotic bound, that is, we con-
sider the case K — co.

Corollary 5.38. If the latency functions of the ONLINENG are in L4, the online algorithm
ASEQNASH is 4.92-competitive.

Proof. We start with bounding w(£L;; 00,00, A) using (5.29):
(L 00,000) < max (3 + 37) + (Fx ) W+ 3
puely,

Then, it follows that

. 1
= er—1
and )
4A+13A°—1
. < S —
w(Lieo,001) < 2 EA =T
Note, that we still have w(L£;00,00,1) < % for A = 1. Applying Theorem 5.34 with
A = 1.13 yields the claim. O

In the following, we derive a bound that depends on the number of games.

Corollary 5.39. If the latency functions of the ONLINENG are in L4, the online algorithm

ASEQNASH is %—wmmtitive, where n is the number of games and K is the total

number of players.
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Proof. We start with equation (5.27) in Lemma 5.36 to derive another bound on the
value w(Ly;n,IC, A).

(fo— Axa)xa+ 3 (f)2 =1 L (F)2 + z 0

w(ly,n,IC;A) < su i=1
( S, 1A
(fa - Axa)xa + 'Zl 9;
<n=ly gy =, 5.30
SEIRTT G o

where (5.30) follows from Cauchy-Schwarz inequality. Then, the proof proceeds along
the lines of the proof of Lemma 5.36 except that we replace the factor 3 by 1.

N2
w(le,n, ;1) <14 max (ﬁ)—k(ﬁ—l)‘uz—l—%y—%. (5.31)
pelg Al

Setting again A := 1 yields

w(le,n, ;1) < ”2%11 + max % — %Hz + ﬁy — %5_”1))2
pelg Al

K+3

It is easy to see that y = 3773 is optimal. Evaluating H;(ﬁlm yields the desired

bound. 0

This bound is asymptotically 6-competitive. It provides, however, an explicit de-
pendency on the number of games and players involved. For n = 1, we obtain a bound
of g’,g—g for atomic network games with affine linear latency functions; this bound has
previously been established by Cominetti, Correa and Stier-Moses [23]. For L — oo we
trivially establish a bound that only depends on the number of games. If the latency
functions of the ONLINENG are affine and if we allow for infinitely many atomic play-
ers, the online algorithm ASEQNASH is 6n -competitive. To see this, we calculate the

n+3

limiting value in Corollary 5.39: limg_c % = o,

atomic player in each game, we can set K := n and evaluate

If we only have a single
2(3K+1)n
nK+3n+3K+1"
Corollary 5.40. If the latency functions of the ONLINENG are in L1 and we have one atomic

player per game, the online algorithm ASEQNASH is néz'_f;n Zfl
number of games.

-competitive, where n is the total

Now, we derive improved upper bounds that depend solely on n. We prove these
bounds by designing and appropriate function A(n) with values in A(Lq,n, K).

Corollary 5.41. If the latency functions of the ONLINENG are in Ly, the competitive ratio of
the online algorithm ASEQNASH is at most

max {T(n), i}
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where T (n) is defined as

(2n+v2y/nBn+1))n(1+3n+V2y/nGEr+1)) V2

4/n(Bn+1)(n+1)>

T(n):=

Proof. For K — oo we have limy_,« (&C—_}‘l))z = 0. Hence, (5.31) reduces to

w(l,n,00;7) < 221 4 max &= (& =D+ Lo
nelg Al

The maximization problem can be solved, leading to

1
40 -1

max gy = (gx = D+ gy <
nelx 1]

Defining

. 14+3n+V2n+6n?
A" := max Ao,
4(n+1)

It is easy to see that A* € A(Lq,n,K). Applying Theorem 5.34 yields

2N n (=1 +4A%) B 3
C(f) < InA —3nian 1 C(x) —max{T(n),z} C(x).

Taking x as the optimal offline solution proves the claim. O
Remark 5.42. The choice of A* solves the following minimization problem

. 2An(—=1+4AX)
min .
AeA(LinK)4nA —3n+4A—1

Note that without the restriction A > 1, we have the relation A* = % + 411 V2 for
n =1 as in Corollary 4.22. For the case n — co we have lim, . T(1n) = V23 + %

5.4.2 Lower Bounds

In this section, we provide lower bounds on the competitive ratio for any deterministic
online algorithm and ASEQNAsH. Note that all lower bounds of NSEQNAsH for ON-
LINENG carry over to the atomic player case, if we allow for infinitely many players in
each game i.

We use the network in Fig. 5.4 to derive a lower bound when we have a single
atomic player in each game i.

Proposition 5.43. In case of latency functions in L4, the online algorithm ASEQNASH for the
ONLINENG, where in each game there is a single atomic player has a competitive ratio greater

than or equal to =1, where n is the number of games.
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upper bound (nonatomic) —
upper bound (atomic) -----

Competetivity

2 4 6 8 10 12 14 16 18 20
Number of games

Figure 5.8: Upper bound (n4f2)

NasH and ASEQNAsH for nonatomic and atomic players, respectively.

versus upper bound T (1) on the competitive ratio of NSEQ-

Proof. The proof proceeds along the lines of Theorem 5.17 except that we replace the
constant costs E(si,ti)(z) = 2i,i =1,...,k. This forces the first k atomic players to
route their demand along the middle arc (s, t). The reminder of the proof consists of
technical calculations along the lines of the proof of Theorem 5.25. O

Table 5.4.2 summarizes the main results for (affine) linear latency functions in this
section.

5.4.3 General Latency Functions

In this section, we investigate the case, where we allow for general convex latency
functions. Note that the only difference in the definition of w(/,;n, IC;A) compared
to the value w(/;; K, A) introduced in (4.22) is the value 9} (4, f,). By separating this
value from the rest, we can rely on all characterizations of w(L;K,A) obtained in
Section 4.4.5.

Proposition 5.44. If A > 0and (,(-) is a nondecreasing latency function, then, the following
inequality is valid:

w(lain o (lalfe) =M o)) a4 6(f0)
om o) = fu/xago Ca(fa) fa
0 (Lo, f,)

4+ sup ——.
75 Ca(fo) fo

Proof. Using the triangle inequality, we can separate 9/ (¢, f,) from the rest since the
supremum over the sum of two functions is less than or equal to the sum of the
suprema. The reminder of the proof follows Lemma 4.24. O

(5.32)

We define w({,;00,00,A) to be the limit of w(¥;n, K, A) for n and K tending to
infinity under the condition that x, and f, are kept constant (and hence w({,;n,/C, A)
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Table 5.3: Competitive Ratio for the online algorithm ASEQNAsH for affine linear latency func-
tions a1 x + ag, ai,a9 > 0. The first row shows known results for atomic network
games that are due to Cominetti, Correa, and Stier-Moses [23]. UB and LB denote
Upper and Lower Bound, respectively.

arbitrary # of Players 1 player per game

# games UB LB UB LB
1 2 1.343 1 1
2 22 2 1.64 2

3 3 23 2.14 1%

n min{T(n),492} 2 min{§C42n 497} 2n-1

n
00 4.92 3 4.92 2

stays finite). Then it follows that w(ly;n, K,A) < w(ly;00,00,A). We focus in the
following on the general case 1, K € N U {oo}.

Corollary 5.45. For latency functions in L, d > 1, the competitive ratio of ASEQNASH is
at most

d

-1
u
inf Al1— 1- A +d-)+-—"—"— . 5.33
/\eA(ﬁdl,S,/C)ﬂRN[ ( 0?12(1“( Wt 4)+d—|—1) ] ( )

Proof. Recall from Lemma 5.21 that

8 (4o, f,) d
su < .
f@% la(fa) fo — d+1

Hence, we only have to bound the first term in (5.33). Since all assumptions of Propo-
sition 4.26 are satisfied with s(f) = f?. Therefore, s'(1) = d and

d
. < — d E
w(ly;00,00,A) < 0?5;(1” (1—-Au*+d 4) + FERT (5.34)
Applying Theorem 5.34 yields the claim. O

Using Corollary 5.45, we can determine bounds on the competitive ratio for ASE-
oNasH for general polynomials. We use the same technique as in Theorem 4.28 to
prove such bounds.
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Theorem 5.46. For latency functions in L4, d > 1, the competitive ratio of the online algo-

rithm ASEQNASH is at most
5

4
Proof. Let the flow f be produced by the online algorithm ASEQNAsH and let x be an

arbitrary feasible flow for the ONLINENG.
From Equation (5.34) in Proposition 5.45 we have the relation

1
(1+3d+5a)"

00 d
; < At eadty 4
w(la;00,00,A) < max u (1 —Au'+d )+ =7

Now, we bound the first term:

1
PR 4+d \?[4d+d*
- By (272 ) (22T )
g, u (1= Au +d4)—<4A(d+1)> <4(d+1)

We construct a function A(d) such that

(4 A(;)tdd+ 1)) % (f(izipf)) 0 f 1)2

holds for all d > 1. Solving the above equation with respect to A(d) yields

(44 d)™1 (d+1)41
4d+1 .

A*(d) =
Hence, by construction, we have

d_ d _d+2d
(d+1)2  d+1  (d+1)%

w(gﬂ/. oo/ Oo/ )\* (d)) S

Applying Theorem 5.34 with A := A*(d) and w({,; 00,00, A*(d)) < £+24 Jeads to

(d+1)?
A*(d
c(f) < 2wy = @+ 120 (@) C(x)
1- (d+1)?
d\d+1 41 5 1 pyd+1
= (1+1) (d+ 1)1 C(x) = (1+1d+1d )7 C(x).
Taking x as the optimal offline solution proves the claim. O

This result shows that the derived upper bounds are significantly larger than the
bounds for the nonatomic counterpart. It is not clear, however, how to raise the lower
bounds for the atomic case. This issue remains open.






Chapter 6

Conclusion and Open Issues

One of the main goals of this thesis was to understand the consequences of selfish be-
havior and limited knowledge about future information on the performance of routing
strategies. We identified three practical applications for the considered models arising
in road traffic networks and in the Internet.

First, we studied online routing strategies within the framework ONLINEMCRP
that modeled the interactions of service providers in an inter-domain resource market.
In such a market, network capacity is traded in order to deploy Internet traffic with
Quality of Service requirements. We showed that a greedy online algorithm, which
corresponds to a natural cost minimization strategy of a service provider, leads to a
routing pattern that is not too inefficient. In particular, we showed that for polyno-
mial price functions in C;, the competitive ratio of this greedy online algorithm can be
bounded by a constant factor (depending on d) for arbitrary networks and commod-
ity sequences. Even though the provable bounds are quite large, these bounds show
that the proposed inter-domain market may not lead to arbitrary inefficient resource
allocations. In practice, however, there are many more additional requirements to con-
sider. For instance, routings have to respect capacities, which we only incorporated
implicitly using steep load dependent price functions. With capacities, however, one
can easily construct examples in which any online algorithm does not even produce
a feasible solution. Further requirements in practice include path length restrictions
and survivability issues. Another important point is that in practice, routings are only
valid until a given time, after which they disappear. This has effects on the cost for
future routings. It is also an open issue whether the competitiveness bound in The-
orem 3.9 and Theorem 3.24 are tight, and whether there exists a competitive online
algorithm for the unsplittable variant of the ONLINEMCRP. Finally, we simplified the
competition within the market by assuming fixed continuous and nondecreasing price
functions defining the price for a unit resource. In practice, resource providers deter-
mine prices depending on the current market situation and their position with respect
to the network topology. If the provider domain’s link is a bottleneck, the demand
would become somewhat inelastic leading to a monopolistic situation. For a fully con-
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nected network (i.e. perfect competition in the network), the demand is at a minimum
when the offered price is above the current market price and at maximum when be-
low. The infrastructure of the Internet today is more related to an oligopolistic market
where the network is not fully connected (i.e. domains are at most connected to 3
to 5 neighboring domains). We are only aware of few works on this complex topic.
Acemoglu and Ozdaglar [2] study the competition of service providers for very simple
network topologies such as parallel arcs or serial arcs. In this regard, the outcome of
competition between service providers for general network topologies, where demand
is elastic remains tantalizing open. We note that the above issues are closely related
to the theory of mechanism design. Mechanism design is a subfield of economics and
computer science that aims at designing the rules of games involving multiple com-
peting players to achieve a pre-specified outcome. For an introduction into this topic,
we refer to the survey of Mas-Colell, Whinston, and Green [65]. In the context of net-
work design problems we refer to Gupta, Srinivasan, and Tardos [49], Anshelevich et
al. [6, 7], Archer et al. [8], and Fleischer et al. [36].

The second application that motivated the second main contribution of this thesis
concerns the road traffic network in which drivers select routes based on selfish inter-
ests. A long standing open question asked to which extent the performance of a Nash
equilibrium is degraded compared to the system optimum. This question has been
settled for the nonatomic traffic model by Roughgarden and Tardos [83] and Rough-
garden in [80]. For network games with atomic players we contributed to answering
the same question by improving previous known bounds on the price of anarchy for
polynomial latency functions in £;, except for the case L£;. These results are of partic-
ular interest as a recent trend towards using route guidance devices can be observed.
Such intelligent transport systems control an atomic part of the entire traffic demand.
Therefore, the framework of atomic network games applies in this case. Even though
Cominetti, Correa, and Stier-Moses in [23] present instances, where the performance
of a Nash equilibrium deteriorates compared to the Nash equilibrium of the corre-
sponding nonatomic network game, our results show that the efficiency loss is still
bounded by a constant factor depending on d for polynomial latency functions in £;.
We note that still all known lower bounds do not match the upper ones. We see this
mismatch as an important open issue to be resolved. Besides network games in which
players seek to route given demands resource allocation games in networks with elas-
tic demands have recently gained much attention. For a simple resource allocation
mechanism, Kelly, Maulloo, and Tan [57] and Gibbens and Kelly [45] showed that for
price taking players the outcome of a Nash equilibrium is optimal. Johari and Tsit-
siklis [55, 56] showed that for price anticipating players the inefficiency of the Nash
equilibrium is bounded by 33% compared to the system optimal resource allocation.

Finally, we studied the source routing model for the Internet. We identified a
major drawback of the underlying equilibrium concept: In order to converge to an
equilibrium, traffic sources have to be aware of traffic changes within the network to
react accordingly. This implies that sources have to maintain the state of all available
routes during the entire connection duration. Therefore, in addition to the regular
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payload the total traffic volume is blown up by continuously signaling this needed
information. We investigated a different model in which sources select routes only
during a predefined time frame. We simplified the analysis by assuming that groups
of sources have different release times and every group of sources converges to a Nash
equilibrium before the next release time. In this regard, we considered a sequence of
games (groups) in which sources once they are at Nash equilibrium fix their routings.
By combining methods from online optimization with methods from algorithmic game
theory we showed that the competitive ratio of the online algorithm NSEQNAsH and
ASEQNAsH, which produce a flow that is at Nash equilibrium for every game can be
bounded by a constant factor (depending on d) for polynomial latency functions in
L. By definition of the algorithms, these results hold for nonatomic as well as atomic
player types. Even though these results indicate that the proposed working mechanism
is quite efficient, our simplifying assumptions are still to far away from reality. In
practice, sources and groups of sources start at arbitrary release times. Moreover, if
we assume that every source changes the routing only during a given time frame it is
not granted that the entire system is at equilibrium at any point in time, see Even-Dar
and Mansour [31] for work on the convergence speed. Nevertheless, we believe that we
can achieve an accurate approximation of the dynamics of a real system by considering
a sequence of Nash equilibria over time. It is open, however, if it is possible to prove
exact approximation guarantees in this case. As for the ONLINEMCRP, open issues
also include arc capacities and different expiring times for the demands.
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