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Abstract

An extended mathematical framework for barrier methods for state con-
strained optimal control compared to [7] is considered. This allows to apply
the results derived there to more general classes of optimal control problems,
in particular to boundary control and finite dimensional control.

AMS MSC 2000: 90C51, 49M05

Keywords: interior point methods in function space, optimal control, state
constraints

1 Convex State Constrained Optimal Control

In this note we extend the mathematical framework in [7] of barrier methods for
state constrained optimal control problems with PDEs to a more general setting.
In [7] we modelled the state equation by Ly = u with L as a closed, densely defined,
surjective operator. This restricts the applicability of our theory mainly to certain
distributed control problems. Motivated by the discussion in [6] we consider in
this work operator equations of the more general form Ay − Bu = 0, where A
is closed, densely defined and with closed range and B is continuous. While this
change in framework only neccessitates minor modificatios in the theory, it extends
its applicability to large additional classes of control problems, such as boundary
control and finite dimensional control.

To make this paper as self contained as possible, assumptions and results of [7]
are recapitulated, but for brevity proofs and more detailed information are only
given when there are differences to [7]. This is possible, because our extension has
only a very local effect.

Let Ω be an open and bounded Lipschitz domain in Rd and Ω its closure. Let
Y := C(Ω) and U := L2(Q) for a measurable set Q, equipped with an appro-
priate measure. Standard examples are Q = Ω with the Lebesgue measure for
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distributed control, Q = ∂Ω with the boundary measure for boundary control and
Q = {1, 2, . . . , n} with the counting measure for finite dimensional controls.

Define X := Y × U with x := (y, u) and consider the following convex mini-
mization problem, the details of which are fixed in the remaining section.

min
x∈X

J(x) s.t. Ay −Bu = 0

u ≤ u ≤ u, y ≤ y ≤ y.
(1)

We will now specify our abstract theoretical framework and collect a couple of basic
results about this class of problems.

1.1 Linear Equality Constraints

By the equality constraint Ay − Bu = 0 we model a partial differential equation
(cf. Section 1.3 below).

Assumption 1.1. Let R be a Banach space. Assume that B : U → R is a
continuous linear operator and that A : Y ⊃ domA → R is a densely defined and
closed linear operator with a closed range.

Assume that there is a finite dimensional subspace V ⊂ U of essentially bounded
functions on Q, such that R = ranA⊕ B(V ), i.e., for each r ∈ R there are unique
rY ∈ ranA and rV ∈ B(V ) with r = rY + rV .

Closed operators are a classical concept of functional analysis. For basic results
we refer to [9, Kapitel IV.4] for more details, see [5]. In many applications A is
bijective, i.e., the equation Ay = r has a unique solution y for all r ∈ R. However,
there are several important cases (such as pure Neumann problems), where only a
Fredholm alternative holds while the corresponding optimal control problems are
still well posed. Introduction of V includes these cases. If A is surjective, then
V = {0}. Consider now the operator

T : Y × U ⊃ domA× U → R

(y, u) 7→ Ay −Bu.
(2)

From our assumptions it can be shown easily that T is densely defined, closed and
surjective. Since T is closed, E := kerT is a closed subspace of X.

By density of domA in Y we can define an adjoint operator A∗. For every l ∈ R∗

the mapping y → 〈l, Ay〉 is a linear functional on domA. We define domA∗ as the
subspace of all l ∈ R∗ for which y → 〈l, Ay〉 is continuous on domA and can thus
by density be extended uniquely to a continuous functional on Y . Hence, for all
l ∈ domA∗ there is a unique A∗l ∈ Y ∗ for which 〈l, Ay〉 = 〈A∗l, y〉 ∀ y ∈ domA.
This defines A∗ : R∗ ⊃ domA∗ → Y ∗.
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1.2 Inequality Constraints and Convex Functionals

The inequality constraints in (1) are interpreted to hold pointwise almost every-
where and define a closed convex set of G ⊂ X. Some of the inequality constraints
may not be present.

Assumption 1.2. Assume that E = kerT is weakly sequentially compact. Assume
that there is a strictly feasible point x̆ = (y̆, ŭ) ∈ E, which satisfies

0 < dmin := ess inf
t∈Ω

min{ŭ(t)− u(t), u(t)− ŭ(t), y̆(t)− y(t), y(t)− y̆(t)}. (3)

Assume that J : X → R := R ∪ {+∞} is lower semi-continuous, convex, and
coercive on the feasible set E ∩ G, that J is continuous at x̆ (cf. (3)) and that its
subdifferential ∂J is uniformly bounded in X∗ on bounded sets of X.

Weak sequential compactness of E can usually shown by taking into account
slightly stronger regularity properties of A. Often domA is contained in a reflexive
(Sobolev)-Space.

Denote by χC(x) the indicator function of a set C ⊂ X, which vanishes on C
and is +∞ otherwise. Then we can rewrite (1) as an unconstrained minimization
problem defined by the functional:

F : X → R := R ∪ {+∞}
F := J + χE + χG.

(4)

By our assumptions F is a lower semi-continuous, convex, and coercive functional
with a non-empty domain and does thus admit a minimizer by weak compactness
of E (cf. e.g. [4, Prop. II.1.2]).

Assumption 1.3. Assume that F is strongly convex (w.r.t. some norm ‖·‖):

∃α > 0 : α ‖x− y‖2 ≤ F (x) + F (y)− 2F

(
x + y

2

)
∀x, y ∈ domF (5)

Usually, optimal control problems with Tychonov regularization satisfy (5).

1.3 Example: A class of Elliptic PDEs

To illustrate our theoretical framework we consider a class of elliptic PDEs, which
was analysed by Amann [1] in an even more general framework.

Let Ω be a bounded domain in Rd with a smooth boundary Γ. Let a ∈
C(Ω,Rd×d), ~b,~c ∈ C(Ω,Rd), a0 ∈ L∞(Ω), b0 ∈ C(Γ). Assume that a is symmetric
positive definite, uniformly in Ω. Denote by γ(·) : W 1,s → L2(Γ) the boundary trace
operator, which exists continuously if s > 3/2. For 1 < q < ∞ and 1/q + 1/q′ = 1
consider the following continuous elliptic differential operator in the weak formula-
tion:

A : W 1,q(Ω) → (W 1,q′(Ω))∗



4

〈Ay, p〉 :=
∫

Ω
〈a∇y +~by,∇p〉+ 〈∇y,~cp〉+ a0 yp dt +

∫

Γ
b0 γ(y)γ(p) ds. (6)

Let f ∈ (W 1,q′(Ω))∗. By [1, Theorem 9.2] a Fredholm alternative holds for the
solvability of the equation Ay = f . This means that either it is uniquely solvable,
or the homogenous problem has a finite dimensional space of nontrivial solutions
with basis vectors wi ∈ W 1,q(Ω). Then there is a finite number of conditions
〈wi, f〉 = 0 under which Ay = f is non-uniquely solvable. This implies that A has
a closed range with finite codimension and a kernel of the same dimension. In case
of solvability the estimate holds (cf. [1, 9.3(d)]):

‖y‖W 1,q ≤ C
(
‖f‖(W 1,q′ )∗ + ‖y‖(W 1,q′ )∗

)
. (7)

If q > d, then by the Sobolev embedding theorems W 1,q(Ω) ↪→ C(Ω) and we
may redefine A as an unbounded operator

A : C(Ω) ⊃ W 1,q(Ω) → (W 1,q′(Ω))∗.

Since C∞(Ω) is dense in C(Ω), A is densely defined, and closedness of A follows
easily from (7), continuity of the embedding W 1,q(Ω) ↪→ C(Ω), and closedness of
ranA. Hence, setting Y := C(Ω), R := (W 1,q′(Ω))∗, and domA := W 1,q(Ω), A fits
into our framework. Its adjoint operator

A∗ : W 1,q′(Ω) ⊃ domA∗ → C(Ω)∗.

is defined by 〈y, A∗p〉 = 〈Ay, p〉 via the right hand side in (6). This expression
is well defined for all y ∈ domA = W 1,q(Ω), and domA∗ is the set of all p, for
which 〈Ay, p〉 is continuous on domA with respect to ‖y‖∞ and have thus a unique
continuous extension to an element of C(Ω)∗.

By the choice of B we select how the control acts on the state. Two examples
are distributed control

BΩ : L2(Ω) → (W 1,q′(Ω))∗ 〈BΩu, p〉 :=
∫

Ω
u · p dt,

and Neumann or Robin boundary control

BΓ : L2(Γ) → (W 1,q′(Ω))∗ 〈BΓu, p〉 :=
∫

Γ
u · γ(p) ds.

If q′ < d/(d − 1) is chosen sufficiently large, BΩ is continuous by the Sobolev
embedding theorem for d ≤ 3 and BΓ is continuous by the trace theorem for d ≤ 2.
If d = 3, then γ : W 1,q′ → L2(Γ) is not continuous and thus the case d = 3 is not
included in our framework for BΓ. This has been a principle problem for the analysis
(not only for barrier methods) of state constrained optimal control problems (cf.
e.g. [3]). However, in [8] new techniques have been developed to overcome this
restriction, which are likely to carry over to the analysis of barrier methods.

If Ay = f is not uniquely solvable, then we have to assert that u ∈ U can be split
into u = uY + uV , such that 〈wi, BuY 〉 = 0 and uV ∈ L∞. Since all wi ∈ W 1,q are
bounded, such an uV can easily be constructed from these wi in our cases B = BΩ

and B = BΓ.
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2 The Homotopy Path and its Properties

We analyse the main properties of the homotopy path of barrier regularizations.
For brevity we give only proofs here, when they differ from [7].

Definition 2.1. For all q ≥ 1 and µ > 0 the functions l(z; µ) : R+ → R

l(z;µ) :=





−µ ln(z) : q = 1
µq

(q − 1)zq−1
: q > 1

are called barrier functions of order q. We extend their domain of definition to R
by setting l(z;µ) = ∞ for z ≤ 0.

Their derivatives can be computed as l′(z;µ) = −µqz−q. Bounds like z ≥ z and
z ≤ z, are incorporated by shifting the arguments.

Using these barrier functions l(z; µ) we construct barrier functionals b(z; µ) on
suitable spaces Z to implement constraints of the form z ≥ 0 on a measurable set
B ⊂ Ω by computing the integral over l:

b(·;µ) : Z → R

z 7→
∫

B
l(z(t);µ) dt.

By b′(z; µ) we denote the formal derivative of b(z; µ), defined by

〈b′(z; µ), δz〉 :=
∫

Q
l′(z; µ)δz dt,

if the right hand side is well defined. The following result connects these formal
derivatives to the subifferentials of convex analysis (cf. e.g. [4, Section I.5]).

Proposition 2.2. Consider b : Lp(Q) → R, 1 ≤ p < ∞ on a measurable set Q.
Then either ∂b(z; µ) = ∅, or ∂b(z;µ) = {b′(z; µ)}.

Consider b : C(Q) → R on a compact set Q and assume ∅ 6= ∂b(z; µ) ⊂ M(Q) ∼=
C(Q)∗. Then on the set of strictly feasible points S := {t ∈ Q : z(t) > 0} we have

m|S = b′(z;µ)|S ∀m ∈ ∂b(z; µ). (8)

In particular, ∂b(z; µ) ∩ L1(Q) = {b′(z;µ)}. Moreover,

〈m, δz〉 ≤ 〈
b′(z; µ), δz

〉 ≤ 0 ∀ 0 ≤ δz ∈ C(Q) (9)

and ∥∥b′(z; µ)
∥∥

L1(Q)
= min

m∈∂b(z;µ)
‖m‖M(Q) . (10)
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Adding barrier functionals to F we obtain another convex functional Fµ defined
by

Fµ(x) := F (x) + b(x; µ) = J(x) + χE(x) + χG(x) + b(x; µ)
= J(x) + χE(x) + b(x; µ).

(11)

Our definition implies F0 = F , which means that the original state constrained
problem is included in our analysis.

Theorem 2.3 (Existence of Minimizers). Let F : X → R be defined by (4) and
suppose that Assumptions 1.1–1.2 hold and that Fµ0 is coercive for some µ0 > 0.

Then (11) admits a unique minimizer x(µ) = (u(µ), y(µ)) for each µ ∈]0;µ0].
Moreover, x(µ) is strictly feasible almost everywhere in Ω and bounded in X uni-
formly in µ ∈ [0, µ0].

Next we study first order optimality conditions for barrier problems. For this
purpose we first have to study the subdifferential of χE , the characteristic function
for the equality constraints Ay − Bu = 0, which can by (2) be writted as Tx = 0.
It is at this point, where our theory differs from [7].

Lemma 2.4. If Assumption 1.1 holds, then there is a constant M , such that for
each u ∈ U there are y ∈ Y , uY ∈ U and uV ∈ V with Ay −BuY = 0 and

u = uY + uV ‖y‖∞ + ‖uV ‖∞ ≤ M ‖u‖U . (12)

Proof. For u ∈ U let Bu = r and r = rY + rV as in Assumption 1.1. Since ranA
and B(V ) (dimV < ∞) are closed, [9, Satz IV.6.3] yields a constant c independent
of r, such that ‖rY ‖+ ‖rV ‖ ≤ c ‖r‖ ≤ c ‖B‖ ‖u‖U .

By closedness of B(V ) the mapping B : V → B(V ) is open, which yields a
constant C such that for each rV ∈ B(V ) there is uV ∈ V with BuV = rV and
‖uV ‖U ≤ C ‖rV ‖. Since all norms are equivalent on finite dimensional spaces, and
V is a space of bounded functions, we even have ‖uV ‖∞ ≤ C ‖rV ‖.

Similarly, because ranA is closed, A : Y ⊃ domA → ranA is an open mapping
by [9, Satz IV.4.4] and for each rY ∈ ranA there is y ∈ domA with Ay = rY and
‖y‖∞ ≤ C ‖rY ‖.

This altogether yields ‖y‖∞ + ‖uV ‖∞ ≤ C(‖rY ‖ + ‖rV ‖) ≤ M ‖u‖U and thus
(12).

Proposition 2.5. Let X, R be Banach spaces and T : X ⊃ domT → R a closed,
densely defined, linear operator with closed range. Denote by χE the indicator func-
tion of E := kerT . Then

∂χE(x) = ranT ∗ ∀x ∈ E. (13)

Proof. Since, by definition of the subdifferential, ∂χE(x) = (kerT )⊥, (13) is a
consequence of the closed range theorem for closed operators on Banach spaces [5,
Theorem IV.1.2], which asserts (kerT )⊥ = ranT ∗.
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Theorem 2.6 (First Order Optimality Conditions). Suppose that the Assump-
tions 1.1–1.2 hold. For µ ≥ 0 let x be the unique minimizer of Fµ.

Then there are (jy, ju) = j ∈ ∂J(x), m ∈ ∂b(y; µ) ⊂ Y ∗ and p ∈ domA∗ such
that

jy + m + A∗p = 0
ju + b′(u; µ)−B∗p = 0

(14)

holds. If y is strictly feasible, then ∂b(y; µ) = {b′(y;µ)} and m is unique.

Proof. Let x be a minimizer of Fµ. Then 0 ∈ ∂Fµ(x) = ∂(J + χE + b)(x).
To show that (14) has a solution we have to apply the sum-rule of convex analysis

twice:
0 ∈ ∂(J + χE + b) = ∂J + ∂(χE + b) = ∂J + ∂χE + ∂b.

To be able to apply the sum-rule to a sum f + g of convex, lower semi-continuous
functions, they have to satisfy an additional regularity condition, such as the fol-
lowing (cf. e.g. [2, Theorem 4.3.3]):

0 ∈ int(dom f − dom g). (15)

Let now BX be the unit ball in a normed space X. We observe that showing (15)
is equivalent to showing that there is ε > 0 such that each x ∈ εBX can be written
as a difference x1 − x2 with x1 ∈ dom f and x2 ∈ dom g.

By (3) there exists a strictly feasible point x̆ = (y̆, ŭ), which implies x̆ ∈
dom(χE + b). Our assumptions on J include continuity at x̆ and hence bound-
edness in some ball x̆ + εBX . Thus,

εBX = (x̆ + εBX)− x̆ ⊂ domJ − dom(b + χE)

and we conclude that (15) is fulfilled for f = J and g = χE + b. Therefore the
sum-rule can be applied and yields ∂(J + χE + b) = ∂J + ∂(χE + b).

Next we show that ∂(χE + b) = ∂χE + ∂b by verifying (15) for b and χE . Here
Y = C(Ω) is crucial because it guarantees that (ŭ, y̆ + rBY ) ∈ dom b for r < dmin

via (3). By (12) there is δ > 0 such that for each u ∈ δBU we find an y ∈ (r/2)BY

with Ay −BuY = 0 and uV with ‖uV ‖∞ ≤ r, such that u = uY + uV .
Thus (y̆+y, ŭ+uY ) ∈ domχE and (y̆+y−w, ŭ−uV ) ∈ dom b for all w ∈ (r/2)BY

by (3). Consequently, for sufficiently small ε and arbitrary (w, u) ∈ εBX we have

w = ( y̆ + y ) − (y̆ + y − w)
u = (ŭ + uY )︸ ︷︷ ︸

∈dom χE

− ( ŭ − uV )︸ ︷︷ ︸
∈dom b

.

This finally shows (15) and the sum-rule yields 0 ∈ ∂J + ∂χE + ∂b.
This is an inclusion in Y ∗ × U∗. It implies that there are (jy, ju) ∈ ∂J(x),

(ν, p) ∈ ∂χE(x), m ∈ ∂b(y; µ), and l ∈ ∂b(u; µ), such that

jy + ν + m = 0
ju + λ + l = 0.
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Proposition 2.5 applied to T as defined in (2) yields (ν, λ) ∈ ran T ∗. Hence there is
p ∈ domT ∗ with ν = A∗p and λ = B∗p. Proposition 2.2 characterizes m and l in
terms of barrier gradients. This yields (14). If y is strictly feasible, then m = b′(y;µ)
by Proposition 2.2.

Once, existence of the barrier gradients is established, their uniform bounded-
ness for µ → 0 can again be shown as in [7].

Proposition 2.7. If the Assumptions 1.1–1.2 hold, then for each µ0 > 0

sup
µ∈[0;µ0[

‖m‖Y ∗ ≤ C.

Just as in [7] this result allows also to derive uniform bounds on the adjoint
state p(µ) in some suitable Sobolev space. The results on the analytic properties of
the central path carry over literally from [7].

Theorem 2.8. Suppose that that the Assumptions 1.1–1.3 hold. Let x(µ) be a
barrier minimizer for µ ≥ 0 and x∗ be minimizer of F . Then

F (x(µ)) ≤ F (x∗) + Cµ0 (16)

‖x(µ)− x∗‖ ≤ C

√
µ

α
. (17)

‖x(µ)− x(µ̃)‖ ≤ c√
αµ
|µ− µ̃| ∀µ̃ ≥ 0. (18)

Finally, we remark that the results on strict feasibility of the homotopy path,
which depend on the regularity of y(µ) carry over from [7].
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