/\

JAN
X R R_AX X X

<
O
P
P

s

TakustraRe 7
D-14195 Berlin-Dahlem
Germany

Konrad-Zuse-Zentrum
fur Informationstechnik Berlin

THOMAS STREUER', HINNERK STUBEN

Simulations of QCD in the Era of
Sustained Tflop/s Computing

IDepartment of Physics and Astronomy, University of Kentucky, Lexington, KY, USA

Contribution to Parallel Computing (ParCo) 2007, 4—-7 September 2007, Aachen and Julich, Germany

ZIB-Report 07-48 (December 2007)

Simulations of QCD in the Era of Sustained
Tflop/s Computing

Thomas Streuer and Hinnerk Stiiben?

! Department of Physics and Astronomy,
University of Kentucky, Lexington, KY, USA
E-mail: thomas.streuer@desy.de

2 Konrad-Zuse-Zentrum fur Informationstechnik Berlin Bj)
Takustr. 7, 14195 Berlin, Germany
E-mail: stueben@zib.de

The latest machine generation installed at supercompeteres in Germany offers a peak
performance in the tens of Tflop/s range. We study performamd scaling of our quantum
chromodynamics simulation programme BQCD that we obtagretivo of these machines, an
IBM Blue Gene/L and an SGI Altix 4700. We compare the perfaroeaof Fortran/MPI code
with assembler code. The latter allows to exploit concuyest more levels, in particular in
overlapping communication and computation as well as foieiieg data from main memory.

1 Introduction

The first computer delivering a performance of more than Ipféigpeak as well as in
the Linpack benchmark appeared on the Top500 list in Jun&'19%r German QCP
researchers it has taken until the installation of the cuigeneration of supercomputers at
national centres until a sustained Tflop/s was availableényelay runs of their simulation
programmes.

In this paper we report on how the sustained performance W@éned on these ma-
chines. There are two machines, the IBM BlueGene/L at NIG/KZAllich and the SGI
Altix 4700 at LRZ Garching/Munich. Both started user opinatin 2006. The Blue-
Gene/L has 16.384 CPUs (cores) and offers a peak perfornoddé&eT flop/s. The Altix
4700 originally had 4096 cores delivering 26 Tflop/s peakwds upgraded in 2007 to
9726 cores delivering 62 Tflop/s peak. The performance figweepresent were measured
on the upgraded system.

It is well known that the performance of QCD programmes casigeificantly im-
proved by using low level programming techniques like pamgming in assembler. In
general compilers are not able to generate most efficierd émdthe multiplication of
small complex matrices which is the typical operation in pomational QCD (see Sec. 2),
even if all data needed for the computations is in the dathecgsee Table 2). In assembler
one can in addition exploit concurrency at more levels. Ad¢ tavel there are low level
communication calls on the BlueGene, by which one can aehiteat communication and
computation overlap. Another level is prefetching datarfrmain memory, which will be
important on the AltiX.

@Quantum chromodynamics (QCD) is the theory of stronglyratteng elementary particles.
bOn the Altix there are two potential methods for overlappiegmunication and computation. (a) Since mem-

As will be explained in Sec. 2 simulations of QCD are commatian intensive.
Therefore overlapping communication and computation igrgoortant issue. On systems
with larger SMP-nodes one can overlap communication andpatation by combining
OpenMP and MPL The nodes of the machines we consider are too small nodeisigor
high level programming technique to work efficiently.

2 Computational QCD

The starting point of QCD is an infinite-dimensional intdgreo deal with the theory on
the computer space-time continuum is replaced by a fouedgional regular finite lattice
with (anti-) periodic boundary conditions. After this distisation the integral is finite-
dimensional but rather high-dimensional.

The standard algorithm employed today in simulations of G&Bybrid Monte Carld
(HMC). HMC programmes have a pronounced kernel, which iseaative solver of a large
system of linear equations. In BQCD we use the standard gatgugradient (cg) solver.
Depending on the physical parameters 80 % or up to more th&m®&3he execution time
is spent in the solver. The dominant operation in the sob/éré matrix times vector mul-
tiplication. In the context of QCD the matrix involved is keal fermion matrix This paper
is about optimising one part of fermions matrix multiplicet which is the multiplication
of a vectory with thehopping matrixD: ¢(i) = >-"_, D(i, j)¥(j), wheren is the lattice
volume. The hopping matrix is large and sparse. The entriesw i are the nearest neigh-
bours of entryi of the vectory (for an illustration see Fig. 1). The entries of the hopping
matrix are3 x 3 complex matrices and for Wilson fermion, which are used infdBQthe
entries of the vectors arex 3 complex matrices or with internal indicess’ = 1,2, 3,4
andc, ¢ = 1,2, 3 spelled out

4

¢sc Z l: 1 +’Y,u, ss/U cc/()ws’c’ (7‘ -) + (1 - ’YH)SS/ULL cc’! ()ws’c/(i +ﬂ):| . (1)

UT denotes hermitian conjugation. Thematrices

0o o i o o 1 0

_ 0o o _ 0o -1 o _ 0
1= 0 —i sv2 = 10 o |v3=|
—i 0 o 0 o 0

lead to different access patterns to the entries.dflo floating point operations are needed
in their multiplications.

A static performance analysis of the hopping matrix multggion yields that the ratio
of floating point multiplications to floating point additisris about 85 % which gives the
maximal theoretical performance on processors with fusatliply-adds. Per memory
access 13 floating point operations have to be performedemavhrage.

QCD programmes are parallelised by decomposing the latticeregular domains.
The domains become relatively small. For example, the dize ©PU local domain is

~ooo
=000

coos
colo
-
~
B
N
I
—
coowr
coro
oloo
-
|l coco
-
~

-
cos 0o
o oo

ory is shared between all nodes, it is possible to exchangesitaply by using loads or stores (via so-called
shmem pointejs combined with prefetches as needed in order to hide lptee have tried this promising
method in assembler and in Fortran/C/MPI (without explic&fetching). In both cases performance decreased.
(b) One could try to emplofayper-threadingvhere one would use on thread per core for computation anc-a se
ond thread for communication. In principle there should béardware bottlenecks. However, hyper-threading
is switched off on the machine we were using.

[] [] O >0

P(i — i) ¥(i) P(i+ i)

Figure 1. Nearest neighbour stencil underlying the hoppiradrix D. The central point ig. On the righthand
side the corresponding Cartesian coordinate system andatfebles appearing in Eq. (1) are indicated for one
dimension.U is called thegauge fieldwhich is defined on the links of the lattice. The fields defined on the
lattice sites.

83 x 4 = 2048 lattice sites when putting 323 x 64 lattice (a typical size used in today’s
simulations) on 1024 CPUs. The size of the surface of thiallealume is 2560 sites, i.e.
the surface to volume ratio is 1.25. Here is the challenge@D@rogrammes. In every
iteration of the solver data of the size of the input veetohas to be communicated to
neighbouring processes.

The basic optimisation is to calculate the projectiing-y,,)y (j) before the communi-
cation. Due to the symmetries of the projections the amoladt@ to be transfered can be
halved. Even with this optimisation, the problem is comneation intensive. Very good
communication hardware is needed and overlapping commtioicand computation is
desired to scale QCD programmes to large numbers of prazesse

3 QCD on the IBM BlueGene/L

3.1 Hardware

The IBM BlueGene/L is a massively parallel computer. Theotogy of the network con-
necting the compute nodes is a three-dimensional torush E&@opute nodes has links to
its six nearest neighbours. The hardware bandwidth peidiik5 MByte/s. The network
latency i$:

One way Latency= (2.81 4 .0993 x Manhattan Distangeus

In addition to the torus network which is used for point-wifg communication there is a
tree network for collective communications.

A BlueGene/L compute chipcontains two standard PowerPC 440 cores running at a
clock speed of 700 MHz. Each core hagauble hummefloating point uni¢ (FPU) which
operates as a vector processor on a setof32 registers. Besides pure vector arithmetic
operations, there is a set of instructions which operatiésrently on both registers as it
is needed for performing complex arithmetic. Since each ERW perform one vector-
multiply-add operation per clock cycle, the peak perforo®of the chip is 5.6 Gflop/s.

Each compute node contains 512 MByte of main memory. Each lvas a 32 kByte
L1 data cache. There is a 4 MByte L3 cache on the chip whichaseshbetween the two
cores. Coherency between the L1 caches of the two cores enfmiced by hardware, so
software has to take care of it. To facilitate data excharegwden the two cores, each chip
contains 1 kByte of static ram (SRAM) which is not cached.

The torus network is accessed from the chips through a se¢ofory-mapped FIFOs.
There are 6 injection FIFOs and 12 reception FIFOs on eagdf.cBiata can be written
to or read from these FIFOs using some of the double-humradrdtore instructions. We
used this feature in our code. We made no special use of tepémtlent tree network.

The BlueGene/L operating systems supports two modes ofibper (a)communica-
tion coprocessor modevhere one of the cores is dedicated to communication, vihde
other does the computational work, and ybjual node modewhere both cores perform
both communication and computation operations. We alwagur programs in virtual
node mode.

3.2 Assembler kernel

They-, z-, andt-directions of the lattice are decomposed in such a way lteatiecompo-
sition matches the physical torus network exactly. THdirection is split between the two
cores of a node. Since the L1 caches are not coherent, coroationiin thez-dimension
cannot be done via shared memory in the most straightforwayd Instead, we use the
1kByte SRAM for communication between the two CPUs.

Ideally communication and computation should overlap. Q@D programme on
the BlueGene/L this can only be achieved by programming serabler. For the float-
ing pointing operations and communication double-hummstrictions are used. In the
course of the computation, each node needs to receive pidwe ofata from the boundary
of its neighbouring nodes, and likewise it has to send pathi@fata from its boundary to
neighbouring nodes. In order to hide communication lateth®yassembler kernel always
looks ahead a few iterations and sends data that will be dd®da remote node. Data is
sent in packets of 96 bytes (plus 32 bytes for header and pggdvhich is the size of a
projected spinof1 + ~,,)1(j) in double precision. When a CPU needs data from another
node, it polls the respective reception FIFO until a datekpharrives. Since each node
sends data packets in the same order in which they are neadeel eceiving side, it is not
necessary to do any reordering of the packets or to storetémaporarily. For comparison
with a similar implementation see Referefice

3.3 Performance results

In scaling tests the performance of tbg-kernel was measured. For performance mea-
surements the code was instrumented with timer calls anthéokernel all floating point
operations were counted manually.

In order to get good performance it is important that thedatfits the physical torus
of the machine. In the assignment of MPI process ranks thetéous directions have to
be permuted. On the BlueGene/L this can be accomplishedtbgigsthe environment
variableBGLMPI _MAPPI NGappropriately. The settings of that variable w&brZ on 1,

2, and 4 racks an@iYZX on 8 racks.

implementation: Fortran/MPI

lattice8> x 96

#racks Mflop/s per core overall Tflop/s speed-up efficiency
1 280 0.57 1.00 1.00
2 292 1.20 2.09 1.04
4 309 2.53 4.41 1.10
8 325 5.32 9.29 1.16
implementation: Fortran/MPI latticg2* x 64
#racks Mflop/s per core overall Tflop/s speed-up efficiency
1 337 0.69 1.00 1.00
2 321 1.32 191 0.95
4 280 2.30 3.33 0.83
8 222 3.65 5.28 0.66
implementation: assembler lattick2® x 64
#racks Mflop/s per core overall Tflop/s speed-up efficiency
1 535 1.10 1.00 1.00
2 537 2.20 2.01 1.00
8 491 8.05 7.34 0.92

Table 1. Performance of the conjugate gradient kernel orBtheGene/L for two implementations and two

lattices.

Scaling of the cg solver of BQCD

Tflop/s

speed—up

© 48% x 96 lattice
O 32% x 64 lattice

Scaling of the cg solver of BQCD

Tflop/s

number of BlueGene/L racks

speed—up

O 327 x 64 lattice

number of BlueGene/L racks

Figure 2. Scaling of the conjugate gradient kernel of BQCDRhenBlueGene/L for the Fortran 90/MPI version
(left) and for the assembler version (right). The dotteddiindicate linear scaling.

Performance results are given in Table 1. In Fig. 2 resutskown on double logarith-
mic plots. One can see from the table and the plots that thedPdkP1 version exposes
super-linear scaling on th&s3 x 96 lattice. Even the323 x 64 lattice scales quite well
given the fact that the lattice volumes per core become tloy(1 to16 x 23). The scaling
of the assembler version is excellent. For the same tiny latteces the scaling is consid-
erably better than for the Fortran/MPI version. This medas in the assembler version
computation and communication really overlap.

4 QCD on the SGI Altix 4700

4.1 Hardware

The SGI Altix 4700 is a scalable ccNUMA parallel computes, its memory is physically
distributed but logically shared and the memory is kept cefieautomatically by the hard-
ware. For the programmer (or a programme) all of the mackim&mory is visible to all
nodes, i.e. there is a global address space.

The compute nodes of the Altix 4700 consist of 256 dual cooegssors. One pro-
cessor is reserved for the operating system, 255 procesaorise used for computation.
Inside a node processors are connected via the falNt#dAlink 4 network with a the-
oretical bandwidth of 6.4 GB/s per link. The nodes are cotetkeia a two-dimensional
torus type of network. However, the network is not homogeiseahicha priori makes it
difficult to scale our problem to very large numbers of cofdse machine at LRZ has the
following bisection bandwidths per proces$or

intra-node 2 x 0.8 GBytel/s.
any two 'vertical’ nodes 2 x 0.4 GByte/s.
four nodes (shortest path)2 x 0.2 GByte/s.
total system 2 x 0.1 GByte/s.

The processors of the Altix 4700 are Intel ItaniuMantecitoDual Core CPUs, clocked at
1.6 GHz. Each core contains two floating point units, eachld€wis capable of perform-
ing one multiply-add operation per cycle, leading to a peaffggmance of 6.4 Gflop/s per
core (12.8 Gflop/s per processor).

There are three levels of cache, but only two of them (L2 anddr8 used for float-
ing point data. The L3 cache has a size of 9 MByte and a maximamawidth of 32
bytes/cycle, which is enough to feed the floating point ueitsn for memory-intensive
operations. The bandwidth to main memory is substantialiyel.

4.2 Assembler kernel

Because the memory bandwidth is so much lower than the L3edaahdwidth, it is im-
portant that we partition our problem in such a way that welaap the fields which we
need during the conjugate gradient iterations in the L3 eashithat in principle no access
to local memory is required. From Table 2 one can see thatdattp to abous? sites fit

lattice #cores Fortran [Mflop/s] assembler [Mflop/s]

47 1 3529 4784
64 1 3653 4813
84 1 3245 4465
10% 1 1434 3256
124 1 1329 2878
144 1 1103 2766
16% 1 1063 2879

Table 2. Performance of the hopping matrix multiplicationaosingle core on the Altix 4700.

weak scaling for locag” lattices
lattice #cores Fortran [Mflop/s] assembler [Mflop/s]

]t 1 2553 3655
16% 16 1477 2235
24* 81 1273 1978
321 256 1251 1750
328 x 64 512 1195 1619
40 x 64 1000 1156 1485

strong scaling for th823 x 64 lattice
lattice #cores Fortran [Mflop/s] assembler [Mflop/s]

323 x 64 512 1195 1619
323 x 64 1024 1395 1409
328 x 64 2048 996 841

Table 3. Scaling on the Altix 4700 for the conjugate gradsmiver. Performance figures are in Mflop/s per core.

into the L3 cache. When staying inside the L3 cache assermbdris roughly a factor of
1.3 faster. Outside the L3 cache the assembler is faster aactor of 2.7. The reason
for this speed-up is prefetching. Prefetching is importathe parallel version even if the
local lattice would fit into the cache, because data that stiemm remote processes will
not be in the cache but rather in main memory.

4.3 Performance results

Performance results are given in Table 3 and plotted in Figi8ak scaling results are
shown on the left hand side of Fig. 3. From the weak scalingeeetisat parallel perfor-
mance is dominated by data communication overhead. Whew dam one core to the

Weak scaling of the cg solver of BQCD, local 8* lattices
T T — T T —T

Scaling of the cg solver of BQCD

Tflop/s

2,04

Gflop/s per core
speed—up

O assembler

© 32% x 64, Fortran

< Fortran 1 1 P61 © 323 x 64, assembler _|

M| ol L L L L L T
1 10 100 1000 1 10
number of Altix 4700 cores multiples of 512 Altix 4700 cores

Figure 3. Weak (left) and strong scaling (right) of the cate gradient solver. The dotted line in the strong
scaling plot indicates linear scaling.

general case df* = 81 cores (on a single node) performance drops by a factor oftabou
two and continues to decrease slowly when increasing thérauof cores further.

Strong scaling results are shown on the right hand side af3Figrhe Fortran code
scales super-linearly when going from 512 to 1024 cores lwiscclearly an effect of
the large L3 cache. Remarkably, Fortran outperforms thenalsier on 2048 cores. This
indicates that the MPI calls, that are handled in the assemplalrt, lead in this case to an
inefficient communication pattern.

Note that 1024 and 2048 cores do not fit into two or four nodepeaetively. For a
production run a 'sweet spot’ had been searched and filliogtwdes with locas* lattices
was chosen. The overall lattice size wi@i$ x 64 which was put ont&? x 8 = 1000 cores.
The average overall performance sustained was 1.485 Tiidpfh is 23 % of the peak
performance.

5 Summary

Using lower level programming techniques improves the qrernce of QCD pro-
grammes significantly. The speed-up that can be achieveshiparison to programming
in Fortran/MPI is a factor of 1.3-2.0.

We found that our code scales up to the whole Blue Gene/L liohliThe highest
performance measured was 8.05 Tflop/s on the whole machipeodiuction typically one
rack (2048 cores) is used on which a performance 1.1 Tflofd8 &6 of peak is sustained.
The high performance and scaling could be obtained by wndple hummeinstructions
and techniques to overlap communication and computation.

On the Altix 4700 the large L3 data cache helps a lot to boodbpmance. Due to
the hierarchical nature of the communication network penémnce measurement depend
to some degree on the placement of programmes. In produaticaverage sustained
performance of 1.485 Tflop/s or 23 % of peak is achieved whamgud00 cores.

Acknowledgement&.he performance measurements were done on the BlueGene/L at
NIC/ZAM Julich at the BlueGene Scaling Workshop, Juliskp December 2006 and on
the Altix 4700 at LRZ Garching/Munich. T.S. is supported byendor-Lynen Fellowship.

References

1. waww. t op500. org

2. G. Schierholz and H. Stiibe®ptimizing the Hybrid Monte Carlo Algorithm on the
Hitachi SR8000Qin S. Wagner, W. Hanke, A. Bode and F. Durst (eds.), Highd?erf
mance Computing in Science and Engineering, Munich 2004.

. S. Duane, A. Kennedy, B. Pendleton, D. Roweth, Phys. BelB5 216-222 (1987).

. Unfolding the IBM eServer Blue Gene SolutitBiM Redbook bm conl r edbooks.

. A. A. Brightetal, IBM J. Res. & Dev49, 277-287 (2005).

. C.D. Waitet al, IBM J. Res. & Dev49, 249-254 (2005).

. N. R. Adigaet al, IBM J. Res. & Dev49, 265-276 (2005).

. P. Vranat al,, Proceedings of the ACM/IEEE SC2006 Conference on Highdeerf
mance Computing and Networking, Tampa, Florida, USA, Ndven2006.

9. ww. | r z- nuenchen. de/ servi ces/ conput e/ hl r b/ bat ch/ bat ch. ht n

O~NO Ol h W

