
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

THOMAS WOLF 1

On solving large systems of polynomial
equations appearing in Discrete Differential

Geometry

1Department of Mathematics, Brock University, 500 Glenridge Avenue,
St.Catharines, Ontario, Canada L2S 3A1, email: twolf@brocku.ca

ZIB-Report 08-10 (February 2008)

On solving large systems of polynomial

equations appearing in Discrete Differential

Geometry

Thomas Wolf

Department of Mathematics, Brock University
St.Catharines, Ontario, Canada L2S 3A1

email: twolf@brocku.ca

March 3, 2008

Abstract

The paper describes a method for solution of very large overdeter-
mined algebraic polynomial systems on an example that appears from
a classification of all integrable 3-dimensional scalar discrete quasilin-
ear equations Q3 = 0 on an elementary cubic cell of the lattice Z

3.
The overdetermined polynomial algebraic system that has to be

solved is far too large to be formulated. A ‘probing’ technique which
replaces independent variables by random integers or zero allows to
formulate subsets of this system.

An automatic alteration of equation formulating steps and equa-
tion solving steps leads to an iteration process that solves the compu-
tational problem.

MSC: 37K10, 52C99, 52-04
PACS: 02.70.Wz, 02.30.Ik
Keywords: integrable systems, discrete equations, large polyno-

mial systems, computer algebra, Reduce, Form, Crack.

1 Introduction

The classification of integrable equations, whether Hamiltonian systems of
ordinary differential equations (ODEs) ([9]), systems of evolutionary vector

1

partial differential equations (PDEs) ([11]), hyperbolic systems ([3]) or su-
persymmetric systems ([4, 5, 6]) is a rich source of overdetermined systems of
equations which themselves pose interesting challenges to computer algebra.
For example, the computational problem resulting from trying to find Hamil-
tonian ODE systems with higher degree first integrals is hard partly because
of the large size of the overdetermined polynomial algebraic problem with
typically 400-700 unknowns and twice as many equations but even more so
because of the non-trivial nature of the solutions that included single poly-
nomial equations solvable only in radicals which complicated the solution
process. To give another example, the classifigation of integrable hyperbolic
systems does not lead to overdetermined algebraic systems but to overdeter-
mined non-linear PDE-systems.

This paper describes work on the classification of 3-dimensional integrable
scalar discrete equations. The mathematical aspects of this project are dis-
cussed in detail in [10] and are based on a collaboration with Sergey Tsarev.
In this article the emphasis lies on the implied computational challenge fol-
lowing from the astronomical size of the overdetermined system.

Although there are only up to 22 unknowns, the algebraic polynomial
conditions are hard because they are of degree 8, there are many (6.4× 109)
and they are large with a total number of at least 1014 terms. Thus the
system of equations is far too big to be even only formulated initially. A
special ‘probing’ technique had been developed to generate at least subsets
of the conditions so that an interative algorithm which alternates solution
steps and problem formulation steps was able to make progress and finally
solve the complete problem.

Computations for this paper had been made in the computer algebra
systems Reduce and Form ([12]), in particular with the Reduce package
Crack ([14, 15]), which is the workhorse behind all the applications listed
above.

In the following section we introduce the mathematical problem and for-
mulate the result of the computations. This section contains enough details
to make this article selfconsistent but it may be skipped by the reader who
is exclusively interested in computer algebra issues.

An estimate for the initial size of the computational problem if it would
be formulated ad hoc is derived in section 3. In section 4 we take a closer
look at the computational challenge and motivate a ‘probing technique’ to be
introduced in Section 5. A dynamic alteration of the generation of equations
and the solution of equations is described in section 6. Although the random

2

‘probing’ is very application specific, it was possible to design the dynamic
iteration of solving and formulating equations essentially in a general form,
being re-usable in future applications of the Crack package. In the last
section 7 we make comments about the time needed to complete the project.

2 Integrable Scalar Discrete Equations

2.1 Face Formulas

In the relatively short period of about a decade the field of discrete differential
geometry already provided much insight to structures that are fundamental
both to classical differential geometry and to the theory of integrable PDEs.
Their objects of interest are classical surfaces and PDEs – both are smooth
limits along some directions of discrete lattices build from elementary cubes.
This paper deals with integrable fields on elementary cubes.

In the following we consider an n-dimensional elementary cube Kn =
{(i1, . . . , in) | is ∈ {0, 1}} with coordinate values xi at each corner being ei-
ther zero or one. To each of the 2n corners (i1, . . . , in) is attached a field
variable fi1,...,in. We will use the short notation f for the set (f00...0, . . . , f11...1)
of all these 2n variables.

By attaching cube cells to each other one can assemble an n-dimensional
cubic lattice Zn with field variables fi1,...,in, ij ∈ Z assigned to each lattice
point. Of interest are such discrete fields f which satisfy on each single
elementary cube one and the same relation

Qn(f) = 0 (1)

between the f -values at the corners of this cube. Of special interest and thus
objects of intensive study are equations (1) that are integrable in some sense.
We are interested in an (n+1)-dimensional consistency as this is a criterium
underlying the integrability of many classical integrable nonlinear PDE that
appear as continuous limits along some of the discrete directions:

An n-dimensional discrete equation (1) is called consistent, if it may
be imposed in a consistent way on all n-dimensional faces of a (n + 1)-
dimensional cube.

Thus equations (1) are also called “face relations”. 2-dimensional face
relations

Q2(f00, f10, f01, f11) = 0 (2)

3

were studied in detail in [1, 2]. Of special interest are face relations that have
the following two extra properties.

1) Quasilinearity. To be able to solve face relation (1) for any of the
occuring f -values it should be affine linear w.r.t. every fi..j, i.e. Q has degree
one in any of its variables. In two dimensions this means:

Q2 = c1(f10, f01, f11)f00 + c2(f10, f01, f11)

= c3(f00, f01, f11)f10 + c4(f00, f01, f11) = . . .

= q1111f00f10f01f11 + q1110f00f10f01 + q1101f00f10f11 + . . . + q0000 (3)

and in n dimensions

Qn =
∑

D

qD

∏

is=0,1

(

fi1...in

)Di1...in (4)

with constant coefficients qD, where the summation is taken over all 22n

many
2n-tuples D = (D00...0, . . . , D11...1), each power Di1...in of the respective vertex
variable fi1...in being either 0 or 1. In other words: the 2n indices of qD are the
exponents of the 2n vertex field variables fi1...in, with each exponent Di1...in

being 0 or 1.
2) Symmetry. Equation (1) should be invariant w.r.t. the symmetry

group of the n-dimensional cube. Subsection 2.3 is devoted to computational
and conceptual simplifications resulting from it.

f00

f01

f10

f11

Figure 1: Square K2.

f000

f001

f010

f011

f100

f101

f110

f111

Figure 2: Cube K3.

2.2 The Consistency Condition

In the case of a 2d face formula (3) defined on the square of Figure 1 to
be 3d-consistent (also often called to be integrable) the above consistency
condition takes the following form.

4

Let us assume that field value f000 in the lower left front corner in Fig-
ure 2 and values f100, f010, f001 at the neighbouring corners are arbitrarily
given. By imposing (3) to hold on the three “initial 2d-faces” {x1 = 0}:
Q(f000, f010, f001, f011) = 0, {x2 = 0}: Q(f000, f100, f001, f101) = 0, {x3 = 0}:
Q(f000, f100, f010, f110) = 0, the affine linearity of the relations allows us to
find f011, f101, f110 situated diagonally opposite to f000 on those faces. By ap-
plying these relations again, now to the other three “final 2d-faces” {x1 = 1}:
Q(f100, f110, f101, f111) = 0, {x2 = 1}: Q(f010, f110, f011, f111) = 0, {x3 = 1}:
Q(f001, f101, f011, f111) = 0, we obtain three rational expressions involving
f111 which according to the 3d-consistency condition must be consistent for
arbitrary “initial data” f000, f100, f010, f001. By eliminating f111 from one
of the three expressions and substituting it in the other two we obtain two
polynomial identities which have to be splitted w.r.t. the four independent
initial field variables f000, f100, f010, f001 resulting in a large overdetermined
polynomial system for the unknown coefficients qijkl in the face formula (3).

In [1] a complete classification of 3d-consistent 2d-face formulas (in a
slightly different setting) was obtained; in [2] a similar classification was
given for the case when one does not assume that the formula (2) is the
same on all the 6 faces of the 3-dimensional cube, but all face relations are
still assumed to be affine linear (and in some sense nondegenerate).

2.3 Cubical Symmetries

In a first investigation we classified 2-, 3- and 4-dimensional affine linear
face relations according to their complete symmetry group of the respective
n-dimensional cube.

Apart from simplifying the computational problem of classifying face re-
lations (1) the symmetry requirement also simplifies the conceptual problem
in which orientation to apply the n-dimensional formula (1) to each of the
faces of the (n + 1)-dimensional cube. For example, in n = 2 dimensions
the face formula (3) defined on the square in Figure 1 can be attached in
8 different ways to each of the 6 faces of the cube in Figure 2 but if (3) is
symmetric then all 8 ways are equivalent.

We take as the symmetry generating set the reflection w.r.t. the plane
x1 = 1/2 and further (n − 1) diagonal reflections w.r.t. the planes x1 = xs,
s = 2, . . . , n (here xk denote the coordinates in Rn). Thus the symmetry
is characterized by n signs according to the requirement Q(f) = ±Q(R(f))
which has to be satisfied identically in all f . For n = 3 this generates 8 cases,

5

each with about 770 equations for the 223
= 256 coefficients qD1...D8 of the

affine linear face formula.
An n = 4 dimensional cube has 24 corners and as many f variables giving

224
= 65536 terms and as many undetermined coefficients in the affine linear

face formula. In each of the 16 symmetry cases a splitting w.r.t. the vari-
ables fi1...in results in about 250,000 linear (sparse) equations for the 65536
coefficients qD1...D16 .

For n = 3 – the case of interest in this paper – only 3 symmetries allow
face formulas that are not identically zero:

(−−−) : Q has 1 parameter and 24 terms

(−++) : Q has 13 parameters and 186 terms

(+++) : Q has 22 parameters and 256 terms

Results for dimensions 2 and 4 as well as a classification of face formulas
that are invariant under the action of the more restrictive SL2(C) group of
fractional-linear transformations

f 7−→ (af + b)
/

(cf + d) (5)

(all group parameters a, b, c, d are the same for all the vertices of the cube)
are given in [10].

To solve the sparse but rather extensive linear systems of symmetry con-
ditions for the coefficients qD appearing after splitting w.r.t. the variables
fi1...in , a special linear equation solver StreamSolve had to be written. It
can be downloaded together with other material related to this publication
from http://lie.math.brocku.ca/twolf/papers/TsWo2007/readme.

For example, when computing for n = 4 from the face formula that al-
ready has the symmetry (−+++) (and thus had already reduced the number
of unknown coefficients) a specialization which in addition has the SL2(C)-
symmetry then this program reads 24556 equations from a 5.2MB input file,
solves this linear algebraic system, and writes the solution into a file in an
80MB session of Reduce 3.8 running under Linux on a 32bit 1.7GHz Pen-
tium IV dual CPU PC in 16 sec CPU. The default Reduce solver SOLVE
was not able to solve this or similar systems but has been improved recently
using ideas from StreamSolve.

6

2.4 Results

Before turning to the central content of this article in the following section,
which concerns the size of the consistency conditions to be solved we want
to discuss their solutions as they are an indicator of the size of computations
too.

The first case (−−−) is totally skew-symmetric and has only one param-
eter (a constant overall factor), so this symmetry case specifies Q completely:

Q(−−−) = (f100 − f001)(f010 − f111)(f101 − f110)(f011 − f001) −

(f001 − f010)(f111 − f100)(f000 − f101)(f110 − f011) (6)

which is the so called discrete Schwarzian bi-Kadomtsev-Petviashvili system
(dBKP-system) – an integrable discrete system found in [7, 8] and studied
in [1] where the fact of its 4d-consistency was first established.

For the two others cases (−++) and (+++) the remaining 13 and 22 pa-
rameters had to be determined from consistency conditions. The complete
solution consists in the case (−++) of 3 solutions with 1,2 and 3 free param-
eters and in the case (+++) of 5 solutions with 2,2,3,3 and 4 free parame-
ters, all shown at http://lie.math.brocku.ca/twolf/papers/TsWo2007/

SolutionsOfConsistency. All these solutions (in contrast to (6)) turned
out to be mathematically trivial as for each of them SL2(C)-transformations
(5) were found that transform the face formula into one of the three trivial
versions

Q(1) = f000f001f010f011f100f101f110f111 − σ, (7)

Q(2) = f001f010f100f111 − σf000f011f101f110, (8)

Q(3) = (f001 + f010 + f100 + f111) − σ(f000 + f011 + f101 + f110), (9)

σ = ±1.

Although being mathematically trivial, some solutions involve extended
rational expressions and are surely not computationally trivial. For example,
for solution case+++/s4 from the web page given above, the corresponding
face formula is too big to be shown in this article1. It is also too large to
be checked to be a solution directly, even with the computer algebra system
FORM (which was used to check the consistency of (6)). A correctness test

1with Q in ASCII code taking 200kB

7

had to be done through finding SL2(C)-transformations converting them to
the forms (7), (8), (9).

The non-trivial size of some solutions has some relevance for section 4
which deals with the main computational problem: the formulation and so-
lution of the consistency conditions. The complexity in solving a system of
equations (not in formulating it) is typically closely related to the number
and complexity of the solutions themselves.

Before, we will make general considerations about the problem of formu-
lating the full set of consistency conditions.

3 The Size of Consistency Conditions

The following considerations are made under the assumption of generic un-
known coefficients qD in the face formula (4) not satisfying additional sym-
metry conditions.

Any (n+1)-dimensional hypercube built from 2n+1 vertices fi1...in+1 , ik ∈
{0, 1} has 2(n + 1) faces located in the (logical) planes xk = 0 and xk = 1,
k = 1, . . . , (n + 1). The face relations for the n + 1 faces that correspond to
xk = 0 are

0 =
∑

D

qD

∏

is=0,1

(

fi1...ik−10 ik+1...in+1

)Di1...ik−1ik+1...i(n+1) . (10)

They can be used to determine f1..101..1 with the 0 being in the kth index
position. Each of these face relations involves 2n f -variables and thus 22n

terms, half of them include f1..101..1 as a factor and the other half not. Solving
the face relation xk = 0:

0 = Akf1..101..1 + Bk (11)

where Ak, Bk are expressions in qD, fβ for f1..101..1 and substituting f1..101..1 =
−Bk/Ak in any expression that involves f1..101..1 linearly (like other face re-
lations) and taking the numerator over the common denominator amounts
to multiplying all terms that involve f1..101..1 by −Bk and all other terms
by Ak. As Ak and Bk involve each 22n

/2 = 22n−1 terms this means that a
substitution of f1..101..1 increases the number of terms by a factor of 22n−1,
before cancellations and reductions will be made.

8

The 2nd half of face relations for the n+1 faces that correspond to xk = 1
are

0 =
∑

D

qD

∏

is=0,1

(

fi1...ik−11 ik+1...in+1

)Di1...ik−1ik+1...i(n+1) . (12)

Each one of them involves f11..1 and n of those f -variables which have exactly
one 0 as index in any one of the n + 1 index positions apart from the kth

position. Replacing each one of these n f -variables by using the correspond-
ing xl = 0 face relation increases the number of terms by a factor 22n−1 each
time, giving in total 22n(

22n−1
)n

= 22n(n+1)−n terms. In each substitution the
degree of the coefficients qD increases by one, reaching finally n + 1.

Solving one of the n + 1 many xk = 1 face relations

0 = Gkf11..1 + Hk (13)

for f11..1 and substituting f11..1 = −Hk/Gk in the other face relations gives n
independent consistency conditions

GjHk = GkHj, j = 1, . . . , k − 1, k + 1, . . . , n + 1 (14)

with each Gi and Hi having 22n(n+1)−n/2 terms, i.e. each consistency condi-

tion involving 2
(

22n(n+1)−n−1
)2

terms. The total number of terms of the n

consistency conditions is thus n2{2
n+1(n+1)−2n−1}.

To compute an upper bound of the number of conditions that result
from splitting each consistency condition with respect to the independent f -
variables we note that their highest degree is equal to the total degree of all
qD, i.e. it is 2n + 2. The only exception is f00...0 which does not occur in the
face relations (12). It enters only through substitutions, so its highest degree
in the constraints is 2n. We thus get for an upper bound of the number of
different products of different powers of f00...0 and the other 2n+1 − n − 3

independent f -variables the value 2n(2n + 2)

(

2n+1−n−3
)

. With this number
and the number of terms of each constraint we get with their quotient an
estimate of the average number of terms in each equation (see Table 1).

Remark. Although, strictly speaking, these are upper bounds for the
size of conditions, one must keep in mind that any computer algebra system
would have to generate all these terms by expanding the brackets before
searching for possible cancellations or reductions. As test runs with Form

had shown, for the 3-dimensional case (+++) described in Section 2.3 (with
a much smaller number of independent qD than 223

but the same number

9

Table 1: Faces and consistency conditions in different dimensions
dimension of face n 2 3 4 5
of f-variables in face formula 2n 4 8 16 32
of terms in face formula
(= # of undetermined
coefficients qD in Qn)

22n

16 256 65536 4.3 × 109

of all f-variables
in (n + 1)-dim. hypercube

2n+1 8 16 32 64

of indep. f-variables
in (n + 1)-dim. hypercube

2n+1
− n − 2 4 11 26 57

of n-dim. faces
in (n + 1)-dim. hypercube

2(n + 1) 6 8 10 12

of consistency conditions n 2 3 4 5
upper bound on the # of terms
of each condition

2{2n+1(n+1)−2n−1} 5.2 × 105 1.4 × 1017 2.8 × 1045 1.9 × 10112

total degree of the qD

in each condition
2n + 2 6 8 10 12

upper bound estimate of the
of equations resulting from
splitting each condition

2n(2n + 2)

`

2n+1−n−3
´

864 6.4 × 109 8.0 × 1025 2.7 × 1061

estimated average # of terms
in each equation

22
n+1(n+1)−2n−1

2n(2n+2)

`

2n+1−n−3
´ 606 2.2 × 107 3.5 × 1019 7 × 1050

of terms in Q3), the total number of terms to be generated for each of the
3 consistency conditions is around 1014 (compared to the upper bound of
1.4 · 1017 in Table 1).

4 The Computational Problem

As outlined before (cf. Section 2.2), the task consists of the following steps.

1. Formulate the relations for the n + 1 “initial faces” xk = 0.

2. Solve them for f11...101...1.

3. Formulate the relations for the n + 1 “final faces” xk = 1.

4. Perform the substitutions obtained under 2. in the relations of 3.

5. Solve one of the resulting relations for f11...1.

6. Substitute f11...1 in all other n face relations of 4.

7. Split these consistency conditions with respect to all the occurring in-
dependent f -variables to obtain an overdetermined system of equations
for the unknowns qD.

8. Find the general solution of this system.

9. Reduce the number of free parameters of the solutions using SL2(C)-
transformations (5).

Although the algebraic system for the unknown coefficients qD is heavily
overdetermined the following difficulties appear.

10

1. Strictly speaking, in order to formulate even only the smallest subset
of conditions one would have to formulate at least one consistency
condition (by performing steps 1., 2. fully and 3.- 6. for at least two
xk = 1 face relations (12) before step 7.) i.e. to generate an expression
with 2{2

n+1(n+1)−2n−1} terms according to Section 3.

2. If one found a way around this hurdle then the resulting equations are
of high degree 2n + 2 with on average many terms.

3. Even if one were able to generate 100,000’s of equations and thus find
shorter ones which one could solve for some unknowns in terms of
others, one would face the problem that many cases and sub-sub-cases
have to be investigated due to the high degree of the equations and

4. that one has to generate billions of equations to find some that are
independent of the ones generated so far. As we explain below, due
to the “near triangular” form of this huge system (see section 6), one
can not hope that the first, say, 106 conditions will be equivalent to
the full system of equations for qD, even though we have only very few
unknown qD’s.

In the computations to be described in this paper we have n = 3. The full
problem (without cubical symmetry) would mean to generate 3 consistency
conditions involving each about 1017 terms that split into an estimate of 1010

polynomial equations each being homogeneous of degree 8 for 256 unknowns
and involving on average over 107 terms.

To make progress we introduce different solving techniques but also sim-
plify the problem:

1. We restrict ourselves to face formulas that obey the full cubical sym-
metry (cf. Section 2.3). In the third case (+++) – the hardest case –
the fact that only 22 of the qD are parametric simplifies the problem
but the simplification is limited because none of the other 234 qD needs
to vanish just because of the extra cubical symmetry.

2. We ease the formulation of the large consistency conditions (before
splitting them into smaller equations) by replacing z of the v := 2n+1−
n − 2 independent f -variables by zero, and replacing u of them by
random integer values un-equal zero, leaving s := v − z − n of them in
symbolic form. As a consequence, we only get a set of necessary and
not sufficient equations for the qD but we can repeat this procedure on a
gradually increasing level of generality (by increasing s and lowering z).

11

A crucial feature is the use of knowledge accumulated so far about the
solution to formulate new necessary systems of equations (cf. Section 5).

3. We design a dynamic process that automatically organizes an iteration
process that generates and solves/simplifies/’makes use of’ necessary
equations automatically. As an important feature, a set of newly gen-
erated necessary equations is not read into the ongoing computation at
once but gradually on demand (cf. Section 6).

4. A recent extension is the parallelization of different case investigations
on a computer cluster.

We discuss points 2 and 3 in more detail. Transparencies of a talk given
about point 4 are available from [16].

5 Random Probing

The method under point 2 of the above list is based on replacing a number z
of the v := 2n+1 − n− 2 independent f -variables by zero (for n = 3, v = 11),
and replacing a number u of them by random integer non-zero values, leaving
s := v − z − u of them in symbolic form.

The computation has 3 phases: finding solutions, verifying the obtained
solutions probabilistically and again rigorously. The first two phases use the
probing technique. Still, it makes sense to distinguish them because optimal
values of z, u and s differ in both cases.

In the probing technique the two types of replacements, i.e. replacing fα

by zero or by a non-zero integer, share the same disadvantage: the num-
ber of independent parameters, i.e. of symbolic fα which allow to split the
consistency condition into many smaller equations, is reduced by one. The
advantage of replacing an fα by zero instead of a non-zero integer is that
expressions shrink more. Also, replacements by non-zero integers often in-
troduce extra solutions to the generated conditions and it appears to be
costly to eliminate these spurious temporary solutions by leading them to a
contradiction with more conditions to be generated based on other random
replacements. Therefore it is more productive to replace, for example, one
fα by zero than to replace two fα by non-zero integers.

Consequently, in the first phase of finding solutions at most one replace-
ment by a non-zero integer is made (i.e. u ≤ 1) and after starting with
z = 9, u = 0, s = 2 one increases generality gradually by either changing u

12

from 0 to 1 and decreasing z by 1, or by decreasing u from 1 to 0 and increas-
ing s by 1 until z = 1, u = 0, s = 10. We need the occasional substitution by
one non-zero integer because we want to increase the generality in as small
as possible steps in order to avoid the generation of too many too high degree
equations with too many terms. This would happen if we decrease z by 1,
keep u = 0 and increase s by 1. A run in full generality z = 0, u = 0, s = 11
is computationally prohibitive, therefore in a second phase of confirming the
found solution probabilistically one starts with z = 4, u = 1, s = 6 and in-
creases generality by decreasing z, increasing u and keeping s constant until
z = 0, u = 5, s = 6. By testing a hypothetical solution with this final setting
many times, the correctness of the solution is confirmed with an arbitrarily
high probability.

In both phases we want to generate as few and as simple equations as
possible in each generation step. So we continue using the same setting
of z, u, s as long as possible (i.e. as long as there are new conditions still
resulting after randomly choosing other sets of z many fα to be 0, s of fα to
be kept symbolic and randomly assigning integer non-zero values to the other
u parametric fα) before generalizing it, i.e. making s larger and z smaller.
This is regulated by one parameter which specifies the maximum number of
consecutive times that a ‘probing’ (generation of conditions) attempt yielded
only identities before changing z, u, s.

In a third phase, after all hypothetical solutions have been obtained and
been checked probabilistically, they are checked again, now rigorously. This
has been done either by a brute force check using the computer algebra
system Form or by using SL2(C)-transformations on the field variables f to
reduce solutions to integrable trivial forms (7), (8), (9) in section 2.4.

A helpful and initially unexpected feature of the probing technique is that
the resulting equations appear to be somehow triangularized in the following
sense. Each unknown qi1i2...im, m = 2n, ij ∈ {0, 1} is the coefficient of a
product of i1 + i2 + . . . + im many different factors fα. That means, that at
the beginning of the computation when many fα are replaced by zero, the qD

with a high index sum do not occur. Only later on as fewer fα are replaced
by zero, gradually qD with higher index sum appear in the equations. On
one hand this is a good feature, providing a partially triangularized system
of equations. On the other hand this means that although we only want to
compute a relatively small number of unknowns (for n = 3 and case (+++)
these are 22 qD) it is not enough to formulate only a comparable number of
the huge total set of equations (about 6.4×109 equations for n = 3). A set of

13

equations that is equivalent to the complete set of equations is only obtained
towards the end of generalizations. For example, q11...1 is the coefficient of
the product of all the 2n many f occuring in a face formula. For q11...1 to
occur in a consistency condition, it must occur in at least one face formula,
i.e. all the 2n many f must occure in at least one face formula, i.e. none of
them can be replaced by zero. The condition is slightly weaker because only
2n − 1 of them belong to the independent fα, so the number of non-zero f
must be at least 2n − 1, i.e. (u + s) ≥ (2n − 1) for q11...1 to have a chance to
appear in a consistency condition.

That triangular dependence of generated equations in turn means that
millions of the early equations are redundant which implies a large ineffi-
ciency in generating equations. This can be avoided by using known relations
qD = hD(q′

D
) which were derived in the solution process so far, as automatic

simplification rules when generating new equations.
Three problems remain to be considered.
1. By replacing fα through numbers it may happen that Ak in any one of

the xk = 0 face relations (11) becomes zero. Then a new equation generation
attempt with different or more general random replacements has to be made.

2. Similarly, it may happen that the coefficient of q11...1 in all n+1 many
xk = 1 face relations (13) is zero. Then a different replacement has to be
tried as well.

3. Even if none of the Ak in (13) becomes zero it may happen that
Ak and Bk in one face relation are not prime and then a solution for the qD

which makes the greatest common divisor GCD(Ak, Bk) to zero is potentially
lost when performing substitutions f1..101..1 = −Bk/Ak. The same applies to
common factors of Gk and Hk in the single face relation (13) that is applied to
replace f11...1. Therefore each consistency condition has to be multiplied with
a product of all common factors of any pair Ak, Bk and of all common factors
of the pair Gk, Hk which is used to replace f11...1. To lower the computational
cost one drops multiplicities of the factors. These factors involve in general qD

as well as fα and therefore the multiplication has to be done before splitting
the consistency condition with respect to the independent fα. Alternatively
one can split the consistency condition before multiplication and instead
multiply and duplicate the equations in the following way.

Let P (qD, fα) be one of the above mentioned factors and let 0 = P be split
into a system 0 = P̂i(qD) where redundant equations are dropped.2 Instead

2The definition of ‘redundant’ depends of the effort one wants to spend at this stage.

14

of multiplying a constraint 0 = C(qD, fα) with P , splitting the equation
0 = PC into individual equations and factorizing all of them afterwards,
it is equivalent but much more efficient to split 0 = C into a system of
equations 0 = Ĉj(qD) and 0 = P into a system 0 = P̂i(qD) and to consider

the equivalent system 0 = P̂iĈj, ∀i, j.
To summarize, in order not to loose solutions for the qD, the procedure is

• to collect all common factors Pr of all pairs Ak, Bk and of the pair Gk,
Hk used to substitute f11...1,

• to drop duplicate factors,

• to split all consistency conditions giving a system S of equations 0 = Ĉj ,
and

• to split for each factor Pr the equation 0 = Pr into a system 0 =
P̂ri, i = 1 . . . ir where again equations that are redundant within one
such system are dropped.

• If a system 0 = P̂ri includes a non-vanishing P̂ri either because P̂ri = 1
or because P̂ri(qD) is known to be non-zero based on the inequalities
that are known for some qD

3 then this system is ignored because the
corresponding Pr is non-zero. For every other such system 0 = P̂ri, re-
place the system S of conditions 0 = Ĉj by the new system Ŝ consisting

of the equations 0 = P̂riĈj , ∀i, j.

6 A Succession of Generating and Solving

Equations

The system of algebraic equations for the qD is investigated by the computer
algebra package Crack that aims at solving polynomially algebraic or dif-
ferential systems, typically systems that are overdetermined and very large.

In the implementation of this algorithm the polynomials P̂i are divided by the coefficients
of their leading terms with respect to some ordering of the qD and then duplicate P̂i are
dropped.

3In the process of solving the non-linear system of conditions for the qD many cases and
sub-cases are considered which lead to extra equations qD = 0 and inequalities qD 6= 0,
see Section 3. All such information, i.e. evaluations qD = .. and inequalities qD 6= 0 are
used when formulating new consistency conditions where inequalities become useful.

15

It offers various degrees of interactivity from fully automatic to fully inter-
active. The package consists of about 40 modules which perform different
steps, like substitutions, factorizations, shortenings, Gröbner basis steps, in-
tegrations, separations,... which can be executed in any order. In automatic
computations their application is governed by a priority list where highly
beneficial, low cost and low risk (of exploding the size of equations) steps
come first. Modules are tried from the beginning of this list to its end until
an attempt is successful and then execution returns to the start of the list
and modules are tried again in that order. This simple principle is refined in
a number of ways. For more details see [14], [15].

In order to accommodate the dynamic generation of equations and their
successive use, all that had to be done was to add two modules:

• one for generating a new set of necessary conditions using the ‘probing’
technique from section 5 and writing the generated equations into a
buffer file, and

• another module for reading one non-trivial equation from this buffer
file (i.e. for continuously reading equations until one is obtained that
is not instantly simplified to an identity modulo the known equations
or until the end of this file is reached),

and to determine the place of these modules in the priority list. The need
for a buffer file arose because the number of equations generated in each
‘probing’ is unpredictable, especially in view of the large impact that factors
P̂ri can have on the number of equations (see the end of section 5).4

Some more miscellaneous comments.
As shown in section 5 the generated equations often take the form of

products set equal to zero. This leads to many case distinctions of factors
being either zero or non-zero and consequently other factors being zero. The
depth of sub-case levels sometimes reaches 20. Because buffer files are only
valid for the case in which they were generated (because they make use
of case-dependent known substitutions qD = hD(q′

D
) and case-dependent

inequalities) and because of these deep levels of sub-cases, the number of
buffer files easily reaches 100,000 and more (e.g. too many to be deleted with

4This arrangement is similar to the design of CPU chips which have not only access to
their own register memory (∼ the equations known within Crack) and access to the hard
disk (∼ the possibility to call the ‘probing’ module) but which also have access to cache
memory (∼ the buffer file).

16

the simple UNIX command rm *). Therefore the case label is encoded in the
buffer file name allowing to delete buffer files automatically when the case in
which the file was created and all its sub-cases are solved.

There is much room for experimenting with the place of the two new mod-
ules within the priority list5. On one hand one wants to read and create early,
so that the ongoing computation has many equations to choose from when
looking for the most suitable substitutions, shortenings, The problem is
that these equations are all generated with the same limited information on
relations between qD, and thus they have a high redundancy. Also, dealing
with many long equations does slow down Crack. On the other hand, giving
the branching of the computation into sub-cases a higher priority generates
an exponential growth of sub- and sub-sub-cases which drastically increases
the number of buffer files to be generated because they are only valid for the
case they were generated for or for its sub-cases.

With each investigated case, say q5 = 0, the other case q5 6= 0 generates
inequalities which the package Crack collects, updates and makes heavily
use of to avoid further case distinctions, and in this computation also to drop
factors of the P̂mi as mentioned in section 5. The individual cases can either
be investigated sequentially or in parallel.

If two solutions of two different cases, for example, the solutions for q5 = 0
and q5 6= 0 can be merged into one analytic form, if necessary by a re-
parametrization, then this is achieved by one of the modules of Crack ([13]).

7 The Computation

The computation was not performed in a single run. Simple subcases were
solved initially whereas harder ones were completed only after the probing
technique from section 5 and its automatic interplay with the package Crack

were developed within several months. Even then it took some time to fine-
tune parameters and put the new modules in the right place within the
priority list of procedures in Crack. Finally, it was nearly possible to do the
computation fully automatically, only a few times the proper case distinctions
had to be initiated manually at the right time to be able to complete the

5apart from the necessity to give the ‘reading from the buffer’ module a higher priority
than the ‘creating of a buffer’ module in order to try reading and emptying a buffer file
first (if available and not already read completely) and to create a new buffer file only if
none is available or if the available one is already completely read in

17

computation. If one would add up purely the necessary computation time
without runs following a poor manual choice of case distinctions leading to
computations which generated too large systems and which could not be
completed then this would amount to about 2 weeks of CPU time on a 3GHz
AMD64 PC.

Acknowledgements

For this work facilities of the Shared Hierarchical Academic Research Com-
puting Network (SHARCNET: www.sharcnet.ca) were used.

TW thanks the Konrad Zuse Institute at Freie Universität Berlin and the
Technische Universität Berlin where part of the work was done.

The author also wants to thank Alexander Bobenko for suggesting this
topic, Sergey Tsarev for the smooth collaboration on the mathematical and
computational aspects and especially Winfried Neun for frequent systems
support which lead to a number of improvements of the REDUCE computer
algebra system as they are listed under ’FAQ/Problems’ on [15].

References

[1] V.E. Adler, A.I. Bobenko, and Yu.B. Suris. Classification of integrable
equations on quad-graphs. The consistency approach. Comm. Math.
Phys., 233:513–543, 2003.

[2] V.E. Adler, A.I. Bobenko, and Yu.B. Suris. Discrete nonlinear hyper-
bolic equations. Classification of integrable cases. Preprint at arXiv:
nlin.SI/0705.1663, 2007.

[3] S. Anco and T. Wolf. Some symmetry classifications of hyperbolic vec-
tor evolution equations. JNMP, 12(Supplement 1):13–31, 2005. also
preprint at arXiv: nlin.SI/0412015.

[4] A. Kiselev and T. Wolf. On weakly non-local, nilpotent, and super-
recursion operators for N=1 homogeneous super-equations. In Proceed-
ings of Dubna International Workshop “Supersymmetries and Quantum
Symmetries” (SQS’05), pages 231–237. JINR, 2005. published online:
http://theor.jinr.ru/~sqs05/SQS05.pdf and as Preprint at arXiv:
math-ph/051107.

18

[5] A. Kiselev and T. Wolf. Supersymmetric Representations and Integrable
Super-Extensions of the Burgers and Bussinesq Equations. SIGMA,
2:19, 2006. Paper 030, also arXiv math-ph/0511071.

[6] A. Kiselev and T. Wolf. Classification of integrable super-systems using
the SsTools environment. Comp Phys Comm, 177(3):315–328, 2007. also
preprint at arXiv: nlin.SI/0609065.

[7] B.G. Konopelchenko and W.K. Schief. Reciprocal figures, graphical
statics and inversive geometry of the Schwarzian BKP hierarchy. Stud.
Appl. Math., 109:89–124, 2002. also preprint at arXiv: nlin.SI/0107001.

[8] J.J.C. Nimmo and W.K. Schief. An integrable discretization of a 2 +
1-dimensional sine-gordon equation. Stud. Appl. Math., 100:295–309,
1998. also preprint at arXiv: nlin.SI/0107001.

[9] V. V. Sokolov and T. Wolf. Integrable quadratic Hamiltonians on so(4)
and so(3,1). J. Phys. A: Math. Gen., 39:1915–1926, 2006. also preprint
arXiv: nlin.SI/0405066.

[10] S.P. Tsarev and T. Wolf. Classification of 3-dimensional integrable scalar
discrete equations. Preprint at arXiv: 0706.2464, 2007.

[11] T. Tsuchida and T. Wolf. Classification of polynomial integrable systems
of mixed scalar and vector evolution equations. I. J. Phys. A: Math.
Gen., 38:7691–7733, 2005. also as preprint nlin.SI/0412003.

[12] J.A.M. Vermaseren. New features of form. Preprint at arXiv:math-
ph/0010025, a complete distribution can be downloaded from
http://www.nikhef.nl/~form/, 2000.

[13] T. Wolf. Merging solutions of polynomial algebraic systems. Preprint,
http://lie.math.brocku.ca/twolf/papers/merge-sig.ps, 2003.

[14] T. Wolf. Applications of crack in the classification of integrable sys-
tems. In CRM Proceedings and Lecture Notes, volume 37, pages 283–300,
Montreal, 2004. Centre de Recherches Mathematiques. also preprint on
arXiv: nlin.SI/0301032.

[15] T. Wolf. An online tutorial for the package crack.
http://lie.math.brocku.ca/crack/demo, 2004.

19

[16] T. Wolf, W. Neun, and S.P. Tsarev. About parallelizing the search for
3-dim. scalar discrete integrable equations. Talk given at PASCO 2007
London/Ontario,
http://lie.math.brocku.ca/twolf/papers/paratalk.pdf, 2007.

20

