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Abstract. We classify all integrable 3-dimensional scalar discrete affine linear
equations Q3 = 0 on an elementary cubic cell of the lattice Z3. An equation
Q3 = 0 is called integrable if it may be consistently imposed on all 3-dimensional
elementary faces of the lattice Z*. Under the natural requirement of invariance of
the equation under the action of the complete group of symmetries of the cube we
prove that the only nontrivial (non-linearizable) integrable equation from this class
is the well-known dBKP-system.
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1. Introduction

Discrete differential geometry has been actively studied in the last
decade (see e.g. [3, 4]) and has provided much insight into structures
that are fundamental both to classical differential geometry and to the
theory of integrable PDEs. In addition to such purely mathematical
fields, results in discrete differential geometry have a great potential in
computer graphics and architectural design (see [9]).

In what follows we consider the elementary combinatorial cubic
cell K,, with the vertices {(i1,...,in)]is € {0,1}}. The field variables
fir.in € Cyis € {0,1}, are associated to its 2" vertices. We will use the
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short notation f for the set (foo..0,---,f11..1) of all these 2™ variables
(see Figures 1A, 1B).

An n-dimensional discrete system of the type considered here is
given by an equation of the form

Qn(f) =0, (1)

on the field variables on the elementary cubic cell K,. This equation
may be extended to the other elementary cubic cells of the cubic lat-
tice Z™ with vertices at integer points (i1,...,in), s € Z, n > 2, in
the n-dimensional space R": with each vertex with integer coordinates
(i1,...,1n), is € Z, we associate a scalar field variable f;, ;, € C and
assume that the equation (1) for every elementary cubic cell of Z™ is
the same, after shifting the indices of f suitably.

In the last two decades the study of special classes of (1) which
are “integrable” (in one sense or another) has become very popular.
We give below only a brief account of the current state of this field
of research, for a more detailed account cf. [1]-[4] and the references
given therein. In fact, discrete integrable systems underlie many clas-
sical integrable nonlinear PDEs, like the Krichever-Novikov equation
and other examples, the latter appear as a continuous limit along
some of the discrete directions. Other well known classes of integrable
geometric objects (with n = 2 and n = 3), like minimal surfaces,
conjugate nets, constant curvature surfaces, Moutard nets, isother-
mic surfaces, orthogonal curvilinear coordinates etc., are also obtained
as some smooth limits along some of the directions of the respec-
tive discrete system. The remaining discrete directions automatically
provide us with a transformation known in the classical continuous geo-
metric context as Jonas/Ribaucour/Béacklund transformation between
surfaces of the given class. On the other hand, starting from the classical
non-linear superposition principles for the aforementioned transforma-
tions one can obtain precisely the underlying discrete system. One of
the cornerstones of discrete differential geometry (the idea to look for
cubic nonlinear superposition formulas of Backlund transformations of
nonlinear integrable PDEs) was laid down in [5]. The duality between
the smooth objects in any of the geometric classes of integrable smooth
surfaces mentioned above and their Backlund-type transformations is
therefore put into a symmetric form of a single discrete n-dimensional
system and is encoded as the notion of (n+ 1)-dimensional consistency
[3]:

An n-dimensional discrete equation (1) is called consistent, if it may
be imposed in a consistent way on all n-dimensional faces of a (n +
1)-dimensional cube.

ZR-08-13.tex; 5/03/2008; 13:07; p.2



Classification of 3-dim integrable discrete equations 3

This can also be understood as the possibility to take Z"! and pre-
scribe the n-dimensional equation (1) to hold on every n-dimensional
face of every elementary (n+ 1)-dimensional cube (of size 1, with edges
parallel to the coordinate axes) without side relations to appear. For
this reason the discrete equation (1) is often called a “face formula”.
A precise definition of consistency, suitable for the class of discrete
equations treated in this paper, will be formulated in the next section.

This paper is devoted to application of computer algebra systems
REDUCE and FORM ([10]), in particular the REDUCE package CRACK
([11, 12]), to the classification of 3-dimensional integrable discrete sys-
tems.

The paper is organized as follows. In Section 2 we give a brief descrip-
tion of the known results on 2-dimensional integrable scalar discrete
equations of type (1) and the precise definition of (n + 1)-dimensional
consistency condition for such discrete n-dimensional systems.

Section 3 is devoted to the classification of symmetry types of affine
linear equations (1) for dimensions n = 2,3, 4.

In Section 4 we describe the results of our computations (Theo-
rem 2): the only nontrivial (non-linearizable) integrable scalar affine
linear 3d-discrete equation invariant w.r.t. the complete group of sym-
metries of the cube is given by the formula (5) below.

The technical details of the computations can be found in [13].

2. The setup

The simplest but very important class of 2-dimensional integrable dis-
crete equations was investigated in detail in [1, 2]. They have the
form

Q(foo, f10, for, f11) = 0, (2)

where f;; are scalar fields attached to the vertices of a square (see
Fig. 1A) with two main requirements:

1) Affine linearity. (2) is affine linear w.r.t. every f;;, i.e. @ has
degree 1 in any of its four variables:

Q = c1(fi0, for, f11) foo + ca(fio, for, fi1)
= c3(foo, fo1, f11) fio + ca(foo, fo1, f11) = - ..
= q1111.fo0./10.fo1./11 + q1110.f00f10f01 + q1101.f00.f10./11 + - - - + Go0O0O-

2) Symmetry. Equation (2) should be invariant w.r.t. the symme-
try group of the square or its suitably chosen subgroup.

A few other requirements were given in [1], in particular the formula
(2) involved parameters attached to the edges of the square.
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fOll flll
Jo1 f11
fOO flO
Figure 1. A. Square Ko. B. Cube Ks3.

The second requirement of symmetry is obviously very important for
the formulation of the condition of 3-dimensional consistency of (2). In
fact, suppose we have a 3d-cubic cell of Z3 (cf. Fig. 1B) and impose (2)
to hold on three “initial 2d-faces” {l‘l :0}1 Q(fo()o, f()l(), fo()l, fon) :0;
{x2 = 0}: Q(fooo, f100, foot, f1o1) = 0; {z3 = 0}: Q(fooo, f100; fo10, f110) =
0 (these are used to find fo11, fio1, f110 from fooo, f100, fo10, foo1). Then
we impose (2) to hold on the other three “final 2d-faces” {x; = 1}:
Q(f100, f110, f101, f111) = 0; {x2 = 1} Q(foro, f110, for1, f111) = 0;

{z3 = 1}: Q(foo1, fi01, for1, f111) = 0; so for the last field variable f111
we can find 3 (a priori) different rational expressions in terms of the
“initial data” fooo, fi00, fo10, foo1. The 3d-consistency is the require-
ment that these three expressions of f111 in terms of the initial data
should be identically equal. The subtle point of this process consists in
the non-uniqueness of the mappings of a given square (Fig. 1A) onto
the six 2d-faces of the cube. The requirement of symmetry given above
guarantees that we can choose any identification of the vertices of the 2-
dimensional faces of the 3-dimensional elementary cube (Fig. 1B) with
the vertices of the “standard” square where (2) is given; certainly this
identification should preserve the combinatorial structure of the square
(neighbouring vertices remain neighbouring). In [1] a complete classi-
fication of 3d-consistent 2d-discrete equations (in a slightly different
setting) was obtained; in [2] a similar classification was given for the
case when one does not assume that the formula (2) is the same on all
the 6 faces of the 3-dimensional cube.

In the next sections we give a symmetry classification of all possible
3d-discrete equations defined on some “standard” 3-dimensional cube:

Q(fooo, f100, foro, foor, fi10, fio1, fort, f111) =0 (3)

with respect to the complete symmetry group of the cube. Here, as
everywhere in the paper, indices of the field variables f;;i give the
coordinates of the corresponding vertices of the standard 3d-cube where
our formula (3) is defined.

The requirement of consistency is now formulated similarly to the
2d-case: given a 4d-cube with field values fiju, ,7,k,1 € {0,1}, one
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Classification of 3-dim integrable discrete equations 9

should impose the formula (3) on every 3d-face of it, by fixing one of
the indices i, j, k, [, and making it O for the faces which we will call below
“initial faces”, or respectively 1 for the faces which we will call “final
faces”. One also needs to fix some mapping from the initial “standard”
cube (with the vertices labelled f;;) onto every one of the eight 3d-
faces (for example {fij1x} on {xo2 = 1}). This can certainly be done
using the trivial lexicographic correspondence of the type fijx — fi1jk-
Geometrically this lexicographic correspondence is less natural since it
is not invariant w.r.t. the symmetry group of a 4d-cube. On the other
hand there is an important example of such a non-symmetric formula
corresponding to the discrete BKP equation ([1], equation (76)). An-
other possibility to avoid this problem is to impose the requirement of
symmetry. More precisely, if one applies any one of the transformations
from the group of symmetries of the 3d-cube, (3) shall be transformed
into an equation with the left hand side proportional to the original
expression @: @ — A - Q. Since this symmetry group is generated by
reflections, one has A\? = 1, so this proportionality multiplier A may be
either (+1) or (—1) for any particular transformation in the complete
symmetry group.

From results in [1] we know that there are important 4d-consistent
3d-discrete equations which are preserved under a suitable subgroup
of the complete symmetry group of the 3d-cube. No classification of
3d-discrete equations with such restricted symmetry property has beet
carried out yet.

3. Symmetry classification

Every n-dimensional discrete equation (), = 0 which satisfies the re-
quirement of affine linearity has a left hand side of the form

Qu=> a0 [ (fir.i)71 (4)
D

is=0,1

with constant coefficients ¢p, where the summation is taken over all
22" many 2"-tuples D = (Dqo..0; - -, D11..1), each power D;, ;. of the
respective vertex variable f;, ; being either 0 or 1. In other words:
the 2™ indices of ¢p are the exponents of the 2" vertex field vari-
ables f;, ., each exponent D;,  ; being 0 or 1. For example, Q2 =
q1111 foo f10 for fi1 + @110 foo fro for + 101 foo frofi1 + - - -+ goooo has 22° =
16 terms, QY3 has respectively 22* = 256 terms, and @4 has already
92" = 65536 terms.

In this Section we classify n-dimensional affine linear equations Q,, =
0 for n = 2, 3,4 that are invariant w.r.t. the complete symmetry group
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of the respective n-dimensional cube. This problem can be reduced to
the enumeration of irreducible representations of this group in the space
of polynomials of the form (4). Here this is done in a straightforward
way: the group in question is generated by one reflection w.r.t the plane
x1 = 1/2 and (n — 1) diagonal reflections w.r.t. the planes x; = xg,
s =2,...,n (here z} denote the coordinates in R").

To every reflection R from this generating set we assign (+4) or
(—) and require the equality Q(f) = Q(R(f)) (respectively Q(f) =
—Q(R(f))) to hold identically in all vertex variables f; this gives us a set
of equations for the coefficients ¢p. Running through all possible choices
of the signs for the generating reflections we solve the united sets of
simple linear equations for the coefficients gp for every such choice. The
main problem consists in the size of the resulting set of equations: for
n = 3 we have for each combination of + for the 3 generating reflections
around 770 equation for the 256 coefficients gp,.. ps; for n = 4 every
set of equations for the coefficients of ()4 has around 250,000 equations
for the 65536 coeflicients gp,..p,;. Naturally, not every combination of
signs for the generating reflections is possible, most of the resulting sets
of equations for 4D;...Dgn, allow only the trivial solution 4Dy...Dgny = 0.
The results of our computations are formulated in Theorem 1:

THEOREM 1. There are three nonempty symmetry classes of discrete
equations @y for the dimensions n = 2,3 and four nonempty classes
for n = 4. The resulting number of free parameters in the coefficients
gp in each of the symmetric discrete equations Q,, (including an overall
constant multiplier) and the number of nonzero terms are given for each
of the nontrivial cases in Table 1.

In the notations of Table I for n = 2 the first sign in the second
column refers to the reflection on the line z; = 1/2, the next sign stands
for the reflection on the line z1 = z5. For example, the expressions of
the first type (+—) are invariant w.r.t. to the reflection on the line
x1 = 1/2, and show a change of sign after the reflection on the line
x1 = x9. The last case (++) consists of expressions which are invariant
w.r.t. any element of the complete group of symmetries of the square
which corresponds to the choice of the (+) signs for the two generating
reflections of the square w.r.t. the lines x; = 1/2 and z; = xs.

Similarly to the case n = 2, there are only three cases (+ + +),
(= ——) and (— 4+ +) of nontrivial affine linear Q3 for n = 3. The first
sign here refers to a reflection on the plane x; = 1/2, the next signs
stand for reflections on the planes x1 = 9, 1 = z3 (and x1 = x4 for
n=4).

Especially remarkable is the totally skew-symmetric case (— — —)
for n = 3: it has only one (up to a constant multiplier) nontrivial
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n | types of symmetry, number of parameters
number of parameters and terms in SLo-invariant subcases
2 | 1) (+-): 1 param.; 4 terms 1) 1 param.; 4 terms
2) (—+): 3 param.; 10 terms 2) none
3) (++): 6 param.; 16 terms 3) 1 param.; 6 terms
3| 1) (——-): 1param.; 24 terms 1) 1 param.; 24 terms
2) (—++): 13 param.; 186 terms 2) none
3) (+++): 22 param.; 256 terms 3) 3 param.; 114 terms
4 | 1) (———=): 94 param.; 29208 terms | 1) 5 param.; 15480 terms
2) (+———): 77 param.; 26112 terms | 2) none
3) (—+++): 349 param.; 60666 terms | 3) 3 param.; 15809 terms
4) (+4++): 402 param.; 2'° terms 4) 18 param.; 96314 terms
expression

C2(———) :(f100 - fOOl)(fOlO - flll)(flOl - fllO)(fOll - fOOl) -

5
(foor — fo10)(f111 — f100)(fooo — f101)(f110 — fo11)- ®)

Precisely this expression gives the so called discrete Schwarzian Ka-
domtsev-Petviashvili (type B) system (dBKP-system) — an integrable
discrete system found in [6, 7] and studied in [1] where the fact of
its 4d-consistency was first established. The dBKP-system has many
equivalent forms and appears in very different contexts. In addition
to the known geometric interpretations and a reformulation as Yang-
Baxter system ([8]), the dBKP-system may be considered as a non-
linear superposition principle for the classical 2-dimensional Moutard
transformations ([5]).

The expression (5) enjoys an extra symmetry property: the equation
Q(———y = 0 is invariant under the action of the SL(C) group of
fractional-linear transformations f —— (af + b)/(cf + d) (all group
parameters a, b, ¢, d are the same for all the vertices of the cube).
This is in fact a direct consequence of the uniqueness of the integrable
discrete equation (5) in this class. Since this SLs(C) action obviously
preserves the symmetry type of an expression w.r.t. the group action
of the cube symmetry group, it is reasonable to find the subclasses of
S Lo-invariant discrete equations in each symmetry class. This is given
in the third column of Table I.
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4. Nonexistence of nontrivial integrable discrete equations
in other symmetry classes for n =3

In this section we give a sketch of a computational proof of our main
result:

THEOREM 2. Among the three possible symmetry types of 3-dimen-
sional affine linear discrete equations given in the second column of
Table I, only formula (5) gives a non-trivial (i.e. non-linearizable) 4d-
compatible discrete equation. Any 4d-compatible discrete equation in the
other two symmetry types may be transformed using the action of the
group SLa(C) on the field variables to one of the following linearizable
forms:

QW = fooofoo1 forofor1 fro0.fr01 friofin — o, (6)
Q@ = foo1 forof100 f111 — o fooo for1 fio1 fi1o, (7)
Q™ = (foor + for0 + fr00 + f111) — o(fooo + for1 + fro1 + fi10), (8)

where o = +1.

Technically, in order to find 4d-consistent 3d-discrete equations among
the other two 3-dimensional cases (— + +) and (+ + +) (as listed in
Table I), one shall run the following algorithmic steps:

Step 1. Take a copy of this (3 formula, map it onto the four initial
faces of the 4d-cube (where one of the coordinates z; = 0), solve the
mapped equations with respect to f01117 f1011, f1101 and f1110 leaving
the other variables free.

Step 2. Then substitute the obtained rational expressions for fpi11,
f1o011, fi101 and f1110 into the copies of the discrete equation mapped
onto the four final faces (where one of the coordinates x; = 1), finding
respectively four different expressions for the last vertex field fi111.

Step 3. Equate these 4 expressions for f1111 obtaining three rational
equations in terms of 11 free variables foo00, fooi0, foio1, --- and the
parametric coeflicients gp,.. ps left free in the chosen symmetry class.

Step 4. Removing the common denominators of the equations and
splitting the resulting polynomials w.r.t. the 11 free variables f;;i
one obtains a polynomial system of equations for the free coefficients
4D,...Ds-

Step 5. The latter should be solved, resulting in a complete classifi-
cation of 4d-consistent affine linear scalar 3d-discrete equations.

This approach, applied in a straightforward way, results in extremely
huge expressions. Even building the rational expressions in Step 4 in
a straightforward way seems to be unrealistic: for a typical 3d-discrete
equation from Table I Step 4 should end up (as our test runs allowed
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for an estimate) in an expression with around 10'# terms, which is
beyond the reach of computer algebra systems in the foreseeable future.
Even brute force verification of 4d-consistency of the smallest solution
(discrete equation (5) which has no free parametric coefficients gp, . py)
results in &~ 2 - 108 terms (after substituting the expressions for fyi11,
fio11, fii01, fi11o0, collecting the terms over the common denomina-
tor and expanding the brackets before the cancellation can start in
Step 4, cf. [13]). Technically this is explained by the presence of 4
different symbolic denominators of the rational expressions for fy111,
fio11, fiio1, fi11o and their various products. A careful step-by-step
substitution and cancellation of like terms in several stages still can
be done even on a currently standard PC for this (— — —) case. Using
FORrM (this symbolic computation system was specially designed for
large computations), one can prove that all terms finally cancel out
for the case of the integrable 3d-discrete equation (5) thus giving a
computational proof of its 4d-consistency in 3 min CPU time (3 GHz
Intel running Linux SUSE 9.3) and less than 200 Mb disk space for
temporary data storage (cf. [13]).

As our preliminary runs had shown, the straightforward approach
based on Steps 1-4 is unrealistic for the other two 3-dimensional cases
listed in Table I, even when generating the consistency conditions in
Step 4.

In order to classify discrete integrable 3d-discrete equations QY3 = 0
for the case (— + 4) and the hardest case (+ + +) we used a totally
different randomized “probing” strategy, explained in detail in [13].

After the computation (cf. [13] for the details) the list of candidate
formulas @3 for the case (+ 4+ +) included 5 candidates (before the
verification that these formulas, obtained by our “probing” method,
really give 4d-consistent 3d-formulas). For the case (— + +) the list
of candidate formulas included 3 formulas. All of them include a few
free parameters. As one can show, all these formulas can be greatly
simplified using the action of the group SLy(C) on the field variables
f, resulting in the 4d-consistent 3d-discrete equations (6), (7), (8). The
first two formulas (6), (7) can be easily linearized using the logarithmic
substitution f;;r = log fijk.

The expressions for the aforementioned candidates, the FORM pro-
cedures and their logfiles showing the simplification process can be
downloaded from
http://lie.math.brocku.ca/twolf/papers/TsWo2007/.
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