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Abstract

This paper proposes a new method for probabilistic analysis of online algorithms that is based
on the notion of stochastic dominance. We develop the method for the Online Bin Coloring problem
introduced in [15]. Using methods for the stochastic comparison of Markov chains we establish the
strong result that the performance of the online algorithm GREEDYFIT is stochastically dominated
by the performance of the algorithm ONEBIN for any number of items processed. This result gives a
more realistic picture than competitive analysis and explains the behavior observed in simulations.

1 Introduction

We propose a new method for probabilistic analysis of online algorithms by using the concept of stochastic
dominance. The traditional approach for analyzing online algorithms is competitive analysis [27, 5], which
characterizes an online algorithm by its competitive ratio, i. e., the ratio of the objective value achieved
by the online algorithm to the objective value of an optimal offline solution. Online algorithms are
then compared by comparing their competitive ratios, i.e., a smaller competitive ratio is better for a
minimization problem. One drawback of competitive analysis is that it often provides rather pessimistic
results due to its worst-case character. This is partly overcome by more elaborate variants like average-
case competitive analysis [22] and smoothed competitive analysis [3, 21].

In our approach, we suggest to compare the performance of algorithms on random input sequences
directly using stochastic dominance. A random variable X is said to be stochastically dominated by a
random variable Y, written X <y Y, if

PriX>z]<Pr[Y >z foralzeR. (1)

Suppose we can describe the performance of two online algorithms A and B by random variables y* and
x5, respectively. We can then say that A is stochastically better than B (for a minimization problem), if
XA <a X5

Stochastic comparison methods have been successfully applied in areas like queueing theory [25],
finance, economics and in particular decision under risk [19]. In this paper we introduce these concepts
to the study of online algorithms.

We use this approach to study algorithms for the Online Bin Coloring problem, which was introduced
by Krumke et al. [15]. It has applications in commissioning [15], vehicle routing [7] and networking [16];
later in this paper we will describe an application to elevator control, too. The Bin Coloring problem
is the following. The input consists of a sequence of unit-size items, each of which has one of C' colors.
These items need to be packed sequentially into one of m initially empty bins of capacity B. As soon
as a bin is full, i.e., has exactly B items, it is replaced by an empty one. The goal is to minimize the
maximum number of different colors in one bin. We will refer to the number of different colors in a bin
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as its colorfulness. In the online version, the items arrive one by one and must be irrevocably assigned
to a bin before the next item becomes known.

A natural algorithm for this problem is the algorithm GREEDYFIT [15]. GREEDYFIT packs an item
with an already present color in the bin with that color and otherwise chooses a bin which currently
has the least number of different colors. Another simple algorithm, ONEBIN, packs all items in the
same bin. Krumke et al. [15] analyzed these algorithms, showing the counterintuitive result that the
trivial algorithm ONEBIN is better than the more sophisticated algorithm GREEDYFIT in terms of the
competitive ratio. The authors mentioned that the most challenging issue is to analyze the algorithms
from an average-case point of view to explain the clear dominance of GREEDYFIT over ONEBIN observed
in simulations. Such an average-case analysis is implied by our results.

Our Results We propose a new probabilistic analysis of both deterministic and randomized online
algorithms. As far as we know, this is the first use of stochastic dominance in the analysis of the quality
of online and approximation algorithms.

Using this approach, we obtain strong results for the comparison of the GREEDYFIT and ONEBIN
algorithms, which explain the superiority of GREEDYFIT over ONEBIN observed in simulations. For
our analysis, we assume that the color sequences are generated by choosing the color i.i.d. according
to a color distribution 4. Note that in this model, all online algorithms eventually have to produce a
bin with colorfulness B if the number of colors is sufficiently high, say C' > 2mB. This implies that
in this case, all online algorithms are asymptotically equally bad. Moreover, since eventually there will
be a color subsequence of length 2mB with all colors different, the asymptotic competitive ratio is 1
with probability 1. Both issues indicate that asymptotic probabilistic analysis does not give meaningful
results. We therefore show that GREEDYFIT is stochastically better than ONEBIN after n items. To be
more precise, let the random variables x$F and YQP denote the maximum colorfulness attained after
processing n items using GREEDYFIT and ONEBIN, respectively. We show that ST <. x9B for all n
and distributions . We also obtain a similar result if the objective is the average colorfulness instead
of the maximum colorfulness. Both results are based on an analysis of Markov chains related to the
algorithms.

We emphasize several implications of this result. Stochastic dominance implies not only that the
expected value of GREEDYFIT is bounded by that of ONEBIN, but also that the expected competitive
ratio of GREEDYFIT is not more than that of ONEBIN. The expected competitive ratio [22] is defined as
the expectation of the ratio between online algorithm and offline optimum. By considering the uniform
color distribution, our result can be interpreted as a counting result stating that there are more instances
for which GREEDYFIT manages to achieve a low maximum colorfulness than for ONEBIN. If the Online
Bin Coloring occurs as a subproblem and the overall performance depends in a non-decreasing way on
the colorfulness achieved, than using GREEDYFIT is better in expectation than using ONEBIN w.r.t. to
overall performance.

Related work Various alternatives to standard competitive analysis have been proposed, almost all
of them are based on the idea of weakening the offline adversary. This can be done by considering
randomized online algorithms [5] or by allowing the online algorithms to use more resources [11]. More
related to our approach are concepts like the diffuse adversary [14], average-case competitive analysis [22]
and smoothed competitive analysis [3, 21], which are also based on random request sequences.

The Bin Coloring problem has been studied in [15, 7, 16]. It is shown in [7] and [16] that the offline
version is NP-hard and that it cannot be approximated within a factor of 4/3 unless P = NP. Lin et
al. [16] provide an algorithm that finds a solution of cost OPT 4 1 in the case that there are exactly
mDB items. For the online version, Krumke et al. [15] show that the competitive ratio of GREEDYFIT is
at least 2m, the competitive ratio of ONEBIN is at most 2m — 1, and that the competitive ratio of any
randomized algorithm is Q(m) even if it is allowed to use more than m bins simultaneously. The Bin
Coloring problem is also related to class-contrained knapsack problems [23, 24|. In those versions of the
knapsack problem, each item is characterized by a size and a color and each knapsack has an additional
limit on the number of different colors that it can hold.

Although Markov chains are a natural tool for the study of online algorithms, they have not been
used much so far in this context. One prominent example is the paging problem, where Karlin et al. [12]
studied request sequences generated by a Markov chain. However, this work uses Markov chains to
model the instances and not for analyzing algorithms (although the theory of Markov decision processes
is used to derive lower bounds for all online algorithms). Initiated by Coffman et al. [9], online bin packing
algorithms have been analyzed by modelling their behavior by Markov chains [13, 1, 20]. General methods



for the analysis of Markov chains have then been used to prove results for online algorithms. In contrast
to our approach these results are only asymptotic and expectation-based. Other uses of Markov chains
in the analysis of algorithms are in the field of approximate sampling [26]. Some of the techniques used
there are similar to ours since they are based on the concept of coupling, which is very useful to compare
probability distributions.

There are many applications of the rich theory of stochastic comparison and stochastic dominance,
see e.g., [25, 19]. However, there are only few papers applying them to analyze or develop algorithms.
The papers by Mitzenmacher [6, 18] employ these methods to analyze routing algorithms. Mitzenmacher
states on his homepage that he thinks “stochastic dominance is under-utilized in computer science”.

Structure of the paper Section 2 defines the problem variants and discusses an application to elevator
control. Markov chain models for the online algorithms, basic notation and technical preliminaries are
introduced in Section 3, including Theorem 3.1 which is the basis of our analysis. In Sections 4 and 5
we prove the result for minimizing the maximum and average colorfulness, respectively.

2 Problem definition and an application to elevator control

An instance of the Bin Coloring problem is described by the number of bins m, the bin capacity B and
the number of colors C'. In the online probabilistic version there is also a probability distribution v over
the colors given. Color sequences are generated by chosing each color according to v independently, i. e.,
the resulting color sequences are i.1i.d.

As mentioned before, asymptotic analysis does not give meaningful results. However, the algorithms
GREEDYFIT and ONEBIN differ in how long they manage to produce bins of low colorfulness. We
therefore will analyze the transient instead of the asymptotic behavior of the algorithms. Let the ran-
dom variables xS and x9B denote the maximum colorfulness attained after processing n items using
GREEDYFIT and ONEBIN, respectively. We will show that GREEDYFIT is stochastically better than
ONEBIN after n items, i.e., that xGF <y x©OB.

We will also show a similar result for another variant of the Online Bin Coloring problem, where the
objective is to minimize the average colorfulness of the bins. Equivalently, we can minimize the sum
of the colorfulness of the bins occuring during packing the items. We call the original problem variant
maz-BC and the new variant sum-BC. Note that the algorithms GREEDYFIT and ONEBIN work for both
variants.

Application to elevator control Before starting with the technical part of the paper, we shortly
explain an interesting connection between the Online Bin Coloring problem and the relative performance
of conventional elevator control and elevator control based on destination hall calls [10]. In conventional
elevator control systems, a passenger specifies the desired travel direction and, later in the elevator car,
her destination floor. In constrast, if the elevator system is based on destination hall calls, she specifies
her destination floor already at her current floor and is immediately assigned to a serving elevator. Thus
a destination hall call control system can use more information for scheduling the elevators.

An important figure for dimensioning an elevator system is the handling capacity [2]. The handling
capacity is defined as the critical passenger arrival rate: If the passenger arrival is higher than the
handling capacity, the system cannot cope with the resulting traffic and waiting times increase rapidly.
The handling capacity is determined by considering up-peak traffic, i. e., all arriving passengers arrive at
the ground floor and want to travel to the upper floors, which is the most demanding traffic situation [2].

The handling capacity is inversely related to the number of stops S an elevator car does before
returning to the ground floor. We now want to compare S for a conventional system to that of a
destination hall call system using our Bin Coloring analysis. Let us assume that the passenger arrival
rate is so high that the elevators leaving the ground floor are always full (this is also assumed in the
standard formula for the handling capacity [2]). Since we are only interested in the number of stops for
a round trip, we can model the passenger sequence by a sequence of destinations only.

In a conventional system, passengers board the lifts in the order of their arrival at the ground floor.
The stops of the resulting round trips are determined by the sub-sequences of size P of the destination
floor sequence. Regarding the destination floors as colors and the round trips as bins, this can be viewed
as ONEBIN working on sequences with N distinct colors and bin capacity P.

For a destination hall call system the elevator control has the possibility to reduce stops by assigning
passengers with the same destination floor to the same lift and balancing the number of stops between



the m lifts. A natural strategy to do this is the GREEDYFIT algorithm, using up to m bins.

As we will see in Theorem 5.3, the average number of colors achieved by GREEDYFIT is stochastically
dominated by that of ONEBIN. Applied to our elevator setting this means that the total number of stops
in the destination hall call system is stochastically dominated by that of the conventional system. Since
X <4 Y implies 1/X >4 1/Y, we get that the handling capacity of a destination call system is higher
than that of a conventional system, independent of the destination floor distribution.

3 Markov chain models and preliminaries

The results for both problem variants are based on the analysis of Markov chains induced by the algo-
rithms.

3.1 Markov chain models

Let us start with the max-BC and consider an arbitrary Online Bin Coloring algorithm processing color
sequences generated by our random model. The operation of any such algorithm can be described on a
state space which encodes for every bin ¢ its current number of items f;, the set of colors in that bin C;
plus the maximal colorfulness attained so far. Formally, we have

Smax—BC = Smax—BC(m7Bvc) = {(f1701; .. 'an,CmaX) 0 S |Cz| S fz S B7
|Ci] < x < min{B,C’}}.

Note that the states reachable by the operation of an algorithm may be a subset of Syax-BC-

We will use f;(s), Ci(s), and x(s) to refer to the components of state s. Additionally, we define
¢i(s) :=|C;(s)]. The state (0,0,...,0,0,0) is called the initial empty state.

Suppose an Online Bin Coloring algorithm A is in state s and receives an item of color ¢. The
algorithm then changes to state s’ by putting this item in one of the bins, say bin 7. There are two cases:
Either color ¢ is contained in C;(s), we say the color is known (in bin i), or it is not, so the color is new
(in bin i). We will denote the successor state for the first case by s5*°"2() (the color ¢ is not needed to
determine the successor state), for the second by s"ew(¢) Tt will be convenient not to consider the new
color ¢, but to deal with the random state resulting from s if any new color distributed according to
is seen. We will use the notation s**W(®) for this random state.

The ONEBIN algorithm is then described by the transitions

2
stew(D) with probability 1 — ~v(C(s)), @

, {sknown(l) with probability v(C(s)),
S =
where we use the shortcut notation y(S) := > _g7(s). This defines a Markov chain which we denote
by OB(m, B,C,~). Note that although ONEBIN uses only the first bin, we consider OB(m, B, C,~) as
working on the whole state space with m bins.

Similarly, we can give a Markov chain GF(m, B, C,~) for GREEDYFIT. GF(s) is the bin GREEDYFIT
selects for an item with a new color in state s. Depending on the tie-breaking rule used by the specific
variant of GREEDYFIT, GF(s) may or may not be a random variable. We only need that GF(s) is one
of the bins having in state s the smallest number of colors.

, gknown(i) with probability v(C;(s)) 1 <i<m,
s = aF . . (3)
snew(GF(#)  with probability 1 — (U, Ci(s))-
The operation of online algorithms in the sum-BC problem can be captured by a similar Markov

chain model. The main difference is that the x-component is no longer the maximum of the colorfulness
seen so far, but the sum. Note that the resulting Markov chains are infinite. We can use the state space

Ssum—BC = Ssum—BC(maBaC) = {(f17017~-~7fm70maX) 0 S |Cz| S fz S B,

|C;| < min{B,C},y € NO}.



The y-component increases each time a new color for a bin is encountered.

To avoid notational overhead, we will use the same notation for both problem variants. There-
fore the sum-BC-Markov chains for ONEBIN and GREEDYFIT will be denoted by OB(m, B,C,~) and
GF(m, B, C,~), too.

We use the notations OB(m, B, C,~),, and GF(m, B, C,~),, for the random state after n steps when
ONEBIN and GREEDYF'IT are started in the initial empty state. The goal of this paper is to show that,
in both problem variants,

X(GF(m, B,C,¥)n) <st x(0B(m, B,C,7),) Vn

and for all parameters m, B, C and color distributions . This kind of result is known as comparison
result for Markov chains in the probability theory literature, see e.g., [19].

3.2 A new comparison criterion

Unfortunately, the general comparison results for Markov chains based on stochastic monotonicity [19]
are not sufficient to prove stochastic dominance between GREEDYFIT and ONEBIN. Doisy [8] developed
a comparison criterion that is not based on stochastic monotonicity, however, this result is also too weak.

Our analysis is therefore based on the following criterion, which is an extension of a result in [4].
The criterion is based on stopping times. Given a Markov chain X = (X, )nen, on state space S with
valuation function x: & — V, V C Ny, we denote by T% the first time the Markov chain X reaches a
state with valuation at least v.

Theorem 3.1 Let X = (Xp)nen, and Y = (Yo )nen, be Markov chains on state space S and let x: S —
V' be a valuation function for some V ={0,..., Xmax}. Assume that the transitions of X andY are such
that the value of a state is nondecreasing in each step and that x(Xo) = x(Yo). Then the following are
equivalent:

L T;} <st T)U( YveV.
2. X(Xn) <&t X()/n) Vn € Ny.

Proof. Let the Markov chain X be defined on the probability space (€2, A, prob). The stopping time 7%
is then a random variable 7% : @ — Ny that is defined by

T%(w) :=min {n| x(Xn(w)) > v}
for each w € Q. Since x(X,(w)) > x(Xn (w)) whenever n’ < n, we have the equivalence
Ty (w) <n <= x(Xp(w)) = v,

which implies
Pr[T% <n]=Pr[x(X,) >].
Of course, analogous statements hold for Y as well.
We now have the following chain of equivalences.
X(Xn) <o X(Y) Vn €N
< Pr[x(X,) <v] >Prx(Yn) <v] VneNpveV
— 1-Prix(Xp)>v+1]>1-Pr[x(Yn) >v+1] VneNyveV
<= 1-"Pr [T)”(H gn] >1-Pr [T;i“ §n] Vn € Ng,v eV
< Pr [T;ﬂ“ < n] > Pr [T)”(H < n] Vn € Ng,v eV
= Ty < Tyt YweV.

Moreover, due to x(Xo) = x(Yo) > 0 we also have TQ <4 T%. O

In the sequel, we denote by T%(s) the stopping time for reaching a state with valuation at least v
when started deterministically in state in s.



How can we show T (so) <st T% (S0)? In order to apply a kind of induction technique we introduce a
family of Markov chains (X (n))n oy derived from a Markov chain X as follows. The state space of X (n)
is § x {0,...,n} and the transitions are defined by

Pr(X(n)iy1=(si+1)]| X(n); =(s5,9)] :=Pr[X;31 =8| X; =] V0 <i<m,
Pr[X(n)it1 = (s,n) | X(n); = (s,n)] :=1 Vi > n.

The Markov chain X (n) can be thought of as an time-expanded, acyclic version of the chain X for the
first n steps. Clearly, we have

Pr[Tx(s) =1i] =Pr Ty, ((s,0)) =i| VO<i<n. (4)
So in order to show Ty (sg) <s T%(s0), we can prove that
TY () ((50,0)) <t Tx(ny((50,0)) Vn €N.

To simplify notation, we will write T (n)(s) for T’y (n)((s, 0)) from now on. We have the following simple
result.

Lemma 3.2 For any Markov chain X = (X, )nen, on state space S with valuation function x: S — V,
V ={0,..., Xmax}, the stochastic dominance relation

T)U((n+1)(3) Sst T)v((n)(s)
holds for all states s, n € Ng, and v € V.

Proof. Consider a sample path w = (Xo, X1,...,X,) of X(n) with Xy = s. Obviously, w can be extended
to a sample path w’ = (X, X1, ..., Xpn, Xpnt1) of X(n+ 1) and all sample paths of X (n + 1) starting in
s are obtained this way. There are two cases:

1. x(X,) > v: For all w’ that are extensions of w we have T)v((n+1)(5) =T (s).

2. X(Xn) < v: For those w, Ty, (s) is infinite, whereas for any extension W’ T (n41)(s) is either
n + 1 or infinite, too. Thus T, . 1)(s) < Tk, (s). O

3.3 Further preliminaries
An important tool used frequently in this paper is the notion of mixture of random variables.

Definition 3.3 Let (X,,)men be a family of random variables and © be an M-valued random variable.
The random variable Y defined by Y := Xg (i. e., the X-variable to use is given by the realization of ©)
is called a mizture and denoted by [(Xm)mens | ©]-

An important property of <g is that it is closed under mixture, as stated in the Mixture Theorem.

Theorem 3.4 ([19, p. 6]) Suppose [(Xm)men | O] and [(Yi)men | O] are two miztures controlled by
the same random variable © satisfying X, <st Yo for all m € M. Then we have

(X )men [ ©] <s¢ [(Yim)menrr O]
A more general version of the following theorem was proved by Strassen, see e.g., [17].
Theorem 3.5 (Strassen’s Theorem) For two random variables X andY the following are equivalent:
1. X <g4Y
2. There is a probability space (2, A, P) with random variables X.,Y:Q— R such that
e X and Y are distributed as X and Y, respectively, and
e Pr|[X V=1

For two random variables X and Y, we will frequently write X =Y to mean that they have the same
distribution function.



4 GREEDYFIT is better than ONEBIN: max-BC

We will now apply the strategy described in Section 3.2 to the comparison of the GREEDYFIT and the
ONEBIN bin coloring algorithms. The main technique is to analyze a kind of stochastic recursion for
T (n) based on a mixture of random variables.
Let OB = OB(m, B, C,~) for fixed parameters m, B,C,~. In a state s € Spax.sc ONEBIN does the
transitions to states
{sknown(l) with probability v(C1(s)),

s2ew()  with probability 1 — v(C4(s)).

Using the random variable ©: Sy .x.c — N defined by

1 the next color is known in bin 1,
O(s) :=

2 the next color is new in bin 1,

we can come up with a recursive expression for 7, C”)B(n) (s), namely

0 x(s) > v,

v

TOB(TL)(S) - {1 + |:T8B(n—1) (Sknown(l)) , TSB(n—l) (Snew(l)) ‘ @(5):| X(S) <. (5)

This recursion and the Mixture Theorem 3.4 are the most important ingredients for the proofs to come.
We call two states s,s" € Spmax-sc OB-equivalent, if the valuation, the number of items and the set

of colors in bin 1 are the same in s and ¢, i.e., if x(s) = x(5'), fi(s) = fi(s’), and C;(s) = C1(s’). Note

that ONEBIN behaves exactly the same in two OB-equivalent states and therefore the stopping times

from two OB-equivalent states coincide. The following lemma gives some useful comparisons of stopping

times from certain states in the OB(n) chains.

Lemma 4.1 Consider the ONEBIN Markov chain OB = OB(m, B,C,~) for parameters m,B > 2, C,
and color distribution ~v. We have for all states s € Spax.sc, n € N, andv € V:

1. T§

Sp(my (") <ut TS

SB(n) (Sknown(l) ) , and

2. TSB(H)(S“EW(U) <at TSB(H)(S/) for every state s’ that is OB-equivalent to s.

Proof. Let s € Smax-sc be such that x(s?*WM1)) < v (the case x(s”*%(1)) > v is trivial).

1. Observe that both s?*V(1) and sk*°¥2(1) have the same number of items in bin 1, say f. In the
case f = 0 both states are OB-equivalent, since bin 1 is empty then. Therefore, TSB(H)(s“ew(l)) =

TSB(n) (Sknown(l))'

For f > 0 the evolution from both states will be identical after B — f steps, since bin 1 is then
empty again. It is therefore sufficient to show

new(l)) (sknown(l))

TSB(B—f)(S <st TSB(B—f)

for all 1 < f < B. We will show this by induction on j := B — f.

To start the induction, consider 7 = 1. There are two cases:
e ¢1(s) = v —2: We have Pr TSB(j)(s“ew(l)) < 1} <1 and Pr TSB(j)(Sknown(l)) =o0o| =1
e ¢1(s) <wv—2: Then TSB(j)(s“ew(l)) = TSB(j)(ska“(l)) = oo0.

In both cases, the stochastic dominance is immediate.

Let us now consider the induction step, i.e., j > 1. The key observation is that (since we need at
least two items to close bin 1)

fl (Snew(l),known(l)) — fl (Sknown(l),new(l)) and

b

o} (Snew(1)7known(1)) =0 (sknown(l),new(l))



which means that both states are OB-equivalent. Using the Mixture Theorem 3.4, we can then
estimate

TCU)B(j)(sneW(l))

=1+ [TgB(a‘—n(Snew(l)’known(l))vTSB(j—1>(SneW(1)’new(l)) ‘ 9(8“”(1))}

Sse 1+ TSB(J‘—1)(Snew(l)’known(l)) by induction
=1+ TSB(J‘—U(Sknown(l)’new(l)) OB-equivalence

<qt 1+ |:T8B(j—1) (Sknown(l),known(l))7TSB(j_l) (Sknown(l),new(l)) ‘ @(sknown(l))} by induction

_ TSB(j) (sknown(l)).

2. Since s and s’ are OB-equivalent, we have

T(%B(n)(s/) = TSB(n)(s) OB-equivalence

= 1 [Ty (™), Ty (5 | ©15)]

Zst 1+ T(I))B(nfl)(snew(l)) by 1.

>t 1+ T(%B(n)(s“ew(l)) by Lemma 3.2

>et TER(my (8" M), O

Theorem 4.2 Let OB and GF be the ONEBIN and GREEDYFIT max-BC-Markov chains for fized pa-
rameters m, B,C with B,m > 2 for some color distribution v. We have for all states s € Spax-BC,

neN, andveV:
TEB(n)(8) st Tép(n)(8)-

Proof. The proof is by induction on n. Since GREEDYFIT is not worse than ONEBIN for a single step in
each state s, we have TSB(l)(s) <st TéF(l)(S).

For the induction step, suppose we know that TSB(n)(S) <st TE’;F(n)(s) for all s € Spax.c. Consider
a state s € Spax.pc. Define the random variable ©: Spax.c — {1,...,m + 1} by

Y(Ci(s)) 1<i<m,

Pr[@(s):i]:{l—w(uici(s)) i=m-+1,

i.e., © in a sense “selects” the GREEDYFIT successor of state s. Using ©, we can write the recursion for
the stopping time of OB as

TSB(n+1)(5)

= 1 [T (550 0), T (570W D), . T (57 D) [ €(5)]

Observing that s<"°"»(?) 2 < j < m, are OB-equivalent to s, s**W(GF(5)) i5 either OB-equivalent to s or
equal to s”*%() we can use Lemma 4.1 to bound this by

<o 1+ [TSB(n)(Sknown(l))ﬂ . ﬂT(gB(n) (SknOWJrl('rn))7 TSB(n)(SneW(GF(s))) ‘ @(S):| ,
which by the induction hypothesis is bounded by

<st 1+ [TCU}F(n) (sknown(l))7 o 7T(1)}F(n) (Sknown(m))7 T(v;F(n) (Snew(GF(s))) ’ @(S)}
= Tg;F(n+1)(3)~

This concludes the induction step and the proof. O



Corollary 4.3 Let OB and GF be the ONEBIN and GREEDYFIT max-BC-Markov chains for fized
parameters m, B,C and color distribution v. We have for all states s € Smax-BC, n particular the
initial empty state, that

X(GF(s)n) <st x(OB(s)n)

for all n € Ny.

Proof. The cases m = 1 and B = 1 are trivial. For the remaining cases, combine Theorems 3.1 and 4.2
and the relation of OB(n) and OB as well as GF(n) and GF according to Equation (4). O

5 GREEDYFIT is better than ONEBIN: sum-BC

The analysis of the sum-BC problem is very similar to the one of max-BC in the preceding section. Recall
that the state space of the sum-BC only differs from the one of the max-BC in its interpretation of the x-
component: it now counts the sum of the colorfulness of all used bins instead of the maximum. Therefore,
the y-component increases with every transition due to a new color. Nevertheless, recursion (5) for the
stopping times is also valid for the analysis of the sum-BC.

Note that the proof of Theorem 4.2 is based only on Lemma 4.1. The proof of item 2 of Lemma 4.1
needs only item 1 and OB-equivalence. However, the notion of OB-equivalence introduced for the max-BC
is also appropriate for the sum-BC. In particular, stopping times for two OB-equivalent states coincide
also for the sum-BC-Markov chain of ONEBIN. Due to these observations, it is sufficient to prove an
analogue of item 1 of Lemma 4.1 to establish stochastic dominance between GREEDYFIT and ONEBIN
for the sum-BC. The proof uses the concept of a coupling Markov chain.

Definition 5.1 Let X = (X,)nen, and Y = (Y},)nen, be Markov chains on state space S. A Markov
chain Z = (X,Y’) on state space S X S is a coupling Markov chain if X and Y are distributed as X and
Y, respectively. However, X and Y need not be independent.

Lemma 5.2 Consider the ONEBIN Markov chain OB = OB(m, B, C,~) for parameters m,B > 2, C,
and color distribution ~ for the sum-BC. We have for all states s € Sgum-pc, n €N, andv € V:

TgB(n) (Snew(l)) <t TgB(n) (sknown(l)).
Proof. We will show the stronger
TCU)B (snew(Lc)) < TCU)B (Sknown(l))

for all ¢ ¢ C1(s) by constructing a coupling Markov chain Z = (X,Y’) on a state space that is a subset
of Squm-BC X Ssum-Bc. The first component of Z behaves exactly as OB started in state s*¥(1:¢) and the
second component as OB started in skmown(1),

A state (5", s5) of Z that can be reached from the initial state (s*¢%(1¢), skrown(1)) will always satisfy
the invariant

e cither x(s%) > x(s%), f1(s?) = f1(s¥), and Cy(s") = C1(s¥) or
o X(s") = x(s") + 1, fa(s") = f1(s"), and C1(s") = C1(s*) U {c}.

Since in both cases x(s") > x(s¥), the invariant implies
Pr T;}((Snew(l,c)) < T}I;(Sknown(l)) -1

so by Strassen’s Theorem the stochastic dominance is established.

It remains to describe Z. The initial state is (s“ew(l’c),sknown(l)), which obviously satisfies the
invariant. Consider any state (s",s") satisfying the invariant. If s® and s* differ at most in the x-
component, then the transitions of Z are such that the same happens in both components, leading to
further states satisfying the invariant.

Suppose s" and s¥ differ also in the Cj-component. The transitions are then determined by the next
color ¢’ drawn according to v as follows:

(Sn,ncw(l,c’)’Sk,ncw(l,c’)) e ¢ Cl (Sn) — Cl(Sk) U {C},
(sn,known(l)7 Sk,new(l,c’)) = c,

(sn,known(l), sk,known(l)) = Cl(sk).



Note that all the states satisfy the invariant and that the second kind of transition leads to states which
differ at most in the y-component (the other way of reaching such a state is when bin 1 is empty again).
Finally, we can verify that these transitions mirror the behavior of the OB chain in each component:

Pr [Xn+1 — sn,new(l,c’)

Xp = "] = 1=5(Ca(s"),

Pr |:Xn+1 _ Sn,known(l)‘Xn — g = ,Y(Cl(sn)),

Pr [YU—H = Sk,ncw(l,cf)

}
Y = 8| = 1= 5(Cu(s9)).
}

Pr |:Yn+1 — Sk,known(l)‘yﬂ _ Sk

Remark The above coupling argument can be generalized for any algorithm whose decisions do not
depend on x(s), both for sum-BC and max-BC.

Theorem 5.3 Let OB and GF be the ONEBIN and GREEDYFIT sum-BC-Markov chains for fixed pa-
rameters m, B, C and color distribution v. We have for all states s € Sgum-Bc, in particular the initial
empty state, that

for all n € Ng.

6 Concluding Remarks

We introduced a new approach for the probabilistic analysis of online algorithms which is based on the
concept of stochastic dominance. We applied this approach to the analysis of online algorithms for Bin
Coloring problems. This analysis explains simulation results much better than the competitive analysis
results existing so far and thus resolves an open problem posed in [15].

For the future it is interesting to see whether the method can be extended to analyze further Bin
Coloring algorithms or more complicated probabilistic models, e.g., ones where the color sequence is
generated by a Markov chain. As an example, consider the algorithm FIXEDCOLORS, which assigns the
items to bins based on their colors and a fixed color-to-bin assignment. In simulations we observed that
this algorithm is “in-between” ONEBIN and GREEDYFIT. We also observed that GREEDYFIT outperforms
ONEBIN when operating on uniform color sequences, where ONEBIN has to cope with fewer colors than
GREEDYFIT.

Similar techniques might also apply for other combinatorial online problems like bin packing or paging.
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