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Abstract

Technical restrictions and challenging details let railway traffic be-
come one of the most complex transportation systems. Routing trains
in a conflict-free way through a track network is one of the basic
scheduling problems for any railway company.

This article focuses on a robust extension of this problem, also
known as train timetabling problem (TTP), which consists in finding
a schedule, a conflict free set of train routes, of maximum value for a
given railway network.

However, timetables are not only required to be profitable. Rail-
way companies are also interested in reliable and robust solutions. In-
tuitively, we expect a more robust track allocation to be one where
disruptions arising from delays are less likely to be propagated causing
delays of subsequent trains. This trade-off between an efficient use of
railway infrastructure and the prospects of recovery leads us to a bi-
criteria optimization approach. On the one hand we want to maximize
the profit of a schedule, that is more or less to maximize the number
of feasible routed trains. On the other hand if two trains are scheduled
as tight as possible after each other it is clear that a delay of the first
one always affects the subsequent train.

We present extensions of the integer programming formulation in
Borndöfer & Schlechte [2007] for solving (TTP). These models can in-
corporate both aspects, because of the additional track configuration
variables. We discuss how these variables can directly be used to mea-
sure a certain type of robustness of a timetable. For these models which
can be solved by column generation techniques, we propose so-called
scalarization techniques, see Ehrgott [2005], to determine efficient so-
lutions.

Here, an efficient solution is one which does not allow any im-
provement in profit and robustness at the same time. We prove that
the LP-relaxation of the (TTP) including an additional ǫ-constraint
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remains solvable in polynomial time. Finally, we present some prelim-
inary results on macroscopic real-world data of a part of the German
long distance railway network.

1 Introduction

Constructing a maximum number of train routes in a conflict-free way
through a track network is one of the major scheduling problems a rail-
way company has to face. From a complexity point of view this problem
turns out to be NP-hard, see Caprara et al. [2002], but nevertheless in the
literature several optimization models were discussed which are able to solve
real-life instances to near-optimality, see Caprara et al. [2001], Caprara et al.
[2002], Borndörfer et al. [2006], Cacchiani et al. [2008] and Cacchiani [2007]
for more details.

All of these articles model the track allocation problem in terms of a
multi-commodity flow of trains in an appropriate time expanded digraph.
Feasibility is ensured by additional packing constraints, which rules out
conflicts between the routes.

In Borndöfer & Schlechte [2007] a different approach that handles con-
flicts not in terms of constraints, but in terms of additional variables, was
introduced. Its path formulation is amenable to standard column genera-
tion techniques and therefore suited for large-scale computation. The major
contribution of this paper is that these additional variables can be used to
measure robustness in terms of available buffer times of a timetable.

Robust optimization - that means the incorporation of data uncertainties
through mathematical models in its pure definition as proposed by Soyster
[1973] are not applicable for large scale optimization problems, yet. More-
over these models will end up with too conservative solutions; resistant
against all considered eventualities - but far away from implementable in
real world.

However robust optimization becomes a fruitful field in the last years
due to the fact that more and more optimization problems can be solved
in adequate time. This opens the door to additionally deal with stochastic
assumptions instead of only nominal given data. In Ben-Tal & Nemirovski
[1998] and El-Ghaoui et al. [1998] less conservative models were introduced,
which are able to adjust the robustness of the solution by some protection
level parameters. In Bertsimas et al. [2007] a recent survey to robust opti-
mization theory and its applications is given.

In Kroon et al. [2006], Liebchen et al. [2007] and Fischetti et al. [2007]
these robust considerations applied to the world of railways. There, an cyclic
version of the timetabling problem, modelled as Periodic Event Scheduling
Problem, briefly PESP, is investigated and stochastic methodology of Light
Robustness is introduced. Aim of all these considerations is to gain more
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insights in the trade-off of efficiency and robustness of solutions; finding a
so called ‘price of robustness’.

We are focusing on a pure combinatorial bi-criteria optimization ap-
proach, which is somehow related to Ehrgott & Ryan [2002] and Ehrgott
et al. [2007], broaching the issue of robustness in airline crew scheduling.
Motivated by the fact that robustness (available buffer times, quality of
day-to-day operations) and efficiency (used track kilometers, planned capac-
ity utilization) are incomparable entities, we favor a bi-criteria optimization
approach to cope with this.

We forbear from supporting this by recent statistics to punctuality and
reliability of any railway company. But obviously, decision makers are more
and more sensitive to the importantance of finding a good compromise be-
tween profitable and reliable timetables.

The organization of this article is as follows, in Section 2 we briefly
introduce a version of the train timetabling or track allocation problem.
In Section 3 we recur corresponding linear programming formulation ACP

using arc variables and PCP using path variables, respectively. Then, we
extend these models to measure robustness - this leads directly to an bi-
criteria optimization approach of the problem.

Section 3.1 discusses details on a straight-forward solution approach for
these kind of problems. We prove that the LP-relaxation of the PCP in-
cluding an additional ǫ-constraint remains solvable in polynomial time. To
determine efficient solution of the bi-criteria models, we propose so-called
scalarization techniques, see Ehrgott [2005].

Finally, we present some preliminary computational results on a part of
the German Railway Network in Section 4. Let us point out explicitly that
we do not claim these results are already practically significant; we only
want to show the potential of our approach on real-world-data.

2 The Track Allocation Problem

The track allocation problem in its single objective version can be formally
defined in terms of several digraphs D = (V,A). By δin we denote the set of
incoming arcs a ∈ A for v ∈ V , by δout(v) the set of outgoing arcs, respec-
tively. Arrivals and departures of trains at a set S of stations at discrete
times T ⊆ Z are represented by the nodes v ∈ V , arcs model activities like
runs of trains between or turnovers and dwelling inside stations. For each
v ∈ V we denote by σ(v) ∈ S the station associated with departure or arrival
and by τ(v) ∈ T the time of this event; we assume τ(u) < τ(v) for each arc
uv ∈ A such that D is acyclic; denote by J = {σ(u)σ(v) : uv ∈ A} the set
of all railway tracks.

We are further given a set I of requests to route trains through D. More
precisely, train i ∈ I can be routed on a path through some suitably defined
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symbol meaning

S stations
J tracks
G = (S, J) infrastructure digraph
I train requests
w arc weights (profit)
r arc weights (robustness)
σ : V 7→ S mapping of nodes to stations
τ : V 7→ Z mapping of nodes to time
si, ti source, sink of train i ∈ I

Di = (Vi, Ai) train digraph of i ∈ I

sxy, txy source, sink of track j = xy ∈ J

Dj = (Vj , Aj) track digraph of j ∈ J

Pi set of si, ti -paths in Di

Qj set of sxy, txy -paths in Dj

ALR coupling arcs
ARL backward arcs
A := AI ∪ AJ all arcs

Tab. 1: Notation for the Track Allocation Problem.

digraph Di = (Vi, Ai) from a source node si ∈ Vi to a sink node ti ∈ Vi;
let Pi be the set of all routes for train i ∈ I, and P =

⋃

i∈I Pi the set
of all train routes (taking the disjoint union). An arc uv ∈ A blocks the
underlying track σ(u)σ(v) during the time interval [τ(u), τ(v)− 1], that two
arcs a, b ∈ A are in conflict if their respective blocking intervals overlap, and
that two routes p, q ∈ P are in conflict if any of their arcs are in conflict.∗

A track allocation or timetable is a set of conflict-free routes, at most
one for each train. Given arc weights wa, a ∈ A, the weight of route
p ∈ P is wp =

∑

a∈p wa, and the weight of a track allocation X ⊆ P is
w(X) =

∑

p∈X wp. The optimal track allocation problem (OPTRA) in its
single objective version is to find a conflict-free track allocation of maximum
weight.

OPTRA can be seen as a multi-commodity flow problem with addi-
tional packing constraints - usually ensured by inequalities in the models.
In Borndöfer & Schlechte [2007], we proposed an alternative formulation
that is based on valid ‘configurations’. These are sets of arcs on the same
underlying track that are mutually conflict-free.

Formally, let Ast = {uv ∈ A : σ(u)σ(v) = st} be the set of all arcs
associated with some track st ∈ J ; a configuration for this track st is a set

∗In reality train conflicts are not that easy. This is just a notational simplification
avoiding the introduction of headway matrices.
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of arcs q ⊆ Ast that are mutually not in conflict, i.e. in our simplified case not
overlapping. Let Qj denote the set of all configuration associated with track
j ∈ J , and Q =

⋃

j∈J Qj the set of all configurations. By ALR =
⋃

st∈J Ast,
we denote the set of all ‘forward’ arcs.

For the construction of configurations we have to introduce track digraphs
Dj = (Vj , Aj) on each track j ∈ J . Consider the forward arcs Axy = {uv ∈
A : σ(u)σ(v) = xy} on a track j = xy ∈ J . Denote by Lxy := {u : uv ∈ Axy}
and Rxy := {v : uv ∈ Axy} the associated set of departure and arrival nodes.
Construct two new, additional nodes sxy and txy by setting σ(sxy) = y,
τ(sxy) := min τ(Rxy) − 1, and σ(txy) = x, τ(txy) := max τ(Rxy) + 1, i.e.,
sxy marks an artificial source node at station y before the departure of the
earliest trip on xy, and txy marks an artificial sink node at station x after the
arrival of the latest trip on xy. Let Lxy := Lxy∪{txy} and Rxy := Rxy∪{sxy};
note that all arcs in Axy go from Lxy to Rxy (actually from Lxy to Rxy).
Now let ARL := {vu : τ(v) ≤ τ(u), v ∈ Rst, u ∈ Lst} be a set of ‘backward’
arcs that go in the opposite direction; they connect the arrival of a trip on
xy (or node sxy) with all possible follow-on trips (or node txy) on that track.
Table 1 summarized the notation and Figure 1 gives some intuition of the
construction on a simple example. Finally, it is easy to observe, that per
definition

• each train digraph Di is acyclic

• each track digraph Dj is acyclic and bipartite

• each arc a ∈ ALR is part of exactly one train digraph Di and one track
digraph Dj

• there is an isomorphism between Qj and the set of all sxytxy-paths in
Dj .
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3 Bi-criteria Optimization Approach

Introducing 0/1-variables xp, p ∈ P , and yq, q ∈ Q, OPTRA can be stated
as the following integer program.

(PCP) (i) max
∑

p∈P

wpxp

(ii)
∑

p∈Pi

xp ≤ 1, ∀i ∈ I

(iii)
∑

q∈Qj

yq ≤ 1, ∀j ∈ J

(iv)
∑

a∈p∈P

xp −
∑

a∈q∈Q

yq ≤ 0, ∀a ∈ ALR

(v) xp, yq ≥ 0, ∀p ∈ P, q ∈ Q

(vi) xp, yq ∈ {0, 1}, ∀p ∈ P, q ∈ Q.

The objective PCP (i) maximizes the weight of the track allocation.
Constraints (ii) state that a train can run on one route only, constraints (iii)
allow at most one configuration for each track. Inequalities (iv) couples train
routes and track configurations to guarantee a conflict-free allocation, (v)
and (vi) are the non-negativity and integrality constraints. Note that the
upper bounds xp ≤ 1, p ∈ P , and yq ≤ 1, q ∈ Q, are redundant.

An arc based version can be formulated as well. Variables xa, a ∈ Ai,
i ∈ I control the use of trip a in Di and ya, a ∈ Aj, j ∈ J in Dj , respectively;

(ACP) (i) max
∑

a∈A

waxa

(ii)
∑

a∈δi
out

(v)

xa −
∑

a∈δi
in

(v)

xa = 0, ∀i ∈ I, v ∈ Vi\{si, ti}

(iii)
∑

a∈δi
out

(si)

xa ≤ 1, ∀i ∈ I

(iv)
∑

a∈δi
out

(v)

ya −
∑

a∈δi
in

(v)

ya = 0, ∀j ∈ J, v ∈ Vj\{sj , tj}

(v)
∑

a∈δi
out

(sj)

xa ≤ 1, ∀j ∈ J

(vi) xa − ya ≤ 0, ∀a ∈ ALR

(vii) xa, ya ≥ 0, ∀a ∈ A

(viii) xa, ya ∈ {0, 1}, ∀a ∈ A.

As before, the objective, denoted in (ACP) (i), is to maximize the weight
of the track allocation. Equalities (ii) and (iii) are well-known flow conser-
vation constraints for all trains i ∈ I, (iv) and (v) for all tracks j ∈ J ,
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respectively. Inequalities (vi) link arcs used by train routes and track con-
figurations to ensure a conflict-free allocation, (vii) and (viii) are the non-
negativity and the integrality constraints.

Figure 1: Configuration routing digraph and from none-robust to robust
configuration.

Let us explain the incorporation of robustness on a plain example. By rq

we denote a robustness value for each configuration q ∈ Q. We assume that
a high robustness value rq means configuration q is robust and a smaller the
contrary. The only thing, we expect for r is that rq =

∑

a∈q ra.
Figure 1 illustrates the idea on an a single track. Imaging the track

digraph on the left is induced by three train requests. Straight maximizing
the number of scheduled trains in that easy setting will always lead to a
schedule with profit value 3, but as you can see this can result in a lot of
varying schedules, in fact all LR-paths of length 5, i.e. the three showed
in Figure 1. Assume a buffer of length b ∈ Z is large enough to ensure
robustness for succeeding trains, then the following robustness function r :
R
|A| → R with

r((u, v)) :=











√
b (u, v) ∈ ARL and t(v) − t(u) > b

√

t(v) − t(u) (u, v) ∈ ARL and t(v) − t(u) ≤ b

0 otherwise

will measure the available buffers in an appropriate way. The robustness
measure r benefits buffer times near to b and somehow balances the partition
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of the available buffer times by its concaveness. Assume b = 2 in our example
in Figure 1. Then the first configuration q1 has value rq1

= 0, for the second
configuration rq2

is
√

2 and the third one has rq3
= 2. (For the sake of

completeness we set rq to a sufficient big M for an empty configuration q.)
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Figure 2: Function r(a) of a single
buffer arc a ∈ ARL.
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Figure 3: Robustness function of
two buffer arcs.

We can easily extend ACP and PCP to bi-criteria models by taking this
second, obviously contradictory, objective into account:

(PCP) (i’) max
∑

q∈Q

rqyq or analogously (ACP) (i’) max
∑

a∈A

raya.

To find all efficient solutions, we propose a straight-forward combined
weighted sum and ǫ-constraint method, as described in Ehrgott [2005]. Cos-
nidering model PCP this leads to the following objective function with a
scalar α ∈ [0, 1]:

max α(
∑

p∈P

wpxp) + (1 − α)(
∑

q∈Q

rqyq)

and to an additional constraint on one of the objectives, i.e.

∑

p∈P

wpxp ≥ ǫ or
∑

q∈Q

rqyq ≥ ǫ.

Common way in practice would be to choose an allowed deviation from a
profit maximizing schedule. Let vopt be the optimal value derived by solving
ACP or PCP. By ν we denote a given percentage of decrease in the profit
function. Choosing ǫ = (1 − ν)vopt and adding an ǫ-constraint for the first
objective, we receive:
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((α, ǫ) − PCP)

(i) max α(
∑

p∈P

wpxp) + (1 − α)(
∑

q∈Q

rqyq)

(ii)
∑

p∈Pi

xp ≤ 1, ∀i ∈ I

(iii)
∑

q∈Qj

yq ≤ 1, ∀j ∈ J

(iv)
∑

a∈p∈P

xp −
∑

a∈q∈Q

yq ≤ 0, ∀a ∈ ALR

(v)
∑

p∈P

wpxp ≥ ǫ,

(vi) xp, yq ≥ 0, ∀p ∈ P, q ∈ Q

(vii) xp, yq ∈ Z, ∀p ∈ P, q ∈ Q.

3.1 Details on Column Generation

Let us remark that the LP-relaxation PLP of PCP, i.e., PLP = PCP (i)–(v)
can be solved efficiently by column generation. Due to the added ǫ-constraint
the structure changed, but only slightly, as we will show. Fortunately, it
will turn out that the pricing problems remain solvable in polynomial time
(by computing longest paths in acyclic digraphs Di and Dj). To see this,
consider the dual DLP of the LP-relaxation of ((α, ǫ)−PCP), i.e. neglecting
constraints ((α, ǫ) − PCP) (vii):

(DLP)

(i) min
∑

j∈J

πj +
∑

i∈I

γi − ǫρ

(ii) γi +
∑

a∈p

λa − wpρ ≥ αwp ∀p ∈ Pi, i ∈ I

(iii) πj −
∑

a∈q

λa ≥ (1 − α)rq ∀q ∈ Qj, j ∈ J

(iv) γi, πj , λa, ρ ≥ 0 ∀i ∈ I, j ∈ J, a ∈ ALR.

Here, γi, i ∈ I, πj, j ∈ J , λa, a ∈ ALR and ρ, are the dual variables
associated with constraints ((α, ǫ)−PCP) (ii), (iii),(iv) and (v), respectively.
The pricing problem for a route p ∈ Pi for train i ∈ I is then:

∃ p ∈ Pi : γi +
∑

a∈p

λa − wpρ < αwp ⇐⇒
∑

a∈p

((α + ρ)wa − λa) > γi.

This is the same as finding a longest siti-path in Di w.r.t. arc weights
(α + ρ)wa − λa; as Di is acyclic, this problem can be solved in polynomial
time.
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The pricing problem for a configuration q ∈ Qj for track j ∈ J (w.r.t.
the additional ǫ-constraint (v)) is:

∃ q ∈ Qj : πj −
∑

a∈q

λa < (1 − α)rq ⇐⇒
∑

a∈q

(λa + (1 − α)ra) > πj.

Using arc weights (λa + (1 − α)ra), a ∈ ALR, and 0 otherwise, pricing
configurations Qj is equivalent to finding a longest sjtj-path in Dj . As Dj

is acyclic, this is polynomial. By the polynomial equivalence of separation
and optimization, see Grötschel et al. [1988], here applied to the (DLP), we
obtain:

Theorem 3.1. The LP-relaxation of ((α, ǫ)−PCP) is solvable in polynomial
time.

4 Preliminary Computational Results

We consider the Hanover-Kassel-Fulda area of the German long-distance
railway network. All our instances are based on the macroscopic infrastruc-
ture network provided by our project partners from departments for railway
track and operations. All data was produced by suited aggregation to min-
utes based on detailed mesoscopic simulation results (with a precision of
seconds).

The network consists of 37 stations, 120 tracks and 6 different train types
(ICE, IC, RE, RB, S, ICG). Because of various possible turnover and driving
times for each train type, this produces an infrastructure digraph with 146
nodes, 1480 arcs. For the construction of correct track digraphs, we stick to
4320 realistic headway times.

We tested our model on different scenarios, presenting here the results
for one with 146 trains. Based on the 2002 timetable of Deutsche Bahn
AG, we considered all trains inside that area in a time interval of about 120
minutes at a normal weekday from 9:00 to 11:00; leading to a representable
mix of long distance trains (IC, ICE), synchronized regional and suburban
passenger trains (S, RE, RB), and freight trains (ICG). Flexibility to reroute
trains is set to departure and arrival time windows of 20 minutes length.
Maximize the total number of trains in the schedule is our first objective†;
the second goal is to maximize our defined robustness measure, choosing
b = 20 minutes.

We are only presenting preliminary results for the LP case of ACP by
using the barrier method of CPLEX 11.0, see CPLEX [2007]. All compu-
tations were made single threaded on a Dell Precision 650 PC with 2GB of

†Furthermore, we slightly penalize deviations from certain desired departure and arrival
times.
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Figure 4: Total profit objective (blue, left axis) and total robustness objec-
tive (green, right axis) in dependence on α.

main memory and a dual Intel Xeon 3.8 GHz CPU running SUSE Linux
10.1. In Figure 4 the trade-off between robustness and profit function de-
pending on α is exemplary plotted. Whether the results presented in this
paper are useful in practice will turn out in the future after some extensive
computational studies.
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