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Abstract

This paper is intended to be a first step towards the continuous dependence
of dynamical contact problems on the initial data as well as the uniqueness of
a solution. Moreover, it provides the basis for a proof of the convergence of
popular time integration schemes as the Newmark method.

We study a frictionless dynamical contact problem between both linearly
elastic and viscoelastic bodies which is formulated via the Signorini contact con-
ditions. For viscoelastic materials fulfilling the Kelvin-Voigt constitutive law,
we find a characterization of the class of problems which satisfy a perturbation
result in a non-trivial mix of norms in function space. This characterization is
given in the form of a stability condition on the contact stresses at the contact
boundaries.

Furthermore, we present perturbation results for two well-established ap-
proximations of the classical Signorini condition: The Signorini condition for-
mulated in velocities and the model of normal compliance, both satisfying even
a sharper version of our stability condition.

AMS MSC 2000: 35L85, 74H55, 74M15
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1 Introduction

One of the most popular time discretization schemes for dynamical contact problems
is the Newmark method. Unfortunately, this scheme may lead to artificial numeri-
cal oscillations at dynamical contact boundaries and an undesirable energy blow-up
during time integration may occur [5, 20]. In [17], Kane et al. suggested a variant
of Newmark’s method which is energy dissipative at contact. Unfortunately, this
scheme is still unable to circumvent the undesirable oscillations at contact bound-
aries, for which reason Deuflhard et al. suggested a contact-stabilized Newmark
method [5, 20]. Up to now, the question of convergence of Newmark schemes in the
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presence of contact has completely been avoided in both the engineering and the
mathematical literature – a difficult problem due to the non-smoothness at contact
boundaries. Our aim is to apply the established proof technique for discretizations
of evolution problems by Hairer et al. (also known as “Lady Windermere’s Fan”,
cf. [11]) to the contact-stabilized Newmark method. For this purpose, the necessary
first step is to find a norm in which we can expect a perturbation result even in the
presence of contact.

The classical approach modeling contact phenomena between elastic bodies em-
ploys Signorini’s contact conditions which are based on the non-penetrability of
mass and lead to nonsmooth and nonlinear variational inequalities. The first exis-
tence and uniqueness results for evolution problems in elasticity were obtained by
Duvaut and Lions [6]. They studied the special case of prescribed normal stresses
where the contact surface is known in advance. For the case of linear elasticity in
conjunction with Signorini’s contact conditions, to date, existence has only been
provided in some simple geometric settings and for one-dimensional problems. A
general theory for multi-dimensional dynamical contact problems is still missing.

Basically, the serious mathematical difficulties with the well-posedness of purely
elastic problems result from the irregularity of the velocities at contact. However,
the assumption of viscous material behavior allows the derivation of existence re-
sults. In [13] and [15], Jarušek proved the existence of a weak solution for the
dynamical frictionless Signorini problem between a viscoelastic body with singular
memory and a rigid foundation. More recently, the existence of weak solutions in
viscoelasticity with Kelvin-Voigt constitutive law has been studied by Cocou [3]
and Kuttler and Shillor [23]. Migòrski and Ochal [27] established the existence for
a class of unilateral viscoelastic contact problems modeled by dynamical hemivari-
ational inequalities. In 2008, Ahn and Stewart [1] proved an existence result for a
frictionless dynamical contact problem between a linearly viscoelastic material of
Kelvin-Voigt type and a rigid obstacle. A survey of existence and uniqueness results
is given in the monograph [9].

Unfortunately, there are still fundamental and unresolved mathematical difficul-
ties even in the analysis of viscoelastic contact. These are caused by the Signorini
conditions on the unknown displacement field itself. Therefore, Jarušek and Eck
investigated the solvability of dynamical contact problems with unilateral contact
constraints on the velocity field (cf. [14, 16]). This approach yields the monotonicity
of the corresponding multivalued operator.

Martins and Oden [26] proposed the normal compliance condition, likewise lead-
ing to a problem with a much simpler mathematical structure. Their model assumes
that the normal stresses on the contact surface depend only on the normal dis-
placement field which results in a relaxation of the non-penetration of mass. They
presented existence and uniqueness results for linearly elastic and viscoelastic mate-
rials, but unfortunately their proof of uniqueness exhibits a fundamental error in the
estimation of norms. Their model of normal compliance was used in various papers,
see, e.g., [4, 19, 21, 22] and the monograph [18]. One of its main advantages is the
higher regularity of the solutions in time [24]. However, for the medical applications
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that we have in mind (such as the movement of the knee joint, see [20]), a mutual
interpenetration of the bodies is unacceptable and normal compliance models are
ruled out.

Most of the papers cited above concern existence and uniqueness results for
dynamical contact problems. However, to the best of our knowledge, there are
still no mathematical results concerning the continuous dependence on the initial
data. The lack of well-posedness results mainly originates from the hyperbolic
structure of the problem which leads to shocks at the contact interfaces. The
Signorini conditions in displacements seem to avoid a general regularity of such
problems.

The paper is organized as follows. In Section 2, we will consider the frictionless
dynamical contact problem between two linearly elastic bodies based on Signorini’s
conditions. We will give a short description of the underlying physical and math-
ematical model. Then, we will point out the essential mathematical difficulties in
the derivation of a perturbation result for such materials. To this end, in Section 3,
we will introduce the Kelvin-Voigt model for viscoelastic materials. We will find a
characterization of a class of problems for which it is possible to prove a perturba-
tion result in a non-trivial choice of mixed norms in function space. In Section 4,
we will end with two famous approximations of the Signorini condition in linear vis-
coelasticity, namely the Signorini conditions in velocities and the normal compliance
model. For these, we will give perturbation results yielding even the uniqueness of
the approximated solutions.

2 The Signorini condition in linear elasticity

The first two sections of this paper deal with a perturbation result for dynamical
contact problems with Signorini conditions in displacements. To the best of our
knowledge, there exist no results concerning continuous dependence on the initial
data in the mathematical literature, neither in the purely elastic nor in the vis-
coelastic case.

In Section 2.1, we will give a short description of the classical contact prob-
lem in linear elasticity which is formulated via the Signorini conditions. Then, in
Section 2.2, we will analyze the fundamental problems with a characterization of
linearly elastic contact problems which are satisfying a perturbation result.

2.1 Theoretical Background

We use the same model of dynamical contact between two linearly elastic bodies as
in [5] which is based on Signorini’s contact conditions. For the convenience of the
reader, we will briefly present the notation of the paper and the formulation of the
underlying mathematical model.

Notation. All domains treated here are understood to be bounded subsets in
R

d with d = 2, 3 and indices i, j, l,m run from 1 to d throughout the paper. Let
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the two bodies be identified with the domains ΩK , K ∈ {S,M} where S and M

stand for slave and master body, respectively. Let the solution be decomposed
according to u = (uS ,uM ). Each of the boundaries ∂ΩK with associated outward
directed normal νK shall be Lipschitz and is decomposed into three disjoint parts:
ΓK

D , the Dirichlet boundary, ΓK
N , the Neumann boundary, and ΓK

C , the possible
contact boundary, see Figure 1. We assume a non-vanishing Dirichlet boundary,
i.e. meas(ΓD) > 0. The actual contact boundary is not known in advance, but is
assumed to be contained in a compact strict subset of ΓK

C . Set Ω = ΩS ∪ ΩM and
Γ∗ = ΓS

∗ ∪ ΓM
∗ for ∗ ∈ {D,N,C}.

ΓM
D

ΓS
D

ΓM
C

ΓS
C

x

φ(x)

νφ

Figure 1: Two body contact problem and decomposition of the boundary

Tensor and vector quantities are written in bold characters, e.g., σ and v with
components σij and vi, respectively. The partial derivative with respect to the
spatial variable xj is indicated by a subindex j, e.g., v,j . The dot ( ˙ ) denotes the
derivative with respect to the time t > 0. We write the Euclidean vector norm in R

d

as | · |. Let L2(ΩK) = (L2(ΩK))d and L2 = L2(ΩS) × L2(ΩM ). The Sobolev space
of functions with weak derivative in L2(ΩK) is denoted by H1(ΩK) = (H1(ΩK))d

and H−1(ΩK) is the corresponding dual space. For Dirichlet boundary conditions
we define the subspaces

H1
D(ΩK) =

{

v

∣

∣

∣
v ∈ H1(ΩK), v|ΓK

D
= 0

}

,

and H1
D = H1

D(ΩS) × H1
D(ΩM ). Let H1

D be equipped with the norm

‖v‖2
H1

D
= ‖vS‖2

H1(ΩS) + ‖vM‖2
H1(ΩM ) .

Scalar products are written in the form (·, ·)L2(ΩK) and (·, ·)H1(ΩK) with induced

norms ‖v‖2
L2(ΩK)

= (v,v)L2(ΩK), ‖v‖
2
H1(ΩK)

= (v,v)H1(ΩK ). For a Banach space X

and 0 < T < ∞ we denote by C([0, T ],X) all continuous functions v : [0, T ] → X.
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The space L2(0, T ;X) consists of all measurable functions v : (0, T ) → X for which

‖v‖2
L2(0,T ;X) =

∫ T

0
‖v(t)‖2

X dt < ∞

holds. We identify L2 with its dual space and obtain the evolution triple

H1 ⊂ L2 ⊂ H−1

with dense, continuous and compact embeddings (cf., e.g., [31]). With reference
to this evolution triple, the Sobolev space W1,2(0, T ;H1,L2) means the set of all
functions v ∈ L2(0, T ;H1) that have generalized derivatives v̇ ∈ L2(0, T ;H−1).

Non-penetration condition. At the contact interface ΓC , the two bodies may
come into contact but must not penetrate each other. We assume a bijective map-
ping φ : ΓS

C −→ ΓM
C between the two possible contact surfaces to be given and,

following [8], we define linearized non-penetration with respect to φ by

[u · ν]φ(x, t) = uS(x, t) · νφ(x) − uM (φ(x), t) · νφ(x) ≤ g(x) , x ∈ ΓS
C .

This condition is given with respect to the initial gap

ΓS
C ∋ x 7→ g(x) = |x − φ(x)| ∈ R

between the two bodies in the reference configuration and we have set

νφ =











φ(x) − x

|φ(x) − x|
, if x 6= φ(x) ,

νS(x) = −νM (x) , if x = φ(x) .

Variational problem formulation. For the weak formulation of the contact
problem, we denote the convex set of all admissible displacements by

K = {v ∈ H1
D | [v · ν]φ ≤ g} . (1)

For the data we assume f(·, t) ∈ L2(Ω) and π(·, t) ∈ H−1/2(ΓN ) for all t ∈ [0, T ].
On H1

D, the linear functional fext, which accounts for the volume forces and the
tractions on the Neumann boundary, is given by

fext(v) = (f ,v)L2 + 〈π,v〉
H−1/2(ΓN )×H1/2(ΓN ) .

The internal forces can be written as a bilinear form

a(v,w) =

∫

Ω
E ε(vK) : ε(wK) dx , v,w ∈ H1

with the elasticity tensor E and the linearized second-order strain tensor

ε(v) =
1

2

(

∇v + (∇v)T
)

, v ∈ H1 .
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Then, the sum of internal and external forces can be represented by

〈F(w),v〉H−1×H1 = a(w,v) − fext(v) , v,w ∈ H1 .

Via integration by parts and exploiting the boundary conditions, see [7] and
[18], we can write the contact problem in the weak formulation as a hyperbolic
variational inequality: For almost every t ∈ [0, T ] find u(·, t) ∈ K with ü(·, t) ∈ H−1

such that

〈ü,v − u〉H−1×H1 + 〈F(u),v − u〉H−1×H1 ≥ 0 , ∀ v ∈ K (2)

and

u(x, 0) = u0(x), u̇(x, 0) = u̇0(x) in Ω . (3)

Incorporating the constraints v(t) ∈ K for almost all t ∈ [0, T ] by the characteristic
functional IK(v),

IK(v) =

{

0 if v ∈ K

∞ else
, v ∈ H1

D

the variational inequality (2) can equivalently be formulated as the variational in-
clusion

0 ∈ ü + F(u) + ∂IK(u) (4)

utilizing the subdifferential ∂IK of IK (see, e.g., [10]). For a given solution u of
this variational inequality, we define for almost every t ∈ [0, T ] the contact forces
Fcon(u) ∈ H−1 via

〈Fcon(u),v〉H−1×H1 = 〈ü + F(u),v〉H−1×H1 , v ∈ H1 . (5)

2.2 A perturbation result

In the following we analyze the continuous dependence on the initial data for the
linearly elastic contact problem presented above. We start with a formal derivation
of a relation which describes the dynamical behavior of an initial perturbation in
the energy norm of the system.

Let u and ũ be two solutions of the linearly elastic contact problem (2) with
initial values u(x, 0) = u0(x), u̇(x, 0) = u̇0(x) and ũ(x, 0) = ũ0(x), ˙̃u(x, 0) = ˙̃u0(x)
in Ω. We assume u̇ − ˙̃u to be contained in W1,2(0, T ;H1,L2) which is of course
not satisfied in general. Nevertheless, we formally integrate (5) from 0 to t with
t ∈ [0, T ] and we use v = u̇− ˙̃u as a trial function. This yields

t
∫

0

〈ü, u̇ − ˙̃u〉H−1×H1 ds +
t
∫

0

a(u, u̇ − ˙̃u) ds

=
t
∫

0

fext(u̇− ˙̃u) ds +
t
∫

0

〈Fcon(u), u̇ − ˙̃u〉H−1×H1 ds .
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Performing the same formal calculation with (5) for ũ instead of u, we can subtract
the resulting equation for ũ from the equation for u above. By the linearity of the
functional fext we find

t
∫

0

〈ü − ¨̃u, u̇ − ˙̃u〉H−1×H1 ds +
t
∫

0

a(u − ũ, u̇ − ˙̃u) ds

=
t
∫

0

〈Fcon(u) − Fcon(ũ), u̇ − ˙̃u〉H−1×H1 ds .

Under the regularity assumption u̇ − ˙̃u ∈ W1,2(0, T ;H1,L2) on the velocities, we
can reformulate the left-hand side of this expression by applying integration by parts
in time (see, e.g., Prop. 23.23 in [31]). This calculation gives rise to the following
result.

Lemma 2.1. Let u and ũ be two solutions of (2) with initial values u(x, 0) =
u0(x), u̇(x, 0) = u̇0(x) and ũ(x, 0) = ũ0(x), ˙̃u(x, 0) = ˙̃u0(x) in Ω. Assume that
u̇ − ˙̃u ∈ W1,2(0, T ;H1,L2). Then, for all t ∈ [0, T ],

‖u̇(t) − ˙̃u(t)‖2
L2 + a(u(t) − ũ(t),u(t) − ũ(t))

= ‖u̇0 − ˙̃u0‖
2
L2 + a(u0 − ũ0,u0 − ũ0)

+ 2
t
∫

0

〈Fcon(u(s)) − Fcon(ũ(s)), u̇(s) − ˙̃u(s)〉H−1×H1 ds .

(6)

In the absence of contact, the two left-hand terms and the first two right-hand
terms in (6) show the continuous dependence of the solution from the initial values.
In the presence of contact, this structure is disturbed by the additional integral
term on the right-hand side.

In order to estimate this term, we need information on the time derivatives of
the displacements at the contact boundaries. Unfortunately, a purely elastic formu-
lation is in general not able to provide such information. This fact originates from
the underlying assumption that the dependence of internal stresses on velocities can
be neglected. Therefore, there is no way to define a class of elastic contact prob-
lems just by demanding a kind of stability on the contact stresses. A perturbation
result for linearly elastic contact problems would necessarily require estimates on
the velocities at the contact boundaries.

Actually, this problem is linked to the additional regularity assumption on the
solutions which is needed for the derivation of Lemma 2.1. Due to the hyper-
bolic structure of purely elastic contact problems, the Signorini solutions are not as
smooth as the initial data allow. Therefore, in the following section, we will turn
to materials with viscoelastic behavior.
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3 The Signorini condition in viscoelasticity

In this section we will characterize a class of viscoelastic contact problems which
are stable with respect to perturbations of the initial data.

In Section 3.1, we will present the weak formulation of the dynamical contact
problem for viscoelastic materials of Kelvin-Voigt type with Signorini’s contact con-
ditions. After that, in Section 3.2, we will discuss the so-called persistency condition
for linearly elastic problems in comparison with the viscoelastic case. It will play
a major role in the interpretation of our stability condition for viscoelastic contact
problems. Finally, in the subsequent Section 3.3, we will present a characterization
of a class of viscoelastic contact problems which satisfy continuous dependence on
the initial data. Under this condition we will prove a perturbation result in a special
mix of norms in function space.

3.1 Theoretical Background

In the following, we assume the materials under consideration to be linearly vis-
coelastic, i.e., the stresses σ satisfy the Kelvin-Voigt constitutive relation

σ
(

uK , u̇K
)

= EK ε(uK) + VK ε(u̇K) , uK , u̇K ∈ H1

where EK and VK are the fourth-order elasticity and viscosity tensors, respec-
tively (see, e.g., [12]). Both tensors are assumed to be sufficiently smooth (with
EK

ijml, V
K
ijml ∈ L∞(ΩK)), symmetric, and uniformly positive definite, i.e., there are

constants E0, V0 > 0 such that

(Eζ, ζ) ≥ E0|ζ|
2, (V ζ, ζ) ≥ V0|ζ|

2 (7)

for all symmetric second-order tensors ζ = (ζij) where |ζ| =
(

∑

i,j ζ2
ij

)1/2
. When

VK = 0, this constitutive law reduces to Hooke’s law as used for linearly elastic
materials.

Variational problem formulation. For the weak formulation, the convex set
of all admissible displacements is given by

K = {v : (0, T ) → H1
D | v̇ ∈ H1, [v · ν]φ ≤ g} . (8)

The viscous part of the internal forces can be written as the bilinear form

b(v,w) =

∫

Ω
V ε(vK) : ε(wK) dx , v,w ∈ H1

which can be represented by

〈G(w),v〉H−1×H1 = b(w,v) , v,w ∈ H1 .
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As in the linearly elastic case, we write the viscoelastic contact problem in the
weak formulation as a hyperbolic variational inequality: For almost every t ∈ [0, T ]
find u(·, t) ∈ K with u(·, t) ∈ C([0, T ],H1) and u̇ ∈ W1,2(0, T ;H1,L2) such that

〈ü,v−u〉H−1×H1 + 〈F(u),v−u〉H−1×H1 + 〈G(u̇),v−u〉H−1×H1 ≥ 0 , ∀ v ∈ K
(9)

and
u(x, 0) = u0(x), u̇(x, 0) = u̇0(x) in Ω . (10)

We define the contact forces Fcon(u) ∈ H−1 for almost every t ∈ [0, T ] as

〈Fcon(u),v〉H−1×H1 = 〈ü + F(u) + G(u̇),v〉H−1×H1 , v ∈ H1 . (11)

As shown, for instance, in [1] and [23] the unilateral contact problem between a
viscoelastic body and a rigid foundation has at least one weak solution.

Remark. Note that the initial conditions (10) are formulated in a meaningful
way: The generalized derivative u̇ ∈ W1,2(0, T ;H1,L2) is determined only up
to changes on a set of measure zero on [0, T ]. However, since the embedding
W1,2(0, T ;H1,L2) ⊂ C(0, T ;L2) is continuous (cf. [31], sec. 33.1), there exists
a uniquely determined representative

u̇ ∈ C([0, T ],L2) .

The initial conditions (10) are to be understood in this sense.

Korn’s inequality. On Ω, the inequality of Korn

ck ‖v‖
2
H1 ≤ ‖v‖2

L2 + ‖ε(v)‖2
L2 , ∀ v ∈ H1

holds where ck > 0 is a constant depending only on Ω and ΓD. Under our additional
assumption that ΓD ⊂ ∂Ω is connected with meas(ΓD) > 0, the inequality reduces
to

ck ‖v‖
2
H1 ≤ ‖ε(v)‖2

L2 , ∀ v ∈ H1
D . (12)

With the ellipticity condition (7), it follows that ‖ · ‖H1 and a(·, ·)1/2 are equivalent
norms on H1. A proof of Korn’s inequality can, for instance, be found in [28]
and [29].

Gronwall’s inequality. Let δ, λ be two mappings from an interval [0, T ] into
[0,∞). Assume δ is continuous, λ is integrable, C ∈ [0,∞) and

δ(t) ≤ C +

∫ t

0
λ(s)δ(s) ds , ∀ t ∈ [0, T ] .

Then

δ(t) ≤ C exp

(
∫ t

0
λ(s) ds

)

, ∀ t ∈ [0, T ] .

A proof of this generalized version of the inequality of Gronwall can be found in [30].
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3.2 The notorious persistency condition

In the case of linear elasticity, we expect the energy of the whole system to be
constant in time. As far as we know, up to now, energy conservation can only be
shown for solutions u with sufficiently smooth velocities u̇ and under an additional
assumption at the contact boundary, known as persistency condition (see, e.g., [25]).
Analyzing the proof of energy conservation in [25], we find that this condition can
be weakened to

〈Fcon(u), u̇〉H−1×H1 = 0 , a.e. t ∈ [0, T ] . (13)

The solutions of the purely linearly elastic contact problem are in general not smooth
enough to satisfy the persistency condition (13). By contrast, we are able to prove
the validity of this condition for solutions of our viscoelastic problem. For this
aim, we follow the presentation for unilateral contact problems in [1] and references
therein.

Theorem 3.1. Let u(·, t) ∈ K fulfill (9) with u̇ ∈ W1,2(0, T ;H1,L2). Then u

satisfies the generalized persistency condition (13).

Proof. The definition of the contact forces and the continuity of the linearly elastic
forces (see, e.g., Lemma 1.1 in [8]) lead to Fcon(u) ∈ L2(0, T ;H−1) since

‖Fcon(u)‖L2(0,T ;H−1)

≤ c
(

‖ü‖L2(0,T ;H−1) + ‖F(u)‖L2(0,T ;H−1) + ‖G(u)‖L2(0,T ;H−1)

)

≤ c
(

‖ü‖L2(0,T ;H−1) + ‖u‖L2(0,T ;H1) + ‖u̇‖L2(0,T ;H1)

)

< ∞ .

By the generalized main theorem of calculus (compare, e.g., prob. 23.5 in [31]),
the time derivative u̇(t) exists for almost every t ∈ [0, T ] even in the classical sense
because the generalized derivative u̇ is contained in L2(0, T ;H1). We choose t such
that u̇(t) exists and condition (9) holds. Then,

〈

Fcon(u(t)), u(t+h)−u(t)
h

〉

H−1×H1
=

{

≥ 0 if h > 0

≤ 0 if h < 0

and, for almost every t ∈ [0, T ], we find

〈Fcon(u(t)), u̇(t)〉
H−1×H1 = lim

h→0

〈

Fcon(u(t)),
u(t + h) − u(t)

h

〉

H−1×H1

= 0 .

The weakened persistency condition will play an important role in the interpre-
tation of our stability condition for viscoelastic contact problems presented in the
next section.
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3.3 A perturbation result

In what follows, we analyze the continuous dependence of linearly viscoelastic con-
tact problems with Signorini conditions on the initial data. Viscosity leads to higher
regularity of the solutions which justifies the formal calculation for linearly elastic
problems as performed in Section 2.2. Furthermore, linearly viscoelastic models are
in general capable of providing information on the time derivatives of the solutions
at the contact boundaries.

We start with a result for the linearly viscoelastic problem corresponding to
Lemma 2.1 in the purely elastic case.

Lemma 3.2. Let u and ũ be two solutions of (9) with initial values u(x, 0) = u0(x),
u̇(x, 0) = u̇0(x) and ũ(x, 0) = ũ0(x), ˙̃u(x, 0) = ˙̃u0(x) in Ω. Then, for all t ∈ [0, T ],

‖u̇(t) − ˙̃u(t)‖2
L2 + a(u(t) − ũ(t),u(t) − ũ(t))

+ 2
t
∫

0

b(u̇(s) − ˙̃u(s), u̇(s) − ˙̃u(s)) ds

= ‖u̇0 − ˙̃u0‖
2
L2 + a(u0 − ũ0,u0 − ũ0)

+ 2
t
∫

0

〈Fcon(u(s)) − Fcon(ũ(s)), u̇(s) − ˙̃u(s)〉H−1×H1 ds .

(14)

Proof. As in the linearly elastic case, we integrate the viscoelasticity equation (9)
for u and ũ from 0 to t, test them with v = u̇− ˙̃u, subtract one from the other and
obtain

t
∫

0

〈ü− ¨̃u, u̇ − ˙̃u〉H−1×H1 ds +
t
∫

0

a(u− ũ, u̇ − ˙̃u) ds +
t
∫

0

b(u̇− ˙̃u, u̇ − ˙̃u) ds

=
t
∫

0

〈Fcon(u) − Fcon(ũ), u̇ − ˙̃u〉H−1×H1 ds .

Integration by parts (see, e.g., Prop. 23.23 in [31]) leads to the expression of the
theorem.

Even in the case of linear viscoelasticity, the dynamical contact problem with
Signorini conditions may be ill-posed in the presence of contact. Hence, we give a
characterization of problems for which the continuous dependence of the solutions
on the initial values holds. The result presented in the lemma above shows that
we have to impose such a stability condition on the time integral over the contact
forces applied to the velocities.
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Stability condition. Measuring the perturbation in the displacements and the
velocities in the canonical norm on L2(0, T ;H1(Ω)), we demand for all t ∈ [0, T ]

∣

∣

∣

∣

t
∫

0

〈Fcon(u(t)) − Fcon(ũ(t)), u̇(t) − ˙̃u(t)〉H−1(Ω)×H1(Ω) dt

∣

∣

∣

∣

≤ ǫ(t)

(

‖κ (u− ũ)‖
L2(0,t;H1(Ω)) +

∥

∥

∥
u̇− ˙̃u

∥

∥

∥

L2(0,t;H1(Ω))

)

∥

∥

∥
u̇− ˙̃u

∥

∥

∥

L2(0,t;H1(Ω))

(15)
where 0 ≤ κ ∈ L2(0, T ) and ǫ(t) ≥ 0 is sufficiently small.

The precise meaning of the requirement “ǫ sufficiently small” will be given in the
proof of the following perturbation theorem. We will see that, for the derivation of a
perturbation result in the viscoelastic case, the validity of this demand is absolutely
fundamental.

For the class of viscoelastic problems satisfying the stability condition above,
the following perturbation result holds.

Theorem 3.3. Let u and ũ be two solutions of (9) with initial conditions u(x, 0) =
u0(x), u̇(x, 0) = u̇0(x) and ũ(x, 0) = ũ0(x), ˙̃u(x, 0) = ˙̃u0(x) in Ω. For T > 0,
assume the stability condition (15) with (17). Then, for all t ∈ [0, T ],

‖u̇(t) − ˙̃u(t)‖2
L2 + a(u(t) − ũ(t),u(t) − ũ(t))

+ 2
(

α −
sups∈[0,T ] ǫ(s)

V0 ck

) t
∫

0

b(u̇(s) − ˙̃u(s), u̇(s) − ˙̃u(s)) ds

≤
(

‖u̇0 − ˙̃u0‖
2
L2 + a(u0 − ũ0,u0 − ũ0)

)

· e

t
R

0

κ̃2(s) ds

(16)

with α ∈ [0, 1) and κ̃2(s) =
supt∈[0,T ] ǫ2(t)

2 E0 V0 c2k(1−α)
· κ2(s) for s ∈ (0, T ).

Proof. Using Lemma 3.2 the stability condition (15) leads for all t ∈ (0, T ) to

‖u̇(t) − ˙̃u(t)‖2
L2 + a(u(t) − ũ(t),u(t) − ũ(t))

+ 2
t
∫

0

b(u̇(s) − ˙̃u(s), u̇(s) − ˙̃u(s)) ds

≤ ‖u̇0 − ˙̃u0‖
2
L2 + a(u0 − ũ0,u0 − ũ0)

+ 2

∣

∣

∣

∣

t
∫

0

〈Fcon(u(s)) − Fcon(ũ(s)), u̇(s) − ˙̃u(s)〉H−1×H1 ds

∣

∣

∣

∣

≤ ‖u̇0 − ˙̃u0‖
2
L2 + a(u0 − ũ0,u0 − ũ0)

+ 2 ǫ(t) ‖κ (u− ũ)‖
L2(0,t;H1)

∥

∥

∥
u̇ − ˙̃u

∥

∥

∥

L2(0,t;H1)
+ 2 ǫ(t)

∥

∥

∥
u̇ − ˙̃u

∥

∥

∥

2

L2(0,t;H1)
.
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For an arbitrary parameter α ∈ [0, 1), we use Young’s inequality in the form

2ab ≤
1

2V0 ck (1 − α)
a2 + 2V0 ck (1 − α) b2

to find

‖u̇(t) − ˙̃u(t)‖2
L2 + a(u(t) − ũ(t),u(t) − ũ(t))

+ 2
t
∫

0

b(u̇(s) − ˙̃u(s), u̇(s) − ˙̃u(s)) ds

≤ ‖u̇0 − ˙̃u0‖
2
L2 + a(u0 − ũ0,u0 − ũ0)

+ ǫ2(t)
2 V0 ck (1−α) ‖κ (u− ũ)‖2

L2(0,t;H1) + 2(ǫ(t) + V0 ck (1 − α)) ‖u̇ − ˙̃u‖2
L2(0,t;H1) .

Remember our assumption meas(ΓD) > 0. For almost every t > 0, the velocities
u̇(t) are contained in H1(Ω) with a trace on the boundary. Hence, it follows from
u(t) = 0 on ΓD that even u̇(t) = 0 on ΓD for almost every t. Then, Korn’s
inequality (12) yields

‖u̇(t) − ˙̃u(t)‖2
L2 + a(u(t) − ũ(t),u(t) − ũ(t))

+ 2
t
∫

0

b(u̇(s) − ˙̃u(s), u̇(s) − ˙̃u(s)) ds

≤ ‖u̇0 − ˙̃u0‖
2
L2 + a(u0 − ũ0,u0 − ũ0)

+ ǫ2(t)
2 E0 V0 c2k (1−α)

t
∫

0

κ2(s) a(u(s) − ũ(s),u(s) − ũ(s)) ds

+ 2
(

ǫ(t)
V0 ck

+ (1 − α)
) t

∫

0

b(u̇(s) − ˙̃u(s), u̇(s) − ˙̃u(s)) ds

which is equivalent to

‖u̇(t) − ˙̃u(t)‖2
L2 + a(u(t) − ũ(t),u(t) − ũ(t))

+ 2
(

α − ǫ(t)
V0 ck

) t
∫

0

b(u̇(s) − ˙̃u(s), u̇(s) − ˙̃u(s)) ds

≤ ‖u̇0 − ˙̃u0‖
2
L2 + a(u0 − ũ0,u0 − ũ0)

+ ǫ2(t)
2 E0 V0 c2k (1−α)

t
∫

0

κ2(s) a(u(s) − ũ(s),u(s) − ũ(s)) ds .

In order to ensure the non-negativity of the integral term on the left-hand side, we
demand ǫ(t) to be such small that

ǫ(t)

V0 ck
< 1 , ∀ t ∈ [0, T ] . (17)
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Introducing the supremum of ǫ(t) over the whole time intervall [0, T ] yields

‖u̇(t) − ˙̃u(t)‖2
L2 + a(u(t) − ũ(t),u(t) − ũ(t))

+ 2
(

α − sup ǫ(t)
V0 ck

) t
∫

0

b(u̇(s) − ˙̃u(s), u̇(s) − ˙̃u(s)) ds

≤ ‖u̇0 − ˙̃u0‖
2
L2 + a(u0 − ũ0,u0 − ũ0)

+
t
∫

0

κ̃2(s) a(u(s) − ũ(s),u(s) − ũ(s)) ds

with

κ̃2(s) =
sup ǫ2(t)

2E0 V0 c2
k(1 − α)

· κ2(s) ∈ L2(0, T ) .

We note that u ∈ C([0, T ],H1) and u̇ ∈ C([0, T ],L2). Together with Lebesgue’s
theorem and u̇ ∈ L2(0, T ;H1), this fact yields the continuity of the left-hand side
w.r.t. t ∈ [0, T ]. Theorem 3.3 is a direct consequence of Gronwall’s lemma as it has
been presented in Section 3.1.

3.4 Interpretation of the stability condition

In order to interpretate and to motivate our stability condition (15), our first aim
is to localize the contact stresses on a part of the possible contact boundaries. On
the basis of such a localization, we will give a sufficient criterion for the validity of
the condition.

Our considerations are motivated by the intuition that perturbations in the
contact forces are effective only on a small part of the contact boundaries, namely
where the original solution is in contact and the perturbed is not, or vice versa. Due
to lack of regularity of the solutions, however, we resort to a heuristic argumentation
rather than a rigorous proof.

Localization of the contact stresses. For simplification, we assume that the
possible contact boundaries and the bijective mappings between the two possible
contact boundaries coincide, i.e. ΓC = Γ̃C and φ = φ̃.

For t > 0, we want to consider the part ΓC(t) of the possible contact boundaries
where the solution of the dynamical viscoelastic contact problem is actually in
contact. The natural definition of the actual contact boundaries is

ΓC(t) = {x ∈ ΓC | [u · ν]φ = g} ⊂ ΓC , t ≥ 0 ,

respectively
Γ̃C(t) = {x ∈ ΓC | [ũ · ν]φ = g} ⊂ ΓC , t ≥ 0

for the perturbed solution. Unfortunately, in the general case, the lack of regularity
results for dynamical contact problems prohibits the introduction of actual contact
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boundaries in this way. This is due to the fact that the definition of the admissible
set K yields only

[u · ν]φ ≤ g for almost every x ∈ ΓC ,

i.e. up to boundary sets of measure zero. Hence, the definition above necessitates
the additional assumption that the solutions u and ũ are continuous on the possible
contact boundaries ΓC and Γ̃C . This is satisfied, e.g., if u ∈ L2(0, T ;H2(Ω)).

Now, we mean by the critical part of the actual contact boundaries the set where
the solution is in contact and the perturbed solution is not, or vice versa. It is given
by the symmetric difference

Γ∗
C(t) = (ΓC(t) ∪ Γ̃C(t)) \ (ΓC(t) ∩ Γ̃C(t))

= {x ∈ ΓC(t) ∪ Γ̃C(t) | [u · ν]φ < g, [ũ · ν]φ = g or

[u · ν]φ = g, [ũ · ν]φ < g} , t ≥ 0 .

Finally, we introduce the space

VC = {v ∈ L2(0, T ;H1
D) | v̇ ∈ L2(0, T ;H1), [v · ν] = 0 on ΓC(t) ∩ Γ̃C(t)}

containing functions which are zero on the intersection of the two actual contact
boundaries.

Using these preliminary definitions we want to write for all t ∈ [0, T ] the dif-
ference of the contact forces as an operator on the critical contact boundary Γ∗

C ,
i.e.

∫ t
0 〈Fcon(u) − Fcon(ũ), v̇〉H−1(Ω)×H1(Ω) ds

=
∫ t
0 〈(σ̂(u, u̇) − σ̂(ũ, ˙̃u))∗, v̇〉

H−1/2(Γ∗
C(s))×H1/2(Γ∗

C(s)) ds , v ∈ VC

(18)

with a functional (σ̂(u, u̇) − σ̂(ũ, ˙̃u))∗ ∈ L2(0, T ;H−1/2(Γ∗
C(t))).

We give a brief sketch how to validate the representation (18). The proof is
based on a trace theorem which generalizes the definition of the normal stresses in
the strong sense. Some formulations of such a theorem can be found, e.g., in [2]
and [18]. We mention that it is possible to prove generalized versions of this theorem
under less strict assumptions.

The first idea of the argumentation is the fact that the contact forces are sup-
ported by the union of the actual contact boundaries ΓC(t) ∪ Γ̃C(t). This yields a
representation of the contact forces via a functional in L2(0, T ;H−1/2(ΓC(t)∪Γ̃C(t)).
In a second idea, the reduction of the contact forces onto the subset Γ∗

C(t) is moti-
vated in analogy to the persistency condition in Section 3.2: If a function v ∈ VC

satisfies [v(t) · ν] = 0 on ΓC(t) ∩ Γ̃C(t), it follows that even [v̇(t) · ν] = 0 for al-
most every x ∈ ΓC(t) ∩ Γ̃C(t). Under the regularity assumption that div σ(u, u̇) ∈
L2(0, T ;H−1), the trace theorem mentioned above gives a representation of the
contact forces via (18).

Note that the difference u − ũ is contained in VC by definition. Thus, we can
reformulate Lemma 3.2 in the following way.
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Lemma 3.4. Let u and ũ be two solutions of (9) with initial values u(x, 0) = u0(x),
u̇(x, 0) = u̇0(x) and ũ(x, 0) = ũ0(x), ˙̃u(x, 0) = ˙̃u0(x) in Ω. For T > 0, assume
that (18) is valid. Then,

‖u̇(t) − ˙̃u(t)‖2
L2 + a(u(t) − ũ(t),u(t) − ũ(t))

+ 2
t
∫

0

b(u̇(s) − ˙̃u(s), u̇(s) − ˙̃u(s)) ds

= ‖u̇0 − ˙̃u0‖
2
L2 + a(u0 − ũ0,u0 − ũ0)

+ 2
t
∫

0

〈(σ̂(u, u̇) − σ̂(ũ, ˙̃u))∗, u̇ − ˙̃u〉
H−1/2(Γ∗

C(s))×H1/2(Γ∗
C(s)) ds .

(19)

Using this new representation of the integral term on the right-hand side, we
find a variant of our stability condition (15) for the contact stresses. This variant
is a sufficient criterion for the validity of the original stability condition.

Localized stability condition. For all t ∈ [0, T ], let

∥

∥

∥
(σ̂(u, u̇) − σ̂(ũ, ˙̃u))∗

∥

∥

∥

L2(0,t;H−1/2(Γ∗
C (s)))

≤ ǫ(t)

(

‖κ (u− ũ)‖
L2(0,t;H1(Ω)) +

∥

∥

∥
u̇− ˙̃u

∥

∥

∥

L2(0,t;H1(Ω))

) (20)

where 0 ≤ κ ∈ L2(0, T ) and ǫ(t) ≥ 0 is sufficiently small.

The quasistatic contact problem. In order to show that our stability condition
(20) is reasonable, we want to discuss it for the special case of quasistatic contact
problems. These problems follow from the dynamic viscoelastic contact problem (9)
by setting

ü = 0

which yields the following problem formulation in the form of a variational inequal-
ity: For almost every t ∈ [0, T ] find u(·, t) ∈ K with u(·, t) ∈ C([0, T ],H1) and
u̇ ∈ L2(0, T ;H1) such that

〈F(u),v〉H−1×H1 + 〈G(u̇),v〉H−1×H1 = 〈Fcon(u),v〉H−1×H1 , ∀ v ∈ H1

and

u(x, 0) = u0(x), u̇(x, 0) = u̇0(x) in Ω .

We assume the characterization (18) of the contact forces in the form of stresses
at the contact boundaries to be valid. Then, the definition of the contact forces
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and the continuity of the linearly elastic forces (see, e.g., Lemma 1.1 in [8]) directly
lead to

∥

∥

∥
σ̂(u, u̇) − σ̂(ũ, ˙̃u)

∥

∥

∥

L2(0,t;H−1/2(ΓC∪Γ̃C))

≤ ǫ(t)

(

‖F(u) − F(ũ)‖
L2(0,t;H−1) +

∥

∥

∥
G(u̇) −G( ˙̃u)

∥

∥

∥

L2(0,t;H−1)

)

≤ ǫ(t)

(

‖u− ũ‖
L2(0,t;H−1) +

∥

∥

∥
u̇ − ˙̃u

∥

∥

∥

L2(0,t;H−1)

)

for almost every t ∈ [0, T ]. Naturally, ǫ(t) is equal to zero if the solution u(t) as
well as the perturbation ũ(t) have a vanishing actual contact boundary in the time
intervall [0, t]. Under the assumption that we have for all t ∈ (0, T ) an estimate of
the form

∥

∥

∥

(

σ̂(u, u̇) − σ̂(ũ, ˙̃u)
)∗

∥

∥

∥

L2(0,t;H−1/2(Γ∗
C(s)))

≤ ǫ′(t)
∥

∥

∥
σ̂(u, u̇) − σ̂(ũ, ˙̃u)

∥

∥

∥

L2(0,t;H−1/2(ΓC∪Γ̃C))

with ǫ′(t) sufficiently small, we find the stability condition (15) to be satisfied for
quasistatic contact problems:

∥

∥

∥

(

σ̂(u, u̇) − σ̂(ũ, ˙̃u)
)∗

∥

∥

∥

L2(0,t;H−1/2(Γ∗
C(s)))

≤ ǫ′(t) ǫ(t)

(

‖u − ũ‖
L2(0,t;H1) +

∥

∥

∥
u̇− ˙̃u

∥

∥

∥

L2(0,t;H1)

)

In the quasistatic case, our localized stability assumption is equivalent to the
requirement that “ǫ′(t) ǫ(t) is sufficiently small” for all t ∈ [0, T ]. This corresponds
to our intuition that, averaged over every complete time intervall [0, t], the critical
part of the actual contact boundaries is only a small part of the possible contact
boundaries.

Our characterization seems to be reasonable at least in the case of a small spatial
variation in the velocities. Thus, if the dynamical contact problem shows a behavior
similar to the one of the quasistatic problem, it might satisfy continuous dependence
on the initial data.

4 Viscoelastic Approximations of the Signorini condi-

tion

In the last section we will consider two well-established approximations of the vis-
coelastic contact problem with the classical Signorini condition in displacements:
First we will proof a perturbation result for the contact problem where the Signorini
contact constraints are formulated on the velocity field, as it is used by Jarušek and
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Eck (compare, e.g., [9]). Then, we will analyze the widely-used normal compliance
model of contact introduced by Martins and Oden in [26]. This model is based
on a penalization of the exact Signorini condition in displacements. It will further
motivate our stability condition as formulated in the previous section, since the
approximating solution satisfies the assumption even in a sharper version.

4.1 The Signorini condition in velocities

Jarušek and Eck formulate the Signorini contact condition on the field of velocities
instead of displacements, i.e. they replace the convex set (8) by

K = {v : (0, T ) → H1
D | v̇ ∈ H1, [v̇ · ν]φ ≤ 0} . (21)

This modified contact condition leads to a much simpler mathematical struc-
ture since it yields a monotonicity property of the contact problem. Unfortunately,
employing the Signorini contact conditions in velocities describes the physical be-
havior correctly only in a short period of time. Once the two bodies have lost
contact, they will never regain it. Thus, the bodies can only come into contact if
they touch each other already at initial time. Actually, the model of Jarušek and
Eck is only applicable to the process of loosing contact.

The weak formulation of the corresponding problem can be written as the fol-
lowing variational inequality: For almost every t ∈ [0, T ] find u ∈ C([0, T ],H1) with
u̇(·, t) ∈ K and u̇ ∈ W1,2([0, T ],H1,L2) such that

〈ü,v − u̇〉H−1×H1 + 〈F(u),v − u̇〉H−1×H1 + 〈G(u̇),v − u̇〉H−1×H1

= 〈Fcon(u̇),v − u̇〉H−1×H1 ≥ 0 , ∀ v ∈ K
(22)

and

u(x, 0) = u0(x), u̇(x, 0) = u̇0(x) in Ω . (23)

Using the monotonicity property of the contact operator Fcon(u̇), we find the
following perturbation result:

Theorem 4.1. Let u and ũ be two solutions of (22) with initial conditions u(x, 0) =
u0(x), u̇(x, 0) = u̇0(x) and ũ(x, 0) = ũ0(x), ˙̃u(x, 0) = ˙̃u0(x) in Ω. Assume that
φ = φ̃. Then, for all t ∈ [0, T ],

‖u̇(t) − ˙̃u(t)‖2
L2 + a(u(t) − ũ(t),u(t) − ũ(t))

+ 2
t
∫

0

b(u̇(s) − ˙̃u(s), u̇(s) − ˙̃u(s)) ds

≤ ‖u̇0 − ˙̃u0‖
2
L2 + a(u0 − ũ0,u0 − ũ0) .

(24)
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Proof. We make exactly the same calculations as in the proof of Lemma 3.2 for the
original Signorini problem in viscoelasticity and find

‖u̇(T ) − ˙̃u(T )‖2
L2 + a(u(T ) − ũ(T ),u(T ) − ũ(T ))

+ 2
T
∫

0

b(u̇(t) − ˙̃u(t), u̇(t) − ˙̃u(t)) dt

= ‖u̇0 − ˙̃u0‖
2
L2 + a(u0 − ũ0,u0 − ũ0)

+ 2
T
∫

0

〈Fcon(u̇) − Fcon( ˙̃u), u̇ − ˙̃u〉H−1×H1 dt .

The admissibility of the velocities u̇ and ˙̃u yields together with the variational
inequality (22) the estimate of the theorem.

We remark that this perturbation result leads to the unique solvability of the
dynamical contact problem with the Signorini condition in velocities.

Corollary 4.2. There exists at most one solution of the dynamical contact prob-
lem (22) based on the Signorini condition in velocities.

Proof. Assume that u and ũ are two solutions of (22) with the same initial condi-
tions. Then, Theorem 4.1 yields that

‖u(t) − ũ(t)‖H1 = 0 , ‖u̇(t) − ˙̃u(t)‖L2 = 0 for all t ≥ 0

and

‖u̇− ˙̃u‖L2(0,t;H1) = 0 for a.e. t ≥ 0 .

This gives us the uniqueness of a solution u ∈ C([0, T ],H1) with generalized deriva-
tive u̇ ∈ L2(0, T ;H1).

4.2 The Normal Compliance Problem

We dedicate the last section of this paper to the continuous dependence of viscoelas-
tic normal compliance problems on the initial data.

The normal compliance model of contact introduced by Martins and Oden is
based on a penalty approximation of the exact Signorini conditions which leads to
a higher regularity of the solutions. Introducing the penalty parameter ǫ > 0, the
contact forces Fcon of the problem with Signorini conditions in displacements are
replaced by the normal compliance operator P given by

P S
(

uS
)

(xs) = −
1

ǫ

(

[uS · ν]φ − g
)

+
· νφ , on ΓS

C × [0, T ] (25)

and

P M
(

uM
) (

xM
)

= −P S
(

uS
) (

φ−1
(

xM
))

, on ΓM
C × [0, T ] (26)
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where (·)+ = max(0, ·) denotes the positive part of a function. Defining

K = {v : (0, T ) → H1
D | v̇ ∈ H1} (27)

we can write the normal compliance problem in the weak formulation as a partial
differential equality: For almost every t ∈ [0, T ] find u(·, t) ∈ C([0, T ],H1) with
u̇ ∈ W1,2(0, T ;H1,L2) such that

〈ü,v〉H−1×H1 + 〈F(u),v〉H−1×H1 + 〈G(u̇),v〉H−1×H1

= 〈P (u),v〉
H−1/2(Γ)×H1/2(Γ) , ∀ v ∈ K

(28)

and
u(x, 0) = u0(x), u̇(x, 0) = u̇0(x) in Ω . (29)

For this penalty approach we are able to prove a perturbation result in the
same mixed norm as used in the previous section for the original Signorini contact
condition in displacements.

Theorem 4.3. Let u and ũ be two solutions of (28) with initial conditions u(x, 0) =
u0(x), u̇(x, 0) = u̇0(x) and ũ(x, 0) = ũ0(x), ˙̃u(x, 0) = ˙̃u0(x) in Ω. Then, for all
t ∈ [0, T ],

‖u̇(t) − ˙̃u(t)‖2
L2 + a(u(t) − ũ(t),u(t) − ũ(t))

+ 2α
t
∫

0

b(u̇(s) − ˙̃u(s), u̇(s) − ˙̃u(s)) ds

≤
(

‖u̇0 − ˙̃u0‖
2
L2 + a(u0 − ũ0,u0 − ũ0)

)

· e
2 c2s

ǫ2 E0 V0 c2
k

(1−α)
·t

(30)

with α ∈ [0, 1).

Proof. Performing the same calculations as in the proof of Lemma 3.2, we find the
corresponding result with Fcon(u) replaced by P (u):

‖u̇(t) − ˙̃u(t)‖2
L2 + a(u(t) − ũ(t),u(t) − ũ(t))

+ 2
t
∫

0

b(u̇(s) − ˙̃u(s), u̇(s) − ˙̃u(s)) ds

= ‖u̇0 − ˙̃u0‖
2
L2 + a(u0 − ũ0,u0 − ũ0)

+ 2
t
∫

0

〈P (u(s)) − P (ũ(s)), u̇(s) − ˙̃u(s)〉
H−1/2(Γ)×H1/2(Γ) ds

= ‖u̇0 − ˙̃u0‖
2
L2 + a(u0 − ũ0,u0 − ũ0)

− 2
ǫ

t
∫

0

∫

ΓS
C

[

([u · ν]φ − g)+ − ([ũ · ν]φ − g)+

]

· [(u̇ − ˙̃u) · ν]φ daS ds
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Since the normal compliance model does not satisfy the persistency condition, we
need an estimate for the contact forces on the whole contact boundaries. We arrive
at the following case distinction:
If ([u · ν]φ − g)+ · ([ũ · ν]φ − g)+ > 0, then

| ([u · ν]φ − g)+ − ([ũ · ν]φ − g)+ | = |[(u − ũ) · ν]φ|

and if ([u · ν]φ − g)+ · ([ũ · ν]φ − g)+ = 0, we estimate

| ([u · ν]φ − g)+ − ([ũ · ν]φ − g)+ | ≤ |[(u − ũ) · ν]φ| .

Thus, we conclude

‖ ([u · ν]φ − g)+ − ([ũ · ν]φ − g)+ ‖2
H1/2(ΓS

C)
≤ 2 ‖u− ũ‖2

H1/2(ΓS
C)

which corresponds to the localized stability condition for the problem with Sig-
norini’s contact condition. We use Young’s inequality in the form

2ab ≤
cs

2V0 ck (1 − α)
a2 +

2V0 ck (1 − α)

cs
b2

where α ∈ [0, 1) and cs denotes the Sobolev embedding constant. This leads to

‖u̇(t) − ˙̃u(t)‖2
L2 + a(u(t) − ũ(t),u(t) − ũ(t))

+ 2
t
∫

0

b(u̇(s) − ˙̃u(s), u̇(s) − ˙̃u(s)) ds

≤ ‖u̇0 − ˙̃u0‖
2
L2 + a(u0 − ũ0,u0 − ũ0)

+ 1
ǫ2

2 cs
V0 ck (1−α)

t
∫

0

‖u − ũ‖2
H1/2(ΓC)

ds + 2 V0 ck (1−α)
cs

t
∫

0

‖u̇− ˙̃u‖2
H1/2(ΓC)

ds .

Korn’s inequality (12) yields

‖u̇(t) − ˙̃u(t)‖2
L2 + a(u(t) − ũ(t),u(t) − ũ(t))

+ 2α
t
∫

0

b(u̇(s) − ˙̃u(s), u̇(s) − ˙̃u(s)) ds

≤ ‖u̇0 − ˙̃u0‖
2
L2 + a(u0 − ũ0,u0 − ũ0) + κ̃2

ǫ

t
∫

0

a(u − ũ,u− ũ) ds

where

κ̃2
ǫ =

1

ǫ2
·

2 c2
s

E0 V0 c2
k (1 − α)

.

Now, the result follows from Gronwall’s lemma as presented in Section 3.1.
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Note that our perturbation result yields the uniqueness of the normal compliance
problem for two viscoelastic bodies of Kelvin-Voigt type.

Corollary 4.4. There exists at most one solution of the normal compliance problem
(28).

Proof. Compare the proof of Corollary 4.2.
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