
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

ANDREAS BLEY

An Integer Programming Algorithm for
Routing Optimization in IP Networks

ZIB-Report 08-30 (July 2008)

An Integer Programming Algorithm for Routing

Optimization in IP Networks

Andreas Bley

Zuse Institute Berlin
Takustr. 7, D-14195 Berlin, Germany

bley@zib.de

Abstract Most data networks nowadays use shortest path protocols to
route the traffic. Given administrative routing lengths for the links of
the network, all data packets are sent along shortest paths with respect
to these lengths from their source to their destination.
In this paper, we present an integer programming algorithm for the mini-
mum congestion unsplittable shortest path routing problem, which arises
in the operational planning of such networks. Given a capacitated di-
rected graph and a set of communication demands, the goal is to find
routing lengths that define a unique shortest path for each demand and
minimize the maximum congestion over all links in the resulting routing.
We illustrate the general decomposition approach our algorithm is based
on, present the integer and linear programming models used to solve the
master and the client problem, and discuss the most important imple-
mentational aspects. Finally, we report computational results for various
benchmark problems, which demonstrate the efficiency of our algorithm.
Keywords: Shortest Path Routing, Integer Programming

1 Introduction

In this paper, we present an integer programming algorithm to optimize the
routing in communication networks based on shortest path routing protocols
such as OSPF [22] or IS-IS [16], which are widely used in the Internet. With
these routing protocols, all end-to-end traffic streams are routed along shortest
paths with respect to some administrative link lengths (or routing weights),
that form the so-called routing metric. Finding a routing metric that induces
a set of globally efficient end-to-end routing paths is a major difficulty in such
networks. The shortest path routing paradigm enforces rather complicated and
subtle interdependencies among the paths that comprise a valid routing. The
routing paths can be controlled only jointly and only indirectly via the link
lengths. In this paper, we consider the unsplittable shortest path routing variant,
where the lengths must be chosen such that the shortest paths are unique and
each traffic stream is sent unsplit via its single shortest path.

One of the most important operational planning tasks in such networks is
traffic engineering. Its goal is to improve the service quality in the existing
network by (re-)optimizing the routing of the traffic, but leaving the network

topology and hardware configuration unchanged. Mathematically, this can be
formulated as the minimum congestion unsplittable shortest path routing prob-
lem (Min-Con-USPR). The problem input consists of a digraph D = (V, A)
with arc capacities ca ∈ Z for all a ∈ A, and a set of directed commodities
K ⊆ V × V with demand values dst ∈ Z for all (s, t) ∈ K. A feasible solution is
an unsplittable shortest path routing (USPR) of the commodities, i.e., a metric
of link lengths wa ∈ Z, a ∈ A, that induce a unique shortest (s, t)-path for
each commodity (s, t) ∈ K. Each commodity’s demand is sent unsplit along its
shortest path. The objective is to minimize the maximum congestion (i.e., the
flow to capacity ratio) over all arcs. The maximum congestion is a good measure
and typically used as a key indicator for the overall network service quality.

Due to their great practical relevance, shortest path routing problems have
been studied quite intensively in the last decade. Ben-Ameur and Gourdin [3],
Broström and Holmberg [13,14] studied the combinatorial properties of path sets
that correspond to shortest (multi-)path routings and devised linear program-
ming models to find lengths that induce a set of presumed shortest paths (or
prove that no such lengths exist). Bley [5,9], on the other hand, showed that
finding a smallest shortest-path conflict in a set of presumed shortest paths or
the smallest integer lengths inducing these paths is NP-hard. Bley [6,7] also
proved that Min-Con-USPR is inapproximable within a factor of Ω(|V |1−ǫ)
for any ǫ > 0, presented examples where the smallest link congestion that can
be obtained with unsplittable shortest path routing exceeds the congestion that
can be obtained with multicommodity flow or unsplittable flow routing by a
factor of Ω(|V |2), and proposed polynomial time approximation algorithms for
several special cases of Min-Con-USPR and related network design problems.
The minimum congestion shortest multi-path routing problem has been shown
to be inapproximable within a factor less than 3/2 by Fortz and Thorup [18].

Various approaches for the solution of network design and routing problems in
shortest path networks have been proposed. Algorithms using local search, sim-
ulated annealing, or Lagrangian relaxation techniques with the routing lengths
as primary decision variables are presented in [4,10,15,17,18], for example. These
length-based methods work well for shortest multi-path routing problems, where
traffic may be split among several equally long shortest paths, but they often
produce only suboptimal solutions for hard unsplittable shortest path routing
problems. As they deliver no or only weak quality guarantees, they cannot guar-
antee to find provenly optimal solutions.

Using mixed integer programming formulations that contain variables for
the routing lengths as well as for the resulting shortest paths and traffic flows,
shortest path routing problems can – in principle – be solved to optimality.
Formulations of this type are discussed in [10,19,24,26,29], for example. Unfor-
tunately, the relation between the shortest paths and the routing length always
leads to quadratic or very large big-M models, which are computationally ex-
tremely hard and not suitable for practical problems.

In this paper, we present an integer programming algorithm that decomposes
the routing problem into the two tasks of first finding the optimal end-to-end

2

routing paths and then, secondly, finding a routing metric that induce these
paths. As we will show, this approach permits the solution of real-world prob-
lems. An implementation of this algorithm [11,9] is used successfully in the plan-
ning of the German national education and research network for several years.
Variants of this decomposition approach for shortest multi-path and shortest
path multicast routing problems are discussed in [12,20,27,28,29].

The remainder of this paper is organized as follows. In Section 2, we for-
mally define the problem addressed in this paper and introduce the basic notion
and notation. The overall decomposition algorithm, the integer and linear pro-
gramming models and sub-algorithms used for the solution of the master and
the client problem, and the most important aspects of our implementation are
described in Section 3. In Section 4, we finally report on numerical results ob-
tained with this algorithm for numerous real-world and benchmark problems
and illustrate the relevance of optimizing the routing in practice.

2 Notation and Preliminaries

Let D = (V, A) be a directed graph with arc capacities ca ∈ Z for all a ∈ A and
let K ⊆ V × V be a set of directed commodities with demand values dst ∈ Z

for all (s, t) ∈ K. A metric w = (wa) ∈ Z
A of arc lengths is said to define an

unsplittable shortest path routing (USPR) for the commodities K, if the shortest
(s, t)-path P ∗

st with respect to w is uniquely determined for each commodity
(s, t) ∈ K. The demand of each commodity is routed unsplit along the respective
shortest path. For a metric w that defines such an USPR, the total flow through
an arc a ∈ A then is

fa(w) :=
∑

(s,t)∈K: a∈P∗

st
(w)

dst . (1)

The task in the minimum congestion unsplittable shortest path routing problem
Min-Con-USPR is to find a metric w ∈ Z

A that defines an USPR for the given
commodity set K and minimizes the maximum congestion L := max{fa(w)/ca :
a ∈ A}.

Before presenting of our algorithm, we need to introduce some further nota-
tion. We say that a metric w is compatible with a set P of end-to-end routing
paths, if each path P ∈ P is the unique shortest path between its terminals with
respect to w. A metric w is said to be compatible with set of node-arc pairs
F ⊂ V × A, if arc a is on a unique shortest path towards t for all (t, a) ∈ F . If
there exists such a metric, we say that the set F is a valid unique shortest path
forwarding (USPF), otherwise we call it an (USPF-) conflict. One easily verifies
that a metric is compatible with a path set P if and only if it is compatible with
the set of node-arc pairs F :=

⋃

P∈P
{(t, a) : t is destination of P , a ∈ P}.

Clearly, any subset (including the empty set) of an USPF is an USPF as well.
Hence, the family of all USPF in the digraph D forms an independence system
(or hereditary family) I ⊂ 2V ×A. The circuits of this independence system are
exactly the irreducible conflicts. The family of all irreducible conflicts is denoted
by C ⊂ 2V ×A.

3

In general, these set families can be extremely complex and computationally
intractable [9]. Given an arbitrary set F ⊂ V × A, the smallest conflict (with
respect to the number of node-arc pairs) in F may be arbitrarily large and even
approximating its size within a factor less than 7/6 is NP-hard. Approximating
the size of the largest valid USPF in F within a factor less than 8/7 is NP-hard
as well. However, one can decide in polynomial time whether or not a given set
F ⊂ V × A is a valid USPF and, depending on that, either find a compatible
metric or some (not necessarily minimal) irreducible conflict in F , which is the
foundation of the algorithm described in this paper.

3 Integer Programming Algorithm

Similar to Bender’s decomposition, our algorithm decomposes the problem of
finding an optimal shortest path routing into the master problem of finding the
optimal end-to-end paths and the client problem of finding compatible routing
lengths for these paths.

The master problem is formulated as an integer linear program and solved
with a branch-and-cut algorithm. Instead of using routing weight variables, the
underlying formulation contains special inequalities to exclude routing path con-
figurations that are no valid unsplittable shortest path routings. These inequal-
ities are generated dynamically as cutting planes by the client problem during
the execution or the branch-and-cut algorithm.

Given a set of routing paths computed by the master problem’s branch-and-
cut algorithm, the client problem then is to find a metric of routing lengths that
induce exactly these paths. As we will see in Section 3.2, this problem can be for-
mulated and solved as a linear program. If the given paths indeed form a valid
shortest path routing, the solution of this linear program yields a compatible
metric. If the given paths do not form a valid unsplittable shortest path routing,
the client linear program is infeasible. In this case, the given routing paths con-
tain a conflict that must not occur in any admissible shortest path routing. This
conflict, which can be derived from the dual solution of the infeasible client linear
program, then can be turned into an inequality for the master problem, which is
valid for all admissible shortest path routings, but violated by the current rout-
ing. Adding this inequality to the master problem, we then cut off the current
non-admissible routing and proceed with the master branch-and-cut algorithm
to compute another candidate routing.

3.1 Master Problem

There are several ways to formulate the master problem of Min-Con-USPR

as a mixed integer program. For notational simplicity, we present a variation of
the disaggregated arc-routing formulation used in our algorithm, which contains
additional artificial variables that describe the unique shortest path forwarding
defined by the routing.

4

The primary decision variables used in this formulation are the variables
xst

a ∈ {0, 1} for all (s, t) ∈ K and a ∈ A. These variables describe which arcs
are contained in the routing paths. Variable xst

a is supposed to be 1 if and only
if arc a is contained in the routing path for commodity (s, t). A single variable
L ∈ R represents the maximum congestion that is attained by the routing. The
additional artificial variables yt

a ∈ {0, 1} for all t ∈ V and a ∈ A describe the
forwarding defined by the routing paths. Variable yt

a is supposed to be 1 if there
is a routing path towards t that contains arc a. With these variables the master
problem of Min-Con-USPR can be formulated as follows:

min L (2a)

s.t.
∑

a∈δ+(v)

xst
a −

∑

a∈δ−(v)

xst
a =











−1 if v = s

1 if v = t

0 else

(s, t) ∈ K, v ∈ V (2b)

∑

(s,t)∈K

dstx
st
a ≤ ca L a ∈ A (2c)

xst
a ≤ yt

a (s, t) ∈ K, a ∈ A (2d)
∑

a∈δ+(v)

yt
a ≤ 1 t ∈ V, v ∈ V (2e)

∑

(a,t)∈C

yt
a ≤ |C| − 1 C ∈ C (2f)

xst
a ∈ {0, 1} (s, t) ∈ K, a ∈ A (2g)

L ≥ 0. (2h)

Subproblem (2a)–(2c) together with the integrality and non-negativity con-
straints (2g) and (2h) is a standard arc-routing formulation for the unsplittable
multicommodity flow problem, whose objective is to minimize the congestion L.

Inequalities (2d) force the artificial variables yt
a to be (at least) 1 for all arcs

a that are contained in some routing path towards destination t. Together with
the out-degree constraints (2e) this ensures that, for each destination t ∈ V , the
routing paths towards t form an anti-arborescence (a reversely oriented tree).
This is clearly necessary for the paths in any valid unsplittable shortest path
routing.

Constraints (2f) finally ensure that no integer solution of (2) contains all
node-arc pairs of any (irreducible) USPF-conflict C ∈ C. As the irreducible con-
flicts are exactly the circuits of the independence system formed by all valid
unique shortest path forwarding, this implies that the artificial variables yt

a de-
scribe a valid USPF. Consequently, the routing given by any integer feasible so-
lution of (2) is a valid unsplittable shortest path routing. In general, the number
of these conflict constraints (2f) can be exponentially large. They are separated
via the client problem during the branch-and-cut solution process.

Note that the model contains no explicit constraints forcing the artificial
variables yt

a to attain only values 0 or 1. These constrains are not necessary. Any

5

solution (x,y, L) with xst
a ∈ {0, 1} for all (s, t) ∈ K and a ∈ A can be easily

turned into an equivalent solution with ya
t ∈ {0, 1} for all t ∈ V and a ∈ A by

setting ya
t := max{xst

a : s with (s, t) ∈ K} for all t and a.

3.2 Client Problem

Now suppose we are given an integer solution (x,y, L) of formulation (2) or, more
precisely, of a subsystem of (2) containing only some of the conflict constraints
(2f) so far.

Let F be the presumed unique shortest path forwarding given by this so-
lution, i.e., F = {(t, a) : yt

a = 1}. Our goal in the client problem is to find
a compatible metric w for F . However, if the given solution (x,y, L) violates
some of the conflict constraints (2f) that have not yet been added to the master
formulation, such a metric does not exist. In this case, the task is to generate
one of these violated inequalities.

The first part of this problem can be solved with linear programming tech-
niques. A number of alternative formulations for this so-called inverse shortest
paths problem (ISP) have been proposed in the literature [3,25]. In the following,
we present the aggregated formulation used in our algorithm together with the
arc-routing formulation for the master problem.

Let F be the given presumed unique shortest path forwarding. For each pair
(t, a) ∈ F , arc a = (u, v) is assumed to be on a unique shortest path from u to t.
Hence, the arcs a′ ∈ δ+(u)\{a} must not be on any shortest (u, t)-path. The set of
all implied non shortest path node-arc pairs is F̄ =

⋃

(t,(u,v))∈F (δ+(u)\{(u, v)}):

For each pair (t, a) ∈ F̄ , arc a = (u, v) must not be on a shortest path from u to
t. (Note that we cannot simply assume F̄ = V ×A\F , because F not necessarily
prescribes the shortest paths between all node pairs. Arcs that are not relevant
for the routing of the given commodities may or may not be on shortest paths.)

Our formulation of the inverse shortest paths problem uses a variable wa ∈ Z

for the length of each arc a ∈ A and a variable rt
v ∈ R for the potential of each

node v ∈ V with respect to each destination t ∈ V and the metric w. (If rt
t = 0,

the smallest possible potential rt
v of node v is exactly the distance from v to t

with respect to the arc lengths wa.) With these variables, the inverse shortest
paths problem for the given forwarding F , can be formulated as follows:

min wmax (3a)

s.t. w(u,v) − rt
u + rt

v = 0 (t, (u, v)) ∈ F (3b)

w(u,v) − rt
u + rt

v ≥ 1 (t, (u, v)) ∈ F̄ (3c)

w(u,v) − rt
u + rt

v ≥ 0 (t, (u, v)) ∈ (V × A) \ F \ F̄ (3d)

1 ≤ wa ≤ wmax a ∈ A (3e)

rt
v ∈ R t ∈ V, v ∈ V (3f)

wa ∈ Z a ∈ A . (3g)

Constraints (3b),(3d), and (3e) ensure that the lengths wa in any solution of (3)
form a compatible metric for the given forwarding F . The term w(u,v) − rt

u + rt
v

6

is the difference between the length of the shortest path starting in node u,
passing through arc (u, v), and ending in node t, and the distance from node v
to node t. This difference must be 0 for all arcs (u, v) that are on a shortest path
and strictly greater than 0 for all arcs that must not be on a shortest path, as
expressed in constraints (3b) and (3c). For all remaining arcs it must be non-
negative. Formulation (3) has a solution if and only if there exist a compatible
metric for the given forwarding F . Furthermore, there is a compatible metric
with lengths in the range {1, 2, . . . , M} if and only if the optimal solution value
wmax of formulation (3) is less or equal to M .

Note that formulation (3) is an integer program and may be computationally
hard. In fact, Bley [8] proved that it is already NP-hard to approximate its
optimum value within a factor less than 9/8 in general.

In our algorithm, we solve the linear relaxation of (3) in a first step and scale
and round its optimal fractional solution to an integer feasible solution of (3)
afterwards. It is not difficult to verify that the integer program (3) has a solution
if and only if its linear relaxation has. Using the rounding scheme proposed by
Ben-Ameur and Gourdin [3], we obtain lengths that exceed the minimal ones
by a factor of at most min (|V |/2, |Pmax|), where Pmax is the longest prescribed
shortest path. For practically relevant network sizes, the weights computed with
this approximate method easily fit into the admissible range of all modern rout-
ing protocols. So, we can safely ignore the integrality constraint (3g) in practice.

If the linear relaxation of (3) is infeasible, then the given solution (x,y, L)
of the (incomplete) master formulation is not a valid routing. In this case, the
presumed forwarding F is no valid unsplittable shortest path forwarding. It
contains at least one (irreducible) conflict C ∈ C, whose corresponding inequality
(2f) is violated by the given solution (x,y, L). To find one of these conflicts, we
iteratively try to remove each node-arc pair from F . In each iteration, we remove
one pair (t, a) from F , update the set F̄ of implied non-shortest path node-arc
pairs, and solve the corresponding linear relaxation of (3). If this linear program
remains infeasible, we remove the pair (t, a) permanently from F . Otherwise,
we reinsert it into F and keep it permanently. If no more node-arc pair can be
removed, the remaining set F defines an irreducible conflict, whose corresponding
conflict inequality (2f) for C = F is violated by the given solution (x,y, L). In
our implementation, we improved the practical performance of this procedure
significantly by removing initially all those pairs (t, (u, v)) from F , for which
the dual variables of the corresponding constraint (3b) and the dual variables
of all constraints (3c) implied by (t, (u, v)) ∈ F are 0. If these constraints are
not active in the infeasible subsystem of (3), there is at least one (irreducible)
conflict that is not related to the fact that (t, (u, v)) ∈ F .

Note that this iterative method finds an irreducible conflict inequality (2f),
but not necessarily the most violated one. Finding the most violated such in-
equality is NP-hard, even if the given solution of the master problem is inte-
ger [9]. Furthermore, note that this approach solves the separation problem over
the conflict inequalities (2f) only for integer solutions (x,y, L). For fractional
solutions (x,y, L), the presumed forwarding F is not well-defined. A separation

7

heuristic based on an approximate integer programming model of the separation
problem (for shortest multi-path routings), which can be applied for fractional
solutions, has been proposed by Tomaszewski et al. [28]. Also, several subclasses
of (2f) can be separated in polynomial time; see [9,11,13,14,28,29].

3.3 Implementation

From the theoretical point of view, the branch-and-cut approach presented above
seems not very attractive. The integrality gap of the integer programming formu-
lation (2) can be very large and the separation of the conflict inequalities (2f) is
NP-hard for fractional solutions of (2). Nevertheless, implemented carefully this
approach works surprisingly well in practice. In the following, we briefly discuss
the most important aspects of our implementation of this algorithm. Further
details, including a description of all used cutting planes and separation algo-
rithms, of the specially tailored branching schemes, and of the problem-specific
primal heuristics, can be found in [9].

In our implementation, the initial formulation of the master problem con-
tains only the arc-routing variables xst

a , the congestion variable L, and the flow
conservation and capacity constraints (2b) and (2c). All other constraints are
separated. The degree constraints (2e) are separated by a simple enumerative
algorithm searching through all node pairs t, v ∈ V . The conflict constraints (2f)
are separated via the solution of the client problem as described in the previous
section. However, the artificial variables yt

a involved in these constraints and the
linking constraints (2d) are not generated explicitly. Instead, we assume

yt
a := max{xst

a : s with (s, t) ∈ K} for all t ∈ V and a ∈ A, (4)

disaggregate each of the inequalities (2e) and (2f) into an equivalent set of in-
equalities on the arc-routing variables xst

a instead of the forwarding variables
ya

t , and separate over the set of these disaggregated inequalities. This is done by
applying the separation algorithms for the original inequalities to the values ya

t

defined as in (4). If a violated inequality is found, each variable ya
t in this in-

equality is replaced by a variable xst
a = argmax{xst

a : s with (s, t) ∈ K}, which
yields one of the most violated disaggregated inequalities corresponding to the
violated original inequality.

At each node of the master problem’s branch-and-bound tree we solve the
current LP relaxation and separate violated out-degree constraint and several
other classes of inequalities.

Analogous to the out-degree inequalities (2e), which ensure that the rout-
ing paths towards each destination t form an anti-arborescence, we also sep-
arate in-degree inequalities, which ensure that the routing paths emanating
from each source s form an arborescence. With the implicit, artificial variables
zs

a := max{xst
a : t with (s, t) ∈ K} for all s ∈ V and a ∈ A, these inequalities

can be easily formulated as
∑

a∈δ−(v)

zs
a ≤ 1 v, s ∈ V . (5)

8

Using the same disaggregation approach as for the out-degree constraints, we
separate the disaggregated version of these inequalities with a simple enumera-
tive algorithm.

Numerous types of valid inequalities can be derived from the so-called Bell-
man property (or subpath consistency) of shortest path routings. This prop-
erty basically says the following: If both terminals s1 and t1 of a commodity
(s1, t1) ∈ K are contained in the routing path of another commodity (s2, t2) ∈ K,
then the routing path of commodity (s1, t1) must be a subpath of commodity
(s2, t2). Otherwise there is no metric such that the two different (sub-)paths
between s1 and t1 are both unique shortest paths. In our algorithm, we use the
following three types of inequalities that are implied by the Bellman property:

xs,v
a − xs,t

a +
∑

e∈δ−(v)

xs,t
e ≤ 1 (s, t), (s, v) ∈ K, a ∈ A , (6)

xv,t
a − xs,t

a +
∑

e∈δ−(v)

xs,t
e ≤ 1 (s, t), (v, t) ∈ K, a ∈ A , (7)

xs,v
a + xv,t

a − xs,t
a − 2(1 −

∑

e∈δ−(v)

xs,t
e) ≤ 0 (s, v), (v, t), (s, t) ∈ K, a ∈ A . (8)

Although in general none of these inequalities is facet-defining for the polytope
associated with (2), they all proved to be very useful in practice. In our imple-
mentation, we separate over each of these three classes with a straightforward
enumerative algorithm.

In addition to these inequalities, which describe the valid routing path pat-
terns independent of the given traffic demands and link capacities, our algorithm
also uses cutting planes that are based on the resulting traffic flows and the
link capacities. In practice, induced cover inequalities based on the precedence
constrained knapsacks defined by a single arc capacity constraint (2c) and the
subpath consistency among the paths across that arc proved to be very effective.
Due to the space limitations in this extended abstract, we cannot discuss these
inequalities here. A detailed description of these inequalities and the heuristic
separation methods used in our algorithm is given in [9].

Whenever an integer solution candidate for the (incomplete) master formu-
lation is found, we must solve the client problem to decide whether or not it
defines a valid unsplittable shortest path routing and to find a compatible met-
ric or a violated conflict inequality (2f). In our implementation, we solve the
client problem not only for the fully integer solutions at the leaves of the mas-
ter problem’s branch-and-bound tree, but also for non-integer solutions arising
within the branch-and-bound tree. In practice, this modification drastically re-
duced the running time of the overall algorithm.

At each node of the master problem’s branch and bound tree, we consider the
potential forwarding F ⊆ V ×A defined by the integer and near integer routing
variables. In our implementation, we let F := {(t, a) : yt

a ≥ 0.8}. We solve the
client problem whenever this presumed forwarding differs from the one at the
parent node in the branch-and-bound tree by more than two node-arc pairs, if

9

Table 1. Computational results for SNDlib problems.

Problem Nodes Links Demands LP LB Sol Nodes Gap (%) Time (s)

Atlanta 15 22 210 0.65 0.86 0.86 30 0.0 10.3

Dfn-bwin 10 45 90 0.34 0.69 0.69 89 0.0 26.5

Dfn-gwin 11 21 110 0.50 0.51 0.51 521 0.0 16.3

Di-yuan 11 42 22 0.25 0.62 0.62 33 0.0 1.8

France 25 45 300 0.60 0.71 0.74 76 5.0 10000.0

Germany50 50 88 662 0.64 0.64 0.73 56 12.7 10000.0

NewYork 16 49 240 0.44 0.62 0.62 15 0.0 54.9

Nobel-EU 28 41 378 0.44 0.44 0.45 75 0.3 10000.0

Nobel-GER 17 26 121 0.64 0.73 0.73 101 0.0 114.1

Nobel-US 14 21 91 0.48 0.49 0.49 77 0.0 20.4

Norway 27 51 702 0.54 0.54 0.62 99 14.9 10000.0

PDH 11 34 24 0.34 0.80 0.80 85 0.0 6.37

Polska 12 18 66 0.82 0.93 0.93 2149 0.0 200.2

TA1 24 55 396 0.30 0.93 0.93 11 0.0 289.2

the depth of the current node in the branch-and-bound is 2k for some k ∈ Z,
or if all arc-routing variables are integer. If the linear relaxation of the client
problem (3) is feasible for this forwarding F , the computed link lengths define a
heuristic solution for the Min-Con-USPR problem, which may improve on the
best known solution. Otherwise, if a violated conflict inequality (2f) is found,
this inequality may cut off the entire invalid branch at the current node in the
branch-and-bound tree.

4 Results

The presented algorithm has been implemented as part of the network optimiza-
tion library Discnet [2]. The data structures and algorithms are based on the
standard c++ library and Leda [1], the linear programs arising in the solution
process are solved with Cplex 11.0 [21]. The master problem’s branch-and-cut
framework and all separation procedures are implemented directly in c++.

Table 1 shows computational results for a collection of benchmark problems
taken from the Survivable Network Design Library [23]. All computations were
performed on an Intel Pentium 4 machine with 2.66 GHz and 4 GB RAM run-
ning Linux 2.6. The algorithm was run with a total CPU time limit of 10,000
seconds on each problem instance. The underlying networks are bidirectional and
have the same capacity for both directions of all links. The numbers of nodes,
bidirected links and non-zero traffic demands are shown in the first columns of
Table 1. Column LP shows the lower bound obtained by solving the initial lin-
ear relaxation of (2) at the root node of the master problem’s branch-and-bound
tree. The columns LB and Sol show the best proven lower bound and the best
solution value found by our algorithm within the given time limit. The remain-
ing columns show the number of explored branch-and-bound nodes, the residual

10

optimality gap, and the total CPU time until either optimality was proven or
the time limit was exceeded.

The results show that our algorithm can be used to solve real-world size prob-
lems. All small and medium size instances have been solved optimally within
seconds or minutes. For large problems optimality cannot always be achieved.
Instances with dense networks and lots of potential routing paths for most de-
mand pairs are more difficult than those where the underlying networks are fairly
sparse. For instances with dense networks, lots of violated conflict constraints
are separated during the execution of the algorithms, which often drastically
slows down the solution of the linear relaxation. For the most difficult problems,
only few branch-and-bound nodes could be explored. Yet, even for those prob-
lem that could not be solved to optimality, our algorithm always found better
solutions than length-based heuristic and Lagrangian approaches. Our algorithm
also clearly outperforms all other integer programming approaches presented in
the literature so far, which typically even fail to achieve gaps below 30% for
networks larger than 10 nodes.

References

1. Algorithmic Solutions Software GmbH: LEDA – Library of Efficient Data types
and Algorithms (2000–2007). http://www.algorithmic-solution.com/leda

2. atesio GmbH: Discnet – Network optimization software library (2000–2007).
http://www.atesio.de

3. Ben-Ameur, W., Gourdin, E.: Internet routing and related topology issues. SIAM
Journal on Discrete Mathematics 17, 18–49 (2003)

4. Bley, A.: A Lagrangian approach for integrated network design and routing in
IP networks. In: W. Ben-Ameur, A. Pertrowski (eds.) 1st International Network
Optimization Conference, pp. 107–113. Institut National des Télécommunications,
Evry/Paris (2003)

5. Bley, A.: Finding small administrative lengths for shortest path routing. In: L. Gou-
veia, C. Mourão (eds.) 2nd International Network Optimization Conference, pp.
121–128. Universidade de Lisboa, Lisbon (2005)

6. Bley, A.: On the approximability of the minimum congestion unsplittable shortest
path routing problem. In: M. Jünger, V. Kaibel (eds.) 11th Conference on Inte-
ger Programming and Combinatorial Optimization, LNCS, vol. 3509, pp. 97–110.
Springer, Heidelberg (2005)

7. Bley, A.: Approximability of unsplittable shortest path routing problems. Technical
report ZR-06-02, Zuse Institute Berlin (2006)

8. Bley, A.: Inapproximability results for the inverse shortest paths problem with
integer lengths and unique shortest paths. Networks 50, 29–36 (2007)

9. Bley, A.: Routing and capacity optimization for IP networks. PhD thesis, Tech-
nische Universität Berlin (2007)

10. Bley, A., Grötschel, M., Wessäly, R.: Design of broadband virtual private networks:
Model and heuristics for the B-WiN. In: N. Dean, D. Hsu, R. Ravi (eds.) Robust
Communication Networks: Interconnection and Survivability, DIMACS Series in

Discrete Mathematics and Theoretical Computer Science, vol. 53, pp. 1–16. AMS
(1998)

11

http://www.algorithmic-solution.com/leda
http://www.atesio.de

11. Bley, A., Koch, T.: Integer programming approaches to access and backbone IP-
network planning. In: 3rd International Conference on High Performance Scientific
Computing. Hanoi, Vietnam (2006)

12. Bourquia, N., Ben-Ameur, W., Gourdin, E., Tolla, P.: Optimal shortest path rout-
ing for Internet networks. In: W. Ben-Ameur, A. Pertrowski (eds.) 1st Inter-
national Network Optimization Conference, pp. 119–125. Institut National des
Télécommunications, Evry/Paris (2003)

13. Broström, P., Holmberg, K.: Determining the non-existence of compatibel OSPF
weights. In: Nordic MPS 2004, no. 14 in Linköping Electronic Conference Proceed-
ings, pp. 7–21. Linköping University Electronic Press (2004)

14. Broström, P., Holmberg, K.: Stronger necessary conditions for the existence of
a compatible OSPF metric. Technical report LiTH-MAT-R-2004-08, Linköping
University (2004)

15. Buriol, L., Resende, M., Ribeiro, C., Thorup, M.: A hybrid genetic algorithm for
the weight setting problem in OSPF/IS-IS routing. Networks 46, 36–56 (2005)

16. Callon, R.: Use of OSI IS-IS for routing in TCP/IP and dual environments. IETF
Internet RFC 1195 (1990)

17. Ericsson, M., Resende, M., Pardalos, P.: A genetic algorithm for the weight setting
problem in OSPF routing. Journal of Combinatorial Optimization 6, 299–333
(2002)

18. Fortz, B., Thorup, M.: Increasing Internet capacity using local search. Computa-
tional Optimization and Applications 29, 13–48 (2004)

19. de Giovanni, L., Fortz, B., Labbé, M.: A lower bound for the Internet protocol net-
work design problem. In: L. Gouveia, C. Mourão (eds.) 2nd International Network
Optimization Conference, pp. 402–408. Universidade de Lisboa, Lisbon (2005)

20. Holmberg, K., Yuan, D.: Optimization of Internet protocol network design and
routing. Networks 43, 39–53 (2004)

21. ILOG CPLEX Division: CPLEX 11.0 (2007). URL http://www.ilog.com

22. Moy, J.: OSPF version 2. IETF Internet RFC 2328 (1998)
23. Orlowski, S., Pióro, M., Tomaszewski, A., Wessäly, R.: SNDlib 1.0 – Survivable

Network Design Library. In: B. Fortz (ed.) 3rd International Network Optimization
Conference. Université Libre de Bruxels, Brussels (2007). http://sndlib.zib.de

24. Parmar, A., Ahmed, S., Sokol, J.: An integer programming approach to the OSPF
weight setting problem. Optimization Online (2006)

25. Pióro, M., Medhi, D.: Routing, Flow, and Capacity Design in Communication and
Computer Networks. Morgan Kaufmann, San Francisco (2004)

26. Pióro, M., Szentesi, A., Harmatos, J., Jüttner, A.: On OSPF related network op-
timization problems. In: 8th IFIP Workshop on Performance Modelling and Eval-
uation of ATM & IP Networks, pp. 70/1–70/14. Ilkley, UK (2000)

27. Prytz, M.: On optimization in design of telecommunications networks with multi-
cast and unicast traffic. Ph.D. thesis, Royal Institute of Technology, Stockholm,
Sweden (2002)

28. Tomaszewski, A., Pióro, M., Dzida, M., Mycek, M., Zagożdżon, M.: Valid inequal-
ities for a shortest-path routing optimization problem. In: B. Fortz (ed.) 3rd Inter-
national Network Optimization Conference. Université Libre de Bruxels, Brussels
(2007)

29. Tomaszewski, A., Pióro, M., Dzida, M., Zagożdżon, M.: Optimization of adminis-
trative weights in IP networks using the branch-and-cut approach. In: L. Gouveia,
C. Mourão (eds.) 2nd International Network Optimization Conference, pp. 393–
400. Universidade de Lisboa, Lisbon (2005)

12

http://www.ilog.com
http://sndlib.zib.de

	An Integer Programming Algorithm for Routing Optimization in IP Networks
	Andreas Bley

