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The Line Connectivity Problem*

Ralf Borndorfer Marika Neumann Marc E. Pfetsch

Abstract

This paper introduces the line connectivity problem, a generaliza-
tion of the Steiner tree problem and a special case of the line planning
problem. We study its complexity and give an IP formulation in terms
of an exponential number of constraints associated with "line cut con-
straints”. These inequalities can be separated in polynomial time. We
also generalize the Steiner partition inequalities.

1 Introduction

The line connectivity problem (LCP) can be described as follows. We are
given an undirected graph G = (V, E), a set of terminal nodes T C V', and a
set of lines L (simple paths) defined on the graph G, see the left of Figure 1
for an example. The lines have nonnegative costs C' € ]Ri and cover all
edges, i.e., for every e € E there is an £ € L such that e € £. The problem
is to find a set of lines L’ C L of minimal cost such that for each pair of
distinct terminal nodes t1,to € T there exists a path from ¢; to t9, which is
completely covered by lines of L'.

LCP is a generalization of the Steiner tree problem (STP) since we get
an STP if all lines have length one. In contrast to the STP with nonnegative
costs, see [4, 5] for an overview, the optimal solution of the line connectivity
problem does not have to be a tree. There can be two lines that form a
cycle, but both are necessary to connect two terminal nodes, see the right
of Figure 1. However, an optimal solution of LCP is minimally connected,
i.e., if we remove a line from the solution, there exist at least two terminals
which are not connected.

LCP is a special case of the line planning problem in which passenger
routes are not fixed a priori, see [2] and the references therein for a detailed
definition. Line planning deals with finding a set of lines and corresponding
frequencies such that a given demand can be transported. Usually, the
objective is to minimize cost and/or travel times. If we neglect travel time,
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Figure 1: Example of a line connectivity problem.

capacity, and frequency constraints, the line planning problem reduces to
LCP, namely, all stations that are departures or destinations of a passenger
trip have to be connected by lines. Since line planning problems can not
be solved to proven optimality for medium-sized and large instances, it is of
interest to analyze LCP.

This article is structured as follows. In Section 2 we investigate the
complexity of the LCP. An IP formulation and a polynomial time separation
algorithm for a class of line cut inequalities associated with this formulation
is proposed in Section 3. A polyhedral analysis is sketched in Section 4.

2 Complexity of LCP

Since the line connectivity problem is a generalization of the Steiner tree
problem [5], it is strongly NP-hard in general. The complexity of two im-
portant special cases, for which the STP can be solved efficiently, is as
follows:

Proposition 2.1. 1. LCP is polynomially solvable for |T'| = 2.
2. LCP is NP-hard for T =V.

Sketch of proof. 1. We can construct a directed graph D’ similar to the
one in Section 3 below. A shortest path in D’ between two terminal nodes
corresponds to a minimal cost connected line set in G.

2. We reduce the set covering problem to the line connectivity problem.
In a set covering problem we are given a finite set S, a set M C 2%, and a
positive integer k. The problem is to find a subset M’ C M, |[M’| < k, such
that for all s € S there exists an M € M’ with s € M.

Given a set covering instance, we define a line connectivity problem
in a graph G = (V,E) as follows: The nodes are V = S U {v} with v
being one extra node. We first assume a complete graph and remove all
edges that are not covered by a line after the construction of the lines. Let
V = {v:= s¢, $1,82,...}. For each set M € M order the elements in M and



construct a line beginning in node v and passing all nodes of M in the given
order. The cost of this line is 1.

It can be easily seen that a cover M’ with less than k elements exists if
and only if we find a line set connecting all nodes with cost smaller or equal
to k. O

3 An Integer Programming Formulation

An integer program for LCP can be formulated as

(LCPeyt) min Y. Cpxy
LeL

s.t >oooxp >1 PCcwWnTCT
ZEL(;(W)

Ty € {O, 1}.

Here, L5y :={¢ € L|3e € 6(W)N£} is the set of all lines that cross a cut
5(W) at least one time. If §(W) with 0 C WNT C T is an (s,t)-cut we call
Lsawy an (s, t)-line cut or shortly line cut. We call L' a minimal (s,t)-line
cut with respect to x if

Z Ty = min{z z¢| L is an (s, t)-line cut}.

ter teL

We call the inequalities in (LCPgy) line cut constraints. Their number can
be exponential in the size of the input. We therefore propose an efficient
separation algorithm that decides whether a given point x* is valid for the
LP-Relaxation of (LCP,;) or finds a violated line cut constraint. It will turn
out that this problem can be formulated as a max flow/min cut problem in
a suitable auxiliary digraph. The construction is as follows: We are given a
graph G = (V, E), a set of lines L, and two distinct nodes s,t € 7' C V. Each
line ¢ € L has a value 2y > 0. We construct a directed graph D' = (V', A’)
with node set
V' = {s} U{t} U{vp,w, |l € L}

and the following arcs a € A’ and capacities ¢,

(s,vp) Covy = T4 ifsel, Vlel

(ve,we)  Cypw, = T4 VeeL

(wer,ve)  Cwpv, = min{zg,xp} VL €L, L#L, £ and ' have

anode v € V\{s,t} in common
(wert)  Cwyr = T iftel, vt elL.

Figure 2 illustrates this construction.
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Figure 2: Left: Graph G with four lines (¢1 = {s,d}, > = {s,a}, €3 = {d,c,a,b,t}, ls =
{c,t}) with value 0.5 and two terminal nodes s and ¢. Right: Corresponding directed
graph D’. Here, each arc has capacity 0.5. The dashed arcs are of the form (wy, v¢). The
minimal (s, t)-cut has value 0.5.

Lemma 3.1.
1. Each simple (s,t)-path has the form (s,ve,,wy,, ..., ve,, we,,t), k> 1.
2. The only arc with target node wy is (v, wy), VI € L.
3. The only arc with source node vy is (vg,wy), VI € L.

4. There is a directed (s,t)-cut with minimal capacity in D’ such that all
arcs over this cut are of the form (vg,wy), £ € L. O

Proof. The first three parts can easily be seen. Consider part 4. Assume
(s,v¢) is in a minimal cut. Then we can replace this arc by (v, wy) with the
same value because this is the only arc with source node vy (Part 3). With
a similar argument we can replace (wgp,t) by (v, we). Assume (wyr,vy),
¢ # 0, is in the cut and zy < zy. Then we can replace this arc by (vg, wy)
with same capacity because of Part 3 and ¢y, 4, = min{zy, zp}. If xp < x4,
we can replace it by (vg, wy) with same capacity because of Part 2 and the
definition of the capacities. O

Proposition 3.2. There is a one-to-one correspondence between minimal
directed (s,t)-cuts in D' and minimal (s,t)-line cuts in G of the same ca-
pacity.

Proof. We only show the forward direction. Let §(/W') be a minimal (s, t)-
cut in D'. After applying part 4 of Lemma 3.1, let L' = {¢ € L| (vp,wy) €
Al vg € Wwp € VA\W'}. Assume L' is not an (s,t)-line cut. Then there
exists a path from s to t in G that is covered by lines in L\L'. Let ¢1,..., ¢,
be the lines that are used in this order when traversing the path. Then

(8,0p,, Wy s -+, Vg, Wy, t) is a path from s to ¢ in D’. This is a contradiction
to the assumption that 6(W’) is a cut in D’.
It can be easily seen that L’ and §(W’) have the same capacity. O



Theorem 3.3. The separation problem for line cut constraints can be solved
i polynomial time.

Computing for every two terminals s, € T the minimum (s,t)-cut in
D’ can be done in polynomial time. If and only if the value of this cut is
smaller than 1, we can construct a violated line cut constraint. O

4 Polyhedral Analysis

Let Picp := conv{z € {0,1}" |z satisfies the line cut constraints} be the
line connectivity polytope. We assume that the line connectivity polytope is
non-empty, i.e., the graph G is connected.

Using the results for the set covering polytope of Balas and Ng [1], we
get the following information about Ppcp.

Corollary 4.1.

1. The LCP-polytope Prcp is full dimensional if and only if there exists
no valid cut §(W) with |Ls| = 1.

In the following we assume Prop to be full dimensional.

2. The inequality x¢ > 0 defines a facet of Prcp if and only if | Lsewy| = 3
for all W with 0 CWNT CT.

3. All inequalities xp < 1 define facets of Prcp.
4. All facet defining inequalities ax > aq for Prop have a > 0, ag > 0.

5. A line cut inequality is facet defining if and only if the following two
properties are satisfied:
(a) There exists no W', 0 CW'NT C T, such that Ly S Lsw)-

(b) For each two Wi, Wa, 0 CW;NT C T, with |Lsw,)\Lsw)| = 1,
1= 1, 2 and L(S(Wl)\Lé(W) = Lé(Wg)\L(S(W): we have

|Lsewy)y 0 L)y 0 Ly | > 1.

6. The only facet defining inequalities for Prcp with integer coefficients
and righthand side equal to 1 are the line cut inequalities.

Similar to the Steiner tree problem we can define partition inequalities. Let
P = (V4,...,Vk) be a partition of the node set V where V; N T # () for
i=1,...,k and k > 3, i.e., P is a Steiner partition. Let Gp be the graph
that arises by contracting each node set V; to a single node.



Lemma 4.2. The line partition inequality
Sag-xp>k—1, ay:= (number of nodes in Gp visited by £) — 1
el

1s valid for the line connectivity problem. O

Note that if kK = 2 we get a line cut constraint.

Analogous to the properties which are necessary for a Steiner partition
inequality to be facet defining, c. f. Grotschel and Monma [3], we can for-
mulate the following Proposition.

Proposition 4.3. Let L := {¢ € L|a, = 0}. The line partition inequality
1s facet defining if the following properties are satisfied.

1. G(V;) is connected by L, i =1,... k.
2. G(V;) contains no line cut L' C L with |L'| =1,i=1,... k.
3. Each line visits at most two nodes in Gp, i.e., ag € {0,1} V¢ € L.

4. The shrunk graph Gp is 2-line-connected, i.e., if we remove any node
with all adjacent lines, the resulting graph is connected. [

Examples can be constructed in which a line partition inequality is facet
defining, but does not satisfy all of the first three properties of Lemma 4.3.
Indeed, only Property 4 is necessary.

Proposition 4.4. If the shrunk graph Gp is not 2-line-connected, the par-
tition inequality is not facet defining for Prcop. ]
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