
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

STEFAN HEINZ? MARTIN SACHENBACHER??

Using Model Counting to Find
Optimal Distinguishing Tests

? Supported by the DFG Research Center MATHEON Mathematics for key technologies in Berlin.
?? Technische Universität München, Institut für Informatik Boltzmannstraße 3, 85748 Garching, Germany

ZIB-Report 08-32 (August 2008)

Using Model Counting to Find
Optimal Distinguishing Tests

Stefan Heinz1? and Martin Sachenbacher2

1 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
heinz@zib.de

2 Technische Universität München, Institut für Informatik
Boltzmannstraße 3, 85748 Garching, Germany

sachenba@in.tum.de

Abstract. Testing is the process of stimulating a system with inputs
in order to reveal hidden parts of the system state. In the case of non-
deterministic systems, the difficulty arises that an input pattern can
generate several possible outcomes. Some of these outcomes allow to
distinguish between different hypotheses about the system state, while
others do not.
In this paper, we present a novel approach to find, for non-deterministic
systems modeled as constraints over variables, tests that allow to distin-
guish among the hypotheses as good as possible. The idea is to assess the
quality of a test by determining the ratio of distinguishing (good) and
not distinguishing (bad) outcomes. This measure refines previous notions
proposed in the literature on model-based testing and can be computed
using model counting techniques. We propose and analyze a greedy-type
algorithm to solve this test optimization problem, using existing model
counters as a building block. We give preliminary experimental results
of our method, and discuss possible improvements.

1 Introduction

In natural sciences, it often occurs that one has several different hypotheses
(models) for a system or parts of its state. Testing asks whether one can reduce
their number by stimulating the system with appropriate inputs, called test pat-
terns, in order to validate or falsify hypotheses from observing the generated
outputs. Applications include, for example, model-based fault analysis (check-
ing technical systems for the absence or presence of faults [8, 15]), autonomous
systems (acquiring sensory inputs to discriminate among competing state esti-
mates [4]), and bioinformatics (designing experiments that help to distinguish
between different possible explanations of biological phenomena [16]).

For deterministic systems where each input generates a unique output, such
as digital circuits, it has been shown how generating test inputs can be formu-
lated and solved as a satisfiability problem [6, 10]. The non-deterministic case,
? Supported by the DFG Research Center Matheon Mathematics for key technologies
in Berlin.

2 Stefan Heinz and Martin Sachenbacher

BA

(a) overlapping

BA

(b) non-overlapping

Figure 1. Given two non-deterministic models, a test input can either lead to overlap-
ping (a) or non-overlapping (b) output sets A and B.

however, where the output is not uniquely determined by the inputs, is more fre-
quent in practice. One reason is that in order to reduce the size of a model, for
example, to fit it into an embedded controller [13, 18], it is common to aggregate
the domains of system variables into small sets of values such as ‘low’, ‘med’, and
‘high’; a side-effect of this abstraction is that the resulting models can no longer
be assumed to be deterministic functions, even if the underlying system behavior
was deterministic [17]. Another reason is the test situation itself: even in a rigid
environment such as an automotive test-bed, there are inevitably variables or
parameters that cannot be completely controlled while testing the device.

The difficulty of test generation with non-deterministic models is that each
input pattern can generate a set of possible outcomes instead of a single outcome.
For two hypotheses and a fixed test input, let A and B be the sets of possible
outputs. These sets can either overlap or be disjoint as illustrated in Figure 1.
Assuming that at least one hypothesis captures the actual behavior of the system,
there are two possible cases: (i) the actual observed output of the system could
either fall into the intersection of A and B or (ii) outside the intersection. In the
first case no information is gained, as none of the hypotheses can be refuted. In
the latter case, however, one of the hypotheses can be refuted. Thus, if the sets
overlap as depicted in Figure 1(a), the test input might distinguish between the
two hypotheses, whereas if the sets are disjunct as shown in Figure 1(b), the test
input will certainly distinguish among them. Note that, if the assumption that
at least one hypothesis captures the actual behavior of the system fails, there is
a third possible outcome, where the observed output lies outside of both sets. In
this case, both hypotheses can be refuted since they do not describe the actual
behavior of the system.

This qualitative distinction of tests for non-deterministic models was noted in
several research areas. In the field of model-based diagnosis with first-order logi-
cal models, Struss [15] introduced so-called possibly and definitely discriminating
tests, for short PDT and DDT, respectively. The first type of test (PDT) might
distinguish between fault hypotheses and corresponds to Figure 1(a), whereas
the second type (DDT) will necessarily do so, which corresponds to Figure 1(b).
Struss [15] further provided a characterization of PDTs and DDTs in terms of
relational (logical) models, together with an ad-hoc algorithm to compute them.
In the field of automata theory, Alur et al. [3] have studied the analogous prob-
lem of generating so-called weak and strong distinguishing sequences. These are

Using Model Counting to Find Optimal Distinguishing Tests 3

input sequences for a non-deterministic finite state machine, such that based on
the generated outputs, one can determine the internal state either for some or all
feasible runs of the machine. Finding weak and strong sequences with a length
less than or equal to a bound k ∈ N can be reduced to the problem of finding
PDTs and DDTs, by unrolling automata into a constraint network using k copies
of the transition relation and the observation relation [8].

In previous work [12], we have shown how PDTs and DDTs can be formalized
and computed using quantified constraint satisfaction problems, a game-theoretic
extension of constraint satisfaction problems. In the next section, we summarize
this constraint-based framework for testing. In section 3, we then propose a
novel, quantitative distinction of tests that refines and generalizes the previous
notions of weak versus strong and possibly versus definitely discriminating tests.
The key idea is to measure the quality of a test by determining the actual ratio
of distinguishing and not distinguishing outcomes, corresponding to the ratio
of non-intersecting and intersecting areas in Figure 1. Because test inputs that
maximize this measure distinguish among given hypotheses as good as possible,
we call them optimal distinguishing tests (ODTs). We show how in a constraint-
based framework, ODTs can be defined and computed using model counting
techniques. In Section 4, we propose a greedy algorithm that can quickly find
distinguishing tests, using existing model counters as a building block (in our
experiments, we used a model counting extension of a constraint integer pro-
gramming solver SCIP [1, 2]). We give preliminary experimental results of our
method using a small real-world problem from automotive industry. Finally, in
the last section we discuss possible improvements and directions for future work.

2 Distinguishing Tests

We briefly introduce the theory of constraint-based testing similar to [12, 15].
We first define the notion of a constraint satisfaction problem (CSP).

Definition 1 (Constraint Satisfaction Problem). A constraint satisfaction
problemM is a tripleM = (V,D, C), where D = D(v1)×. . .×D(vn) are the finite
domains of finitely many variables vj ∈ V, j = 1, . . . , n, and C = {C1, . . . , Cm}
is a finite set of constraints with Ci ⊆ D, i = 1, . . . ,m. The task is to find an
assignment x ∈ D to the variables such that all constraints are satisfied, that is,
x ∈ Ci for i = 1, . . . ,m.

We denote byX the set of all solutions of a given constraint satisfaction problem.
That is,

X = {x | x ∈ D, C(x)}, with C(x) :⇔ x ∈ Ci ∀i = 1, . . . ,m.

Testing attempts to discriminate between hypotheses about a system – for
example, about different kinds of faults – by stimulating it in such a way that the
hypotheses become observationally distinguishable. Thereby, the system under

4 Stefan Heinz and Martin Sachenbacher

investigation defines a set of controllable (input) variables I and a set of ob-
servable (output) variables O. Formally, a hypothesis M for a system is a CSP
where the variable set V contains the input and output variables of the system.

Definition 2 (Hypothesis). A hypothesis for a system is a CSP whose vari-
ables are partitioned into V = I ∪ O ∪ S, such that I and O are the input and
output variables of the system, and for all assignments to I, the CSP is solvable.
The remaining variables S = V \ (I ∪ O) are called internal state variables.

Note that the internal state variable sets S can differ for two different hy-
potheses. We denote by D(I) and D(O) the cross product of the domains of the
input and output variables, respectively:

D(I) =×
v∈I

D(v) and D(O) =×
v∈O

D(v).

The goal of testing is then to find assignments of the input variables I that
will cause different assignments of output variables O for different hypotheses.
For a given hypothesis M and an assignment t ∈ D(I) to the input variables we
define the output function X as follows:

X : D(I)→ 2D(O) with t 7→ {y | y ∈ D(O), ∃x ∈ X : x[I] = t ∧ x[O] = y},

where 2D(O) denotes the power set of D(O), and x[I], x[O] denote the restriction
of the assignment vector x to the input variables I and the output variables O,
respectively. Note that since M will always yield an output, X (t) is non-empty.

Definition 3 (Distinguishing Tests). Consider k ∈ N hypothesesM1, . . . ,Mk

with input variables I and output variables O. Let Xi be the output function of
hypothesis Mi with i ∈ {1, . . . , k}. An assignment t ∈ D(I) to the input vari-
ables I is a possibly distinguishing test (PDT), if there exists an i ∈ {1, . . . , k}
such that

Xi(t) \
⋃
j 6=i

Xj(t) 6= ∅.

An assignment t ∈ D(I) is a definitely distinguishing test (DDT), if for all
i ∈ {1, . . . , k} it holds that

Xi(t) \
⋃
j 6=i

Xj(t) = Xi(t).

Verbally, a test input is a PDT if there exists a hypothesis for which this test
input can lead to an output which is not reachable for any other hypothesis.
On the other hand, an assignment to the input variables is a DDT if for all
hypotheses the possible outputs are pairwise disjoint. This means, there exists
no overlapping of the possible outcomes at all.

In the following, we restrict ourselves to the case where there are only two
possible hypotheses, for example corresponding to normal and faulty behavior
of the system.

Using Model Counting to Find Optimal Distinguishing Tests 5

xor

a

x
y u

z v

xor: x y u a: u z v a′: u z v

L L L L L L L L L
L H H L H L L H L
H L H L H H H L L
H H L H L L H H L

H L H
H H H

Figure 2. Circuit with a possibly faulty adder.

To illustrate the above definitions, consider the system in Figure 2. It consists
of five variables x, y, z, u, and v, where x, y, and z are input variables and v is an
output variable. Furthermore, the system has two components, one comparing
signals x and y with result u and the other adding signals u and z. The signals
have been abstracted into qualitative values ‘low’ (L) and ‘high’ (H). This means,
each variable of the system has the same domain set {L,H}; thus, for instance,
values L and H can add up to the value L or H, and so on. Assume we have two
hypotheses M1 and M2 about the system that we want to distinguish from each
other: the first hypothesis is that the system is functioning normally, which is
modeled by the constraint set {xor,a} (see Figure 2). The second hypothesis is
that the adder is stuck-at-L, which is modeled by the constraints {xor,a′}. Note
that only the second constraint of both hypotheses contains a non-deterministic
behavior. The assignment (x, y, z) = (L,H,L), for example, is a PDT, since it
leads to the observation v = L or v = H forM1, and v = L forM2. One the other
hand, the assignment (x, y, z) = (L,H,H) is a DDT for the two hypotheses, since
this assignment leads to the observation v = H and v = L for the hypothesesM1

and M2, respectively.
Testing can be extended from the above case of logical, state-less models to

the more general case of automata models that have internal states. This means
that we are no longer searching for a single assignment to input variables, but
rather for a sequence of inputs over different time steps. The following definitions
are adapted from [5] and [7]:

Definition 4 (Plant Hypothesis). A (partially observable) plant is a tuple
P = 〈x0, S, I, δ, O, λ〉, where S, I,O are finite sets, called the state space, input
space, and output space, respectively, x0 ∈ S is the start state, δ ⊆ S × I × S
is the transition relation, and λ ⊆ S ×O is the observation relation.

Such plant models are for instance used in NASA’s Livingstone [19] or MIT’s
Titan model-based system [18]. Note that a plant need not be deterministic,
that is, the state after a transition may not be uniquely determined by the state
before the transition and the input. Likewise, a plant state may be associated
with several possible observations.

For technical convenience, it is assumed that the relations δ and λ are com-
plete, that is for every x ∈ S and i ∈ I there exists at least one x′ ∈ S such that
(x, i, x′) ∈ δ and at least one o ∈ O such that (x, o) ∈ λ. We write δ(x, i, x′) for

6 Stefan Heinz and Martin Sachenbacher

x0 x1

0 1

L,H

L L,H

x0 x1x0

x2

0 1

0

L

H

L L,H

L

L,H

Figure 3. Two plants P1 (left) and P2 (right).

(x, i, x′) ∈ δ, and λ(s, o) for (x, o) ∈ λ. A feasible trace of a plant P is a pair (σ, ρ),
where σ = i1, i2, . . . , ik ∈ I∗ is a sequence of k inputs and ρ = o0, o1, . . . , ok ∈ O∗
is a sequence of k + 1 outputs, such that there exists a sequence x0, x1, . . . , xk

of states with δ(xj−1, ij , xj) for all 1 ≤ j ≤ k and λ(xj , oj) for all 0 ≤ j ≤ k.

Definition 5 (Distinguishing Test Sequences). Given two plants P1 =
〈x0, S, I, δ, O, λ〉 and P2 = 〈y0, Y, I, η,O, µ〉, a sequence of inputs σ ∈ I∗ is a
weak test, if there exists a sequence of outputs ρ ∈ O∗ such that (σ, ρ) is a fea-
sible trace of P1 but not of P2. The sequence σ is a strong test for P1 and P2, if
and only if for all sequences of outputs ρ, it holds that if (σ, ρ) is a feasible trace
P1 then it is not a feasible trace of P2.

Notice that due to the assumptions about completeness, for every input se-
quence σ ∈ I∗ there exist output sequences ρ, τ ∈ O∗ such that (σ, ρ) is a feasible
trace of P1 and (σ, τ) is a feasible trace of P2.

Analogous to PDTs and DDTs, a weak test is a sequence that may reveal
a difference between two hypotheses, whereas a strong test is a sequence that
will necessarily do so. For example, Figure 3 shows two plants P1 and P2 with
I = {L,H} and O = {0, 1}. The input sequence σ = L,L is a weak test for the
two plants, because, for example, 0, 1, 0 is a possible output sequence of P2 but
not of P1. The sequence σ′ = H,H is a strong test for P2 and P1, because the
only possible output sequence 0, 0, 0 of P2 cannot be produced by P1.

From a practical point of view, it is often sufficient to consider bounded test
sequences that do not exceed a certain length k ∈ N. In this case, the problem
of finding weak and strong tests for automata models can be reduced to finding
PDTs and DDTs:

Remark 1. Finding weak and strong tests with a length less than or equal to
a bound k ∈ N can be reduced to the problem of finding PDTs and DDTs, by
unrolling automata into a constraint network using k copies of the transition
relation and the observation relation [8].

In the following, we consider only tests with such a bounded length. There-
fore, we assume the hypotheses are given as CSPs over finite-domain variables

Using Model Counting to Find Optimal Distinguishing Tests 7

(Definition 2). This covers both the case of logical models and (bounded) au-
tomata models.

3 Optimal Distinguishing Tests

In [12], we have shown how PDTs and DDTs can be formalized and computed
using quantified constraints satisfaction problems (QCSP), a game-theoretic ex-
tension of CSPs. However, for larger hypotheses, the computational cost of solv-
ing such QCSPs can be prohibitive. Moreover, due to limited observability or
a high degree of non-determinism in the system under investigation, it is not
uncommon that a DDT for the hypotheses does not exist, and one can instead
only find PDTs.

In the following, we therefore propose a novel, quantitative measure for tests
that refines and generalizes the previous, qualitative notions of PDTs and DDTs.
The key idea is to determine the ratio of distinguishing and not distinguishing
outcomes of a test input, corresponding to the degree of overlap between the
output sets shown in Figure 1. This measure provides a way to further distinguish
between different PDTs. In addition, even if computing this measure is by itself
not easier than finding PDTs and DDTs, approximations of it can be used as a
guiding heuristic in the search for tests, providing a basis for greedy methods to
quickly find good tests.

The main assumption underlying our approach is that for a test input and
a non-deterministic hypothesis, the possible outcomes (feasible assignments to
the output variables) are all (roughly) equally likely. Then, a PDT will be more
likely to distinguish among two given hypotheses compared to another PDT, if
the ratio of possible outcomes that are unique to a hypothesis versus the total
number of possible outcomes is higher.

This intuition is captured in the following definitions.

Definition 6 (Distinguishing Ratio). Given a test input t ∈ D(I) for two
hypothesesM1,M2 with input variables I and output variables O, we define Γ (t)
to be the ratio of feasible outputs that distinguish among the hypotheses versus
all feasible outputs:

Γ (t) :=
|X1(t) ∪ X2(t)| − |X1(t) ∩ X2(t)|

|X1(t) ∪ X2(t)|
= 1− |X1(t) ∩ X2(t)|

|X1(t) ∪ X2(t)|
.

Γ is a measure for test quality that can take on values in the interval [0, 1].
It refines the notion of PDTs and DDTs in the following precise sense: if Γ is 0,
then the test does not distinguish at all, as both hypotheses lead to the same
observations (output patterns). If the value is 1, then the test is a DDT, since
both hypotheses always lead to different observations. If the value is between 0
and 1, then the test is a PDT (there is some non-overlap in the possible observa-
tions). Note that Γ is well-defined since for any chosen t ∈ D(I), the sets X1(t)
and X2(t) are non-empty (see Definition 2).

8 Stefan Heinz and Martin Sachenbacher

Remark 2. For computing the distinguishing ratio for a fixed test input t it is
only necessary to compute (model count) the value |X1(t) ∩X2(t)|, |X1(t)|, and
|X2(t)|, since

Γ (t) = 1− |X1(t) ∩ X2(t)|
|X1(t) ∪ X2(t)|

= 1− |X1(t) ∩ X2(t)|
|X1(t)|+ |X2(t)| − |X1(t) ∩ X2(t)|

.

Based on this measure, we can formalize our goal of finding tests that dis-
criminate among two hypotheses as good as possible:

Definition 7 (Optimal Distinguishing Test). An assignment t ∈ D(I) is
an optimal distinguishing test (ODT) for two hypotheses M1, M2 with input
variables I and output variables O if its distinguishing ratio is maximal, that is,
Γ (t) = maxx∈D(I) Γ (x).

Note that each DDT is also an ODT. To illustrate the previous definition,
consider again the example in Figure 3. The input sequence t = (L,L) is a weak
test or equivalently, a PDT if the automata are expanded into suitable constraint
networks. The possible outcomes (output patterns) for P1 and P2 are

X1(t) = {(0, 0, 0), (0, 0, 1), (0, 1, 1)}
X2(t) = {(0, 0, 0), (0, 0, 1), (0, 1, 1), (0, 1, 0)}.

Thus, for this test there is only one possible outcome (0, 1, 0) that is unique to
a hypothesis, out of a total of four possible outcomes. Hence, Γ (t) = 1

4 . There
exists another weak test (PDT), namely the input sequence t′ = (L,H), with
possible outcomes

X1(t′) = {(0, 0, 1), (0, 1, 1)}
X2(t′) = {(0, 0, 0), (0, 1, 1)}.

This test has two possible outcomes {(0, 0, 0), (0, 0, 1)} that are unique to a
hypothesis, out of three possible outcomes {(0, 0, 0), (0, 0, 1), (0, 1, 1)}. This leads
to Γ (t′) = 2

3 . Note that for this example, there exists a test t′′ = (H,H) with
Γ (t′′) = 1, which is a DDT and therefore an ODT.

Now we present a general lower bound on the optimal distinguishing ratio.

Theorem 1. Consider a system with input variable set I and output variable
set O. Furthermore, let M1 and M2 be two hypotheses for this system. Let

Xi[I,O] = {(x,y) | x ∈ D(I), y ∈ D(O), ∃ t ∈ Xi : t[I] = x ∧ t[O] = y},

where Xi is the set of all feasible solutions of the hypothesisMi, i ∈ {1, 2}. Then,

1− |X1[I,O] ∩X2[I,O]|
|X1[I,O] ∪X2[I,O]|

is a lower bound on the optimal distinguishing ratio.

Using Model Counting to Find Optimal Distinguishing Tests 9

Proof. Let I and O be the input and output variable sets of an arbitrary system
and M1 and M2 two hypotheses. Furthermore, let X1[I,O] and X2[I,O] be the
sets to the hypotheses as defined in the theorem.

Given an input variable v ∈ I, we denote by Td the subset of D(I) which is
restricted to the elements where the input variable v is fixed to d ∈ D(v). That
is, Td = {x | x ∈ D(I) ∧ x[{v}] = d}. These subsets form a partition of D(I).
This means, D(I) =

⋃
d∈D(v) Td and Td ∩ Tk = ∅ for all d, k ∈ D(v) with d 6= k.

Hence, these subsets can be used to partition Xi[I,O] as follows:

Xi[I,O] =
⋃

d∈D(v)

{(x,y) | x ∈ Td, y ∈ D(O), ∃ t ∈ Xi : t[I] = x ∧ t[O] = y}.

Therefore,

|Xi[I,O]| =
∑

d∈D(v)

|{(x,y) | x ∈ Td, y ∈ D(O), ∃ t ∈ Xi : t[I] = x ∧ t[O] = y}|.

We claim that
|X1[I,O] ∩X2[I,O]|
|X1[I,O] ∪X2[I,O]|

≥ min
d∈D(v)

|X1[I,O] ∩X2[I,O] ∩ (Td ×D(O))|
|(X1[I,O] ∪X2[I,O]) ∩ (Td ×D(O))|

.

To this end, let d∗ ∈ D(v) be a domain value of v, which attains the minimum
on the right hand side. In a first step, we decompose the left hand side using
that the subsets Td are a partition of D(I):

|X1[I,O] ∩X2[I,O]|
|X1[I,O] ∪X2[I,O]|

=

∑
d∈D(v)|X1[I,O] ∩X2[I,O] ∩ (Td ×D(O))|∑

d∈D(v)|(X1[I,O] ∪X2[I,O]) ∩ (Td ×D(O))|

Now we substitute

ad := |X1[I,O] ∩X2[I,O] ∩ (Td ×D(O))|
ãd := |(X1[I,O] ∪X2[I,O]) ∩ (Td ×D(O))|.

To prove the claim, it is left to show that∑
d∈D(v) ad∑
d∈D(v) ãd

≥ ad∗

ãd∗
with

ad

ãd
≥ ad∗

ãd∗
∀ d ∈ D(v).

This follows since∑
d∈D(v) ad∑
d∈D(v) ãd

≥ ad∗

ãd∗
⇔

∑
d∈D(v)

ad ≥
∑

d∈D(v)

ãd ·
ad∗

ãd∗

and ∑
d∈D(v)

ad =
∑

d∈D(v)

ad · ãd

ãd
≥

∑
d∈D(v)

ad∗ · ãd

ãd∗
=

∑
d∈D(v)

ãd ·
ad∗

ãd∗
.

Therefore, we have proven, that it is possible to fix any input variable such that
the claimed lower bound holds. Doing this sequentially for all input variables
leads to an assignment which has as distinguishing ratio which is at least as
good as the claimed lower bound. ut

10 Stefan Heinz and Martin Sachenbacher

Input: Hypotheses M1 and M2 with set of input and output variables I and O
Output: Test t ∈ D(I)

T ← D(I);
foreach v ∈ I do

bestratio ← −1;
bestfixing ← ∞;
foreach d ∈ D(v) do

T ′ ← {x | x ∈ T ∧ x[{v}] = d};
ratio ← Γ (T ′);
if ratio > bestratio then

bestratio ← ratio;
bestfixing ← d;

end
end
T ← T ∩ {x | x ∈ D(I) ∧ x[{v}] = bestfixing};

end
return t ∈ T

Algorithm 1: Greedy algorithm for distinguishing test input generation.

4 Greedy Algorithm for Distinguishing Test Generation

In the previous section we stated the optimization problem of computing an opti-
mal distinguishing test (ODT). In this section, we propose and analyze a greedy-
type algorithm to solve this problem, which can use existing model counting
methods (exact or approximate) as a building block.

The idea of the greedy algorithm is to select at each step an input variable
which is not fixed yet. For each possible value of this variable, the algorithm
computes a local form of the distinguishing ratio (comparison of model counts,
as defined in Section 3) for assigning this value. The variable is then fixed to a
value that attains the maximal (local) distinguishing ratio.

To formalize this idea, we canonically extend the function Γ from single
assignments t ∈ D(I) to sets of assignments T ⊆ D(I) by defining

X (T) =
⋃
t∈T

X (t).

Algorithm 1 shows the algorithm Greedy. It takes as input the controllable
and observable variable sets I and O defined by the system under investiga-
tion and two hypotheses M1 and M2 to distinguish. As output it returns an
assignment for the input variables.

For example, consider the system shown in Figure 4. It has two input variables
I = {v1, v2} and one output variable O = {v3}. Let D(v1) = D(v2) = {0, 1}
and D(v3) = {0, 1, 2}. Consider two hypotheses M1 and M2 for this system,

Using Model Counting to Find Optimal Distinguishing Tests 11

?v1
v2

v3

Figure 4. Example system schema.

where both hypotheses have no internal state variables. Each hypothesis has one
constraint

C1 = D(v1)×D(v2)×D(v3)
C2 = D(v1)×D(v2)×D(v3) \ {(0, 0, 1), (0, 0, 2), (0, 1, 2), (1, 0, 2)},

where C1 and C2 belong to hypothesis M1 and M2, respectively. Assume the
algorithm selects the variables in the order v1, v2. Then for the two values of v1,
it computes the two ratios

v1 = 0→ Γ (T ′) = 1− |{0, 1, 2} ∩ {0, 1}|
|{0, 1, 2} ∪ {0, 1}|

= 1
3

v1 = 1→ Γ (T ′) = 1− |{0, 1, 2} ∩ {0, 1, 2}|
|{0, 1, 2} ∪ {0, 1, 2}|

= 0.

It chooses value 0 for v1, since it has the highest ratio. Continuing with v2, its
ratios are determined as

v2 = 0→ Γ (T ′) = 1− |{0, 1, 2} ∩ {0}|
|{0, 1, 2} ∪ {0}|

= 2
3

v2 = 1→ Γ (T ′) = 1− |{0, 1, 2} ∩ {0, 1}|
|{0, 1, 2} ∪ {0, 1}|

= 1
3

and thus value 0 for v2 is chosen. The computed input (0, 0) is an ODT for this
example.

4.1 Properties of the Algorithm

Note that if the system consists only of one input variable, Greedy computes an
ODT, since the algorithm just enumerates all possible variable assignments for
the input variable and selects the assignment that maximizes the distinguishing
ratio. In general, however, the Greedy algorithm has no constant approximation
factor.

Theorem 2. The Greedy algorithm has no constant approximation factor.
That is, there exists no constant c such that for all instances

max
t∈D(I)

Γ (t) ≤ c · Γ (x∗),

where x∗ is the solution computed by Greedy.

12 Stefan Heinz and Martin Sachenbacher

Proof. Consider again the system stated in Figure 4, and let the domain of the
input variables be D(v1) = D(v2) = {0, 1} and of the output variable v3 be
D(v3) = {0, . . . , n}, n ∈ N, and n > 2. W.l.o.g. let the domains be ordered as:

D = D(v1)×D(v2)×D(v3).

Let M1 and M2 be defined by the following sets of feasible solutions:

X1 = {(0, 0, 0), (1, 0, 0)} ∪ {(x, 1, z) | x ∈ D(v1) ∧ z ∈ {2, . . . , n}} ⊂ D
X2 = {(0, 1, 0), (1, 0, 0), (1, 1, 1)} ∪ {(x, x, z) | x ∈ {0, 1} ∧ z ∈ {2, . . . , n}} ⊂ D,

where X1 and X2 belong to hypothesis M1 and M2, respectively. Both hypothe-
ses have no internal state variables. It is assumed that the Greedy algorithm
selects v1 first. The best possible assignment for this variable is v1 = 1, since

v1 = 0→ Γ (T ′) = 1− |{0, 2, . . . , n} ∩ {0, 2, . . . , n}|
|{0, 2, . . . , n} ∪ {0, 2, . . . , n}|

= 0

v1 = 1→ Γ (T ′) = 1− |{0, 2, . . . , n} ∩ {0, . . . , n}|
|{0, 2, . . . , n} ∪ {0, . . . , n}|

> 0.

In the final step Greedy has to fix variable v2 with respect to the previous
fixing of v1 = 1. The best possible decision is, to fix v2 also to 1, since fixing v2
to 0 leads to an distinguishing ratio of zero and for v2 = 1 we have:

Γ ((1, 1)) = 1− |{2, . . . , n} ∩ {1, . . . , n}|
|{2, . . . , n} ∪ {1, . . . , n}|

= 1
n .

Note that the computed test input (v1, v2) = (1, 1) is independent of the cho-
sen n.

An ODT for this problem, however, is (v1, v2) = (0, 0), which is also a DDT.
This test input has, therefore, a distinguishing ratio of 1. For n tending to infinity,
the distinguishing ratio of the test input computed by Greedy tends to zero.
This proves that the Greedy algorithm has no constant approximation factor.

ut

Note that if Greedy would choose variable v2 first, it would compute an
ODT for this example. This rises the question, whether there exist always a
permutation of the input variables such that the Greedy algorithm computes
an ODT. The following theorem answers this question.

Theorem 3. In general, the Greedy algorithm does not compute an ODT even
if it is allowed to try all possible input variable permutations.

Proof. Again, consider the abstract system depicted in Figure 4 with the input
variable set I = {v1, v2}, D(v1) = D(v2) = {0, 1}, the output variable set O =
{v3}, and D(v3) = {1, 2, 3, 4}. Let M1 and M2 be two hypotheses given through
the constraints:

C1 = {(0, 0, 1), (1, 0, 2), (0, 1, 2), (1, 1, 2), (1, 1, 3), (1, 1, 4)} ⊂ D
C2 = {(x, y, 2) | x, y ∈ {0, 1}} ⊂ D,

Using Model Counting to Find Optimal Distinguishing Tests 13

where C1 belongs to hypothesis M1, C2 to hypothesis M2, and D = D(v1) ×
D(v2)×D(v3).

The test input (v1, v2) = (0, 0) is the unique DDT and, therefore, the unique
ODT. If we show that the Greedy algorithm fixes in the first iteration, inde-
pendently of the chosen input variable, this variable to 1, then we have proven
the theorem.

Independently from the chosen input variable, Greedy fixes this variable
to 1 since for i ∈ {1, 2} it follows:

vi = 0→ Γ (T ′) = 1− |{1, 2} ∩ {2}|
|{1, 2} ∪ {2}|

= 1
2

vi = 1→ Γ (T ′) = 1− |{2, 3, 4} ∩ {2}|
|{2, 3, 4} ∪ {2}|

= 2
3 .

ut
In the example at the beginning of Section 4, the sequence of distinguishing

ratios Γ (T ′) computed by Greedy increases monotonically. This observation
can also be made later in the computational results for the automotive example
(see Table 2). However, this needs not be the case in general.

Theorem 4. In general, the sequence of distinguishing ratios computed by Greedy
is not monotonically increasing.

Proof. Consider the system stated in Figure 4, and let the domain of the input
variables be D(v1) = {0}, D(v2) = {0, 1}, and of the output variable v3 be
D(v3) = {0, 1, 2}. W.l.o.g. let the domains be ordered as:

D = D(v1)×D(v2)×D(v3).

Let M1 and M2 be defined by the following sets of feasible solutions:

X1 = {(0, 0, 0), (0, 1, 0), (0, 1, 1)} ⊂ D
X2 = {(0, 0, 0), (0, 1, 0), (0, 0, 2)} ⊂ D

where X1 and X2 belong to hypothesis M1 and M2, respectively. Both hypothe-
ses have no internal state variables. It is assumed that the Greedy algorithm
selects v1 first. Since v1 has only one possible value in its domain, Greedy fixes
v1 to this value 0. The (local) distinguishing ratio yields:

Γ (T) = 1− |{0, 1} ∩ {0, 2}|
|{0, 1} ∪ {0, 2}|

= 2
3 with T = D

In the final step Greedy has to fix variable v2 with respect to the previous
fixing of v1 = 0:

Γ (T ′) = 1− |{0} ∩ {0, 2}|
|{0} ∪ {0, 2}|

= 1
2 with T ′ = {x | x ∈ D ∧ x[{v2}] = 0}

Γ (T ′′) = 1− |{0, 1} ∩ {0}|
|{0, 1} ∪ {0}|

= 1
2 with T ′′ = {x | x ∈ D ∧ x[{v2}] = 1}.

Independently of the chosen fixing for the variable v2, the (local) distinguishing
ratio decreases. ut

14 Stefan Heinz and Martin Sachenbacher

Table 1. Model counts for the four hypotheses in the automotive example.

correct no-engine no-pipe no-throttle

|X| 329 6552 25356 8560

|X[I,O]| 43 552 168 127

|X (D(I))| 13 72 41 22

Table 2. Distinguishing ratios computed by Greedy for the automotive example.

sequence of distinguishing ratio Γ (T ′)

permutation lower bound 0 iteration 1 iteration 2 iterations

correct vs. no-engine

(v1, v2) 1− 43
552

= 0.922 1− 13
72

= 0.819 1− 3
24

= 0.875 1− 1
24

= 0.958

(v2, v1) 1− 43
552

= 0.922 1− 13
72

= 0.819 1− 4
72

= 0.944 1− 1
24

= 0.958

correct vs. no-pipe

(v1, v2) 1− 43
168

= 0.744 1− 13
41

= 0.683 1− 3
27

= 0.889 1− 1
15

= 0.933

(v2, v1) 1− 43
168

= 0.744 1− 13
41

= 0.683 1− 4
23

= 0.826 1− 1
15

= 0.933

correct vs. no-throttle

(v1, v2) 1− 43
127

= 0.661 1− 13
22

= 0.409 1− 3
22

= 0.864 1− 1
9

= 0.889

(v2, v1) 1− 43
127

= 0.661 1− 13
22

= 0.409 1− 5
10

= 0.5 1− 5
10

= 0.5

4.2 Computational Results

We have implemented Algorithm 1 using the constraint integer programming
solver SCIP [1, 2] as (exact) model counter.

We ran our prototype implementation on a small real-world automotive ex-
ample. The example is based on a mixed discrete-continuous model of an engine
air intake test-bed [11]. It has been turned into a coarse CSP model by abstract-
ing continuous system variables into suitable finite domains with up to 12 values,
corresponding to different operating regions. The system consists of the three
major components engine, pipe, and throttle; for each component, a fault
model is defined that simply omits the respective constraint from the model.
Thus, there are four diagnostic hypotheses (correct, no-engine, no-pipe,
and no-throttle), corresponding to all components functioning normally and
one of them failing. The goal is to find an assignment to two controllable vari-
ables (throttle angle v1, valve timing v2), such that one can discriminate among
hypotheses based on two observable variables (engine speed and air flow) in the
system.

Table 1 shows the model counts (total number of solutions |X| and the total
number of projected solutions |X[I,O]| and |X (D(I))|) for the four hypotheses.
Table 2 shows the computational results of the Greedy algorithm for finding
tests to distinguish the normal system behavior from the faults. The first column
states the used permutation, the second column gives the general lower bound
on the optimal distinguishing ratio, as stated in Theorem 1, and the last three

Using Model Counting to Find Optimal Distinguishing Tests 15

columns the sequence of the distinguishing ratios as Greedy iterates through
the input variables. In all cases except the last (finding a test input to identify
a no-pipe fault given the variable order v2, v1), the test input generated by the
algorithm is an ODT. The last test shows that in general, the Greedy algorithm
does not compute a test input whose distinguishing ratio is at least as good as
the general lower bound. The run-time of the algorithm on this example is in
the order of a few seconds.

5 Conclusion and Future Work

We presented a method for generating tests to distinguish system hypotheses
modeled as constraints over variables. It is based on maximizing the number of
non-overlapping versus overlapping observable outcomes and extends previous
notions of testing for non-deterministic systems. We showed how this proposed
test quality measure can be computed as a ratio of model counts. Therefore, we
argue that test generation is a promising application area where model counting
techniques can be fruitfully applied.

Challenges arise from the computational complexity of generating optimal
distinguishing tests, since computing the optimal distinguishing ratios can be
very expensive. We proposed an algorithm that greedily assigns input variables
and thus requires only a limited number of model counts, but sometimes misses
the optimal solution. An alternative approach that we would like to investigate
in the future is to use a complete (branch-and-bound like) algorithm, but to com-
bine it with approximate counting methods that compute confidence intervals
for solution counts [9].

In practice, testing problems often have additional structure: for instance,
like in the automotive example in Section 4.2, pairs of hypotheses often share
significant identical portions. There exist decomposition techniques in test gen-
eration that can exploit such structures [5]. Therefore, an interesting question is
whether these can be adapted to model counting approaches.

Another extension concerns relaxing the simplifying assumption that the
possible outcomes of a non-deterministic hypothesis all have similar likelihood.
In this context, methods for weighted model counting [14] could be used to
capture, for instance, probability distributions in the hypotheses.

References

1. T. Achterberg, Constraint Integer Programming, PhD thesis, TU Berlin, 2007.
2. T. Achterberg, S. Heinz, and T. Koch, Counting solutions of integer programs

using unrestricted subtree detection, in Proc. of CPAIOR-08, vol. 5015 of LNCS,
2008, pp. 278–282.

3. R. Alur, C. Courcoubetis, and M. Yannakakis, Distinguishing tests for non-
deterministic and probabilistic machines, in Proc. of the Twenty-Seventh Annual
ACM Symposium on Theory of Computing, 1995, pp. 363–372.

16 Stefan Heinz and Martin Sachenbacher

4. L. Blackmore and B. C. Williams, Finite horizon control design for optimal
discrimination between several models, in Proc. IEEE Conference on Decision and
Control, 2006, pp. 1147–1152.

5. S. Boroday, A. Petrenko, and R. Groz, Can a model checker generate tests
for non-deterministic systems?, Electr. Notes Theor. Comput. Sci., 190 (2007),
pp. 3–19.

6. S. Brand, Sequential automatic test pattern generation by constraint programming,
in Proc. CP-01 Workshop on Modelling and Problem Formulation, 2001.

7. A. Cimatti, C. Pecheur, and R. Cavada, Formal verification of diagnosability
via symbolic model checking, in Proc. of the Eighteenth International Joint Con-
ference on Artificial Intelligence, 2003, pp. 363–369.

8. M. Esser and P. Struss, Fault-model-based test generation for embedded soft-
ware, in Proc. of the 20th International Joint Conference on Artificial Intelligence,
2007, pp. 342–347.

9. C. Gomes, A. Sabharwal, and B. Selman, Model counting: A new strategy for
obtaining good bounds, in Proc. of AAAI-06, 2006, pp. 54–61.

10. T. Larrabee, Test pattern generation using boolean satisfiability, IEEE Trans. on
CAD of Integrated Circuits and Systems, 11 (1992), pp. 4–15.

11. J. Luo, K. R. Pattipati, L. Qiao, and S. Chigusa, An integrated diagnos-
tic development process for automotive engine control systems, IEEE Trans. on
Systems, Man, and Cybernetics – Part C: Applications and Reviews, 37 (2007),
pp. 1163–1173.

12. M. Sachenbacher and S. Schwoon, Model-based testing using quantified CSPs:
A map, in ECAI 2008 Workshop on Model-based Systems, 2008, pp. 37–41.

13. M. Sachenbacher and P. Struss, Task-dependent qualitative domain abstrac-
tion, Artif. Intell., 162 (2005), pp. 121–143.

14. T. Sang, P. Beame, and H. Kautz, Solving bayesian networks by weighted model
counting, in Proc. of AAAI-05, 2005.

15. P. Struss, Testing physical systems, in Proc. of AAAI-94, 1994, pp. 251–256.
16. I. Vatcheva, H. de Jong, O. Bernard, and N. J. Mars, Experiment selection

for the discrimination of semi-quantitative models of dynamical systems, Artif.
Intell., 170 (2006), pp. 472–506.

17. D. S. Weld and J. de Kleer, eds., Readings in qualitative reasoning about
physical systems, Morgan Kaufmann Publishers, 1990.

18. B. C. Williams, M. D. Ingham, S. H. Chung, and P. H. Elliott, Model-
based programming of intelligent embedded systems and robotic space explorers,
Proc. of the IEEE, 91 (2003), pp. 212–237.

19. B. C. Williams and P. P. Nayak, A model-based approach to reactive self-
configuring systems, in Proc. of AAAI-96, 1996, pp. 971–978.

