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Abstract. For an analysis of a molecular system from a computational statistical thermodynamics point of view, extensive
molecular dynamics simulations are very inefficient. During this procedure, at lot of redundant data is generated. Whereas
the algorithms spend most of the computing time for a sampling of configurations within the basins of the potential energy
landscape of the molecular system, the important information about the long-time behaviour of the molecules is given by
transition regions and barriers between the basins, which are sampled rarely only. Thinking of molecular dynamics trajectories,
researchers try to figure out which kind of dynamical model is suitable for an efficient simulation. This article suggests to
change the point of view from extensive simulation of molecular dynamics trajectories to more efficient sampling strategies
of the conformation dynamics approach.
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INTRODUCTION

Classical molecular dynamics simulation (MD) is a widely used method for the analysis of molecular interactions.
The equations of motion are solved on the basis of a given force-field which models the different mechanical aspects
of covalent bonds and non-covalent interactions. Researchers try to estimate the essential behaviour of a molecular
system by a statistical evaluation of the generated states. A state x = (q, p) of a molecular system consisting of n atoms
is given by a 6n-dimensional vector of 3n position coordinates q ∈ Ω and 3n momentum coordinates p ∈ Γ. The total
energy H(q, p) of a state is the sum of the kinetic energy K(p) (only depending on the momentum coordinates) and
the potential energy V (q) (only depending on the position coordinates). Thus, H is separable. In MD, the equations of
motion are solved:

q̇ =
∂H
∂ p

ṗ = −∂H
∂q

. (1)

Standard MD simulation, however, would lead to incorrect statistical results if one wants to analyze a system at a
given constant temperature T , with constant volume v and constant number of particles n. For this nvT -ensemble,
Boltzmann derived the theoretically expected distribution of molecular states. The probability of a state x depends on
the total energy H(q, p) of this state. According to Boltzmann, the probability of a state x is proportional to

π(q, p) ∝ exp(− 1
kBT

H(q, p)), (2)

where T is the temperature and kB the Boltzmann constant. In the followings we will always assume that the probability
density functions can be normalized on a given position space Ω. In our case, H is separable, i.e. the Boltzmann
distribution can be seen as the product distribution πq ·πp of a distribution πq of position coordinates and a distribution
πp of momentum variables. πq and πp are strictly positive functions. In this article, the separation of the density
function into a position and a momentum part will be understood as follows: Independently from the position state q,
the momentum variables are distributed according to πp for each state x = (q, p) of the system. Equation (2) shows an
equilibrium distribution of a molecular ensemble, but it does not provide an equation of motion. Given an initial state
x, how will the system evolve in time? Since Newton has formulated the equations of motion, we believe, that given a
state x, we can predict the course of the molecular system. This course should somehow resemble (1). MD trajectories,
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FIGURE 1. Left. A dynamical system including different timescales. Right. A flip-flop behaviour between two different
metastable subsets in state space. The transitions between these sets are rare events. In contrast to the left curve, the transitions
can not be described by a continuous dynamics on a different timescale sufficiently.

however, trace isolines of H. Hence, dynamical models have been invented which force the MD trajectories to change
between the total energy levels according to the Boltzmann distribution (2). Many researchers have created models for
a canonical ensemble dynamics, such that the distribution of simulation data of a single long-time trajectory converges
to (2). They have been inspired by the equations of motion (1). Mainly two approaches are used in practise.

1. A deterministic approach: Instead of (1) an alternative similar deterministic dynamical system is defined which
converges against Boltzmann distribution. A well-known example is the time-reversible Nosé-Hoover dynamics
[1, 2]. Another example is the Berendsen thermostat [3] which does not generate the canonical ensemble exactly.
Other time-reversible deterministic thermostats can be found in [4]. It should be mentioned, that the term
“deterministic approach” is only of academic interest. From a numerical point of view, the Ljapunov exponent
of the dynamical systems is usually very high: Long-time deterministic dynamical systems are chaotic. This is
the reason why many researchers prefer molecular dynamics simulations for generating Boltzmann distributed
ensembles.

2. A stochastic approach: Beside Smoluchowski [5] and Langevin dynamics [6], the class of hybrid Monte-Carlo
methods (HMC) [7] is an example for a stochastic approach towards canonical ensemble dynamics. In HMC,
the system is mainly propagated according to (1). Sole exception: After a certain time-span the momentum
coordinates are refreshed randomly and a Metropolis-like acceptance step assures the convergence of the system
towards (2). Since a total refreshing of momentum variables seems to be unphysical, there are alternative variants
of this method. In these variants, momentum variables are more or less conserved, e.g., targeted shadow HMC
[8].

The two approaches towards a canonical ensemble dynamics have an important property in common – the Markov
property. Given a starting point x = (q, p)∈Ω×Γ, one can determine the probabilities for the possible future evolutions
of the system. These propabilities only depend on the starting point x. From this point of view, a time-discretized
computation of one of the mentioned dynamical models is nothing else but a realization of a Markov chain in phase
space. In the above models, canonical ensemble dynamics try to combine the equation of motion (1) with a correct
sampling of states according to (2). Beside possible physical inconsistencies of these models, there is always an
unkown additional parameter which defines how fast the trajectories can change between the energy levels of H. From
a physical point of view, this parameter determines the quality of the energy transfer of the molecular system with
its environment in order to equilibrate temperature. This parameter is difficult to define and often appears arbitrarily.
The aim of this article is to avoid analyzing single trajectories in phase space. From our point of view, the choice of a
certain thermostated dynamics is not relevant. Instead of applying molecular dynamics, we in the following concentrate
on conformation dynamics. The motivation is given by an observation: It is often claimed that molecular dynamical
systems include many different timescales, starting from thermal vibration of bonds up to conformational changes of
proteins or even larger systems. In our opinion, this statement might be misleading. A conformational change of a
molecular system is a rare event, but the transition itself can be very fast, see Figure 1. Thus, on a larger timescale, the
conformational changes of the molecular system can better be understood as a flip-flop behaviour [9]. From this flip-
flop point of view, the dynamics is described by a matrix of transition probabilities (between “flip” and “flop”). The
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FIGURE 2. Left. In the case of (3), Hamiltonian dynamics is deterministic. A given initial state (q, p) leads to a fixed propagated
state (q̃, p̃) = Φ−τ (q, p). Right. In the general case of (4) with a stochastic differential equation or with a Markov chain, the initial
state (q, p) is propagated to different states with a different probability. Ψ−τ

(
· |(q, p)

)
is the corresponding probability density

function in Ω.

conformations of a molecular system are dynamically metastable subsets1 of the position space [10]. For an analysis of
rare events in canonical ensemble dynamics, one has to decompose the position space Ω into dynamically metastable
subsets (conformations) and provide a transition probability matrix for the flip-flop behaviour between them2. The
paper aims at efficiency. It affirms that this analysis can be done without performing any dynamics simulations.

MARKOV PROPERTY AND SCHÜTTE OPERATOR T

In (2), it is not claimed that a single ergodic long-time trajectory samples the phase space according to the Boltzmann
distribution3. It is only claimed that a given Boltzmann distribution of initial states is conserved by the dynamical
system. In this case, (1) may be a valid dynamical model preserving the canonical ensemble distribution. Note that
Hamiltonian dynamics (1) is not ergodic in the canonical ensemble.

Conformations as metastable subsets of a molecular system are defined in position space only. Thus, the marginal
distribution in Ω with regard to πq will play an important role. Given a function f : Ω → R in position space, the
momentum-averaged effect of a dynamics simulation (1) on f is described by Schütte’s operator T (τ), see [10]:

T (τ) f (q) =
∫

Γ

f (ΠqΦ
−τ(q, p))πp(p)d p. (3)

Equation (3) can be understood as follows: Given an initial state (q, p), a backward Hamiltonian dynamics for a time-
interval τ is performed. The new state is denoted as Φ−τ(q, p). Via Πq, this new state is projected to position space. The
integral in (3) averages over all possible initial momentum variables with given Boltzmann distribution πp. In order to
write down the operator (3), the Markov property of Hamiltonian dynamics is important. In the Hamiltonian case, the
initial state (q, p) exactly determines the final state Φ−τ(q, p). Later on we will see that this definition of T (τ) leads
to an operator which is not time-harmonic. A more general definition of Schütte’s operator using the Markov property
is given by the momentum-based tranfer operator:

P(τ) f (q) =
∫

Γ

(∫
Ω

f (q̃) Ψ−τ

(
q̃|(q, p)

)
dq̃

)
πp(p)d p. (4)

In equation (4), the initial state (q, p) determines a probability density function Ψ−τ

(
· |(q, p)

)
for the possible

evolutions of the system in position space. For an explanation see Figure 2. Ψ−τ is a Dirac delta function in the
case of a deterministic dynamics. Equation (4) can be used to define a momentum-based transfer operator for any
of the dynamical models (deterministic and stochastic) mentioned above, even in the case of a dynamical model

1 In this article, the meaning of the terms conformation of a molecular system and metastable subset is different from the common usage in
chemistry. Both of the terms denote a subset of the configuration or position space Ω. The term metastable means that the subset is almost stable
with regard to a dynamical process. In chemistry, a metastable subset can be understood as a basin of the potential energy function of the molecular
system.
2 We will see in the following that this is not possible in a strict sense.
3 Ergodicity is not needed, but from a physical point of view, only an ergodic dynamical model explains self-equilibration of molecular systems.
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which is independend from momentum variables – like Smoluchowski dynamics [5]. Going from a trajectory based
simulation of molecular systems according to one of the mentioned dynamical models to an analysis of the momentum-
based transfer operator is the main step for gaining efficiency. This step leads us from analyzing single trajectories to
analyzing a set of Boltzmann distributed trajectories. Instead of choosing a certain dynamical model, we will require
certain physical properties for the operator P(τ). In order to define P , we already assumed the Markov property
for the dynamical model. Furthermore, we will assume a detailed balanced Boltzmann equilibrium distribution and
time-harmony for the operator P in the following. In fact, these properties hold for more than one dynamical model
Ψτ , see Appendix A.

STATE-BASED VERSUS ENSEMBLE-BASED TRANSITION PROBABILITIES

Hamiltonian dynamics is Markovian in phase space. It is not Markovian in position space. If we apply a projection and
go from single states to sets of states in phase space, the Markov property is always lost. The same problem arises when
we use the operator P and a discretization of Ω in order to compute transition probabilities between subsets of Ω [11].
There is always a difference between state-based transition probabilities and the fraction of states which go from set
A to set B in ensemble dynamics. In order to explain this difference, we assume a Markov chain in a finite state space.
The transition probabilities of this chain can be expressed by a matrix P. In this example, the vector d is the invariant
distribution of P with d>P = d>. Let χ1, . . . ,χk denote a set of characteristic vectors defining a decomposition of the
state space into subsets. The element (i, j) of the dimension reduction Pc of P onto the given subsets can be written as:

Pc(i, j) = d−1
i χ

>
i DPχ j,

where D = diag(d) is the diagonal matrix of the vector d. The matrix Pc is stochastic: The row sums are 1 and the
elements are non-negative. Note that the transition probability from a state q of the set χi to the set χ j depends on
q. It is not the same quantity for all q ∈ χi. Pc(i, j) can not be the correct probability, it is an average value. Pc is not
the transition matrix of a Markov chain. See also [11] for a detailed example. Whereas, the transition probabilities
for single states are different from the entries in Pc, Pc(i, j) provides the correct fraction of trajectories going from
i to j in one step of the Markov chain, if the initial states are distributed according to d projected to χi. This is an
ensemble-based point of view. Let us now go back to continuous spaces. Due to the inherent Πq-projection, P is an
ensemble-based transfer operator. Whenever we speak of transition probabilities derived from P in the following, we
think of the fraction of states which go from A to B. Conformation dynamics and molecular dynamics are substantially
different research areas. In Conformation dynamics we do not aim at a realization of long-time trajectories. Note,
however, that we always can formulate a Markov chain in position space on the basis of a given operator P(τ).
The procedure4 is as follows: Given a position state q ∈ Ω, we randomly choose an initial momentum state p ∈ Γ

according to πp. For this state x = (q, p), we compute a realization of the dynamical model Ψ−τ

(
q̃|(q, p)

)
for the

given time interval τ and end up with a new position state q̃. This algorithm is an interpretation of P in terms of a
Markov chain q→ q̃. For all mentioned dynamical models, this interpretation in fact provides an ergodic Markov chain
with invariant density (2). The physical drawback is that this Markov chain is not interpretable as a trajectory, because
it is discontinuous in momentum space after every time step τ . Therefore, it does not provide the “real” dynamics of
the system expressed by P and by its corresponding dynamical model Ψ−τ .

TIME-REVERSIBILITY AND SPECTRAL PROPERTIES OF P

Hamiltonian dynamics (1) is time-reversible. Given an initial state (q, p) ∈ Ω×Γ and its propagated state (q̃, p̃) =
Φτ(q, p), the following holds: (q,−p) = Φτ(q̃,−p̃). This fact is used in [10] to show L2

πq(Ω)-self-adjointness of
Schütte’s operator T (τ). An initial state (q, p) and its propagated state (q̃, p̃) have the same total energy H and,
therefore, the same Boltzmann probability in equation (2), i.e. πq(q̃) ·πp(p̃) = πq(q) ·πp(−p). In this equation πp(p̃)
denotes the probability for a transition q̃ → q and πp(−p) denotes the probability for q → q̃ (both backward in time).

4 We often show animations of molecular systems moving according to this kind of Markov chain in our presentations, but we always give a remark
that this is a sampling of the position space, and we are only interested in the statistical results of the procedure, not in the special realization of the
Markov chain.
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Time reversibility can be written as πq(q̃)P(q̃ → q) = πq(q)P(q → q̃), where P(a → b) is the conditional probability
for a transition from a to b. In order to determine transition probabilities for the transfer operator P(τ), we have to
take the mean transition probability with regard to the distribution of initial momentum variables p. In this general
case, time-reversibility can be written as

πq(q̃) ·
∫

Γ

Ψ−τ

(
q|(q̃, p)

)
πp(p)d p︸ ︷︷ ︸

P(q̃→q)

= πq(q) ·
∫

Γ

Ψ−τ

(
q̃|(q, p)

)
πp(p)d p︸ ︷︷ ︸

P(q→q̃)

. (5)

Later on, we will replace Hamiltonian dynamics by another dynamical model. For this model, we will assume
reversibility in the sense of (5). Equation (5) can be interpreted as detailed balance condition for the Boltzmann
equilibrium distribution. This condition is required in the followings for the operator P(τ). Given the L2

πq(Ω) scalar
product 〈·, ·〉πq , self-adjointness 〈g,P(τ) f 〉πq = 〈P(τ)g, f 〉πq of P(τ) in (4) is a direct consequence of equation (5):

〈g,P(τ) f 〉πq =
∫

Ω

g(q)P(τ) f (q)πq(q)dq

=
∫

Ω

g(q)
∫

Γ

∫
Ω

f (q̃)Ψ−τ

(
q̃|(q, p)

)
dq̃ πp(p) d p πq(q) dq

=
∫

Γ

∫
Ω

∫
Ω

g(q) f (q̃)Ψ−τ

(
q̃|(q, p)

)
πq(q)πp(p) dq̃ dq d p

=
∫

Γ

∫
Ω

∫
Ω

g(q) f (q̃)Ψ−τ

(
q|(q̃, p)

)
πq(q̃)πp(p) dq dq̃ d p

=
∫

Ω

P(τ)g(q̃) f (q̃)πq(q̃)dq̃

= 〈P(τ)g, f 〉πq . (6)

Lemma 1. Given the operator P(τ) : L2
πq(Ω)→ L2

πq(Ω) defined in (4) and the detailed balance condition (5), then
P(τ) is a linear, self-adjoint operator with ‖P(τ) f‖πq ≤ ‖ f‖πq . In particular, P has a real-valued spectrum σ(P)
with σ(P)⊂ [−1,1].

Proof. Linearity is easy to check. Self-adjointness has been shown in equation (6). In order to prove ‖P(τ) f‖πq ≤
‖ f‖πq , note that according to the Cauchy-Schwarz inequality, (

∫
Ω

f (x)π(x)dx)2 ≤
∫

Ω
f 2(x)π(x)dx for a probability

density function π : Ω→ R. Thus, the following holds:

‖P(τ) f‖2
πq =

∫
Ω

(
P(τ) f (q)

)2
πq(q)dq

=
∫

Ω

(∫
Γ

∫
Ω

f (q̃)Ψ−τ

(
q̃|(q, p)

)
dq̃πp(p)d p

)2
πq(q)dq

≤
∫

Ω

∫
Γ

(∫
Ω

f (q̃)Ψ−τ

(
q̃|(q, p)

)
dq̃

)2
πq(q)πp(p)d p dq

≤
∫

Ω

∫
Γ

∫
Ω

f 2(q̃)Ψ−τ

(
q̃|(q, p)

)
πq(q)πp(p)dq̃ d p dq

(∗) =
∫

Ω

∫
Γ

∫
Ω

f 2(q̃)Ψ−τ

(
q|(q̃, p)

)
πq(q̃)πp(p)dq̃ d p dq

=
∫

Ω

f 2(q̃)πq(q̃)dq̃

= ‖ f‖2
πq .

The detailed balance condition has been used in (∗). The spectral properties of P are a consequence of self-adjointness
and the above estimation. �

IDENTIFICATION OF CONFORMATIONS

The inequality ‖P(τ) f‖πq ≤ ‖ f‖πq is sharp. It will be shown that certain indicator functions fA are eigenfunctions
of P corresponding to the eigenvalue λ = 1. Stable subsets A ⊂ Ω of Ψτ are defined as follows: If a position state q
is in the closure of A, then

∫
Γ

Ψ−τ

(
q̃|(q, p)

)
πp(p)d p = 0 for all q̃ 6∈ A and τ ∈ R. If A ⊂ Ω is a stable subset, then its

complement Ω\A is also stable. This can be shown by applying the detailed balance condition (5) for q̃ 6∈ A and q ∈ A.
The definition of stability means that there is no transition between A and its complement Ω\A.
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Lemma 2. If fA : Ω→{0,1} is the indicator function of a stable subset A⊂Ω, then P(τ) fA = fA.

Proof. Stability of A and Ω\A directly implies P(τ) fA(q) = 0 for all q 6∈ A, because the integrand
fA(q̃)

∫
Γ

Ψ−τ

(
q̃|(q, p)

)
πp(p)d p is zero for all q̃ ∈Ω. For q ∈ A:

P(τ) fA(q) =
∫

Γ

(∫
Ω

fA(q̃) Ψ−τ

(
q̃|(q, p)

)
dq̃

)
πp(p)d p

=
∫

Γ

(∫
A

fA(q̃) Ψ−τ

(
q̃|(q, p)

)
dq̃

)
πp(p)d p

=
∫

Γ

(∫
A

Ψ−τ

(
q̃|(q, p)

)
dq̃

)
πp(p)d p

= 1.

The last equality uses the fact, that Ψ−τ is a density function that is normalized in A. �

There are different possibilities to define metastable subsets (conformations) of the dynamical model on the basis
of the above Lemma. One possibility is to define metastable subsets by indicator functions f , which meet P(τ) f ≈ f .
This approach has been investigated for many years for the Schütte operator (3) by the groups of Deuflhard and
Schütte [10, 12, 13, 5]. A novel approach [14, 15, 16] towards conformation dynamics replaces indicator functions
f : Ω → {0,1} by almost characteristic functions (fuzzy sets) χ : Ω → [0,1]. In this approach, a conformation-based
decomposition of Ω is given by a set of k metastable almost characteristic functions χ1, . . . ,χk : Ω → [0,1]. The
functions meet the partition-of-unity property, i.e. for all q ∈ Ω the membership values have the sum ∑

k
i=1 χi(q) = 1.

In practice, the first step of the identification of conformations is an n×n-Galerkin discretization P(τ) of P(τ):

P(τ) = (〈ϕ,ϕ〉πq)
−1〈ϕ,P(τ)ϕ〉πq ,

where ϕ = {ϕ1, . . . ,ϕn} is a set of n� k indicator functions ϕi : Ω→{0,1} of a decomposition of Ω. The discretized
matrix P(τ) is generalized symmetric because P(τ) is πq-self-adjoint. More precisely, DP(τ) is symmetric, where
D = diag(d1, . . . ,dn) = 〈ϕ,ϕ〉πq is the diagonal matrix of weights5 di :=

∫
Ω

ϕi(q)πq(q)dq. Therefore, P(τ) has a
real-valued spectrum σ(P(τ))⊂ [−1,1] with D-orthonormal eigenvectors. P(τ) is a stochastic matrix. Robust Perron
Cluster Analysis (PCCA+, [15]) can be used to compute the membership functions χ on the basis of this matrix. The
membership functions are given as linear combination χ = ϕC of the indicator functions, with an n×k-transformation
matrix C. This matrix C = XA is determined via PCCA+ as a linear combination of the k dominant eigenvectors
X = {X1, . . . ,Xk} of P(τ). PCCA+ aims at an optimal linear transformation A ∈ Rk×k such that χ meets the above
conditions (non-negativity and partition-of-unity). With X := ϕX , the computation of membership functions can be
written as χ = X A , where A is the result of the PCCA+ algorithm.

Assumption. At this stage, we give the main assumption of our approach towards an effective analysis of rare
events. This assumption can not be shown mathematically. We will assume, that via spectral analysis of P(τ), we can
compute X = ϕX as a good approximation of a set of eigenfunctions of P(τ) and their corresponding eigenvalues.
This assumption has two implications:

1. P(τ) has a set of eigenfunctions. For the Schütte operator T (τ), conditions have been formulated for which T
has a set of discrete dominant eigenvalues. These estimations are based on a perturbation analysis of Lemma 2.

2. The decomposition ϕ of Ω allows for a good approximation of the eigenfunctions of P(τ). The dominant
eigenfunctions of P(τ) (if they exist) are almost constant within the metastable sets. Major “gradients” of the
eigenfunctions can be found in transition regions. Therefore, an adequate decomposition of Ω is fine enough in
these transition regions.

5 Note that for indicator functions ϕ2
i = ϕi and ϕiϕ j = 0 for i 6= j.

An efficient analysis of rare events in canonical ensemble dynamics January 22, 2009 6



ANALYSIS OF RARE EVENTS

The element Pi j(τ) of the i-th column and the j-th row of P(τ) is

Pi j(τ) =

∫
Ω

ϕi(q)
∫

Γ

(∫
Ω

ϕ j(q̃) Ψ−τ

(
q̃|(q, p)

)
dq̃

)
πp(p)πq(q)d pdq

di
,

where the numerator provides the transitions between ϕi and ϕ j for Boltzmann distributed initial states. The denomi-
nator gives the statistical weight di of the discretization set ϕi. Pi j(τ) provides the fraction of trajectories going from
ϕi to ϕ j in time τ . Due to reversibility (5), the discrete detailed balance condition di ·Pi j(τ) = d j ·Pji(τ) holds. From
an ensemble-based point of view, we will denote P as transition matrix. In the case of almost characteristic functions
χ , the matrix

Pc(τ) := (〈χ,χ〉πq)
−1〈χ,P(τ)χ〉πq ,

can be seen as transition matrix between the conformations χ , analogously. The functions χ and this matrix Pc are the
desired results of conformation dynamics. In order to extract the essential long time behaviour of the molecular system,
conformation dynamics aims at an identification of conformations with maximal life-times (low transition probabilities
between them). An optimal choice of χ maximizes the trace of Pc(τ), i.e. the probability to stay in a conformation. We
assume that there is a set X of k eigenfunctions of P with an k× k-diagonal matrix Λ of eigenvalues. In the case of
PCCA+ with χ = X A , we have

Pc(τ) = (〈χ,χ〉πq)
−1〈χ,P(τ)χ〉πq

= (A >A )−1(A >
ΛA )

= A −1
ΛA ,

where we used the fact, that X is a πq-orthogonal set of eigenfunctions due to Lemma 1 and X can be normalized
according to the πq-scalar product. The trace of Pc equals the trace of Λ, i.e. the sum of the eigenvalues of the selected
eigenfunctions. The choice of χ is optimal if the selected eigenfunctions correspond to the dominant eigenvalues of
P .

TIME-HARMONY AND INFINITESIMAL GENERATOR

Time-harmony is the next physical aspect we require for the operator P . From a physical point of view, this property
means that the heat bath is continuously and steadily acting on the molecular system. From a mathematical point of
view, P(τ) should meet special continuity conditions: We require that, for all f ∈ L2

πq(Ω), the following limit exists

Q f := lim
τ→0

P(τ) f − f
τ

. (7)

Equation (7) defines an operator Q. Furthermore, the operator P should be time-harmonic, which means P(t + s) =
P(t)P(s). In this situation, the operator Q is the infinitesimal generator of the half-group P of operators:

P(τ) = exp(τ Q).

The latter condition is not valid for the Schütte operator T (τ). In this case6, T (t +s) 6= T (t)T (s), see [5]. Therefore,
we define the more general operator (4) and require time-harmony. The existence of at least two dynamical models
which meet self-adjointness and time-harmony is shown in Appendix A. The existence of an infinitesimal generator
Q of P leads to the definition of the Galerkin discretization Q of Q:

Q := (〈ϕ,ϕ〉πq)
−1〈ϕ,Qϕ〉πq .

6 The Markov chain which can be associated with Schütte’s operator T (τ) is a Hamiltonian dynamics with a heat bath contact, i.e. a refresh of
momenta, at discrete points in time 0,τ,2τ,3τ, . . ..
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Using equation (7), we can conclude:

Q = lim
τ→0

P(τ)− I
τ

, (8)

where I is the identity matrix. In (8), the elements of the Q-matrix measure the transition rates between the discretiza-
tion sets of Ω (in an ensemble-based sense). Equation (8) is used in the next section to compute Q. Although equation
(8) and P(t + s) = P(t)P(s) hold, Q is not an infinitesimal generator of P(τ) in general. The time-harmony might
not be valid on the level of the Galerkin discretization: P(t + s) 6= P(t)P(s). Fortunately, the discretization step is
just an intermediate between the continuous operator P(τ) and the transition matrix Pc(τ). The following Lemma is
important:

Lemma 3. If X = {X1, . . . ,Xk} is a πq-orthonormal set of k eigenfunctions of P(τ) and χ = X A a regular
basis transformation of these eigenfunctions then

P(τ) = exp(τQ) ⇒ Pc(τ) = exp(τQc),

where Pc(τ) = (〈χ,χ〉πq)
−1〈χ,P(τ)χ〉πq and Qc = (〈χ,χ〉πq)

−1〈χ,Qχ〉πq .

Proof. The proof is a simple calculation. If Λ is the diagonal matrix of the eigenvalues of P(τ) with regard to
the eigenfunctions X and M is the diagonal matrix of the eigenvalues of Q (with the same eigenfunctions X ), then
Λ = exp(τM). Furthermore, Pc(τ) = A −1ΛA and Qc = A −1MA . �

The above Lemma shows that (assuming the existence of eigenfunctions of P) Robust Perron Cluster Analysis
χ = X A is the correct way of dimension reduction. If the set ϕ of indicator functions allows for a good approximation
of the dominant eigenfunctions X = ϕX of P , where X is the set of dominant eigenfunctions of P(τ), then
Qc = A −1MA is the infinitesimal generator of Pc according to the above Lemma. Therefore, in the next section, we
will assume that ϕ is an adequate set of indicator functions. We will approximate Q and compute the transformation
matrix A via PCCA+ on the basis of the dominant eigenvectors X of Q. The desired transition matrix7 is

Pc(τ) = exp(τQc) = A −1 exp(τM)A , (9)

where M ∈ Rk×k is the diagonal matrix of the dominant eigenvalues of Q.

APPROXIMATION OF Q

Using equation (9), an approximation of a discretized infinitesimal generator Q provides all information for the
computation of Pc: the transformation matrix A (via PCCA+ based on the eigenvectors X of Q) and the matrix M
of its dominant eigenvalues. Q is independent from time and from the current state of the system. It is not relevant,
if we assume an equilibrated system or a system on its way to equilibration, because it is always the same dynamical
process acting on the molecular system defined by Q. In the following, the approximation of Q is based on an analysis
of an equilibrated system. Q corresponds to a matrix of reaction rates. According to (8), the outer diagonal elements
of Qi j measure the transition rates between the discretization boxes ϕi and ϕ j with regard to the “concentration” di of
states in ϕi. For the reason of mass conservation, the diagonal elements of Q equal the negative row-sum of its outer
diagonal elements, see also [17]. Via normalization of the rows, Q can be written in the form:

Q = R(K− I), (10)

where I is the identity matrix, K is a stochastic matrix, with Kii = 0 for all diagonal elements i = 1, . . . ,n, and R is a
diagonal matrix of rate factors. An instantaneous transition is only possible between neighboring discretization boxes
in Ω, because the physical motivation for the definition of (4) and for Figure 2 is a dynamical system, continuous in
time and space. Only the states which cross the intersection Si j between ϕi and ϕ j contribute to the transition rate

7 Pc is not a transition matrix in a strict sense. Pc is not based on sets but on membership functions χ . This means, that conformations are not subsets
of Ω, they are “fuzzy”-subsets.
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between ϕi and ϕ j. The states located on the intersection Si j are weighted according to the Boltzmann distribution. For
each row i of K, the transition rates are proportional to a surface integral

Ki j ∝

∫
Si j

wi j(q)πq(q)dq, (11)

where wi j(q) denotes the intensity of the flux from ϕi to ϕ j through the position state q. According to Gauss’ theorem,
the intensity wi j(q) of the flux between ϕi and ϕ j is given by the scalar product of the time derivative q̇ and the outgoing
normal vector ni j(q) of the surface Si j in q. Instead of one time derivative q̇ at position q, we have an ensemble of
trajectories going through q. We assume, that the dynamics locally behaves like (1). In this case,

wi j(q) =
∫

Γ

max
{

∂H(q, p)
∂ p

·ni j(q),0
}

πp(p)d p

=
∫

Γ

max{M−1 p ·ni j(q),0}πp(p)d p, (12)

where M is the diagonal matrix of atom masses of the observed molecule. The computation of Q is like in [11].
Briefly: Because of the normalization of K, only the computation of ratios Ki j/Kil is needed for the determination of
K. We will see in the next section that it is possible to define a Markov chain between the surfaces Si j and Sil in order to
compute these ratios via Monte Carlo quadrature numerically. A simple calculation shows that d>Q = 0 for the weights
d1, . . . ,dn of the discretization boxes. This can be used for the computation of the rate factors R = diag(r1, . . . ,rn) in
(10). d>Q = 0 is equivalent to the linear system r>D(K− I) = 0 with D = diag(d1, . . . ,dn). Therefore, the rate factors
r> = (r1, . . . ,rn) can be computed except for an unknown common scaling factor µ which is called timescale factor. In
order to compute the weights d1, . . . ,dn of the discretization boxes, we will define a Markov chain in the next section
for a Monte Carlo quadrature of

di ∝

∫
Ω

ϕi(q)πq(q)dq. (13)

In the presented approach, the computation of statistical weights d is done before Q is estimated. This is a further
advantage of the presented approach. Usually, in molecular dynamics, the statistical weights are estimated on the
basis of transition rates or transition probabilities derived from the simulation data. Note, however, that a computation
of statistical weights based on transition probabilities without aggregation/disaggregation strategies is ill-conditioned
[18].

MARKOV CHAIN MONTE-CARLO-QUADRATURE

In this section, we just give some algorithmic ideas for the computation of the integrals (11) and (13). The software
developement of routines for realistic molecules can be based on these ideas. The result of conformation dynamics is an
k×k transition matrix Pc together with k conformations given by almost characteristic functions χ1, . . . ,χk : Ω→ [0,1].
Instead of a statistical analysis of long-time trajectories for the computation of these quantities, this article provides a
method for the estimation of the infinitesimal generator Qc of Pc. The estimate can be done by evaluating the integrals
(11) and (13) and by discretizing the position space into subsets ϕ1, . . . ,ϕn in such a way, that eigenfunctions of P
can be approximated sufficiently by step functions based on the decomposition ϕ . The second condition for a good
estimate of Qc can be assured by an hierarchical adaptive procedure: For a given decomposition ϕ we compute the
conformations χ . Afterwards, we identify two sets ϕi and ϕ j, such that χ varies at most between these two sets. For
the next step, we hierarchically refine ϕ in this region and go on from the beginning. For a two dimensional example,
the result ϕ of an adaptive refinement procedure can look like Fig. 4, right side. The black lines in Fig. 4 correspond
to the intersecting planes Si j for (11), whereas the boxes represent the discretization sets ϕ for (13). The integrals (11)
and (13) are of the general form ∫

Ai

fi(q)πq(q)dq.

In (11), the sets Ai are given by the intersection planes Si j and fi = wi j. In (13), the sets Ai are given by the discretization
sets ϕi and fi ≡ 1 is a constant function. Since the row sum of K is one and also the sum of the weights di is one, it is
sufficient to compute ratios of these integrals

ri j :=

∫
Ai

fi(q)πq(q)dq∫
A j

f j(q)πq(q)dq
=

∫
Ai

fi(q) exp(−β V (q))dq∫
A j

f j(q) exp(−β V (q))dq
.
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We can expand these ratios into three terms

ri j :=
exp(−β V (q∗i ))
exp(−β V (q∗j))︸ ︷︷ ︸

I

·
∫

Ai
exp

(
−β (V (q)−V (q∗i ))

)
dq∫

A j
exp

(
−β (V (q)−V (q∗j))

)
dq︸ ︷︷ ︸

II

·

∫
Ai

fi(q) πq(q)∫
Ai

πq(q̄)dq̄ dq∫
A j

f j(q) πq(q)∫
A j

πq(q̄)dq̄ dq︸ ︷︷ ︸
III

, (14)

where q∗i might be a minimum of V in Ai. Term I in (14) is used for shifting potential energies in order to make term
II numerically tractable. Term I can be evaluated directly. Term III in (14) is equal to 1 for (13). It can be computed by
Metropolis Monte Carlo algorithms in (11). Metropolis Monte Carlo is used to sample from the restricted Boltzmann
distribution in Ai and the integrals are approximated by an average of fi over all sampled position states. Term II in (14)
can be estimated by applying a jump algorithm (similar to ConfJump in [19]). The jump algorithm can be organized
in such a way that it provides an estimation of term II and a sampling for term III at the same time. The corresponding
algorithm is a Metropolis Monte Carlo sampling within the sets Ai and A j combined with a jump step between the sets
Ai and A j: During a Metropolis Monte Carlo sampling of one set, say Ai, with a certain probability a jump to another
set, say A j, is proposed. The starting point q̃ ∈ A j is sampled according to an artifical but explicitly given density
function h j : A j → R. In accordance with the Metropolis Monte Carlo samplig scheme, this jump step is accepted with
probability

pacc = min
{ hi(q) · exp(−β (V (q̃)−V (q∗j)))

h j(q̃) · exp(−β (V (q)−V (q∗i )))
,1

}
,

where q ∈ Ai is the last sampled point in Ai. If the jump step is accepted, the Metropolis Monte Carlo sampling is
continued in A j with starting point q̃. If the jump step is rejected, the Metropolis Monte Carlo sampling continues in
set Ai with starting point q. At the end of the overall sampling procedure, the sampling points in Ai and A j are counted.
The ratio II is given by the ratio of these numbers. The shift in term I is introduced to equilibrate the jumps between Ai
and A j. The jump approach for the evaluation of (14) can be generalized from two domains Ai,A j to multiple domains
A1, . . . ,Ak. The only missing quantity is an evaluation of the integrand wi j in term III at the generated sampling points.
Given a sampling q(1), . . . ,q(M) ∈ Si j of πq in an intersecting hyperplane Si j, the weight wi j(q(m)) of the flux between
i and j through q(m) can be estimated by taking the average of max{M−1 p ·ni j(q(k)),0} for a sampling of momentum
vectors p according to πp.

ILLUSTRATIVE EXAMPLE

In order to give an illustrative example how efficiency of the analysis of rare events is increased by the approach
proposed in this article, the following two-dimensional potential energy function is investigated:

V (x,y) = 3 exp
(
− x2− (y− 1

3
)2)−3 exp

(
− x2− (y− 5

3
)2)

−5 exp(−(x−1)2− y2)−5 exp(−(x+1)2− y2)

+0.2x4 +0.2(y− 1
3
)4. (15)

A contour plot of this x-symmetric function is shown in Fig. 3, see also [20]. The potential energy function has three
local minima. If we start a long-time trajectory-based sampling of this potential energy function, the procedure will be
trapped in one of the local minima, see Fig. 4 , left side. We start our adaptive hierarchical approach for an analysis of
this system with a decomposition of the position space Ω into 8×8 discretization boxes ϕ . At the end of our procedure,
the final discretization looks like in Fig. 4, right side. The algorithm spends most of the time with refining the grid in
transition regions, where the important information about transition probabilities is given. For the computation of the
membership functions χ , Q-matrices have been estimated using Metropolis Monte Carlo samplings combined with
jump steps on the basis of equation (14). In the present example, term III in equation (14) is 1 for the evaluation of
(11), because the masses M are equal 1 (radial symmetry of the πp-distribution) and the intersection planes are along
the q-coordinates of the system. Only term I and term II are left for computation. The final result is a generator Qc for
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FIGURE 3. Potential energy function. The function has three local minima. Two deeper ones at about (−1;0),(1;0), and one
minimum at about (0;1.5).

FIGURE 4. Left. Realization of a reversible Markov chain starting in the upper minimum region of (15). The Markov chain is
trapped in one of the deeper minima. The simulation does not provide transition probabilities. Right. Final discretization of Ω for
an adaptive approximation of almost characteristic membership functions χ . In contrast to the realization of a Markov chain, the
discretization is refined in transition regions, where the important information about transition probabilities is “located”.

a decomposition of the position space into 3 conformations (the three local minima of V , see Fig. 5):

Qc =

−0.001744 0.000840 0.000904
0.000004 −0.000005 0.000001
0.000004 0.000001 −0.000005

 .

This matrix shows that the upper local minimum of V (first row of Qc) is much less stable than the other two minima.
The symmetry of the two deeper minima results in a certain accordance of the rates in Qc. This example clearly shows
the main problem of long-time trajectories in molecular simulations. Molecular systems consist of many metastable
subsets of Ω having very different life times. A timescale free description of the system is mandatory. In contrast to
Pc(τ), Qc does not depend on a given time interval τ .

FIGURE 5. Membership functions χ of the three metastable parts of the potential in Fig. 3 (white= 0, black= 1). The membership
functions are nearly constant inside the metastable parts. High gradients can be found in transition regions where the refinement is
done, see Fig. 4, right side.
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CONCLUSION

In this article, the conformation dynamics approach has been investigated. It has been shown that certain physical
properties of a canonical ensemble dynamics lead to the definition of an infinitesimal generator Q which describes
the dynamics of the molecular system. This generator can be used to derive the essential dynamics on the basis of a
low-dimensional transition matrix Pc(τ) between metastable parts of the position space. A numerical approximation
of a discretized operator Q can be derived without computing long-time trajectories. Instead of the simulation of
trapped long-time trajectories leading to bad statistics, a Monte-Carlo quadrature in high-dimensional spaces is used.
Efficiency for the computation of Q is gained by focussing the Monte-Carlo quadrature points in transition regions of
Ω where the important information about transition probabilities is located.

APPENDIX A: EXISTENCE OF A DYNAMICAL MODEL

Smoluchowski dynamics is an example for a possible dynamical model which meets time-reversibility of Ψτ and
time-harmony of P , see [5]. This type of dynamics is valid for our considerations. Smoluchowski dynamics is a
first order stochastic differential equation in Ω. Therefore Ψτ is independent from the momentum variables p. The
given requirements (condition (5) and time-harmony), however, are not solely valid for dynamical systems which only
depend on position coordinates: Assume for some τ > 0, there is a self-adjoint operator P(τ) with a coupled system
of (stochastic) differential equations. One example is Schütte’s operator T (τ) for Hamiltonian dynamics. The product
of two momentum-based transfer operators P3(τ) := P1(τ)P2(τ) is again a transfer operator by showing that

Ψ
(3)
−τ

(
q̄|(q, p)

)
=

∫
Ω

∫
Γ

Ψ
(1)
−τ

(
q̄|(q̃, p̃)

)
·Ψ(2)

−τ

(
q̃|(q, p)

)
πp(p̃) d p̃ dq̃,

is a density function. Using this fact, the expression exp(sT (τ)) can be written in terms of (4). An adequate
normalization

P(s) :=
exp(sT (τ))

exp(s)

defines a transfer operator P . Since P(s) = exp(s(T (τ)−I )) with the identity operator I , Q := T (τ)−I is the
infinitesimal generator of P . The generator Q and the generated operators are self-adjoint. P is time-harmonic. Every
eigenfunction of T (τ) with eigenvalue λ is an eigenfunction of P(s) with eigenvalue exp(s(λ − 1)). Especially,
indicator functions fA of stable subsets A ⊂ Ω are eigenfunctions of P with P(s) fA = fA. A realization of the
dynamical model Ψs

(
· |(q, p)

)
of P(s) can be done as follows: For s > 0 and an initial state (q, p) select Φk(τ)(q, p)

as next step of the dynamical model with a probability of
sk

k! exp(s)
. For s = 0, the identity (k = 0) is chosen. For

increasing s, higher k values are more and more probable. Note that this procedure is not independ from p. This is only
an artifical example, because the “time” variable s does not have the physical meaning of time.
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