
Mathias Kinder

MODELS FOR
PERIODIC TIMETABLING

Diplomarbeit bei Prof. Dr. M. Grötschel

Mathias Kinder:Models for Periodic Timetabling, 15. Mai 2008

Die selbstständige und eigenhändige Anfertigung versichere ich an Eides Statt.

(Ort, Datum) (Unterschrift)

Acknowledgments

I wish to thank a number of people who have provided advice, encouragement,

comments, questions, and answers. At the very least, I like to mention the follow-

ing individuals: Ralf Borndörfer, Stefan Heinz, Christian Liebchen, Marika Neu-

mann, Marc Pfetsch, Markus Reuther, Elmar Swarat, and Roland Wessäly. I am

sure that I have forgotton a few people, to whom I apologize.

I am also indepted to the PTV AG for providing their VISUM software and two

interesting test instances.

v

Abstract

We investigate the computation periodic timetables for public transport by mixed

integer programming. After introducing the problem, we describe twomathemati-

cal models for periodic timetabling, the PERIODIC EVENT SCHEDULING PROBLEM

(PESP) and the QUADRATIC SEMI-ASSIGNMENT PROBLEM. Specifically, we give

an overview of existing integer programming (IP) formulations for both models.

An important contribution of our work are new IP formulations for the PESP

based on time discretization. We provide an analytical comparison of these for-

mulations and describe different techniques that allow a more efficient solution

by mixed integer programming.

In a preliminary computational study, on the basis of standard IP solvers, we

compare different formulations for computing periodic timetables. Our results jus-

tify a further investigation of the time discretization approach.

Typically the timetable is optimized for the current traffic situation. The main

difficulty with this approach is that after introducing the new timetable the pas-

sengers’ travel behavior may differ from that assumed for the computation. Mo-

tivated by this problem, we examine an iterative timetabling procedure that is a

combination of timetable computation and passenger routing. We discuss the al-

gorithmic issues of the passenger routing and study properties of the computed

timetables. Finally, we confirm our theoretical results on the basis of an own im-

plementation.

Zusammenfassung

Wir untersuchen die Berechnung von Taktfahrplänen für den öffentlichen Verkehr

mit gemischt-ganzzahliger Programmierung (MIP). Im Anschluss an die Problem-

beschreibung, stellen wir zwei mathematische Modellierungen vor, das PERIODIC

EVENT SCHEDULING PROBLEM (PESP) und das QUADRATIC SEMI-ASSIGNMENT

PROBLEM. Wichtiger Bestandteil ist ein Überblick über existierende ganzzahlige

Formulierungen beider Modelle.

Wir entwickeln neue ganzzahlige Formulierungen für das PESP auf der Basis

von Zeitdiskretisierung. Diese werden analytisch miteinander verglichen und wir

vii

viii

beschreiben verschiedene Techniken, die eine effizientere Lösung der Formulie-

rungen mit gemischt-ganzzahliger Programmierung ermöglichen.

In einer ersten Rechenstudie, unter Verwendung gängiger MIP-Löser, verglei-

chen wir verschiedene ganzzahlige Formulierungen zur Berechnung von Takt-

fahrplänen. Unsere Ergebnisse rechtfertigen eine weitere Untersuchen des Zeit-

diskretisierungsansatzes.

In der Regel werden Fahrpläne mit Bezug auf die gegenwärtige Verkehrssitua-

tion optimiert. Dies birgt jedoch folgendes Problem. Wenn der neue Fahrplan ein-

geführt wird, ist es möglich, dass die Passagiere ein anderes Fahrverhalten zu Ta-

ge legen, als für die Berechnung des Fahrplans angenommen wurde. Vor diesem

Hintergrund behandeln wir ein iteratives Verfahren zur Berechnung von Takt-

fahrplänen. Dieses ist eine Kombination aus Fahrplanberechnung und Passagier-

routing. Neben den algorithmischen Details des Passagierroutings untersuchen

wir Eigenschaften der berechneten Fahrpläne. Abschließend bestätigen wir un-

sere theoretischen Ergebnisse auf Grundlage einer eigenen Implementierung des

Verfahrens.

Contents

1 Timetabling 3

1.1 The Planning Process in Public Transport 3

1.2 Periodic Timetabling . 7

1.3 Prerequisites . 11

2 Models for Periodic Timetabling 13

2.1 Model Assumptions . 13

2.2 The Periodic Event Scheduling Problem (PESP) 14

2.3 The Quadratic Semi-Assignment Problem 31

3 Time Discretization Applied to PESP 39

3.1 Expanding the PESP Event-Activity Graph 39

3.2 X-PESP Formulations . 43

3.3 Speedup Techniques . 62

4 Re-timetabling 67

4.1 Model Assumptions . 67

4.2 The Timetable Graph . 68

4.3 Passenger Flow Computation . 71

4.4 The Re-timetabling Procedure . 73

5 Computational Results 79

5.1 Test Instances . 79

5.2 Test Environment . 81

5.3 Periodic Timetabling . 81

5.4 Re-timetabling . 90

6 Conclusions 93

A Tables 95

Bibliography 91

ix

List of Figures

1.1 Traffic zones with designated centroids. 4

1.2 Traffic zones with designated centroids linked to close by stations. . 5

1.3 Network diagram of the Berlin subway line U4. 5

1.4 Transportation lines. 6

1.5 History of the periodic timetable. 10

2.1 Illustration of Remark 2.12. 24

2.2 Illustration of Example 2.21. 30

3.1 Line path and expanded line path. 41

3.2 Line cycle and expanded line cycle. 42

3.3 Expanded event-activity graph of a sample instance. 43

3.4 Integral circulation in an expanded line cycle. 45

3.5 Illustration of Remark 3.12. 55

3.6 Illustration of Remark 3.14. 60

3.7 Structures in the event-activity graph yielding valid equalities. . . . 60

3.8 Line fixation for a sample instance. 64

3.9 Line-activity graph of a sample instance. 66

4.1 Re-timetabling flow chart. 68

4.2 Basic elements of the timetable graph 70

4.3 Modeling transfers in the timetable graph. 71

5.1 Route diagrams of the test instances. 80

5.2 Formulation sizes for the instance P. 83

5.3 The effect of line fixation and valid equalities. 84

5.4 Line fixation and the weight of the line. 84

5.5 Root gaps of different PESP formulations. 85

5.6 Constraint branching and its effect on the branch-and-bound tree. . 87

5.7 Re-timetabling. Progress of the total travel time. 91

x

List of Tables xi

List of Tables

1.1 Station timetable of the Berlin subway line U4 at Nollendorf Platz. 11

4.1 Partial timetable of the Berlin subway line U4. 69

5.1 Problem instances. 81

5.2 Computational performance of X-PESP pro (3.5) LIC in comparison

with X-PESP pro (3.5) LI. 86

5.3 Computational performance of the PESP formulations. 88

5.4 Computational performance of X-PESP pro (3.5) LIC in comparison

with PESP tree (2.7). 89

5.5 Computational performance of the X-PESP formulations. 89

5.6 Re-timetabling on instance N. 91

A.1 Overview of the tables. 95

A.2 PESP tree (2.7) on instance N. 96

A.3 PESP tree (2.7) on instance Ns. 96

A.4 PESP tree (2.7) on instance P . 96

A.5 X-PESP pro (3.5) LIC on instance N. 97

A.6 X-PESP pro (3.5) LIC on instance Ns. 97

A.7 X-PESP pro (3.5) LIC on instance P. 97

Preface

The last several years have seen a tremendous research activity in the area of math-

ematical optimization in public transport. This thesis studies existing and new for-

mulations ofmathematical models for computing high quality periodic timetables.

A periodic timetable has the property that certain departure times reoccur in

fixed intervals which ensures a very regular service. This is one reason why peri-

odic timetables are widely used for local, regional, and long-distance traffic.

Public transport plays an important role in providing mobility for many people

and a customer-friendly service requires reasonable travel times. The timetable

is thereby a crucial factor. By coordinating the arrival and departure times of the

(public transport) vehicles we can influence the waiting times for transfers. The co-

ordination is a highly complex task, particularly because in practice the timetable

underlies several other requirements.

We apply the theory of time discretization to periodic timetabling. The result

of this attempt are new integer programming formulations which we compare,

analytically and computationally, to existing formulations. Furthermore, we in-

vestigate an iterative approach for computing periodic timetables with the aim to

incorporate the travel behavior of the passengers.

Overview

In Chapter 1 we establish the relation between timetabling and other planning

tasks in public transport, such as line planning and vehicle scheduling. The chap-

ter gives an introduction into periodic timetabling and discusses typical timetable

requirements. This chapter covers the most basic material on the topic. Chap-

ter 2 surveys two existing mathematical models for computing periodic timeta-

bles. First, we present the PERIODIC EVENT SCHEDULING PROBLEM (PESP) that

provides rich modeling capabilities and various integer programming formula-

tions. It follows a discussion of the QUADRATIC SEMI-ASSIGNMENT PROBLEM,

a quadratic model that is more specialized and that focusses on the minimiza-

tion of transfer waiting times. In Chapter 3 we develop new integer programming

formulations for the PESP based on time discretization. We provide an analytical

comparison of the formulations and investigate promising techniques to reduce

computation time when applying mixed integer programming. Chapter 4 studies

a new iterative approach for computing periodic timetables. The idea is to further

1

2 List of Tables

3 400 000
Number of passenger
trips by public trans-
port in Berlin per year

48
Percentage of the
employees of the
TU Berlin using
public transport
to go to work

¤60 300 000
Financial cutbacks for pub-
lic transport in Berlin since
the year 2005 (7.12%)

43
Percentage of
motorized trips
in Berlin by
public transport

237
Number of
transportation
lines in Berlin

Berlin public transport in figures.
Sources: Nahverkehrsplan Berlin 2006–2009, Department of Integrated Traffic Planning TU Berlin.

improve the timetable by incorporating the resulting travel behavior of the pas-

sengers. Chapter 5 concludes with a computational study that evaluates a large

set of integer programming formulations for timetabling on five real-world test

instances. It provides results on the speedup techniques developed for the new

PESP formulations. Furthermore, we present preliminary results on the new iter-

ative timetabling procedure described in Chapter 4.

1
Timetabling

1.1 The Planning Process in Public Transport

The planning process in public transport is divided into twomajor stages— strate-

gic planning and operational planning. Due to the high complexity, each of these

stages is further divided into a sequence of subtasks. The strategic part concerns

network planning, line planning, and timetabling. Important tasks of operational

planning are vehicle and crew scheduling. Some authors see timetabling even as a

link between the two main planning units.

There are further tasks a public transport company has to deal with. For exam-

ple, a fare system has to be designed, and a timetable information system needs to

be managed. Since these tasks are not directly related to the timetable generation,

we will not discuss them here.

1.1.1 Strategic Planning

Strategic planning is made for a planning horizon of 5 – 15 years. In the following,

we provide a brief discussion of relevant subtasks.

Travel Demand Estimation

Before strategic planning starts, the travel demand is estimated. This is not only

necessary for the dimensioning of the infrastructure of the transportation system,

but also for the choice of the transportation routes that are to be offered to the

passengers.

The basis for the demand estimation is a subdivision of the region into traffic

zones. Every traffic zone has a designated centroid representing its center (see Fig-

ure 1.1). At these centroids traffic originates or terminates. The stations close to a

centroid are the entry points to the transportation network. Figure 1.2 illustrates

this. A station is a regular stopping place, where (public transport) vehicles and

passengers arrive and depart.

Travel demand is measured as the number of passengers that want to travel

from an origin zone to a destination zone within a fixed period called demand pe-

3

4 Chapter 1

Figure 1.1 City of Karlsruhe: traffic zones with designated centroids (screenshot from
VISUM 10.0).

riod. The demand estimates for all origin-destination pairs are commonly summa-

rized in a so-called origin-destination matrix (or OD-matrix for short).

Standard approaches for the travel demand estimation are interviews of cus-

tomers, evaluation of ticket sales, and various statistical methods on the basis of

automated passenger counts. All these techniques are very costly and time con-

suming.

Despite the fact that OD-matrices are widely used for recording of travel de-

mand, they also have drawbacks. The resulting estimates highly depend on the

size and the distribution of the traffic zones. Furthermore, the OD-matrix captures

only a snapshot of the travel demand. Therefore, it is not always clear how well

the real situation is reflected in this type of data.

Network Planning

Network planning focuses on the infrastructure of the transportation system. This

includes streets for road traffic as well as tracks for rail traffic. Typically an existing

network has to be modified due to changes of the travel demand or new capacity

requirements. The usual objective is to minimize the construction cost while still

ensuring the expected travel demand.

Line Planning

Once the infrastructure of the transportation system is determined, lines have to be

defined and associated with individual frequencies. A line is a transportation route

1.1. The Planning Process in Public Transport 5

Figure 1.2 City of Karlsruhe: traffic zones with designated centroids linked to close by
stations (screenshot from VISUM 10.0).

between two designated terminal stations in the transportation network (see Fig-

ure 1.3 for an example). A line has a transportation mode, such as subway, regional

railway, or intercity railway. Figure 1.4 shows a selection of lines of the city of Karl-

sruhe. The frequency specifies the number of times the line is served depending on

the demand period. This could be ten times an hour in rush-hour traffic and two

times an hour in off-hour traffic.

Nollendorf Platz

Viktoria-Luise Platz

Bayrischer Platz

Rathaus Schöneberg

Innsbrucker Platz

Figure 1.3 Network diagram of the Berlin subway line U4 as of May 2008.

During the line planning process, several constraints are taken into account. In

particular, the final line plan has to meet the travel demand and respect existing

track capacities.

6 Chapter 1

On the one hand, it is important to offer a service that is attractive for passen-

gers. This includes reasonable travel times and preferably less transfers between

the origin and the destination. On the other hand, it is desirable to minimize the

lines’ operating cost.

Figure 1.4 City of Karslruhe: transportation lines (screenshot from VISUM 10.0).

Timetabling

The next step is to schedule the trips of each line. A trip is the movement of a

vehicle between the terminal stations of a line. Scheduling the trips includes to

determine the arrival and departure times at the stations in the transportation net-

work.

The resulting timetable is subject to several requirements, e. g. synchronization

constraints or safety regulations which we discuss later. These constraints have

to be considered, when optimizing for certain objectives like minimizing trans-

fer waiting times or minimizing the number of vehicles required to operate the

timetable.

1.1.2 Operational Planning

After timetabling the operational planning starts. We next give a brief exposition

of important subtasks that cover a planning horizon of 24h up to 1 year.

1.2. Periodic Timetabling 7

Vehicle Scheduling

With the timetable in hand, the task is to combine timetabled trips to so-called

blocks. Each of these blocks is assigned a vehicle of certain type whose schedule is

given by the trips in the block.

During the construction of the vehicle schedule one has to keep in mind that not

every vehicle is adequate for each trip and that there is only a limited number of

vehicles of each type.

One of the main objectives at this stage is to minimize the number of blocks in

the peak hours which has direct influence on the required size of the rolling stock

and thus on the operating cost. In addition, it is desirable to minimize the period

between two linked trips to give standard working conditions.

Crew Scheduling

Following the vehicle scheduling, blocks or pieces of blocks of the vehicle schedule

have to be combined to blocks of duties. The goal is to define a set of legal shifts

that cover all blocks of the vehicle schedule. The focus is on the construction of

a short-term schedule for the crews considering a planning horizon of 24 to 48

hours.

Typical constraints are work regulations like restrictions on the total working

time or maximum working hours per day. The difficulty is to accommodate the

minimization of the number of duties required to cover the vehicle schedule and

the crew satisfaction.

1.2 Periodic Timetabling

We are interested in computing periodic timetables. Therefore, let us discuss this

planning step in detail.

From the line plan we obtain the lines together with their frequencies for dif-

ferent demand periods. The task of timetabling is now to schedule the trips of all

lines which yields the timetable. Scheduling a trip of a line requires to define the

arrival and departure times at each of its stations.

1.2.1 Timetable Requirements

In order that a timetable is operable in practice, it has to fulfill certain require-

ments. These range from elementary constraints concerning the dwell time at sta-

tions to more sophisticated constraints as the coordination of different lines to en-

8 Chapter 1

able transfers. We restrict our attention to those timetable requirement that are

relevant for the thesis.

o Trip and dwell time constraints. After a vehicle arrives at a station passengers

have to have enough time to board and alight, i. e., a minimumdwell time of the

vehicle is required. On the other hand, it may also be useful to limit the dwell

time within the station. This is because every waiting minute adds to the total

travel time of the passengers who are already on the vehicle and a station has

a limited capacity. Finally, the running times of the vehicles between stations

have to be respected.

o Synchronizing lines. Coordinating the trips of different lines is desirable for

several reasons: to offer customer-friendly transfer relations, to guarantee a bal-

anced service on tracks operated by several lines, and for combining vehicles to

reduce network utilization and operating cost.

If passengers travel between locations in the transportation network for which

no direct connection exists, transfers become inevitable. In order to prevent the

passengers from unnecessary waiting times, the departure of the connecting

vehicle should be shortly after the arrival at the transfer station. However, the

time required for possible platform changes has to be respected.

In a transportation network different lines may share sections of route. Without

synchronization, the vehicles may arrive at the common stations in quick suc-

cession which surely does not yield a very balanced service. Ideally we ensure

a nearly equal headway time (interval between the vehicles).

It is also possible to combine vehicles of lines on the common part of their

routes. Although, this does not increase the service frequency, more direct con-

nections can be offered without increasing the network utilization (otherwise

two vehicles occupy the track with a certain headway). Furthermore, operating

one vehicle requires less personnel on the common part that can be saved or

used for customer service. However, for the combination, both vehicles must

be at the station which adds additional constraints to the timetable and the pro-

cedure requires some time (e. g. for break test, and other checks).

o Turnarounds at termini. If a vehicle reaches the end of the route, it turns

around and either serves the back direction of the line or another connection.

Before that, some time is required, e. g. for shunting, cleaning the vehicle, or idle

time of the driver. In either case, a feasible timetable has to respect this mini-

mum turnaround time. If, however, the vehicle dwells too long at the terminus,

1.2. Periodic Timetabling 9

additional vehicles may be required to operate the timetable (additional costs,

e. g. for crew).

o Hierarchical planning. Transportations systems are typically classified by pri-

ority, e. g., inter city trains are superior to local trains. The planning process

then follows a top down approach by first scheduling the lines of high priority.

Therefore, the construction of timetables for lines of low-level transportation

systems has to be done without altering already existing timetables of higher

level lines. Similar restrictions apply to international trains whose departures

at the border have to be coordinated with transportation systems of the neigh-

boring country.

o Safety requirements. In a transportation network, many vehicles are in transit

simultaneously and often they use the same tracks. To prevent collisions and

overtaking, minimum headway times between the vehicles have to be ensured.

This especially applies to single tracks operated in both directions.

In practice it is not sufficient when a timetable just satisfies the above require-

ments. Depending on the point of view, there are several criteria that make a

timetable reasonable.

For customer satisfaction the total travel time is a crucial factor. Therefore, we

are interested in minimizing additional dwell and transfer times. Furthermore, a

viable timetable is expected to be robust against delays of vehicles and requires

the minimum number of vehicles.

1.2.2 Timetable Construction

In practice, timetabling is mainly a human planning process supported with com-

puter-aided design tools. Examples for such tools are MICROBUS of the IVU AG

and the Siemens route management software ROMAN.

A timetable is not always constructed from scratch. Often an existing timetable

has to be modified, because of changes in the line plan. Suppose, for example, that

some lines were introduced or others removed.

There are mainly two timetabling strategies. One possibility is to schedule the

trips of a line individually without any structure. A standard approach, however,

is to ensures a fixed interval between them. The latter strategy is called fixed inter-

val timetabling or periodic timetabling. Obviously, the resulting periodic timetables are

easier noticeable. A main advantage, however, lies in the fact that due to the very

regular service even spontaneous trips involve a reasonable travel time. There-

10 Chapter 1

fore, many transportation companies use periodic timetables today. In Figure 1.5

we give a brief historical overview.

1863London subway

1896 Budapest subway

1900Paris subway

1902 Berlin subway

1939
Nederlandse Sporwegen

Netherlands

1974 DSB Denmark

1979
“Jede Stunde, jede Klasse”

— DB Germany

1982
“Jede Stunde ein Zug”
— SBB Switzerland

1991Belgium and Austria

Figure 1.5 History of the periodic timetable. 1863 to the present.

The fixed interval between the trips of a line is called the period time and will be

denoted by T. The period time depends on the frequency of the line which may

vary over the day. An example of a periodic timetable is shown in Table 1.1. In

rush-hour traffic, from 6:00 am to 8:20 am, the line is operated 28 times. This cor-

responds to a frequency of 28/140min. The period time is given as the reciprocal

of the frequency, i. e. T = 5min.

An important point to note is that the construction of timetables can be sup-

ported by discrete optimization algorithms. In 2005, the first optimized periodic

timetable was successfully put into daily operation for the Berlin subway (see

Liebchen (2006)).

1.3. Prerequisites 11

Table 1.1 Station timetable of the Berlin subway line U4 at Nollendorf Platz valid from
18 April to 1 November 2008.

h Mondays to Fridays

...

05 07 17 27 37 47 57
06 02 07 12 17 22 27 32 37 42 47 52 57
07 02 07 12 17 22 27 32 37 42 47 52 57
08 02 07 12 17 27 37 47 57
09 07 17 27 37 47 57
...

The next chapters answer the question how periodic timetabling can be ex-

pressed by mathematical models. The objective is to automatically compute high-

quality periodic timetables.

1.3 Prerequisites

As for prerequisites, the reader is expected to be familiar with elementary graph

theory (see e. g. Schrijver (2003)). The reader with no exposure to mathematical

programming is referred to Nemhauser and Wolsey (1999) for a good introduc-

tion. The few facts about NP-completeness used here are covered in Garey and
Johnson (1979).

2
Models for Periodic Timetabling

In the preceding chapter we presented timetable requirements that typically arise

in practice. Now, we give an exposition of two important models for creating peri-

odic timetables that cover a large set of these requirements. After defining the gen-

eral scope in Section 2.1, we present in Section 2.2 the PERIODIC EVENT SCHEDUL-

ING PROBLEM. In Section 2.3 we proceed with the study of the QUADRATIC SEMI-

ASSIGNMENT PROBLEM and illustrate its application for periodic timetabling.

2.1 Model Assumptions

This section defines the general conditions under which we investigate the models

for periodic timetabling.

Our purpose is to compute a periodic timetable for a single demand period, e. g.

the morning peak hours, during which the period times of all lines are assumed

be fixed. The full-day timetable is then obtained by gluing together the timetables

of all demand periods. This may require minor changes at the transitions.

In the following, we need the set of stations S and the line plan that specifies
the set of operated lines R and their frequencies. Recall from Chapter 1 that a
line R ∈ R is a transportation route between to designated terminal stations in
the transportation network. From now on, we consider for each line R ∈ R a
forward and a backward direction. Each direction is a directed line and we omit

the prefix “directed” when no confusion can arise. Let us denote by L the set of
directed lines. In addition, the timetable computation requires information on the

minimum time duration of trips, stops, turnarounds, transfers, etc.

We also need a passenger flow that corresponds to the estimated travel demand

for the demand period. If L ∈ L is a directed line, then the passenger flow has to
define

o for any two consecutive stations S and S′ on the route of line L, the total number

of passengers involved in trips of line L between S and S′, and

o for any station S on the route of line L, the total number of passengers involved

in stops of line L at station S,

13

14 Chapter 2

where these numbers apply to the whole demand period. Moreover, the passenger

flow has to specify how many passengers use a certain transfer connection. We

define a transfer connection as a 3-tuple (L, L′, S) which means that passengers can

change between the lines L and L′ at station S. This is for simplicity. In practice, a

transfer connection may require to change between stations.

With this information, we intend to construct a periodic timetable that meets

the requirements discussed in Section 1.2.1. In particular, we have to determine

the arrival and departure times for the lines at all stations.

2.2 The Periodic Event Scheduling Problem (PESP)

This section reviews the PERIODIC EVENT SCHEDULING PROBLEM, a model that

has extensively been studied for constructing periodic timetables. The first appli-

cations of the PESP, however, were not concerned with periodic timetabling at all.

Introduced by Serafini and Ukovich (1989a) as a model for a periodic job shop,

it has also been used for traffic light scheduling (Serafini and Ukovich, 1989b)

and airline scheduling (Gertsbakh and Serafini, 1991). To simplify the presenta-

tion, we investigate the basic model which requires identical line frequencies, i. e.,

we construct the timetable for a uniform period time T ∈ N. This condition is not

necessary for the EXTENDED PERIODIC EVENT SCHEDULING PROBLEM for which

details can be found in Serafini and Ukovich (1989a) and Nachtigall (1996b).

The PESP can be formulated in many ways. The following seems most appro-

priate for our presentation.

Periodic Event Scheduling Problem (PESP)

Instance: Directed graph D = (V, A), vectors ℓ, u ∈ QA, and an integer T.

Question: Is there a vector π ∈ [0, T)V such that

(πw − πv − ℓa) mod T ≤ ua − ℓa (2.1)

for all a = (v,w) ∈ A?

In the above description, T denotes the period time and mod stands for the

modulo operator that is defined as

a mod b = a− b ·max{z ∈ Z | a− b · z ≥ 0} ∈ [0, b− 1),

2.2. The Periodic Event Scheduling Problem (PESP) 15

for a, b ∈ R. The timetabling requirements are expressed by the constraints (2.1)

which we call periodic interval constraints.

Before we give a complete interpretation of the PESP in terms of periodic timeta-

bling, we need to discuss some preliminaries.

An arrival or departure of a directed line at a station is called an event. We use

the notation arr(L, S) for the arrival of line L at station S, and dep(L, S) for the

departure of line L from station S. Let V denote the set of all events in the trans-

portation network. Then, the vector π ∈ [0, T)V defines the arrival and departure

times in the timetable. We call πv the timing of the event v.

A pair of events (v,w) ∈ V × V is referred to as an activity and we write A for
the set of all activities. Each activity a ∈ A is associated with a minimum and max-
imum allowable time duration, denoted by ℓa and ua, respectively. The interval

[ℓa, ua] is referred to as the time window of activity a.

The following are examples of activities. The pair of events

• (dep(L, S), arr(L, S′)) is a trip activity, where S and S′ denote two consecutive

stations on the route of line L,

• (arr(L, S),dep(L, S)) is a dwell activity, where S denotes a station on the route

of line L,

• (arr(L, S),dep(L, S)) is a turn activity, where L and L denote two opposite

directed lines and S is the terminal station of line L, and

• (arr(L, S),dep(L′, S)) is a transfer activity, where S denotes a station where

passengers can change between the lines L and L′.

We summarize trip, dwell, and turn activities under the term vehicle activities as

they are performed by vehicles. In the following X ⊆ A denotes the subset of

vehicle activities.

The unit in which timetables are typically published are integer minutes. For

internal use it may be also required to have a discretization of seconds. In either

case, the arrival and departure times are conveniently integer values. Therefore, it

is desirable to find an integer solution π ∈ {0, . . . , T− 1}V for the PESP.

Theorem 2.1 (Odijk, 1994) Every feasible instance (D, ℓ, u, T) of the PESP with ℓ

and u integer-valued has a solution π that is integer.

On account of the above remarks, we will assume that every activity has a min-

imum and maximum allowable time duration that is integer. An instance of the

PESP with ℓ and u integer-valued will be referred to as integer PESP instance.

16 Chapter 2

Periodic interval constraints

Every timetable requirement discussed in Section 1.2.1 can bemodeled by periodic

interval constraints (2.1). These ensure that the timetable defines the timings of all

events in such a way that for each activity a = (v,w), the resulting time duration

is contained in its time window [ℓa, ua].

Let use investigate the application of periodic interval constraints by example.

First, consider a trip activity (dep(L, S), arr(L, S′)), and suppose the minimum

and maximum allowable time duration for the trip are given by ℓtrip(L,S,S′) and

utrip(L,S,S′), respectively. To model this requirement, we simply put the information

into the general periodic interval constraint (2.1) to obtain

(πarr(L,S′) − πdep(L,S) − ℓtrip(L,S,S′)) mod T ≤ utrip(L,S,S′) − ℓtrip(L,S,S′).

Imposing constrains on dwell activities works by the samemethod. Let the min-

imum dwell time of line L at station S be given by ℓdwell(L,S). If this value should

not be exceeded by more than n minutes, we define a maximum allowable dura-

tion of udwell(L,S) = ℓdwell(L,S) + n to obtain

(πdep(L,S) − πarr(L,S) − ℓdwell(L,S)) mod T ≤ n.

Slightly more complicated is the modeling of safety and synchronization con-

straints in case we allow variable running times. However, we will not develop

this point here. A more complete discussion and further examples can be found in

Peeters (2003). See also Lindner (2000) and Kroon and Peeters (2003) who investi-

gate the PESP with variable running times in detail.

Remark 2.2 We can certainly assume that ℓa ≥ 0 and ℓa ≤ ua. Notice that (πw −
πv− ℓa) mod T < T . Therefore, every activity with ua− ℓa ≥ T imposes no condi-
tion on the timetable. From now on, we will therefore assume that ua − ℓa < T for

all activities a ∈ A. Furthermore, we need the assumption that ℓa < T. This con-

dition is not particular restrictive, due to the periodicity of the timetable. Indeed,

if ℓa ≥ T, we compute za such that ℓa = Tza + (ℓa mod T) and set ℓ′a = ℓa − Tza
and u′a = ua − Tza. In some cases there is no explicit maximum allowable time
duration for an activity a given. This can be handled by setting ua = ℓa + T.

The event-activity graph

It is possible to encode the set of periodic interval constraints imposed on the

timetable in an event-activity graph D = (V, A) with node set V and arc set A.

The idea is to represent events by nodes, and activities by arcs in the graph. Every

2.2. The Periodic Event Scheduling Problem (PESP) 17

arc a ∈ A is associated with the time window [ℓa, ua] of its belonging activity. For

convenience, we pass the naming of the activities on the arcs in the event-activity

graph (i. e. trip arc, dwell arc etc). Depending on the context we refer to v ∈ V as a
node or an event. In the same manner we handle arcs and activities.

We have thus established the relation between the PERIODIC EVENT SCHEDUL-

ING PROBLEM and periodic timetabling. The event-activity graph D = (V, A), the

vectors ℓ, u ∈ QA, and the period time T together define a PESP instance. A solu-

tion π ∈ [0, T)V to this instance yields the periodic timetable.

Managing the modulo operator

Solving the PERIODIC EVENT SCHEDULING PROBLEM is rather difficult with the

modulo operator as part of the constraints (2.1). Since we aim at applying integer

programming techniques, we consider a reformulation of the problem that uses

integer variables instead of the modulo operator to express the periodic interval

constraints.

Proposition 2.3 (Serafini and Ukovich, 1989a) Suppose I = (D, ℓ, u, T) is an in-

stance of the PESP. Then, a vector π is a solution for I if and only if for every arc
a = (v,w) ∈ A there exists a unique integer pa ∈ Z such that

ℓa ≤ πw − πv + T pa ≤ ua. (2.2)

Proof. The proof is based on Liebchen (2006). Recall the definition of the modulo

operator. From this it follows that

(πw − πv − ℓa) mod T = πw − πv − ℓa − T ·max{z ∈ Z | πw − πv − ℓa − Tz ≥ 0}.

Rewriting inequality (2.2) to

0 ≤ πw − πv − ℓa + T pa ≤ ua − ℓa

we conclude that

pa = −max{z ∈ Z | πw − πv − ℓa − Tz ≥ 0} ∈ Z,

where the uniqueness of pa follows from our assumption that ua − ℓa < T.

The integer pa is called periodical offset (or modulo parameter) of the activity a.

18 Chapter 2

2.2.1 Complexity of the PESP

The complexity of the PESP has been extensively studied in the literature. Without

loss of generality we announce the results for integer PESP instances only.

Theorem 2.4 The PESP is NP-complete for fixed T ≥ 3.

A first proof of the above theorem was given by Serafini and Ukovich (1989a).

They used a reduction from the HAMILTONIAN CYCLE PROBLEM (HCP) which is

NP-complete. However, several authors proclaim that this proof is problematic,
because the period time of the resulting PESP instance depends on the size of

the HCP instance. In particular, if G = (V, E) denotes the undirected graph of

the HAMILTONIAN CYCLE PROBLEM, then T = |V|. Therefore, Nachtigall (1996a)
provides an alternative proof that fixes this drawback. Further proofs can be found

using reductions from the K-VERTEX COLORABILITY PROBLEM (Odijk, 1994), and

the LINEAR ORDERING PROBLEM (Liebchen and Peeters, 2001).

It is worth pointing out that for T = 2, the PERIODIC EVENT SCHEDULING

PROBLEM is polynomially solvable. A possible solution algorithm can be found

in Peeters (2003).

2.2.2 Cost Optimization

The PERIODIC EVENT SCHEDULING PROBLEM is a feasibility problem. If a solution

has been found, no information on its quality is available. In order to compute

timetables that are provably better than those constructed “by hand”, we introduce

a cost optimization scheme for the PESP.

Every activity in the transportation network has a minimum time duration (see

Section 2.2). Exceeding this time duration affects the quality of the timetable. In

case of dwell and transfer activities, passenger may have to face longer travel

times. For turnaround activities, the timetable may require additional vehicles.

Therefore, we want to penalize the slack time (πw − πv − ℓa) mod T for every ac-

tivity a = (v,w) ∈ A with a non-negative weight wa ∈ Q≥0. This weight repre-

sents the importance of the related activity. In case of transfer and dwell activities,

the weight is typically chosen proportional to the number of affected passengers

which can be obtained from the given passenger flow. If an activity a is not relevant

for optimization, we set wa = 0.

2.2. The Periodic Event Scheduling Problem (PESP) 19

The objective is to minimize the weighted sum of the slack times. To this end,

we consider the following linear objective function

Minimize ∑
a=(v,w)∈A

wa (πw − πv − ℓa) mod T. (2.3)

Note that we do not directly minimize the total travel time in the transportation

network, but we can influence factors like transfer waiting time.

An instance of the PESP with an objective function as (2.3) is called PESP opti-

mization instance and denoted by (D, ℓ, u,w, T).

2.2.3 Redundancy in the PESP Solution Space

The solution space of the PESP contains many solutions that correspond to the

same periodic timetables. They can be transformed into each other by a periodic

shift. This is stated in the following lemma.

Lemma 2.5 Let I = (D, ℓ, u,w, T) denote an optimization instance of the PESP,

and let π ∈ [0, T)V be an optimal solution to I . Then for every β ∈ [0, T), the

vector π ∈ [0, T)V defined by πv = (πv + β) mod T for v ∈ V is optimal for the
instance I , too.

Proof. The proof is straightforward. We first show that the vector π satisfies the

set of periodic interval constraints (2.1). To this end, let a = (v,w) ∈ A. Then,

(πw − πv − ℓa) mod T = ((πw + β) mod T− (πv + β) mod T− ℓa) mod T

= (πw − πv − ℓa) mod T

≤ ua − ℓa,

where the last inequality holds, due to the feasibility of the vector π. Finally, we

conclude from (2.3) that the vectors π and π have the same objective value, which

proves the lemma.

The lemma shows that we can set πv = 0 for an arbitrary v ∈ V without “loos-
ing” the optimal solution. Liebchen (2006) calls this the scaling property.

2.2.4 Integer Programming Formulations

In the following we consider optimization instances of the PESP. Recall that such

instances are given by a directed graph D = (V, A), vectors ℓ, u,w ∈ QA, and an

20 Chapter 2

integer T. For a better understanding, let us restate the meaning of the required

symbols.

πv timing of event v ∈ V

ℓa minimum allowable time duration of activity a ∈ A

ua maximum allowable time duration of activity a ∈ A

wa weight of activity a ∈ A

pa periodical offset of activity a ∈ A

T period time

We canmodel the problem of finding an optimal timetable for the PESP instance

(D, ℓ, u,w, T) as the mixed integer program

PESP basic (2.4)

Minimize ∑
a=(v,w)∈A

wa (πw − πv + T pa − ℓa)

subject to

πw − πv + T pa ≥ ℓa for all a = (v,w) ∈ A (2.4a)

πw − πv + T pa ≤ ua for all a = (v,w) ∈ A (2.4b)

0 ≤ πv ≤ T − 1 for all v ∈ V (2.4c)

πv ∈ Z for all v ∈ V (2.4d)

pa ∈ Z for all a ∈ A. (2.4e)

According to Proposition 2.3, wemay identify a feasible solution for the instance

(D, ℓ, u,w, T) with a point (π, p) in {0, . . . , T − 1}V × ZA that satisfies the con-

straints (2.4a) and (2.4b). An optimal solution minimizes the objective function

∑a=(v,w)∈A wa (πw − πv + T pa − ℓa) which is the sum of the weighted slack times

over all activities a ∈ A (see Section 2.2.2).

Remark 2.6 If ℓ and u are integer vectors, we can relax the integrality constraints

on the π variables, if the periodical offsets pa are still required to be integer (see

Peeters (2003)).

2.2. The Periodic Event Scheduling Problem (PESP) 21

Lemma 2.7 The optimal solution value to the LP relaxation of PESP basic (2.4) is

zero.

Proof. For every π ∈ {0, . . . , T − 1}V , set pa = (−πw + πv + ℓa)/T.

Lemma 2.8 (Liebchen, 2006) In PESP basic (2.4) we can assume that pa ∈ [0, pa] ∩
Z, where

pa =

{

1, if ua ≤ T,

2, otherwise.
(2.5)

This involves no loss of generality.

Proof. Let us restate the proof from Liebchen (2006). Let a ∈ A, and let π ∈
{0, . . . , T − 1}V be a vector that satisfies the constraints (2.4a)–(2.4b) for activity
a, i. e. ℓa ≤ πw − πv + T pa ≤ ua. Depending on the value of pa, we have

πw − πv + T pa ∈







{ −2T + 1, . . . , −1}, if pa = − 1,
{ −T + 1, . . . , T − 1}, if pa = 0,

{ 1, . . . , 2T − 1}, if pa = 1,

{ T + 1, . . . , 3T − 1}, if pa = 2, and

{ 2T + 1, . . . , 4T − 1}, if pa = 3.

On account of Remark 2.2, we have ℓa ≥ 0. Thus, we can exclude pa ≤ −1. Further,
we assumed ℓa < T and ua − ℓa < T, such that ua < 2T. Thus, we cannot have

pa ≥ 3. Finally, in the case ua ≤ T, we can even forbid pa = 2.

22 Chapter 2

The lemma shows that we can reformulate PESP basic (2.4) with box constraints

on the periodical offsets. This gives

PESP box (2.6)

Minimize ∑
a=(v,w)∈A

wa (πw − πv + T pa − ℓa)

subject to

πw − πv + T pa ≥ ℓa for all a = (v,w) ∈ A (2.4a)

πw − πv + T pa ≤ ua for all a = (v,w) ∈ A (2.4b)

0 ≤ πv ≤ T − 1 for all v ∈ V (2.4c)

0 ≤ pa ≤ pa for all a ∈ A (2.6a)

πv ∈ Z for all v ∈ V (2.4d)

pa ∈ Z for all a ∈ A. (2.4e)

Notation 2.9 The convex hull of all solutions to PESP box (2.6) will be denoted by

PIP(PESP box) = conv{(π, p) ∈ QV × QA | (π, p) satisfies (2.4a)–(2.4e),

and (2.6a)}

Moreover, we write

PLP(PESP box) = {(π, p) ∈ QV × QA | (π, p) satisfies (2.4a)–(2.4c), and (2.6a)}

for the rational polyhedron of the LP relaxation of PESP box (2.6).

Remark 2.10 It is even possible to transform a PESP instance such that the period-

ical offset variables may take only binary values, i. e., pa ∈ {0, 1} for every activity
a ∈ A. An appropriate transformation was given by Peeters (2003). From the proof
of Lemma 2.8 it follows that only activities with a maximum allowable time dura-

tion larger than T may cause non-binary periodical offsets, and therefore require

special treatment. According to Peeters (2003), we can split every activity a with

ua ≥ T into two activities. The time windows of the new activities are so chosen
that they are equivalent to that of activity a.

In case the maximum allowable time duration ua of activity a = (v,w) is strictly

smaller than T, the periodical offset pa indicates a sequence of the events v and

2.2. The Periodic Event Scheduling Problem (PESP) 23

w in the interval [0, T − 1]. To see this, consider the periodic interval constraint of
activity a

ℓa ≤ πw − πv + T pa ≤ ua.

According to Remark 2.2, we have ℓa ≥ 0, and thus [ℓa, ua] ⊆ [0, T). Since −T +

1 ≤ πw−πv ≤ T− 1, the following can be concluded. If πv ≤ πw, we have pa = 0.

Else, if πv > πw, then pa = 1.

Lemma 2.11 (Peeters, 2003) Every PESP instance I = (D, ℓ, u, T) with periodic

interval constraints of the form (2.2) can be transformed such that pa ∈ {0, 1} for
all a ∈ A.

Another interesting point is that we can predetermine the periodical offsets for

certain activities of a feasible PESP instance I = (D, ℓ, u,w, T). Let F ⊆ A induce
an arbitrary spanning tree of the underlying undirected graph G = (V, A) of D.

Let (π, p) be a feasible solution to I , and let p∗ ∈ ZF be a fixed vector of periodical

offsets (e. g. p∗ ≡ 0). Then, there exists a feasible solution (π′, p′) such that for all

(v,w) ∈ V×V, we have πw− πv mod T = π′
w− π′

v mod T, and p
′
a = p∗a for every

activity a ∈ F. However, this fixation may require π variables to take values not

contained in the set {0, . . . , T − 1}. More details can be found in Liebchen (2006).
We obtain

PESP tree (2.7)

Minimize ∑
a=(v,w)∈A

wa (πw − πv + T pa − ℓa)

subject to

πw − πv + T pa ≥ ℓa for all a = (v,w) ∈ A (2.4a)

πw − πv + T pa ≤ ua for all a = (v,w) ∈ A (2.4b)

πv ∈ Z for all v ∈ V (2.7a)

pa ∈ Z for all a ∈ A\F (2.7b)

pa = 0 for all a ∈ F. (2.7c)

In comparison with PESP box (2.6), we reduce the number of p variables from

|A| to |A| − |V| + 1 by fixing the periodical offsets on the spanning tree F. This,
however, requires a larger range for the π variables. As a consequence, we need to

compute every πv in a solution to the above linear program modulo T to obtain a

vector π that is feasible for the PESP instance.

24 Chapter 2

[7, 13] [2, 5]

u v w

Figure 2.1 Illustration of Remark 2.12.

Remark 2.12 The PESP formulations we have seen so far are based on event tim-

ings. This makes the modeling easy, but it is difficult to define reasonable bounds

on the variables. We illustrate this by the PESP instance shown in Figure 2.1. Sup-

pose the period time T = 10, and consider the following two solutions:

a) πu = 0, πv = 7, and πw = 9, and

b) πu = 4, πv = 1, and πw = 3.

Both solutions are optimal, but the timings of the events are completely different.

Hence, the values of the π variables are no direct indicator for the quality of the

solution.

This motivates us to present another type of integer programming formulations

for the PESP that use variables for the time durations of the activities. We are led

to the theory of tensions.

Tensions

The vector π ∈ [0, T)V in the PESP description can be interpreted as a potential

of the event-activity graph D = (V, A). Then, a vector y ∈ ZA is called tension if

y(π)a = πw − πv for every activity a = (v,w) ∈ A. Our goal is to develop a PESP
formulation based on tensions. To this end, we replace any occurrence of πw − πv
in PESP box (2.6) by the tension variable ya of activity a = (v,w). This gives ℓa ≤
ya + T pa ≤ ua for the periodic interval constraint of activity a and wa (ya + T pa −
ℓa) for the weighted slack time. The transformation, however, is only allowed if

we ensure that the vector y ∈ ZA defines a tension. Theoretically, we have to

impose |A| constraints of the form ya = πw − πv, one for every activity a ∈ A.
However, by utilizing cycle bases of directed graphs, we show how to manage

with |A| − |V| + 1 constraints and without the π variables. In what follows, we

consider oriented cycles, i. e. cycles that have an orientation and that may contain

forward and backward directed arcs. Let us introduce the notation C+ (C−) for

2.2. The Periodic Event Scheduling Problem (PESP) 25

the forward (backward) directed arcs of the oriented cycle C. Then, the incidence

vector γC ∈ {−1, 0, 1}A of the cycle C is given by

γCa =







1, if a ∈ C+,

−1, if a ∈ C−, and

0, if a /∈ C.

If D = (V, A) is a directed graph, we call

C(D) = span({γC | C oriented cycle in D}) ⊂ QA (2.8)

the cycle space of D. A set C1, . . . ,Ck of oriented cycles is called a cycle basis of the

directed graph D, if the following conditions hold: The vectors γC1 , . . . ,γCk are lin-

early independent and span({γC1 , . . . ,γCk}) = C.

The following theorem provides the conditions by which we can ensure that a

vector defines a tension for a directed graph.

Theorem 2.13 (Bollobás, 1998) Let D = (V, A) be a directed graph, and let y ∈
QA. Then, the following conditions are equivalent:

1. y is a tension,

2. for every oriented cycle C there holds ∑a∈C+ ya − ∑a∈C− ya = 0, and

3. for every cycle basis B = {C1, . . . ,Cν} we have ∑a∈C+
i
ya − ∑a∈C−i

ya = 0

along every cycle Ci ∈ B.

The theorem states that it suffices to introduce constraints for the cycles in a cy-

cle basis in order to enforce a tension on the arcs of the event-activity graph. Thus,

only |A| − |V| + 1 constraints are required which is the dimension of the cycle
space of a directed graph (e. g. cf. Liebchen, 2006).

26 Chapter 2

Suppose I = (D, ℓ, u,w, T) denotes a PESP optimization instance and B is a
cycle basis of the event-activity graph D. We obtain

PESP y-box (2.9)

Minimize ∑
a∈A

wa (ya + T pa − ℓa)

subject to

ya + T pa ≥ ℓa for all a ∈ A (2.9a)

ya + T pa ≤ ua for all a ∈ A (2.9b)

∑
a∈C+

ya − ∑
a∈C−

ya = 0 for all C ∈ B (2.9c)

0 ≤ pa ≤ pa for all a ∈ A (2.6a)

−T+ 1 ≤ ya ≤ T − 1 for all a ∈ A (2.9d)

pa ∈ Z for all a ∈ A (2.4e)

ya ∈ Z for all a ∈ A. (2.9e)

For the transformation between tensions and potentials we refer the reader to

Liebchen (2006).

Periodic Tensions

We now develop integer programming formulations for the PESP that do not re-

quire the periodical offset variables pa. This can be achieved by using a special

type of tensions.

Let π ∈ [0, T)V denote a potential of the event-activity graph D = (V, A). Then,

a vector x ∈ QA is a periodic tension, if there exists a vector p ∈ ZA such that

x(π)a = πw − πv + T pa for every activity a = (v,w) ∈ A. Note that the periodic
tension xa is exactly the time duration of the activity a.

As in the previous section, we cannot simply replace the term πw − πv + T pa
in PESP box (2.6) by the variable xa to obtain a PESP formulation based on pe-

riodic tensions. We need to add further constraints which require the following

definition.

2.2. The Periodic Event Scheduling Problem (PESP) 27

Definition 2.14 Let D = (V, A) be a directed graph, and let C be an oriented cycle

of D. A vector x ∈ ZA satisfies the cycle periodicity property for C with period time

T, if there exists an integer zC such that

∑
a∈C+

xa − ∑
a∈C−

xa = T zC. (2.10)

Theorem 2.15 (Peeters, 2003) LetD = (V, A) be a directed graph. A vector x ∈ ZA

is a periodic tension if and only if, for each cycle C ∈ D, it satisfies the cycle
periodicity property for period time T

∑
a∈C+

xa − ∑
a∈C−

xa = T zC.

Again, we can reduce the number of required constraints with the help of cycle

bases, in particular, integral cycle bases.

Definition 2.16 A cycle basis B of a directed graph D is called integral cycle basis if
every non-basis cycle of D is an integer linear combination of the cycles in B.

The next theorem states that it suffices to require the cycle periodicity property

for an integral cycle basis of the event-activity graph to obtain a periodic tension.

Theorem 2.17 (Peeters, 2003) Let D = (V, A) be a directed graph, and let x ∈ ZA.

If x satisfies the cycle periodicity property ∑a∈C+ xa − ∑a∈C− xa = T zC for every

cycle C in an integral cycle basis B of D, then it does for all cycles of D.

28 Chapter 2

Let (D, ℓ, u,w, T) denote a PESP instance, and suppose B is an integral cycle
basis of the graph D. Then, we get

PESP x (2.11)

Minimize ∑
a∈A

wa (xa − ℓa)

subject to

xa ≥ ℓa for all a ∈ A (2.11a)

xa ≤ ua for all a ∈ A (2.11b)

∑
a∈C+

xa − ∑
a∈C−

xa − T zC = 0 for all C ∈ B (2.11c)

xa ∈ Z for all a ∈ A (2.11d)

zC ∈ Z for all C ∈ D (2.11e)

The last IP formulation is obtained by replacing the periodic tension variables

xa with the periodic slack variables x̃a = xa − ℓa. According to Remark 2.2 and the

periodic interval constraints, we may assume that x̃a ∈ [0, T). This gives

PESP x̃ (2.12)

Minimize ∑
a∈A

wa x̃a

subject to

x̃a ≤ ua − ℓa for all a ∈ A (2.12a)

∑
a∈C+

x̃a − ∑
a∈C−

x̃a − TzC = − ∑
a∈C+

ℓa + ∑
a∈C−

ℓa for all C ∈ B (2.12b)

0 ≤ x̃a ≤ T − 1 for all a ∈ A (2.12c)

x̃a ∈ Z for all a ∈ A (2.12d)

zC ∈ Z for all C ∈ B. (2.12e)

In principle, we may choose an arbitrary integral cycle basis for the formula-

tions PESP x (2.11) and PESP x̃ (2.12). Certain cycle bases, however, yield stricter

cycle inequalities and thus better bounds on the z variables. How to determine

2.2. The Periodic Event Scheduling Problem (PESP) 29

such cycle bases is extensively studied in Liebchen (2006).

Finally, note that also the PESP formulations on periodic tensions have poor LP

relaxations.

Lemma 2.18 The optimal solution value to the LP relaxation of PESP x̃ (2.12) is

zero.

Proof. Set x̃a = 0 for every activity a ∈ A, and choose

zC = (∑
a∈C+

ℓa − ∑
a∈C−

ℓa)/T

for every cycle C ∈ B.

Valid inequalities for the PESP formulations

There has been enormous effort to develop valid inequalities for the mixed inte-

ger programs of the PESP. Interesting results can be found in, for example, Odijk

(1994), Nachtigall (1998), and Lindner (2000). A detailed discussion of the theory is

outside the scope of this thesis, but let us shortly investigate the cycle inequalities

proposed by Odijk (1994).

Theorem 2.19 (Odijk, 1994) An instance (D, ℓ, u, T) of the PESP is feasible if and

only if there exists an integer vector p such that for every cycle C of D,

p
C
≤ ∑
a∈C+

pa − ∑
a∈C−

pa ≤ pC, (2.13)

where

p
C

=

⌈
1

T

(

∑
a∈C+

ℓa − ∑
a∈C−

ua

)⌉

, and pC =

⌊
1

T

(

∑
a∈C+

ua − ∑
a∈C−

ℓa

)⌋

.

Remark 2.20 The cycle inequalities (2.13) can be used to obtain bounds on the

integer variables zC in PESP x (2.11) and PESP x̃ (2.12). Indeed, the combination

of equalities (2.9c) and (2.11c) for a cycle C of the same cycle basis of the graph D

gives

zC =
1

T

(

∑
a∈C+

xa − ∑
a∈C−

xa

)

= ∑
a∈C+

pa − ∑
a∈C−

pa,

30 Chapter 2

and from inequality (2.13) we can conclude

⌈
1

T

(

∑
a∈C+

ℓa − ∑
a∈C−

ua

)⌉

≤ zC ≤

⌊
1

T

(

∑
a∈C+

ua − ∑
a∈C−

ℓa

)⌋

. (2.14)

Example 2.21 In Figure 2.2 we give a small example for Remark 2.20. Let C denote

the displayed cycle, and suppose T = 10. Then, the cycle inequalities (2.14) yield

⌈
1

10
(4+ 3− 7)

⌉

≤ zC ≤

⌊
1

10
(7+ 6− 2)

⌋

,

and hence, 0 ≤ zC ≤ 1.

w

u v

©

[4, 7]

[3, 6][2, 7]

Figure 2.2 Illustration of Example 2.21.

2.2.5 Further Solution Approaches

A straightforward approach is to solve the PESP by integer programming tech-

niques. However, there may be situations in which other solution methods are

more appropriate. On the one hand, the mixed integer programs resulting from

real-world timetabling instances are likely hard to solve. From this point of view,

heuristic approaches as the Modulo Network Simplex Method proposed by Nachti-

gall and Opitz (2007) gain in interest. On the other hand, a PESP instance may

be infeasible if there are conflicting timetable requirements. Hence, we need to

know which of the initial constraints have to be relaxed. Since this information

cannot be provided by a standard MIP solver, special algorithms are needed. A

good overview of this topic is provided by Lindner (2000).

2.3. The Quadratic Semi-Assignment Problem 31

2.3 The Quadratic Semi-Assignment Problem

In this section we discuss the QUADRATIC SEMI-ASSIGNMENT PROBLEM (QSAP),

a quadratic model for periodic timetabling. Several researchers have studied ex-

act and heuristic solution approaches for the QSAP, including Domschke (1989),

Klemt and Stemme (1987), and Daduna and Voß (1993). Our purpose is to investi-

gate mixed integer programming formulations.

The main focus of the model is the minimization of transfer waiting times in

the transportation network. Like the PESP, the QSAP supports individual line

frequencies and we can easily incorporate timetables of superior transportation

systems. However, there are some modeling limitations. The QSAP requires fixed

running times for the lines and does not allow to exceed theminimumdwell times.

Thus, the departure time of a line at its initial station is the only degree of freedom.

Before stating the model, let us first outline its idea. We determine the timetable

by selecting a departure time for every directed line i ∈ L within its period time
Ti, i. e. from the set {0, . . . , Ti − 1}. By our assumptions, the departure times of
the lines at their initial stations already define the arrival times at the transfer sta-

tions. Therefore, we are able precompute the transfer waiting times that arise for

transfers between two lines based on their initial departure times. This is the basic

concept behind the minimization of transfer waiting time in the QSAP.

In the model description we use the following parameters.

L set of (directed) lines

Ti period time of line i ∈ L; to shorten notation, we sometimes let Ti stand for
the set {0, . . . , Ti − 1} of possible departure times of line i at its initial station

wijkl total waiting time that arises for transfers from line i to line k, or vice versa,

if line i (k) leaves its initial station at time j ∈ Ti (l ∈ Tk)

cijkl product of wijkl and the number of passengers who change between the lines

i and j, and vice versa

xij binary variable whose value is 1 if line i ∈ L is assigned the departure time
j ∈ Ti at its initial station, and 0 otherwise

32 Chapter 2

Quadratic Semi-Assignment Problem (QSAP)

Instance: Set L = {1, . . . , n}, positive integers Ti (i ∈ L), and cost coefficients cijkl
(i, k ∈ L : i < k; j ∈ Ti; l ∈ Tk).

Question: Is there a vector xwith components xij ∈ {0, 1} (i ∈ L; j ∈ Ti) such that

∑
Ti−1
j=0 xij = 1 for all i ∈ L and which minimizes

Z(x) =
n

∑
i=1

Ti−1

∑
j=0

n

∑
k=i+1

Tk−1

∑
l=0

cijkl xij xkl ?

The problem is NP hard (Sahni and Gonzalez, 1976). For every line i ∈ L, the
constraint ∑

Ti−1
j=0 xij = 1 requires to select a departure time for line i at its initial

station. If line i departs at time j ∈ Ti and line k departs at time l ∈ Tk, then the
product xij xkl is 1 which gives a weighted transfer waiting time of cijkl . An optimal

solution corresponds to an assignment x thatminimizes the total weighted transfer

waiting time Z(x).

It is also possible to consider an alternative objective function to prevent the

passengers from extreme transfer waiting times,

Z(x,λ) = λ
n

∑
i=1

Ti−1

∑
j=0

n

∑
k=i+1

Tk−1

∑
l=0

cijkl xij xkl

+(1− λ) max{cijkl xij xkl | i, k ∈ L, j ∈ Ti, l ∈ Tk},

where λ ∈ [0, 1] is a respective weight parameter.

A graph theoretic interpretation

The above given interpretation of the QSAP for periodic timetabling is not the

only possible. Klemt and Stemme (1987) introduce the problem on the basis of the

transfer graph.

This graph has the following structure. For each line i ∈ L, the transfer graph
contains a node set Vi of dimension Ti. Each node v ∈ Vi represents a possible
departure time of line i at its initial station within the period time Ti. There are no

arcs between nodes in the set Vi, and the node sets Vi and Vj are linked if there is

a transfer relation between the lines i and j. The number of arcs between the node

sets Vi and Vj equals the product of Ti and Tj, while a node in the set Vi has Tj
outgoing arcs with an end node in the set Vj. Precisely one arc joins a node in the

2.3. The Quadratic Semi-Assignment Problem 33

set Vi with a node in the set Vj. Each arc in the transfer graph is associated with an

arc weight equal to cijkl .

In this interpretation a permissible timetable corresponds to subgraph of the

transfer graph that contains exactly one node from each of the Vi and the arcs

between them. The cost of the timetable is then given by the sum of the arc weights

of the subgraph.

Solving the periodic timetabling problem is thus equal to the task of determining

such a subgraph while minimizing the total cost.

2.3.1 Integer Programming Formulations

In this section we have compiled some integer programming formulations of the

QUADRATIC SEMI-ASSIGNMENT PROBLEM. We begin with a standard quadratic

formulation and derive two possible linearizations of it.

A quadratic integer programming formulation

The QUADRATIC SEMI-ASSIGNMENT PROBLEM directly translates into the follow-

ing quadratic integer programming formulation.

QSAP (2.15)

Minimize
n

∑
i=1

Ti−1

∑
j=0

n

∑
k=i+1

Tk−1

∑
l=0

cijkl xij xkl

subject to
Ti−1

∑
j=0

xij = 1 for all i ∈ L (2.15a)

0 ≤ xij ≤ 1 for all i ∈ L, j ∈ Ti (2.15b)

xij ∈ Z for all i ∈ L, j ∈ Ti (2.15c)

Since the objective function of QSAP (2.15) is quadratic and in general non-

convex, a direct solution of this formulation is evidently hard. Due to this issue,

we will next review possible linearizations of the problem.

34 Chapter 2

Standard linearization of the Quadratic Semi-assignment Problem

We first demonstrate how to obtain a mixed integer linear program from the qua-

dratic formulation QSAP (2.15) using the standard textbook linearization due to

Fortet (1960).

Without loss of generality we can assume that the products xij xkl are ordered

such that i < k. For each such product xij xkl , we introduce a non-negative variable

yijkl ∈ Q≥0 and extend the formulation by the following linearization constraints

yijkl ≤ xij (2.16)

yijkl ≤ xkl (2.17)

yijkl ≥ xij + xkl − 1, (2.18)

where i, k ∈ L : i < k, j ∈ Ti, l ∈ Tk. It is easy to check that yijkl = 1 if and

only if xij xkl = 1. If either xij or xkl is zero, then by the non-negativity of yijkl and

inequality (2.16) or (2.17), we have yijkl = 0. If xij = xkl = 1, then the constraints

(2.18) and (2.16) imply yijkl = 1.

In our case, we can omit the constraints (2.16) and (2.17) since all cost coeffi-

cients cijkl are non-negative. It follows that the resulting linear QSAP formulation

requires ∑
n
i=1∑

n
k=i+1 Ti Tk additional variables and the same number of additional

constraints. We get

QSAP basic (2.19)

Minimize
n

∑
i=1

Ti−1

∑
j=0

n

∑
k=i+1

Tk−1

∑
l=0

cijkl yijkl

subject to
Ti−1

∑
j=0

xij = 1 for all i ∈ L (2.15a)

xij + xkl − yijkl ≤ 1 for all i, k ∈ L : i < k, j ∈ Ti, l ∈ Tk (2.19a)

0 ≤ xij ≤ 1 for all i ∈ L, j ∈ Ti (2.15b)

xij ∈ Z for all i ∈ L, j ∈ Ti (2.15c)

yijkl ∈ Q≥0 for all i, k ∈ L : i < k, j ∈ Ti, l ∈ Tk (2.19b)

2.3. The Quadratic Semi-Assignment Problem 35

Notation 2.22 Let us introduce the sets I = {(i, j) | i ∈ L, j ∈ Ti} and J =

{(i, j, k, l) ∈ I × I | i < k}. Then, we write

PIP(QSAP basic) = conv{(x, y) ∈ QI × Q J | (x, y) satisfies (2.15a)–(2.15c),

(2.19a) , and (2.19b)},

for the convex hull of the solutions to QSAP basic (2.19), and we denote by

PLP(QSAP basic) = {(x, y) ∈ QI × Q J | (x, y) satisfies (2.15a),(2.15b),

(2.19a), and (2.19b)}

the rational polyhedron of the LP relaxation to QSAP basic (2.19).

A downside of this formulation is that the newly introduced linearization con-

straints (2.19a) are of Big-M type and typically lead to a poor LP relaxation bound.

We therefore provide another linearization of QSAP (2.15) on the same new vari-

ables yijkl . This formulation circumvents the Big-M difficulties of the standard lin-

earization and manages with less additional constraints.

Compact linearization of the Quadratic Semi-assignment Problem

The next mixed integer program for the QSAP is based on a general linearization

technique for binary quadratic programs presented in Liberti (2007). The method

can be summarized as follows. We multiply the semi-assignment constraints un-

der (2.15a) by each problem variable which yields further quadratic constraints of

the form
Ti−1

∑
j=0

xij xkl = xkl for i, k ∈ L, l ∈ Tk.

36 Chapter 2

As before, we replace each product xij xkl in the formulation by the belonging vari-

able yijkl . Note that yijkl and yklij with i < k stand for the same variable. This gives

QSAP plus (2.20)

Minimize
n

∑
i=1

Ti−1

∑
j=0

n

∑
k=i+1

Tk−1

∑
l=0

cijkl yijkl

subject to
Ti−1

∑
j=0

xij = 1 for all i ∈ L (2.15a)

Ti−1

∑
j=0

yijkl − xkl = 0 for all i, k ∈ L : i 6= k, l ∈ Tk (2.20a)

0 ≤ xij ≤ 1 for all i ∈ L, j ∈ Ti (2.15b)

xij ∈ Z for all i ∈ L, j ∈ Ti (2.15c)

yijkl ∈ Q≥0 for all i, k ∈ L : i < k, j ∈ Ti, l ∈ Tk. (2.19b)

Notation 2.23 Recall the definitions of the sets I and J from QSAP basic (2.19).

Then, we introduce the following notation.

PIP(QSAP plus) = conv{(x, y) ∈ QI × Q J | (x, y) satisfies (2.15a)–(2.15c),

(2.20a), and (2.19b)}

PLP(QSAP plus) = {(x, y) ∈ QI × Q J | (x, y) satisfies (2.15a),(2.15b),

(2.20a), and (2.19b)}

The above formulation has ∑i ∑k 6=i Tk additional constraints with respect to the

formulation QSAP (2.15). We wish to compare this number with that of the stan-

dard linearization. For convenience we make the analysis for T = maxi∈L Ti. It

follows that the standard linearization adds O(T2) constraints to the formulation.

For the compact linearization, on the other hand, only O(T) further constraints

are required.

2.3. The Quadratic Semi-Assignment Problem 37

That QSAP plus (2.20) is indeed a valid linearization of QSAP (2.15), shows the

following lemma.

Lemma 2.24 If (x, y) ∈ PIP(QSAP plus), then

yijkl = 1⇔ xij xkl = 1,

for all i, k ∈ L : i < k, j ∈ Ti, l ∈ Tk.

Proof. We show that the constraints (2.20a) imply the standard linearization con-

straints (2.16)–(2.18). Recall that yijkl and yklij for i < k denote the same variable.

From constraints (2.20a) it then follows immediately that yijkl ≤ xij and yijkl ≤ xkl .
Thus, the only point remaining concerns the verification of inequality (2.18).

We have yijkl ≤ xij, which gives

∑
m 6=j

yimkl ≤ ∑
m 6=j

xim.

Adding zero to the left-hand side, yields

∑
m

yimkl − yijkl − ∑
m 6=j

xim ≤ 0,

and according to the constraints (2.20a) we can replace ∑m yimkl by xkl to obtain

xkl − yijkl − ∑
m 6=j

xim ≤ 0.

Doing the zero-trick for the right-hand side as well, we get

xkl − yijkl − ∑
m

xim − xij ≤ 0.

But ∑m xim = 1 by constraints (2.15a), and hence,

xkl − yijkl − 1− xij ≤ 0.

The next corollary shows that the LP relaxation of QSAP plus (2.20) is at least as

tight as that of QSAP basic (2.19).

38 Chapter 2

Corollary 2.25

PLP(QSAP plus) ⊆ PLP(QSAP basic).

Proof. Notice that the proof of Lemma 2.3.1 does not require the variables xij to

be binary. Thus, by the same reasoning we can see that every point in the polyhe-

dron PLP(QSAP plus) is also contained in the polyhedron PLP(QSAP basic). This
establishes the corollary.

Finally, we have to note that the formulation QSAP (2.15) and, in particular, its

linearizations QSAP basic (2.19) and QSAP plus (2.20) are, contrary to the PESP,

very sensitive against further discretization of the period time. Every refinement

would yield a drastic increase of the problem size.

3
Time Discretization Applied to

PESP

The theme of this chapter is to develop a set of new integer programming formu-

lations for the PERIODIC EVENT SCHEDULING PROBLEM that arise from time dis-

cretization. The basic idea is to consider an expanded event-activity graph which

encodes the set of feasible timetables.

A similar approach has successfully been applied by Caprara et al. (2000) for a spe-

cial scenario. They aim at computing periodic timetables for a set of railway lines

that are operated on parts of the same route between two major stations. In order

that the trains does not violate existing track capacities, minimum headway times

are required. Their objective is to minimize waiting time caused by overtaking.

Caprara et al. (2000) define a time-expanded graph as the basis for their IP formu-

lations. In this graph a node models the arrival/departure at a station at a certain

point in time.

We extend this method to general transportation networks. Section 3.1 intro-

duces the expanded event-activity graph from which we derive the new PESP

formulations in Section 3.2. The chapter closes with a discussion on speedup tech-

niques that can be applied when solving the formulations by mixed integer pro-

gramming.

3.1 Expanding the PESP Event-Activity Graph

We have defined the PERIODIC EVENT SCHEDULING PROBLEM on the basis of

events (departures or arrivals) and activities in the transportation network. From

this point of view, a feasible timetable is obtained by determining the timings of

all events such that a given set of periodic interval constraints is satisfied.

We nowdescribe how to encode the set of feasible solutions of a PESP instance in

an expanded event-activity graph. In this graph a node represents an event at a point

in time. The problem of finding a feasible timetable is then reduced to determine

a special subgraph of this expanded event-activity graph.

39

40 Chapter 3

Suppose I = (D, ℓ, u,w, T) is an optimization instance of PESP. Recall that the

instance I comprises the following components.

D event-activity graph, where D = (V, A)

ℓ minimum allowable time durations of the activities

u maximum allowable time durations of the activities

w weights of the activities

T period time

Let us denote by D = (V,A) the expanded event-activity graph, where V and A

stand for the node set and the arc set of D, respectively. For every event v ∈ V and
point in time t ∈ {0, . . . , T − 1}, the expanded event-activity graph D contains a
node v[t] ∈ V. From this we obtain the node set of D which thus contains a total
of |V| = |V| · T nodes. In the following, we will write V(v) for the subset of V
belonging to the event v.

Every activity is modeled by a set of arcs in the expanded event-activity graph.

In fact, if a = (v,w) is an activity in the event-activity graph D = (V, A) of a PESP

instance and has the time window [ℓa, ua], then it is represented by the arc set

A(a) = {(v[t],w[t′]) ∈ V×V | t, t′ ∈ {0, . . . , T− 1}, (t′− t− ℓa) mod T ≤ ua− ℓa}.

For activities a ∈ A with a fixed time duration this yields a set of T arcs. Notice
that every arc in the set A(a) implies a feasible timing for the events related to

activity a. The union of A(a) over all activities a in A gives the arc set A of the

expanded event-activity graph. We associate with each arc a = (v[t],w[t′]) in A

costs ca which are defined as ca = wa (t′ − t− ℓa) mod T. Recall from Section 2.2.2

that this is precisely the slack time of the activity a ∈ A implied by the arc a ∈ A(a).

A feasible solution to the given PESP instance I corresponds to a subgraphD’ =
(V’,A’) of the expanded event-activity graph Dwith the following properties.

1. For every activity a ∈ A, the set A’ contains precisely one arc from the set
A(a).

2. For every event v ∈ V, the set V’ contains precisely one node from the set
V(v).

The subgraph D’ defines an optimal solution if, in addition, the sum of the

weights of the arcs in the set A’ is minimal.

3.1. Expanding the PESP Event-Activity Graph 41

Nollendorf
Platz

Viktoria-
Luise Platz

Bayrischer
Platz

Rathaus
Schöneberg

Innsbrucker
Platz

[2, 2] [0, 0] [1, 1] [0, 0] [2, 2] [0, 0] [1, 1]

(a) Line path.

0
1
2
3
4

Nollendorf
Platz

Viktoria-
Luise Platz

Bayrischer
Platz

Rathaus
Schöneberg

Innsbrucker
Platz

(b) Expanded line path.

Figure 3.1 A line path in the event-activity graph and the corresponding expanded line
path in the expanded event-activity graph (T = 5). The arc labels denote the timewindows
of the related activities.

In the remainder of this chapter we will need the notion of a line cycle in the

event-activity graph. Consider a line R ∈ R with forward direction L and back-
ward direction L. Taking each direction of line R on its own, the trip and dwell

arcs of both lines define separate line paths in the event-activity graph (see Fig-

ure 3.1(a)). Each path starts and ends with a trip arc, and in between trip and dwell

arcs alternate. At the end points the line paths of L and L are connected through

turnaround arcs which form the line cycle of line R (see Figure 3.2(a)).

Line path and line cycle have an equivalent in the expanded event-activity graph

which we shall call expanded line path and expanded line cycle (see Figures 3.1(b) and

3.2(b), respectively).

42 Chapter 3

Nollendorf
Platz

Viktoria-
Luise Platz

Bayrischer
Platz

Rathaus
Schöneberg

Innsbrucker
Platz

[2, 2] [0, 0] [1, 1] [0, 0] [2, 2] [0, 0] [1, 1]

[2, 2] [0, 0] [1, 1] [0, 0] [2, 2] [0, 0] [1, 1]

(a) Line cycle.

0
1
2
3
4

Nollendorf
Platz

Viktoria-
Luise Platz

Bayrischer
Platz

Rathaus
Schöneberg

Innsbrucker
Platz

(b) Expanded line cycle.

Figure 3.2 A line cycle in the event-activity graph and the belonging expanded line cycle
in the expanded event-activity graph (T = 5). Note that only a subset of the expanded
turnaround arcs is displayed.

3.2. X-PESP Formulations 43

Figure 3.3 Expanded event-activity graph of a sample instance.

3.2 X-PESP Formulations

As indicated in the section above, we can solve the PERIODIC EVENT SCHEDUL-

ING PROBLEM by determining a special subgraph of the expanded event-activity

graph. We now derive a set of new integer programming formulations for PESP

based on this observation.

Again, consider an optimization instance I = (D, ℓ, u,w, T) of the PESP and

let D = (V,A) denote its belonging expanded event-activity graph. We need two

types of decision variables. One for the arcs of vehicle activities a ∈ X, and the
other for the arcs of non-vehicle activities a ∈ A\X (see Section 2.2). With the
notationX =

⋃

a∈X A(a) for the arcs belonging to vehicle activities, we define these

variables by

xa =

{

1, if arc a ∈ X is selected,

0, otherwise, and
ya =

{

1, if arc a ∈ A\X is selected,

0, otherwise.

44 Chapter 3

For abbreviation, we use the notations δX(v) = δ(v)∩X and δa(v) = δ(v)∩A(a)

for v ∈ V. In the following, let aR be an arbitrary fixed vehicle activity of line
R ∈ R, whereR denotes the set of operated lines. We get

X-PESP basic (3.1)

Minimize ∑
a∈X

ca xa + ∑
a∈A\X

ca ya

subject to

∑
a∈A(aR)

xa = 1 for all R ∈ R (3.1a)

∑
a∈δ−

X
(v)

xa − ∑
a∈δ+

X
(v)

xa = 0 for all v ∈ V (3.1b)

∑
a∈A(a)

ya = 1 for all a ∈ A\X (3.1c)

∑
a∈δ−

X
(v)

xa − yb ≥ 0 for all b = (v,w) ∈ A\X (3.1d)

∑
a∈δ+

X
(w)

xa − yb ≥ 0 for all b = (v,w) ∈ A\X (3.1e)

0 ≤ xa ≤ 1 for all a ∈ X (3.1f)

0 ≤ ya ≤ 1 for all a ∈ A\X (3.1g)

xa ∈ Z for all a ∈ X (3.1h)

ya ∈ Z for all a ∈ A\X (3.1i)

Notation 3.1 We denote the convex hull of all feasible solutions to the formulation

X-PESP basic (3.1) by

PIP(X-PESP basic) = conv{(x, y) ∈ QX × QA\X | (x, y) satisfies (3.1a)–(3.1i)}.

Furthermore, we write

PLP(X-PESP basic) = {(x, y) ∈ QX × QA\X | (x, y) satisfies (3.1a)–(3.1g)}

for the rational polyhedron of its LP relaxation.

3.2. X-PESP Formulations 45

Let us first restrict our attention to the constraints (3.1a) and (3.1b) that are ex-

clusively defined on arcs belonging to vehicle activities. If we consider the value

xa as a flow on arc a, then the constraints (3.1b) require flow conservation in ev-

ery node v ∈ V. Now, the constraints (3.1a) say that for every line R ∈ R there
must be a flow of value 1 over the cut A(aR). In combination with the integrality

constraints (3.1h) on the x variables, this yields an integral circulation of value 1

along the expanded line cycle of every line R ∈ R (see Figure 3.4). If there were
only vehicle activities, then the constraints (3.1a)–(3.1c) as well as (3.1f) and (3.1h)

would already lead to a feasible timetable. The departure and arrival times of all

lines are determined and meet the conditions on trip, dwell, and turn activities.

The rest of the constraints is used to incorporate non-vehicle activities. By the

constraints (3.1c), we ensure that for every non-vehicle activity a ∈ A\X precisely
one arc a in A(a) is selected. But this condition is not sufficient to fulfill the peri-

odic interval constraints of all activities, since the arc a may imply other timings

for its related events than those defined by the arcs selected for vehicle activi-

ties. Roughly speaking, we need to enforce a coupling between selected arcs of

non-vehicle activities and the circulations along the expanded line cycles. This is

done by the constraints (3.1d) and (3.1e) which we shall therefore call coupling con-

straints. The objective function represents the cost of the timetable and is given as

the sum of the weights of all arcs selected from the set A.

As we will see later, we may relax the integrality constraints on the y variables.

0
1
2
3
4

Nollendorf
Platz

Viktoria-
Luise Platz

Bayrischer
Platz

Rathaus
Schöneberg

Innsbrucker
Platz

Figure 3.4 Integral circulation in an expanded line cycle.

The next proposition will be needed in the remainder of this section.

46 Chapter 3

Proposition 3.2 Let I = (D, ℓ, u,w, T) denote a PESP optimization instance, and

let D = (V,A) be the belonging expanded event-activity graph. If a vector (x, y) ∈
QX × QA\X satisfies the constraints (3.1a)–(3.1b), then

∑
a∈δ−

X
(V(v))

xa = ∑
a∈δ+

X
(V(v))

xa = 1

for all v ∈ V.

Proof. Let I , D, and (x, y) ∈ QX × QA\X satisfy the hypothesis of the proposition,

and let v ∈ V. The node v is contained in the line cycle of some line R ∈ R.
That ∑a∈δ−

X
(V(v)) xa = ∑a∈δ+

X
(V(v)) xa follows from the constraints (3.1b). To see that

both sums have the value 1, observe that there is a unique vehicle activity a ∈ X
with the property that A(a) = δ−

X
(V(v)). If a = aR, then the proposition follows

directly from the constraints (3.1a). If, on the other hand, a 6= aR, we invoke the
constraints (3.1b) in the same way as before. By induction, for every arc a′ that

follows aR on the line cycle, we have ∑a∈A(a′) xa = 1, and the proposition follows.

We are now in a position to show why we can relax the integrality constraints

for the y variables in X-PESP basic (3.1).

Lemma 3.3 If a vector (x, y) ∈ QX × QA\X satisfies the constraints (3.1a)–(3.1h),

then the vector y is integer.

Proof. Let b = (v,w) ∈ A\X. By Proposition 3.2, we have ∑a∈δ−
X

(V(v)) xa = 1 and

∑a∈δ+
X

(V(w)) xa = 1. Since x is integral, there is precisely one node v ∈ V(v) with

∑a∈δ−
X

(v) xa = 1, while for all other nodes v′ ∈ V(v) we have ∑a∈δ−
X

(v′) xa = 0.

For the same reason, there is a unique node w ∈ V(w) such that ∑a∈δ+
X

(w) xa = 1

and ∑a∈δ+
X

(w′) xa = 0 for all nodes w′ ∈ V(w) with w′ 6= w. The coupling con-

straints (3.1d) and (3.1e) now imply that yb = 0 for all arcs b ∈ A(b) with b 6=
(v,w). Finally, we deduce from the constraints (3.1c) that yb = 1 for b = (v,w).

Hence, all y variables are integer.

Lemma 3.4 There is a one-to-one correspondence between the integer solutions of

the PESP and the solutions to X-PESP basic (3.1).

Proof. The proof is straightforward. Consider a feasible optimization instance I =

(D, ℓ, u,w, T) of the PESP. For every integer solution to the instance I , we show
how to construct the corresponding solution to X-PESP basic (3.1), and vice versa.

3.2. X-PESP Formulations 47

Let π ∈ {0, . . . , T − 1}V be a solution to I . The corresponding solution to the
formulation X-PESP basic (3.1) is obtained as follows: Let a = (v,w) ∈ X. Since
the vector π is feasible for the instance I , we have (πw−πv− ℓa) mod T ≤ ua− ℓa.

By construction, there is precisely one arc a ∈ A(a) with a = (v[πv],w[πw]) in the

expanded event-activity graph that models this choice of timings for the events v

and w. Set xa = 1. An activity a = (v,w) ∈ A\X is handled in much the same way.
The only difference is that we set ya = 1 for the respective arc a = (v[πv],w[πw]) ∈
A(a). This defines the PESP solution in terms of a vector (x, y) ∈ QA, and the task

is now to prove that (x, y) is feasible to X-PESP basic (3.1).

o Proof of the constraints (3.1a). Let R ∈ R. By definition, we have aR ∈ X.
Following the above remarks, there is precisely one arc a ∈ A(aR) with xa = 1.

This gives ∑a∈A(aR) xa = 1.

o Proof of the constraints (3.1b). Let v[t] ∈ V. If πv 6= t, then all arcs in δ−
X

(v[t])∪
δ+
X

(v[t]) are set to zero, and hence the constraints are obviously satisfied. The

interesting case is πv = t. Since the node v is part of the line cycle of some line

R ∈ R, there exist distinguished vehicle activities a, a′ ∈ X with {a} = δ−X (v)

and {a′} = δ+
X (v). By the definition of x, there are unique arcs a = (u, v[t]) ∈

A(a) and a′ = (v[t],w) ∈ A(a′) with xa = 1 = xa′ . Together with ∑a∈A(a) xa =

1 = ∑a∈A(a′) xa this implies flow conservation in v[t].

o Proof of the constraints (3.1c). Consider an activity a ∈ A\X. By the definition
of the vector y, there is precisely one arc a ∈ A(a) with ya = 1, which is the

desired conclusion.

o Proof of the constraints (3.1d) and (3.1e). We give the proof only for the con-

straints under (3.1d); the remaining constraints can be handled in the sameway.

Let b = (v[t],w[t′]) ∈ A\X. We first turn to the case πv 6= t or πw 6= t′. It fol-
lows immediately from the definition of the vector y that yb = 0. Thus, inequal-

ity (3.1d) holds. What is left is the case πv = t and πw = t′. According to the

proof of the constraints (3.1b), we have ∑a∈δ−
X

(v[t]) xa = 1. Since yb ∈ {0, 1} by
the constraints (3.1i), this proves the claim.

o Proof of the constraints (3.1f)–(3.1i). Immediately from the definition of the

vector (x, y).

Now, consider a solution (x, y) ∈ QX × QA\X that is feasible to the formulation

X-PESP basic (3.1). The corresponding PESP solution π ∈ {0, . . . , T − 1}V is de-
fined as follows. Let v ∈ V. Then, there is a unique vehicle activity a = (v,w) ∈ X
and, according to the proof of Proposition 3.2, we have ∑a∈A(a) xa = 1. Since the

48 Chapter 3

vector x is integral, there is only one arc in A(a), say a = (v[t],w[t′]), with xa = 1.

Set πv = t.

The proof is completed by showing that the vector π as defined above satisfies

the periodic interval constraints (2.1) for all activities in A. First, suppose a ∈ A\X.
Applying the constraints (3.1c) and (3.1i), we can assert that there is unique arc

a = (v[t],w[t′]) ∈ A(a) with ya = 1. As all arcs in A(a), the arc a respects the peri-

odic interval constraint of activity a in the sense that (t′ − t− ℓa) mod T ≤ ua− ℓa.

The coupling constraints (3.1d)–(3.1e) now imply that πv = t and πw = t′, which

finishes the proof for the case a ∈ A\X.
The same argumentation works for a ∈ X. We only need to show that ∑a∈A(a) xa =

1. Each arc a ∈ X belongs to the line cycle of some line R ∈ R. According to
the above remarks, we have an integral circulation around the corresponding ex-

panded line cycle , and so for one arc a ∈ A(a) the value xa = 1, while for the

remaining arcs in A(a) we have xa = 0. This is our claim.

3.2. X-PESP Formulations 49

The coupling constraints (3.1d)–(3.1e) leave room for improvement. It is possi-

ble to strengthen these constraints and with the notation T = {0, . . . , T − 1}, we
obtain

X-PESP plus (3.2)

Minimize ∑
a∈X

ca xa + ∑
a∈A\X

ca ya

subject to

∑
a∈A(aR)

xa = 1 for all R ∈ R (3.1a)

∑
a∈δ−

X
(v)

xa − ∑
a∈δ+

X
(v)

xa = 0 for all v ∈ V (3.1b)

∑
a∈A(a)

ya = 1 for all a ∈ A\X (3.1c)

∑
a∈δ−

X
(v[t])

xa − ∑
a∈δ+

a (v[t])

ya ≥ 0 for all a = (v,w) ∈ A\X, t ∈ T (3.2a)

∑
a∈δ+

X
(w[t])

xa − ∑
a∈δ−a (w[t])

ya ≥ 0 for all a = (v,w) ∈ A\X, t ∈ T (3.2b)

0 ≤ xa ≤ 1 for all a ∈ X (3.1f)

0 ≤ ya ≤ 1 for all a ∈ A\X (3.1g)

xa ∈ Z for all a ∈ X (3.1h)

ya ∈ Z for all a ∈ A\X. (3.1i)

Notation 3.5 We define the following rational polyhedra.

PIP(X-PESP plus) = conv{(x, y) ∈ QX × QA\X | (x, y) satisfies (3.1a)–(3.1c),

(3.2a), (3.2b), and (3.1f)–(3.1i)}

PLP(X-PESP plus) = {(x, y) ∈ QX × QA\X | (x, y) satisfies (3.1a)–(3.1c), (3.2a),

(3.2b), (3.1f), and (3.1g)}.

Lemma 3.6

PIP(X-PESP plus) = PIP(X-PESP basic), (3.3)

50 Chapter 3

and

PLP(X-PESP plus) ⊆ PLP(X-PESP basic). (3.4)

Proof. We begin by proving (3.3). The idea is to show that every solution to the

formulation X-PESP basic (3.1) is feasible to X-PESP plus (3.2). Since both formu-

lations only differ in the coupling constraints, it suffices to verify (3.2a) and (3.2b).

Suppose (x, y) ∈ PIP(X-PESP basic). Let a ∈ A\X, and let t ∈ {0, . . . , T − 1}.
By the constraints (3.1c), and (3.1i), there is precisely one arc in A(a), say a =

(v[t1],w[t2]), with ya = 1. If t 6= t1, then ∑a∈δ+
a (v[t]) ya = 0 and the constraint (3.2a)

is clearly satisfied. On the other hand, if t = t1, we have ∑a∈δ+
a (v[t]) ya = 1. In this

case we can write

∑
a∈δ−

X
(v[t])

xa − ∑
a∈δ+

a (v[t])

ya = ∑
a∈δ−

X
(v[t])

xa − ya ≥ 0,

where the last inequality follows from the constraints (3.1d). In the same manner

we see that the vector (x, y) satisfies the constraints (3.2b).

It remains to prove the relation (3.4). First, observe that the constraints (3.1d)

and (3.1e) are dominated by the ones under (3.2a)–(3.2b). To see this, consider

an arc b = (v[t],w[t′]) ∈ A\X. Let a ∈ A\X with b ∈ A(a). Applying the con-

straints (3.2a)–(3.2b) we obtain

∑
a∈δ−

X
(v[t])

xa ≥ ∑
a∈δ+

a (v[t])

ya ≥ yb

and

∑
a∈δ+

X
(w[t′])

xa ≥ ∑
a∈δ−a (w[t])

ya ≥ yb.

This gives PLP(X-PESP plus) ⊆ PLP(X-PESP basic).

We later show that, under certain conditions, the polyhedron PLP(X-PESP plus) is
even a proper subset of PLP(X-PESP basic).
Starting from X-PESP plus (3.2) we are able to provide another formulation in

which the coupling constraints are stated as equality constraints. It will turn out

3.2. X-PESP Formulations 51

that this makes the constraints (3.1c) unnecessary. Again, we use T as a shorthand
for {0, . . . , T− 1} and obtain

X-PESP pro (3.5)

Minimize ∑
a∈X

ca xa + ∑
a∈A\X

ca ya

subject to

∑
a∈A(aR)

xa = 1 for all R ∈ R (3.1a)

∑
a∈δ−

X
(v)

xa − ∑
a∈δ+

X
(v)

xa = 0 for all v ∈ V (3.1b)

∑
a∈δ−

X
(v[t])

xa − ∑
a∈δ+

a (v[t])

ya = 0 for all a = (v,w) ∈ A\X, t ∈ T (3.5a)

∑
a∈δ+

X
(w[t])

xa − ∑
a∈δ−a (w[t])

ya = 0 for all a = (v,w) ∈ A\X, t ∈ T (3.5b)

0 ≤ xa ≤ 1 for all a ∈ X (3.1f)

0 ≤ ya ≤ 1 for all a ∈ A\X (3.1g)

xa ∈ Z for all a ∈ X (3.1h)

ya ∈ Z for all a ∈ A\X. (3.1i)

Notation 3.7 Let us introduce the following notation.

PIP(X-PESP pro) = conv{(x, y) ∈ QX × QA\X | (x, y) satisfies (3.1a), (3.1b),

(3.5a), (3.5b), and (3.1f)–(3.1i)}

PLP(X-PESP pro) = {(x, y) ∈ QX × QA\X | (x, y) satisfies (3.1a), (3.1b), (3.5a),

(3.5b), (3.1f), and (3.1g)}.

Remark 3.8 Proposition 3.2 gives the reasonwhywe can omit the constraints (3.1c)

in X-PESP pro (3.5). In fact, if a = (v,w) ∈ A\X, then the combination of the
constraints (3.5a) belonging to activity a, together with Proposition 3.2, give

∑
a∈A(a)

ya = ∑
a∈δ−

X
(V(v))

xa = 1.

52 Chapter 3

Lemma 3.9

PLP(X-PESP pro) = PLP(X-PESP plus).

Proof. The idea of the proof is to show that the equality constraints under (3.5a)

and (3.5b) are already implied by X-PESP plus (3.2).

Let (x, y) ∈ PLP(X-PESP plus), and let a ∈ A\X. Then, the constraints (3.2a)
state

∑
a∈δ−

X
(v[t])

xa − ∑
a∈δ+

a (v[t])

ya ≥ 0

for all t ∈ {0, . . . , T− 1}. Combining these inequalities we obtain

∑
a∈δ−

X
(V(v))

xa − ∑
a∈A(a)

ya ≥ 0.

Proposition 3.2 and the constraints (3.1c) now give ∑
a∈δ−

X
(V(v))

xa = ∑
a∈A(a)

ya = 1,

and hence we must have

∑
a∈δ−

X
(v[t])

xa − ∑
a∈δ+

a (v[t])

ya ≤ 0

for all t ∈ {0, . . . , T − 1}. Thus, the constraints (3.2a) are satisfied by equality. The
constraints (3.2b) can be handled in the same way.

We know from Lemma 2.7 that the integer programming formulations for the

PESP presented in Section 2.2.4 have a very poor LP relaxation. Unfortunately, the

same applies to the X-PESP formulations.

Lemma 3.10 The optimal solution value to the LP relaxation of X-PESP pro (3.5) is

zero.

Proof. The proof is by construction. We define a vector (x, y) ∈ QX × QA\X that

is satisfies the constraints (3.1a), (3.1b), (3.5a),(3.5b), (3.1f), and (3.1g) and has zero

cost.

Let I = (D, ℓ, u,w, T) be feasible optimization instance of PESP, and let D be

the belonging expanded event-activity graph. Then, for each activity a ∈ A and
point in time t in {0, . . . , T − 1}, there is precisely one arc a = (v[t],w[t′]) ∈ A(a)

3.2. X-PESP Formulations 53

satisfying (t′ − t) mod T = ℓa (cf. Section 3.1). We set xa = 1/T if a ∈ X and
ya = 1/T otherwise. The remaining variables are set to zero.

We first show that the resulting vector (x, y) is feasible to the LP relaxation of

X-PESP pro (3.5).

o Proof of the constraints (3.1a). Let R ∈ R. According to the definition of the
vector (x, y), there are precisely T arcs in the set A(aR) for which the vector

x defines a value of 1/T. The components of x belonging to the remaining

arcs in A(aR) are zero. Hence, summing over the arcs in the set A(aR) gives

∑a∈A(aR) xa = 1, which is the desired conclusion.

o Proof of the constraints (3.1b). Let v ∈ V. Then, there exists an event v ∈ V
such that v ∈ V(v) and there are unique vehicle activities a, a′ ∈ X with
δ−
X

(V(v)) = A(a), and δ+
X

(V(v)) = A(a′). Notice that both A(a) and A(a′) con-

tain precisely T arcs that are set to 1/T in the x vector, and that the node set

V(v) has cardinality T. If we show that neither A(a) nor A(a′) contains two arcs

with common end point, then flow is conserved in v.

Let a1 = (v[t1],w[t′1]) and a2 = (v[t2],w[t′2]) be two distinct arcs in A(a) at

value 1/T in x. By the definition of x, we have (t′1 − t1) mod T = ℓa, and (t′2 −
t2) mod T = ℓa. Now suppose t1 = t2, i. e. a1 and a2 share the same start point.

It follows that t2 = t′2, which contradicts the fact that a1 and a2 are distinct.

A similar contradiction arises if we assume that t′1 = t′2. Drawing the same

conclusion for the set A(a′) gives equation (3.1b).

o Proof of the constraints (3.5a) and (3.5b). Let a = (v,w) ∈ A\X, and let t ∈
{0, . . . , T − 1}. From what has already been proved, we have ∑a∈δ−

X
(v[t]) xa =

1/T = ∑a∈δ+
X

(v[t]) xa. Recalling the definition of the vector (x, y) it follows that

∑a∈δ+
a
ya = 1/T, which gives equation (3.5a). Again, no two arcs in the set A(a)

have an end point in common, so that∑a∈δ−a (w[t]) ya = 1/T, too. This establishes

equation (3.5b).

o Proof of the constraints (3.1f) and (3.1g). The non-negativity of the vector (x, y)

follows directly from its definition.

We finally show that the value of the solution is zero. Since we have a minimiza-

tion problem, this combined with the non-negativity of the cost coefficients and

the variables will imply optimality.

Recall from Section 3.1 that ca = wa (t′ − t− ℓa) mod T for a = (v[t],w[t′]) ∈ A.
All arcs in A that are assigned a positive value by the vector (x, y) have a slack

time (t′ − t − ℓa) of zero. Therefore, we can conclude that the solution value is

zero, which completes the proof.

54 Chapter 3

The next theorem expresses the relation between the polyhedra of the LP relax-

ations of the above X-PESP formulations.

Theorem 3.11

PLP(X-PESP pro) = PLP(X-PESP plus) ⊆ PLP(X-PESP basic)

Proof. Immediate from Lemmas 3.6 and 3.9.

Remark 3.12 If the considered PESP timetabling instances fulfill some minimal

requirements, we can even show that PLP(X-PESP plus) is a proper subset of
PLP(X-PESP basic). In particular, we need the following conditions.

• The period time T ≥ 2.

• The set of events V is not empty.

• The set of vehicle activities X is not empty.

• The set of non-vehicle activities A\X is not empty.

• There exists a non-vehicle activity a∗ = (v,w) ∈ A\X with ℓa∗ 6= ua∗ .

For every PESP instance satisfying these requirements, we can find a feasible so-

lution to the LP relaxation of X-PESP basic (3.1) that violates the coupling con-

straints of X-PESP plus (3.2). The construction follows the proof of Lemma 3.10.

For all vehicle activities a ∈ X, we set xa = 1 for the arc a = (v[t],w[t′]) ∈ A(a)

that satisfies (t′ − t) mod T = ℓa. In the same way we define the vector y for all

activities a ∈ A\X, except for the activity a∗(v,w).

By our assumption ℓa∗ 6= ua∗ , there are at least two arcs in A(a) entering the

node w[t∗] with t∗ ∈ {0, . . . , T − 1}. For two of them, say a1 = (v[t1],w[t∗]) and

a2 = (v[t2],w[t∗]), we set ya1 = ya2 = 1/T. In addition, for every t ∈ {0, . . . , T− 1}
with t 6= t1 and t 6= t2, we choose an arbitrary arc a ∈ A(a) leaving v[t] and set

ya = 1/T.

It follows that the so-defined solution is feasible to X-PESP basic (3.1), but vi-

olates the constraints (3.2b) at least for the node w[t∗]. The conflict is given by

1/T − 2/T 6= 0. Figure 3.5 illustrates this for the case [ℓa∗ , ua∗] = [0, 1].

We are now interested in an analytical comparison of X-PESP pro (3.5) with the

formulation PESP box (2.6). To this end, consider a PESP optimization instance

(D, ℓ, u,w, T) and its belonging expanded event-activity graph D = (V,A).

3.2. X-PESP Formulations 55

t∗
a∗v w v w

Figure 3.5 Illustration of Remark 3.12. Part of a PESP instance and the belonging ex-
panded event-activity graph. All activities different from (v,w) are vehicle activities. Dis-
played arcs in the expanded event-activity graph have the value 1/T. Arcs with zero value
have been omitted.

Theorem 3.13 There is a linear transformation ψ : QA → QV+A with the prop-

erty that

ψ(PIP(X-PESP pro)) = PIP(PESP box). (3.6)

and

ψ(PLP(X-PESP pro)) ⊆ PLP(PESP box), (3.7)

Proof. The proof is by construction. According to Lemma 2.11, we may assume,

without loss of generality, that ua ≤ T for all activities a ∈ A. We define the linear
transformation ψ by

ψ : QX × QA\X → QV × QA,

(
x

y

)

7→




Π 0

P





(
x

y

)

, (3.8)

where

Π ∈ QV×X, Π = SR,

R ∈ QV×X, Rv,a =

{

t, if a = (v[t],w[t′]) ∈ δ+
X

(v),

0, otherwise,

S ∈ {0, 1}V×V, Sv,v =

{

1, if v ∈ V(v),

0, otherwise,

P ∈ QA×A, Pa,a =

{

0, if a = (v[t],w[t′]) ∈ A(a) and t ≤ t′,

1, otherwise.

Note the definition of the matrix P. For an activity a = (v,w) ∈ A, every arc
a = (v[t],w[t′]) ∈ A(a) implies a sequence of the events v and w in the interval

56 Chapter 3

[0, T). The matrix entry Pa,a equals the periodical offset pa ∈ {0, 1} that is needed
in the periodic interval constraint

ℓa ≤ t
′ − t+ T pa ≤ ua

according to Remark 2.10.

Let (x, y) ∈ PLP(X-PESP pro), and let (π, p) = ψ((x, y)). We first show that

(π, p) is a feasible solution to the LP relaxation of PESP box (2.6) which then im-

plies statement (3.7).

o Proof of the constraints (2.4a) and (2.4b) for a ∈ X. We have to show that
ℓa ≤ πw − πv + T pa ≤ ua for all a = (v,w) ∈ X. To this end, let a ∈ X. Then,
for every arc a = (v[t],w[t′]) ∈ A(a), we have

ℓa ≤ t
′ − t+ T Pa,a ≤ ua.

We multiply this relation by xa which gives

ℓa xa ≤ (t′ − t+ T Pa,a) xa ≤ ua xa,

keeping in mind that xa is non-negative. Summing over all arcs in A(a) yields

ℓa ∑
a∈A(a)

xa ≤ ∑
a∈A(a)

a=(v[t],w[t′])

(t′ − t+ T Pa,a) xa ≤ ua ∑
a∈A(a)

xa.

From the proof of Proposition 3.2 we conclude ∑a∈A(a) xa = 1, and hence

ℓa ≤ ∑
a∈A(a)

a=(v[t],w[t′])

(t′ − t+ T Pa,a) xa ≤ ua,

which can be rewritten to

ℓa ≤ ∑
a∈A(a)

a=(v[t],w[t′])

t′ xa − ∑
a∈A(a)

a=(v[t],w[t′])

t xa + T ∑
a∈A(a)

Pa,a xa ≤ ua.

Definition (3.8) now gives p = P (xy) and, in particular, pa = ∑a∈A(a) Pa,a xa,

since a ∈ X. Therefore, the proof is completed by showing that

∑
a∈A(a)

a=(v[t],w[t′])

t′ xa = πw, and ∑
a∈A(a)

a=(v[t],w[t′])

t xa = πv.

3.2. X-PESP Formulations 57

First, consider the equation on the left-hand side. We derive

∑
a∈A(a)

a=(v[t],w[t′])

t′ xa = ∑
w[t′]∈V(w)

(
t′ ∑
a∈δ−

X
(w[t′])

xa
) (3.1b)

= ∑
w[t′]∈V(w)

(
t′ ∑
a∈δ+

X
(w[t′])

xa
) (3.8)

= πw,

where for the first equality we have applied that a is the only arc in X that enters

the node w, so that δ−a (w[t′]) = δ−
X

(w[t′]).

We now apply the argumentation again, with δ+
a (v[t]) = δ+

X
(v[t]), to obtain

∑
a∈A(a)

a=(v[t],w[t′])

t xa = ∑
v[t]∈V(v)

(
t ∑
a∈δ+

X
(v[t])

xa
) (3.8)

= πv.

o Proof of the constraints (2.4a) and (2.4b) for a ∈ A\X. The task is now to show
that ℓa ≤ πw − πv + T pa ≤ ua for all a = (v,w) ∈ A\X. Let a = (v,w) ∈ A\X.
Then, by the definition of the matrix P, we have ℓa ≤ t′ − t + T Pa,a ≤ ua for
every arc a = (v[t],w[t′]) ∈ A(a). Summing over all arcs in A(a) gives

ℓa ∑
a∈A(a)

ya ≤ ∑
a∈A(a)

a=(v[t],w[t′])

(t′ − t+ T Pa,a) ya ≤ ua ∑
a∈A(a)

ya.

Keeping in mind Remark 3.8, we derive

ℓa ≤ ∑
a∈A(a)

a=(v[t],w[t′])

t′ ya − ∑
a∈A(a)

a=(v[t],w[t′])

t ya + T ∑
a∈A(a)

Pa,a ya ≤ ua.

If we recall that p = P (xy), and hence pa = ∑a∈A(a) Pa,a ya, then we are reduced

to proving that

∑
a∈A(a)

a=(v[t],w[t′])

t′ ya = πw, and ∑
a∈A(a)

a=(v[t],w[t′])

t ya = πv.

The equation on the left-hand side results from

∑
a∈A(a)

a=(v[t],w[t′])

t′ ya = ∑
w[t′]∈V(w)

(
t′ ∑
a∈δ−a (w[t′])

ya
) (3.5b)

= ∑
w[t′]∈V(w)

(
t′ ∑
a∈δ+

X
(w[t′])

xa
) (3.8)

= πw.

58 Chapter 3

That on the right-hand side is shown by

∑
a∈A(a)

a=(v[t],w[t′])

t ya = ∑
v[t]∈V(v)

(
t ∑
a∈δ+

a (v[t])

ya
) (3.5a)

= ∑
v[t]∈V(v)

(
t ∑
a∈δ−

X
(v[t])

xa
) (3.1b), (3.8)

= πv.

o Proof of the constraints (2.4c). We have to prove that πv ∈ [0, T − 1] for all
v ∈ V. By the definition of ψ, we have π = Πx = SRx and, in particular,

πv = ∑
v∈V(v)

∑
a∈δ+

X
(v)

a=(v[t],w[t′])

t xa

for v ∈ V. Of course πv ≥ 0, since t and xa are non-negative. Therefore, the only
point remaining is to show that πv ≤ T − 1. To this end, observe the following

πv = ∑
v∈V(v)

∑
a∈δ+

X
(v)

a=(v[t],w[t′])

t xa ≤ (T− 1) ∑
v∈V(v)

∑
a∈δ+

X
(v)

xa

= (T− 1) ∑
a∈δ+

X
(V(v))

xa

= (T− 1),

where for the last equality we have applied Proposition 3.2.

o Proof of the constraints (2.6a). Our next claim is that pa ∈ [0, 1] for all a ∈ A.
Let a ∈ A. From Definition (3.8) it follows that p = P (xy). If a ∈ X, this gives
pa = ∑a∈A(a) Pa,a xa. Since Pa,a ∈ {0, 1}, we have

pa = ∑
a∈A(a)

Pa,a xa ≤ ∑
a∈A(a)

xa = 1,

where the last equality follows from the proof of Proposition 3.2. By Remark 3.8,

the same conclusion can be drawn for the case a ∈ A\X, where

pa = ∑
a∈A(a)

Pa,a ya ≤ ∑
a∈A(a)

ya = 1.

Finally, as the vectors x, y and the matrix P are non-negative, we can conclude

pa ≥ 0.

We have thus proved that PLP(X-PESP pro) ⊆ PLP(PESP box). What is left is
the second assertion, i. e. PIP(X-PESP pro) = PIP(PESP box).

3.2. X-PESP Formulations 59

First, observe that if we apply the transformation ψ on an integer vector (x, y) ∈
ZX × ZA\X, the result is an integer vector ψ((x, y)) ∈ ZV × ZA. This is because

ψ is defined by a matrix that contains only integer entries. Hence, it is sufficient

to show that for every (π, p) ∈ PIP(PESP box), there exists a vector (x, y) ∈
PIP(X-PESP pro) such that (π, p) = ψ((x, y)).

Let (π, p) ∈ PIP(PESP box). Then, define the vector x by

xa =

{

1, if a = (v[πv],w[πw]) ∈ A(a)

0, otherwise,

for all a = (v,w) ∈ X and set the vector y to

ya =

{

1, if a = (v[πv],w[πw]) ∈ A(a)

0, otherwise,

for all a = (v,w) ∈ A\X. Denote by Πv,· the row of the matrix Π belonging to the

event v. Then, it follows that

Πv,· (
x
y) = ∑

v[t]∈V(v)

(
t ∑
a∈δ+

X
(v[t])

xa
)
= πv ∑

a∈δ+
X

(v[πv])

xa = πv,

for all v ∈ V. Now, let a ∈ X and denote by b ∈ A(a) the unique arc with xb = 1.

If we write Pa,· for the row of the activity a in the matrix P, then

Pa,· (
x
y) = ∑

a∈A(a)

Pa,a xa = Pa,b xb = Pa,b = pa,

where the last equality follows from the definition of the matrix P. The same con-

clusion can be drawn for a ∈ A\X.

Remark 3.14 In general, the polyhedrons PLP(X-PESP pro) and PLP(PESP box)
are not equal. There exist PESP instances for which we can find solutions in the

polyhedron PLP(PESP box) that have no counterpart in PLP(X-PESP pro). Con-
sider, for example, the instance in Figure 3.6. Suppose the period time T = 5. An

easy computation shows that the vector π defined by πdep(L,A) = 4, πarr(L,B) = 3,

πdep(L,B) = 2, and πarr(L,A) = 1 together with the vector p ≡ 1/5 is feasible to
the LP relaxation of PESP box (2.6). However, every feasible solution to the LP

relaxation of X-PESP pro (3.5) is a convex combination of the cycles in the dis-

played expanded event-activity graph. Hence, there is no corresponding solution

in PLP(X-PESP pro).

60 Chapter 3

0

1

2

3

4

[0, 0]

[0, 0]

[0, 0]

[0, 0]

dep(L, A) arr(L, B)

dep(L, B)arr(L, A)

dep(L, A) arr(L, B)

dep(L, B)

Figure 3.6 Illustration of Remark 3.14.

The polyhedron PLP(X-PESP pro) is, in general, also no proper subset of the
polyhedron PLP(PESP box). To see this, consider again the PESP instance with
the belonging expanded event-activity graph in Figure 3.6 and suppose now the

period time T = 1. In this case, the event-activity graph and the expanded event-

activity graph are identical. It follows that π ≡ 0, p ≡ 0 is the only feasible solution
to the LP relaxation of PESP box (2.6). It corresponds to the only solution x ≡ 1 in
PLP(X-PESP pro) (note that A\X = ∅). That is, both polyhedrons contain exactly

one point.

3.2.1 Strong Valid Equalities for the X-PESP Formulations

L

a

L

a

arr(L, A)

dep(L, A)

dep(L, B)

arr(L, B)

A B

(a) Line cycle with fixed dwell times.

L

L’

S a′a

arr(L, S) dep(L, S)

dep(L′, S) arr(L′, S)

(b) Crosswise transfer relation of
the lines L and L′ at station S.

Figure 3.7 Structures in the event-activity graph that yield valid equalities for the X-PESP
formulations.

3.2. X-PESP Formulations 61

We now show how to derive a class of equalities that are valid for the above

X-PESP formulations in case the running and dwell times of all lines are fixed.

First, we consider two opposite directed lines L and L operated between the sta-

tions A and B (see Figure 3.7(a)). Let ℓAB denote the minimum travel time from A

to B, i. e. the sum of the lower bounds of the trip and dwell activities of line L. The

crucial observation is that every feasible timetable satisfies

πarr(L,A) = (πdep(L,B) + ℓBA) mod T, and

πdep(L,A) = (πarr(L,B) − ℓAB) mod T.

We now profit from expanding the event-activity graph. Let a ∈ A(a) denote a

turnaround arc of line L with a = (v[tv],w[tw]). If there exists a turnaround arc

a = (v[tv],w[tw]) ∈ A(a) of line L with tv = (tw + ℓBA) mod T and tw = (tv −
ℓAB) mod T, then it follows that xa = 1 if and only if xa = 1. Thus, we can conclude

that xa− xa = 0 is a valid equality for X-PESP basic (3.1) and its improved versions

X-PESP plus (3.2), and X-PESP pro (3.5). This also shows that if the turnaround arc

a does not exist, we must have xa = 0, and hence the arc a can be removed from

the expanded event-activity graph.

By the same method we can derive equalities of the above type for crosswise

transfer relations of a pair of lines. Figure 3.7(b) illustrates the situation for two

lines L and L′ that meet at the station S. Here, we must have

πarr(L′,S) = (πdep(L′,S) − ℓdwell(L′,S)) mod T, and

πdep(L,S) = (πarr(L,S) + ℓdwell(L,S)) mod T,

and hence, if a = (v[tv],w[tw]) ∈ A(a) and a = (v[tv],w[tw]) ∈ A(a) are two

transfer arcs such that tv = (tv+ ℓdwell(L,S)) mod T and tw = (tw− ℓdwell(L′,S)) mod

T, we may conclude xa − xa = 0.

Finally, let us briefly investigate the setting in terms of periodic tensions. Ac-

cording to the cycle periodicity property, we have ∑a∈C+ xa − ∑a∈C− xa = T zC
for every cycle C of the event-activity graph. Of course, this also applies to line

cycles and those cycles resulting from crosswise transfers. Hence, if C denotes

the cycle in Figure 3.7(a), then it follows that ℓAB + xa + ℓBA + xa = T zC for

some integer zC. Now, recall that the cycle inequalities provide bounds on the

variable zC. So, if zC can be restricted to a single value, we obtain the equation

xa + xa = T zC − xAB − xBA, where only the tensions xa and xa are unknown.
However, in general the variable zC may take more than one value, as is shown

in Example 2.21.

62 Chapter 3

3.3 Speedup Techniques

We are interested in a direct solution of the X-PESP formulations by mixed integer

programming. For this purpose we present two approaches that can support this

task. The first aims at strengthening the LP relaxation to obtain improved lower

bounds. The second is a special branching strategy that can lead to a more bal-

anced division when applying branch-and-bound.

3.3.1 Event Fixation

The raw X-PESP formulations have the problem that their LP relaxations allow

for solutions with zero cost. From these we obtain no more than trivial bounds on

the optimal solution value of the integer programs. We can certainly assume that

every integer solution has a non-zero value, since otherwise we cannot improve

the LP bound.

Recall from Section 2.2.3 that, due to the redundancy in the PESP solution space,

we can fix the timing of a single event a priori. We call this an event fixation. The

PESP formulations cannot benefit from such a fixation, as is immediately seen from

the proof of Lemma 2.7. For X-PESP, however, this is the way to strengthen the LP

relaxation.

The X-PESP formulations are defined on arc variables. For this reason, the fix-

ation of an event has to be done indirectly. Every event v ∈ V is related to a trip
activity, where there are two possible scenarios depending if v is an arrival event

or a departure event. Since the following argumentation works for both cases, we

may assume the latter and denote the trip arc by a = (v,w). If we wish to fix the

event v to the timing t, we have to impose the condition

∑
a∈A(a)

a=(v[t],w[t′])

xa = 1.

The effect of an event fixation is that no LP solution is allowed to select arcs that are

adjacent to nodes in the set V(v)\{v[t]}. Hence, we avoid solutions that only select
zero cost arcs, as is the case for the solution constructed in the proof of Lemma 3.10.

Thus, the event fixation can be interpreted as a kind of symmetry breaking for

the linear program. The expected increase in the objective value depends on the

3.3. Speedup Techniques 63

weight of the activities related to the fixed event. Therefore, we may choose the

event v∗ ∈ V with the property that

v∗ = argmax
v∈V

∑
a∈δ(v)

wa.

The departure event of a high frequented line at some major transfer station may

be a proper candidate.

Now, suppose the running times as well as the dwell times of all lines are fixed.

Then, by fixing an event of line we automatically fix all events of that line. In this

case, we speak of a line fixation. According to our remarks on the event fixation, it

seems reasonable to fix the line L∗ ∈ L with

L∗ = argmax
L∈L

∑
v∈V(L)

∑
a∈δ(v)

wa, (3.9)

where V(L) ⊆ V denotes the set of events belonging to line L. We call w(L) =

∑v∈V(L) ∑a∈δ(v) wa the weight of line L.

Figure 3.8 illustrates the effect of a line fixation by example. Contrary to a so-

lution of the raw LP relaxation, the displayed solution involves non-zero transfer

waiting times for all transfer stations along the route of the fixed line and some

further stations.

3.3.2 Constraint Branching

The X-PESP formulations may be solved with a branch-and-bound algorithm. In

this section we review two possible branching schemes with respect to the ex-

pected balance in the branch-and-bound tree. We will assume that the algorithm

uses the linear programming relaxation.

Suppose in an LP solution to one of the X-PESP formulations we have 0 < xa <

1 for some arc a = (v[t],w[t′]) ∈ X. Such a solution is infeasible to the integer
program. The same applies to fractional y variables. Variable branching yields two

branches, one with xa = 1, and another with xa = 0. Setting xa = 1 implies that the

timings of the events v and w are fixed to t and t′, respectively. From our remarks

on event fixation we know that this branch is likely to exclude many solutions

that are integer infeasible. In the xa = 0 branch we only forbid the timing t for

the event v and the timing t′ for the event w′. Therefore, the feasibility region of

the this branch is nearly the same as that of its father. In consequence, we have an

imbalance between both branches which lessens the progress in the increase of the

lower bound.

64 Chapter 3

Figure 3.8 Transfers with waiting time for an X-PESP LP solutionwith line fixation. Black
arcs mark the route of the fixed line. Magenta nodes indicate stations with non-zero trans-
fer waiting time and yellow nodes those with zero transfer waiting time. Black nodes
symbolize stations without transfers.

The X-PESP formulations ensure that for every activity a ∈ A, exactly one arc
from the set A(a) is chosen. That is, every feasible solution satisfies the constraints

∑
a∈A(a)

xa = 1 for all a ∈ X, and (3.10)

∑
a∈A(a)

ya = 1 for all a ∈ A\X. (3.11)

These type of constraints are known as generalized upper bound constraints, and al-

low for a special branching strategy called constraint branching (or GUB branch-

ing). Recall the fractional variable xa which belongs to some activity a ∈ X. By
the constraints (3.10), for every subset B of A(a), an integer solution either selects

an arc from the set B or from the set A(a)\B. This gives the idea for the branch-
ing rule. For the one branch we require ∑a∈B xa = 0 and for the other branch

∑a∈A(a)\B xa = 0. For abbreviation, we say “branching on an activity” instead of

“branching on the constraint of an activity”.

We can apply the branching rule for every subset B for which ∑a∈B xa > 0 and

∑a∈A(a)\B xa > 0 in the current LP solution. However, we suggest to choose B by

the following method. Suppose the arcs in the set A(a) are ordered according to

3.3. Speedup Techniques 65

the time values of their start nodes. That means if A(a) = {a1,a2, . . . ,ak}, then
for any two arcs ai = (v[ti],w[t′i]) and aj = (v[tj],w[t′j]) in A(a) with i < j, we

have ti ≤ tj. Then define the subset B as proposed by Beale and Tomlin (1970) for

branching on special-ordered-set constraints. Compute the index j = ⌊∑
k
i=1 i xai⌋

and set B = {a1, . . . ,aj}.
It follows that in the branch with ∑a∈B xa = 0, the event v is restricted to the

timings {tj, . . . , T− 1}. In the other branch only the timings {0, . . . , tj} are allowed.
In all cases where tj 6= 0 and tj 6= T − 1 the division of the feasibility region may
be better than by variable branching.

If more than one arc a ∈ A is chosen fractionally, we propose to branch on the
activity

a∗ = arg max
b=(v,w)∈A
A(b)∩Afrac 6=∅

∑
a∈δ(v)

wa,

where Afrac denotes the set of arcs with fractional value. The reason for this choice

is that constraint branching for an activity a = (v,w) is comparable with a partial

fixation of the event v.

Branching on an activity a = (v,w) may be less effective if the timings of the

events v and w are already restricted by previous branchings on other activities.

Therefore, it is conceivable to consider only a subset of activities for constraint

branching. Such a selection can be obtained from the line-activity graph (see Fig-

ure 3.9). In this graph every line L ∈ L is represented by a node, and for every
activity a = (v,w) there is an arc that joins the nodes of the lines related to the

events v and w. Thus, the graph may have parallel arcs. The arc weight for an ac-

tivity a = (v,w) is set to ∑b∈δ(v) wb. A possible subset of promising activities is

then obtained by determining a maximummatching or a maximum spanning tree

in the line-activity graph.

For a more general treatment of branch-and-bound algorithms and branching

schemes we refer the reader to Nemhauser and Wolsey (1999).

66 Chapter 3

Figure 3.9 Line-activity graph of a sample instance.

4
Re-timetabling

There is a general problem concerning the computation of periodic timetables as

indicated in Chapter 2. We required a fixed passenger flow in order to be able to

prioritize the timetable requirements and, in particular, the transfer connections.

The passenger flow, however, only reflects the passengers’ travel behavior based

on the service that is currently offered. If the new timetable is introduced, pas-

sengers may change their behavior in an unpredictable way. If this is the case,

we have computed the timetable for a different traffic situation. The problem has

been already pointed out by Lindner (2000). According to him, practitioners try to

simulate the passengers’ travel behavior to estimate the effect of a timetable.

We are interested in analyzing this effect from a mathematical point of view. To

this end, we describe a procedure to route the passengers in the transportation

network according to the computed timetable. Our goal is to obtain an updated

passenger flow and to resolve the timetabling problem. This yields an iterative

process, which we shall call re-timetabling (see Figure 4.1).

Under certain conditions, we can show that the total travel time in the trans-

portation system is monotone decreasing when applying the re-timetabling pro-

cedure

4.1 Model Assumptions

As in the preceding chapters we want to compute a periodic timetable for a sin-

gle demand period. Therefore, we require the conditions stated for timetabling in

Section 4.1. In addition, we need a set of traffic zones Z and for every traffic zone
Z ∈ Z a set of neighboring stations S(Z) where journeys to and from the traffic

zone Z end. Furthermore, we require an OD-matrix M that specifies the estimated

travel demand between all traffic zones during the demand period. Recall that the

travel demand is interpreted as the number of passengers that want to travel be-

tween two traffic zones during the demand period. In the following, an ordered

pair of traffic zones (Z,Z′) is called OD-pair and we denote by MZ,Z′ the related

travel demand. If there is travel demand between two traffic zones, we will as-

sume that there exists a possible connection by public transport.

67

68 Chapter 4

Strategic
Planning

Demand
Network
Line plan

Passenger flow

Timetabling Routing

Timetable

Operational
Planning

Figure 4.1 Re-timetabling. Iteratively compute a timetable and the resulting passenger
flow.

Furthermore, it is required that the travel demand is not affected by the timetable,

and we ignore service gaps that occur at the beginning and end of the operating

period of a line. Actually, the last constraint can be dropped, but that would result

in a more complex presentation.

Finally, let us assume a station specificminimum transfer time, denoted by ℓtrans(S),

for every station S ∈ S .

4.2 The Timetable Graph

The aim of this section is to introduce the timetable graph, which is the foundation

of our passenger flow computation. In each re-timetabling iteration this graph is

constructed anew based on the current timetable. A similar graph has previously

been used by Müller-Hannemann et al. (2007) for timetable information problems.

We start by defining the basic node set of the timetable graph (see Table 4.1 and

Figure 4.2). Let TL stand for the period time of line L ∈ L and write Tlcm for the
least common multiple of all occurring period times. We introduce the notation

tarr(L,S) ∈ {0, . . . , TL − 1} for the arrival time and tdep(L,S) ∈ {0, . . . , TL − 1} for the
departure time of line L at station S according to the timetable. Let L ∈ L, and
define mL = Tlcm/TL. Then, for every station S on the route of line L, and time

4.2. The Timetable Graph 69

value t = tarr(L,S) + i TL with i = 0, . . . ,mL − 1, there exists an arrival node v[t] in
the timetable graph. In addition, there is a departure node v[t] for every time value

t = tdep(L,S) + i TL with i = 0, . . . ,mL − 1. Note that arrival and departure nodes
are line, station, and time specific.

Our next goal is to model trip and dwell activities. Suppose S and S′ are two

consecutive stations on the route of line L. Then, a trip arc connects every departure

node v[t] of line L at station S with an arrival node w[t′] of the same line at station

S′. With ttrip(L,S,S′) being the running time of line L between the stations S and S
′

according to the timetable, the trip arc (v[t],w[t′]) has to satisfy (t′− t) mod Tlcm =

ttrip(L,S,S′) (see Figure 4.2). The weight of the arc is set to ttrip(L,S,S′).

Similarly, if S denotes a station on the route of line L, then a dwell arc connects every

arrival node v[t] of line L at station S with a departure node w[t′] of line L at the

same station. The dwell arc (v[t],w[t′]) has to satisfy (t′ − t) mod Tlcm = tdwell(L,S),

where tdwell(L,S) stands for the dwell time of line L at station S according to the

timetable. The arc weight is equal to tdwell(L,S).

Table 4.1 Partial timetable of the Berlin subway line U4 Nollendorf Platz→ Innsbrucker
Platz valid from 18 April to 1 November 2008.

Station Arrival Departure

Nollendorf Platz 06:02
Viktoria-Luise Platz 06:04 06:04
Bayrischer Platz 06:05 06:05
Rathaus Schöneberg 06:07 06:07
Innsbrucker Platz 06:08

As in the timetable computation, we want to incorporate minimum transfer

times in the passenger flow computation. Therefore, we cannot directly model a

transfer connection by an arc between an arrival node of one line and a departure

node of another line. We need to add further nodes and arcs to forbid transfers

that fall below the station specific minimum transfer time. Figure 4.3 illustrates

the construction.

We duplicate every departure node of a station to obtain a new transfer node with

the same time value. An auxiliary arc of zero weight connects the transfer node

with its related departure node. A transfer arc joins each arrival node v[t] with the

“earliest possible” transfer node w[t′] that satisfies (t′ − t) mod Tlcm ≥ ℓtrans(S).

By “earliest possible” we mean that (t′ − t) mod Tlcm is as small as possible. The
weight of the transfer arc is set to (t′ − t) mod Tlcm.

70 Chapter 4

0

1

2

3

4

5

6

7

8

9

arrival node

departure node

trip arc

dwell arc

Nollendorf
Platz

Viktoria-
Luise Platz

Bayrischer
Platz

Rathaus
Schöneberg

Innsbrucker
Platz

Figure 4.2 Basic elements of the timetable graph on example of the Berlin subway line
U4.

Waiting at a station is modeled by waiting arcs between transfer nodes (see

Figure 4.3). Suppose v1, . . . , vk are the transfer nodes of some station ordered ac-

cording to their time values. Then, the timetable graph contains the waiting arcs

(vi, vi+1) for 1 ≤ i ≤ k− 1 and (vk, v1).

What is left is to model the centroids of the traffic zones and their connection to

the transportation network. For every traffic zone Z ∈ Z where traffic originates
during the demand period and every time value t in the set {0, . . . , Tlcm− 1}, there
is an origin node v[t] in the timetable graph. Moreover, if the traffic zone Z is also

the destination of journeys during the demand period, we insert a destination node.

Now, suppose S ∈ S(Z) is a neighboring station of traffic zone Z. Then, every

origin node v[t] of Z is connected to every departure node of station S. The weight

of each arc (v[t],w[t′]) is comprised of the walking time twalk(Z,S) to station S and

the difference tdiff between the arrival time tarr at the station and the time value t
′

of the departure node w[t′]. With

tarr = (t+ twalk(Z,S)) mod Tlcm and tdiff = (t′ − tarr) mod Tlcm,

the weight of the arc (v[t′],w[t′]) is given by twalk(Z,S) + tdiff.

In addition, we connect the arrival nodes of every neighboring station S ∈ S(Z)

with the destination node of the traffic zone Z (if any). The weight of the connect-

ing arc is defined by the walking time from station S to the centroid of traffic zone

Z.

4.3. Passenger Flow Computation 71

0

1

2

3

4

5

6

7

8

9

Nollendorf
Platz

Viktoria-
Luise Platz

Bayrischer
Platz

Eisenacher
Str.

Kleistpark

transfer node

waiting arc

aux. arc

transfer arc

Figure 4.3 Transfer connection between the Berlin subway lines U4 (black) and U7 (red)
at Bayrischer Platz. The minimum transfer time is 1 minute. Dwell arcs at Bayrischer Platz
and arcs exceeding the interval [0, 9] were omitted.

A path in the timetable graph connecting an origin node with a destination node

is referred to as passenger path.

4.3 Passenger Flow Computation

The passenger flow computation as part of our re-timetabling procedure is per-

formed in the timetable graph defined in the section above. The goal is to deter-

mine a passenger flow in the transportation network which is then used as input

for the re-computation of the timetable. The main parts of the method may be

summarized as follows:

1. We first compute for every OD-pair (Z,Z′) with positive travel demand

MZ,Z′ a set of shortest passenger paths P(Z,Z′).

2. Then, for every OD-pair (Z,Z′), we distribute the travel demand MZ,Z′ over

the passenger paths in the set P(Z,Z′).

The passenger flow is then given by the set of passenger paths and the passenger

distribution.

Computing the set of shortest passenger paths

Let us consider an OD-pair (Z,Z′) with positive travel demand MZ,Z′ . Our pur-

pose is to determine for every starting time in {0, . . . , Tlcm − 1} the shortest travel

72 Chapter 4

connections from traffic zone Z to traffic zone Z′. In the timetable graph every

such travel connection corresponds to a certain passenger path. Hence, we have

to compute for every origin node of traffic zone Z, the shortest passenger paths to

the destination node of traffic zone Z′. Since the arc weights in the timetable graph

are nonnegative, we may use Dijkstras algorithm to this end. This yields a set of

passenger paths P(Z,Z′) for the OD-pair (Z,Z′).

Distributing the passengers

Having determined the shortest passenger paths for every OD-pair (Z,Z′) with

positive travel demand, we define the passenger rate of every passenger path p ∈
P(Z,Z′). That is the fraction of passengers which we suppose to use path p. Here,

the following problem arises. The OD-matrix only specifies the number of passen-

gers traveling during the demand period. The data is imprecise in terms of exact

starting times of the journeys. Therefore, we need to “guess” the passenger distri-

bution. In practice, there are many factors that have an effect on the choice of the

travel connection like

• the total travel time,

• the total transfer waiting time, or

• the total number of transfers required,

to name just a few examples. However, we do not have any information on how

these factors are weighted against each other. For instance, how much additional

travel time a passenger is willing to accept to save a single transfer. Furthermore,

it is not known whether the passengers arrive at the station just in time. For these

reasons, we equally distribute the passengers over all passengers paths in the set

P(Z,Z′). The passenger rate of every passenger path in P(Z,Z′) is then given by

MZ,Z′/|P(Z,Z′)|. This value may be fractional.
The passenger paths in combination with the passenger distribution define the

passenger flow.

Determining information for the timetable computation

In the following we describe how to obtain the information that is needed for the

timetable computation. This includes the number of passengers on trips, stops,

and transfers during the demand period (see Section 2.1).

We define a passenger rate for every arc in the timetable graph. That is the sum

of the passenger rates over all passenger paths containing this arc.

Let L ∈ L, and denote by S and S′ two consecutive stations on the route of line L.

4.4. The Re-timetabling Procedure 73

First, we need to know the number of passengers who are involved in trips of line

L between S and S′ during the demand period. This number is given as the sum

of the passenger rates over all trip arcs of line L between S and S′, and we denote

it by F(L, S, S′).

Second, we require the number of passengers involved in stops of line L at any

station S on its route during the demand period. This number is obtained by accu-

mulating the passenger rates of all dwell arcs of line L at station S, and we use the

notation F(L, S).

Third, we have to determine the number of passengers for every transfer connec-

tion in the transportation network. Recall that a transfer connection is given by a

3-tuple (L, L′, S), where L, L′ ∈ L and S ∈ S . The transfers on a passenger path
are easily identified, if we only consider the arrival and departure nodes on the

path. If an arrival node and its succeeding departure node are related to different

lines, this corresponds to a transfer. Suppose the arrival node belongs to line L and

station S, and the departure node is related to line L′. Then, we add the passenger

rate of the passenger path to the number of passengers using the travel connection

(L, L′, S). We do this for every passenger path.

Evaluating quality of a timetable

The passenger flow has several properties by which we can evaluate the quality of

a timetable of the same problem instance. For every passenger path, the timetable

implies a certain travel time. Summing over the travel times of all passenger paths

weighted with the passenger rate yields the total travel time. Furthermore, every

transfer on a passenger path involves a certain waiting time which depends on

the timetable. The total transfer waiting time is given by the sum of the waiting

times over all transfers weighted with number of passengers involved. Finally,

the timetable that underlies the passenger flow can be characterized by the total

number of transfers which is obtained by accumulating the number of passengers

of all transfer connections.

4.4 The Re-timetabling Procedure

Algorithm 1 illustrates the re-timetabling procedure. For convenience, we let I

stand for the information that is not necessary to understand the functionality.

A detailed exposition of required data can be found in Section 2.1 and Section 4.1.

In each iteration i of the re-timetabling procedure, a timetable Bi is computed on

the basis of the previous passenger flow Fi−1 (step 4). This timetable is then used

74 Chapter 4

Algorithm 1 Re-timetabling

Input: Passenger flow F0, other timetabling input I
Output: Timetable B
1: i← 0
2: repeat

3: i← i+ 1
4: Bi ← computeTimetable(Fi−1, I)
5: Fi ← computePassengerFlow(Bi, I)
6: until Fi = Fi−1

7: B← Bi

to determine the next passenger flow Fi (step 5). The algorithm terminates if the

computed passenger flow is the same as in the previous iteration (step 6).

The re-timetabling procedure produces an alternating sequence of timetables

and passenger flows F0 → B1 → F1 → B2 → This raises several questions, for
instance, whether the sequence converges, and how the passenger flow changes

in each iteration. In the following, we discuss the second question and investigate

the development of the passenger flow by means of the total travel time. It will

turn out that, under certain conditions, this value is monotone decreasing.

The total travel time of a passenger flow is comprised of two parts, one that is

independent of the timetable and another that is not. The timetable independent

part is given as sum of the total access time, the total minimum running time, the

total minimum dwell time, and the total minimum transfer time. Given a passen-

ger flow F, these times are defined as follows.

Total access time: Sum of the walking time to the initial station and the walking

time from the final station over all journeys during the demand period. We

denote it by taccess(F).

Total minimum running time: Sum of the minimum running times over all trips

during the demand period. With the notation (S, S′) ∈ L for two consecu-
tive stations on the route of line L, the total minimum running time ℓtrip(F) is

defined by

ℓtrip(F) = ∑
L∈L

∑
(S,S′)∈L

F(L, S, S′) · ℓtrip(L,S,S′),

where ℓtrip(L,S,S′) denotes the minimum running time of line L between the

stations S and S′.

4.4. The Re-timetabling Procedure 75

Total minimum dwell time: Sum of the minimum dwell times over all stops during

the demand period. If we denote by S ∈ L a station on the route of line L,
then the total minimum dwell time ℓdwell(F) is given by

ℓdwell(F) = ∑
L∈L

∑
S∈L

F(L, S) · ℓdwell(L,S),

where ℓdwell(L,S) denotes the minimum dwell time of line L at station S.

Total minimum transfer time: Sum of the minimum transfer times over all transfers

during the demand period. Let C stand for the set of transfer connections.
Then, the total minimum transfer time ℓtrans(F) is defined by

ℓtrans(F) = ∑
(L,L′,S)∈C

F(L, L′, S) · ℓtrans(S).

The remaining part of the total travel time of the passenger flow depends on the

timetable. This applies to the total initial waiting time and the total surplus time.

For a passenger flow F and a timetable B of the same problem instance, these times

are defined as follows.

Total initial waiting time: Sum of the initial waiting times over all journeys during

the demand period. By the initial waiting time, written tinit(F,B), we mean the

time between the arrival at the initial station and the departure time of the

desired line. For a fixed passenger distribution the total initial waiting time

depends on the timetable.

Total surplus time: Total additional time for trips, stops, and transfers during the

demand period (with respect to the minimum time durations). Each individ-

ual time is weighted with the number of passengers involved (according to

the passenger flow F). We denote the total surplus time by tplus(B,F).

With the above notation, we have

ttravel(F,B) = taccess(F) + ℓtrip(F) + ℓdwell(F) + ℓtrans(F)
︸ ︷︷ ︸

timetable independent

+tplus(F,B) + tinit(F,B), (4.1)

for the total travel time of the passenger flow F subject to the timetable B.

In general, there is no relation between the total travel time of two succeeding

re-timetabling iterations. The timetable independent part as well as the remaining

part may change in an unpredictable way. We can, however, present two special

cases where the total travel time is monotone decreasing.

76 Chapter 4

From now on we make the assumption that the timetable Bi, computed in step 4

of the re-timetabling procedure, minimizes the total surplus time tplus(Fi−1,Bi) based

on the previous passenger flow Fi−1.

Just-in-time distribution

For the first scenario, we assume that the passengers always choose their travel

connections a priori, maybe supported by a timetable information system, and

reach the initial station just in time. As a consequence, we have no initial waiting

time.

In the passenger flow computation, this can be realized if we only consider those

passenger paths for the distribution that do not involve any waiting at the initial

station. We call this the just-in-time distribution.

Theorem 4.1 Let i ∈ N and suppose the total initial waiting time is zero, then

ttravel(Fi−1,Bi−1) ≥ ttravel(Fi ,Bi).

Proof. Let i ∈ N. First, consider the passenger flow Fi−1 and the timetables Bi−1

and Bi. By assumption, the timetable Bi yields the minimum total surplus time

for the passenger flow Fi−1 while the timetable Bi−1 may not. Thus, we have

tplus(Fi−1,Bi−1) ≥ tplus(Fi−1,Bi). According to equation (4.1) and the hypothesis of the
theorem, this gives

ttravel(Fi−1,Bi−1) ≥ ttravel(Fi−1,Bi). (4.2)

Second, consider the timetable Bi and the passenger flows Fi−1 and Fi. We have

ttravel(Fi−1,Bi) ≥ ttravel(Fi ,Bi), (4.3)

because the passenger flow Fi is optimal for timetable Bi according to the total

travel time while the passenger flow Fi−1 is only feasible. Combining the inequal-

ities (4.2) and (4.3) we deduce ttravel(Fi−1,Bi−1) ≥ ttravel(Fi−1,Bi) ≥ ttravel(Fi ,Bi).

Equal distribution in consideration of the initial waiting time

In real life, it is certainly not realistic that all passengers are perfectly informed

on the timetable and avoid any waiting at the initial station. For this reason, let

us again assume that the passengers start their journeys equally distributed over

{0, . . . , Tlcm− 1}. We now investigate another condition which implies monotonic-
ity for the total travel time. The idea is to incorporate the average initial waiting

4.4. The Re-timetabling Procedure 77

time at any station in the timetable computation. Based on the equal distribution of

the passengers, the timetable Bi in iteration i then minimize the sum of tplus(Fi−1,Bi)
and tinit(Fi−1,Bi).

In order to minimize the average initial waiting time it is necessary to synchro-

nize the departure times of certain groups of lines. For every OD-pair (Z,Z′) we

need to know at which stations the passengers start there journey to traffic zone

Z′ and by which line. All lines departing at the same station S ∈ S(Z) make up

a group of lines that has to be synchronized. In case all lines of that group have

the same period time, this can be easily achieved by requiring a minimum head-

way time of T/n and a maximum headway time of T − T/n, where n denotes the
number of lines in the group. Each constraint is weighted with the fraction of the

passengers that depart at station S (with respect to the travel demand MZ,Z′). If

the lines have different period times, synchronization is more complicated. The

problem is discussed in Brucker et al. (1990).

Theorem 4.2 Suppose i ∈ N. If the timetable Bi minimizes the sum of the total

surplus time tplus(Fi−1,Bi) and the total initial waiting time tinit(Fi−1,Bi), then

ttravel(Fi ,Bi) ≥ ttravel(Fi+1,Bi+1).

Proof. By the hypothesis of the theorem, it follows that

tplus(Fi−1,Bi−1) + tinit(Fi−1,Bi−1) ≥ tplus(Fi−1,Bi) + tinit(Fi−1,Bi)

for i ∈ N. This establishes equation (4.2) and we can apply the same argumenta-

tion as in the proof Theorem 4.1.

5
Computational Results

In Section 2.2 we presented a rich set of existing integer programming formula-

tions for the PERIODIC EVENT SCHEDULING PROBLEM. We now provide a pre-

liminary computational study in which we compare these formulations with the

new PESP formulations based on time discretization from Chapter 3. For a better

distinction, we refer to the new formulations as X-PESP formulations.

It will turn out that the PESP formulations are currently state of the art. For

smaller problem instances, however, the X-PESP formulations are competitive.

This is particularly due to the great effect of event fixation, valid equalities, and

constraint branching.

Finally, Section 5.4 is devoted to the re-timetabling procedure. On the basis of an

own implementation, we confirm our theoretical results on the properties of the

computed timetables (see Section 4.4).

5.1 Test Instances

Our computational experiments considered five real-life instances. Two of which

are based on the Dutch InterCity network. The others are variants of the pub-

lic transport networks of three major cities, namely, Potsdam, Lynnwood, and

Karslruhe. Figure 5.1 shows the route diagrams for each instance. The data for

the Netherlands and Potsdam network was provided by the Konrad-Zuse-Institut

Berlin while the networks of Lynnwood and Karslruhe were obtained from the

PTV AG. From now on we use the following symbols to denote the different in-

stances.

N, Ns InterCity network of the Netherlands

P Public transport network of the city of Potsdam

L Bus network of the city of Lynnwood

K Public transport network of the city of Karlsruhe

In Table 5.1 we have compiled the key data of the problem instances. Of partic-

ular importance are the entries on the number of directed lines, transfer relations,

79

80 Chapter 5

(a) Netherlands. (b) City of Potsdam.

(c) City of Lynnwood. (d) City of Karlsruhe.

Figure 5.1 Route diagrams of the test instances.

5.2. Test Environment 81

and turnaround relations. The smallest instance is the variant Ns of the Dutch

InterCity network with only 18 directed lines. The most directed lines, transfer

relations, and turnaround relations has the Karlsruhe instance K.

Table 5.1 Problem instances.

N Ns P L K

Stations 23 23 262 157 463
Directed lines 30 18 38 34 96
Transfer relations 128 81 333 256 853
Turnaround relations 30 18 38 34 96

5.2 Test Environment

The computational experiments on the X-PESP formulations have been performed

on a 3.2 GHz Pentium 4 with 2 GB main memory. The results were obtained with

SCIP version 1.00.6, using CPLEX 11.0 as underlying LP solver. ZIMPL version 2.07

was used to generate the mixed-integer programming models. The PESP formula-

tions were tested on a 2.13 GHz Core 2 6400 with 2 GBmain memory, using CPLEX

11.0 as MIP solver. In both environments we defined a time limit of two hours and

a memory limit of 512 MB.

5.3 Periodic Timetabling

The first part of our computational study concerns timetabling. The purpose was

to compute period timetables for the various problem instances, where we consid-

ered identical frequencies for all lines. Furthermore, we assumed that the running

times as well as the dwell times of the lines are fixed.

The timetables were supposed to respect minimum turnaround times and min-

imum transfer times. The objective was to minimize the sum of the transfer wait-

ing time and the additional turnaround time over all transfer and turnaround rela-

tions. The priorization of the transfer relations was made according to a given pas-

senger flow, while for the turnaround relations we used a fixed uniform weight.

We use the following definitions and notations for our computational results.

82 Chapter 5

Gap Primal-dual gap. With pb being the objective value of the incumbent

solution and db being the best dual bound found, the Gap is defined

by

Gap =







0 if |pb− db| ≤ tol,

(pb− db) / |db| if pb · db > 0,

∞ otherwise,

where tol denotes the default zero tolerance of the MIP solver. For

convenience, we let ’–’ stand for infinity.

Root Gap Primal-dual gap in the root node with respect to the objective value

pb⋆ of the best solution that is known for the problem instance.

Root Gap =







0 if |pb⋆ − db| ≤ tol,

(pb⋆ − db) / |db| if pb⋆ · db > 0,

∞ otherwise.

Again, we let ’–’ stand for infinity.

Time Elapsed CPU time in seconds

Nodes Number of branching nodes

5.3.1 Formulation Sizes

The size of a formulation can be an important factor for its solvability. Therefore,

Figure 5.2 compares the sizes of two representative PESP and X-PESP formulations

for the instance P depending on the period time. Notice that SCIP and CPLEX

contain a preprocessor for reducing the formulation size. The valueswere obtained

after using the preprocessor.

In the comparison, PESP box (2.6) is the representative PESP formulation. For

every period time considered the formulation is very small in size with respect

to X-PESP pro (3.5). As typical for the PESP formulations, the period time has no

effect on the number of variables and constraints, i. e., the size of the formula-

tion is constant. By contrast, we can observe an explosive growth in the number

of variables for the X-PESP pro (3.5) formulation. The reason lies in the time dis-

cretization of the event-activity graph that is based on the period time.

We conclude, that if we consider a larger set of timetable requirements, the size

of the X-PESP formulations becomes critical for period times larger than 20.

5.3. Periodic Timetabling 83

400

450

500

550

600

650

700

750

0 10 20 30 40 50 60
Period time T

constraints

variables

(a) PESP box (2.6)

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

0 10 20 30 40 50 60
Period time T

constraints

variables

(b) X-PESP pro (3.5)

Figure 5.2 Formulation sizes for the instance P.

5.3.2 Event Fixation and Valid Equalities for X-PESP

We now present the results on event fixation and the adding of valid equalities

for the X-PESP formulations (cf. Section 3.3.1 and Section 3.2.1). Recall that we as-

sumed fixed running and dwell times for the lines. Therefore, an event fixation is

equal to a line fixation. For the test we consider X-PESP pro (3.5) as a representa-

tive X-PESP formulation. The tag ’L’ means that we applied line fixation and by ’I’

we indicate the use of valid equalities.

Figure 5.3 shows the root gaps resulting from both techniques for the instance N

and different period times. The fixation of the line with the highest weight yields

root gaps of under 185%. By adding valid equalities for every line cycle and cross-

wise transfer relation, the root gaps fall below 50%. To value the effect, note that

the raw X-PESP pro (3.5) formulation on the instance N yields, except for the pe-

riod time T = 5, root gaps of more than 1000%. It can be seen that the combination

of line fixation and valid equalities is even more effective. We obtain root gaps of

less than 25%.

In Figure 5.4 we illustrate, on example of the instance P, that the choice of the

line fixation has a great influence on the resulting root gap. Every bar corresponds

to a different line and the points indicate the weight of each line as defined in

Section 3.3.1. We see that the line with the highest weight yields the smallest root

gap.

84 Chapter 5

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60

G
ap
%

Period time T

X-PESP pro (3.5) I

X-PESP pro (3.5) L

X-PESP pro (3.5) LI

Figure 5.3 The effect of line fixation and valid inequalities on the root gap of
X-PESP pro (3.5). The figure applies to the instance N.

0

20

40

60

80

100

G
ap
%

Figure 5.4 The effect of a line fixation depends on the weight of the line. The figure
applies to X-PESP pro (3.5) LI on instance P with period time T = 10. The bars show the
root gaps of different line fixations. The points indicate the weight of the lines.

5.3. Periodic Timetabling 85

Finally, we have compared the root gaps of X-PESP pro (3.5) LI and that of the

PESP formulations from Section 2.2. Figure 5.5 shows the results for the instance

N. The formulation PESP y-box (2.9) yields root gaps of under 30% for all period

times. Only PESP x (2.11) is better, with root gaps below 20%. Our formulation

X-PESP pro (3.5) with line fixation and valid inequalities behaves well and can

outperform three of the five PESP formulations with root gaps of under 25%.

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

G
ap
%

Period time T

PESP box (2.6)

PESP tree (2.7)

PESP y-box (2.9)

PESP x̃ (2.12)

PESP x (2.11)

X-PESP pro (3.5) LI

Figure 5.5 Root gaps of different PESP formulations. The figure applies to the instance
N.

Constraint Branching for X-PESP

We have also investigated whether constraint branching for X-PESP can improve

the solving performance. Our implementation corresponds to the description in

Section 3.3.2. The branching candidates were obtained from a MAXIMUM SPAN-

NING TREE of the line-activity graph. Furthermore, we predefined a branching

order for the constraints based on the weights of the related activities. Our com-

parison considers the formulation X-PESP pro (3.5) with line fixation and valid

equalities. The tag ’C’ means that we have applied constraint branching.

Table 5.2 summarizes the results for all test instances and different period times.

In order to clearly see the effect of the strategy, we deactivated all primal heuristics

when solving the formulations with constraint branching. We can assert that by

applying this technique more instances could be solved to optimality within the

time limit. However, if the size of the formulation becomes too large, as is the case

86 Chapter 5

for the instances P, L, and K, without heuristics no feasible solutions were found.

Figure 5.6 shows the branch-and-bound trees for the instance N with and without

constraint branching. On closer inspection, we can see that the tree resulting from

constraint branching is more balanced.

Table 5.2 Computational performance of X-PESP pro (3.5) LIC in comparison with
X-PESP pro (3.5) LI.

X-PESP pro (3.5) LI X-PESP pro (3.5) LIC

Gap % Nodes Time Gap % Nodes Time

N

T = 15 0.0 874 951.8 0.0 230 154.0
T = 20 0.0 1394 2754.8 0.0 250 457.2
T = 30 2.5 407 7200.0 0.0 83 897.8
T = 60 1.8 12 7200.0 0.0 48 3001.5

Ns

T = 15 0.0 21 59.1 0.0 29 15.6
T = 20 0.0 91 89.6 0.0 65 52.0
T = 30 0.0 1 60.5 0.0 12 94.9
T = 60 3.7 53 7200.0 0.0 106 5841.0

P

T = 15 16.1 175 7200.0 0.0 429 3341.7
T = 20 34.9 31 7200.0 8.6 227 7200.0
T = 30 38.7 20 7200.0 – 37 7200.0

L

T = 15 23.9 392 7200.0 7.6 1312 7200.0
T = 20 23.9 87 7200.0 9.2 299 7200.0
T = 30 34.6 17 7200.0 – 0 7.9

K

T = 15 173.0 25 7200.0 – 110 7200.0
T = 20 – 18 7200.0 – 30 7200.0

5.3.3 Computational Performance of PESP and X-PESP Formulations

In Table 5.3 we give a comparison of the solving performance for the PESP formu-

lations from Section 2.2. Except for the formulation PESP y-box (2.9), the instances

N and Ns could be solved to optimality within the time limit. As already indicated

by a computational study of Liebchen (2006), on rather small instances the for-

mulation PESP x̃ (2.12) behaves best. We can also confirm that PESP box (2.6) and

PESP y-box (2.9) have a poor performance. The formulations PESP tree (2.7) and

PESP x (2.11) have the best overall performance.

It can be observed that the solution time does not depend on the period time.

Furthermore, the root gap of a formulation gives no hint on the performance (cf.

PESP tree (2.7) in Figure 5.5).

5.3. Periodic Timetabling 87

(a) X-PESP pro (3.5) LI (562 nodes). (b) X-PESP pro (3.5) LIC (209 nodes).

Figure 5.6 Constraint branching and its effect on the branch-and-bound tree of
X-PESP pro (3.5). The figure is subject to the instance N and period time T = 10. The
depth of a node corresponds to its local dual bound or, in case of infeasibility, to that of its
father.

88 Chapter 5

Table 5.3 Computational performance of the PESP formulations.

PESP box (2.6) PESP tree (2.7) PESP y-box (2.9) PESP x (2.11) PESP x̃ (2.12)

Gap % Time Gap % Time Gap % Time Gap % Time Gap % Time

N

T = 15 0.0 2014.0 0.0 90.0 6.9 7200.0 0.0 119.0 0.0 60.0
T = 20 0.0 1646.0 0.0 268.0 5.8 7200.0 0.0 126.0 0.0 74.0
T = 30 0.0 853.0 0.0 36.0 0.5 4008.0 0.0 21.0 0.0 12.0
T = 60 0.0 56.0 0.0 14.0 1.7 7200.0 0.0 6.0 0.0 9.0

Ns

T = 15 0.0 33.0 0.0 9.0 0.4 7200.0 0.0 11.0 0.0 5.0
T = 20 0.0 34.0 0.0 12.0 0.0 258.0 0.0 9.0 0.0 8.0
T = 30 0.0 10.0 0.0 3.0 0.0 60.0 0.0 1.0 0.0 4.0
T = 60 0.0 45.0 0.0 30.0 0.0 916.0 0.0 7.0 0.0 7.0

P

T = 15 6.0 7200.0 0.1 1900.0 16.2 7200.0 0.0 4678.0 0.0 5111.0
T = 20 5.2 7200.0 0.1 2189.0 13.9 7200.0 3.5 7200.0 2.4 2790.0
T = 30 5.4 7200.0 0.1 2743.0 13.6 7200.0 0.0 4820.0 3.4 7200.0
T = 60 7.2 7200.0 0.1 2669.0 13.0 6267.0 0.0 4852.0 0.0 4990.0

For a direct of comparison of our X-PESP formulation X-PESP pro (3.5) LIC with

PESP tree (2.7) we restate the results for both formulations in Table 5.4. It is easily

seen that for solving the PESP formulation much more branching nodes could

be processed in less time with respect to the X-PESP formulation. This is due the

smaller size of the PESP problems (see Figure 5.2). For the instances N and Ns the

X-PESP formulation is on par with PESP tree (2.7) in terms of optimality within

the time limit. Larger instances like P, however, could not be solved properly.

In the last part of our PESP formulation round-up let us consider the three vari-

ants of X-PESP, namely, X-PESP basic (3.1), X-PESP plus (3.2), and the formulation

X-PESP pro (3.5). The reason why we have chosen the latter formulation for our

study can be found in Table 5.5. We tested each formulation without applying

further speedup techniques on all problem instances for different period times. It

turned out that X-PESP basic (3.1) has the worst solving performance. In nearly

all cases no feasible solution could be found within the time limit. For ten out of

eleven problems the X-PESP pro (3.5) formulation yields the best gaps after two

hours.

5.3. Periodic Timetabling 89

Table 5.4 Computational performance of X-PESP pro (3.5) LIC in comparison with PESP
tree (2.7).

PESP tree (2.7) X-PESP pro (3.5) LIC

Gap % Nodes Time Gap % Nodes Time

N

T = 15 0.0 278162 90.0 0.0 230 154.0
T = 20 0.0 672164 268.0 0.0 250 457.2
T = 30 0.0 87793 36.0 0.0 83 897.8
T = 60 0.0 40483 14.0 0.0 48 3001.5

Ns

T = 15 0.0 33490 9.0 0.0 29 15.6
T = 20 0.0 51225 12.0 0.0 65 52.0
T = 30 0.0 10127 3.0 0.0 12 94.9
T = 60 0.0 160665 30.0 0.0 106 5841.0

P

T = 15 0.1 1922820 1900.0 0.0 429 3341.7
T = 20 0.1 2100666 2189.0 8.6 227 7200.0
T = 30 0.1 1929843 2743.0 – 37 7200.0
T = 60 0.1 1937384 2669.0 – – –

Table 5.5 Computational performance of the X-PESP formulations.

X-PESP basic (3.1) X-PESP plus (3.2) X-PESP pro (3.5)

Gap % Nodes Gap % Nodes Gap % Nodes

N

T = 15 5232.9 64 513.7 470 222.7 1036
T = 20 – 29 2795.3 91 1169.0 228
T = 30 – 2 Large 53 3271.0 68
T = 60 – 1 – 22 – 16

Ns

T = 15 1641.9 212 32.2 29703 0.0 28196
T = 20 6669.7 61 181.5 1198 73.6 5256
T = 30 – 15 1688.2 170 839.2 158
T = 60 – 1 – 19 – 35

P

T = 15 – 18 2829.9 125 2021.7 118
T = 20 – 1 3808.6 64 4465.3 81
T = 30 – 1 – 44 – 44

L

T = 15 Large 30 2162.4 134 1364.8 327
T = 20 – 4 Large 86 3668.5 90
T = 30 – 1 – 36 – 36

K

T = 15 – 1 2687.7 44 2654.6 49
T = 20 – 1 – 24 – 17
T = 30 – 0 – 1 – 1

90 Chapter 5

5.4 Re-timetabling

For our computational experiments on the re-timetabling procedure from Chap-

ter 4, we implemented a passenger routing algorithm on the basis of the timetable

graph. This algorithm supports two passenger distributions: the equal distribution

(see Section 4.3) and the just-in-time distribution (see Section 4.4).

The timetabling part of our implementation is based on the X-PESP pro (3.5)

formulation in combination with a standard MIP solver. For the computation we

made the following assumptions. The lines were assumed to have identical fre-

quencies. Running and dwell times of the lines were assumed to be fixed.

The goal was to verify the theoretical result stated in Theorem 4.1. Therefore, we

optimized the timetable exclusively for the transfer waiting time. The result were

obtained for the instance N and different period times. In particular, we investi-

gated two different scenarios

1. passenger routing based on the equal distribution, and

2. passenger routing based on the just-in-time distribution.

Table 5.6 summarizes the results, where we use the following notation in the

table header.

Iter Iteration

Travel Total travel time

Waiting Total transfer waiting time

Transfers Total number of transfers

Let us investigate the total travel time of the passenger flow in each iteration of

the re-timetabling procedure. Figure 5.7 shows the progress for both scenarios and

T = 60. As already pointed out in Section 4.4: in general, there is no monotonicity

of the total travel time if we consider an equal distribution of the passsengers and

the timetable does not incorporate the initial waiting time. For the just-in-time

distribution the initial waiting time is zero and according to Theorem 4.1 the total

travel time is monotone decreasing. An interesting point is that in both cases the

procedure terminates after less than 7 iterations. This was also the case for the

remaining period times we investigated, as to be seen in Table 5.6. The table also

reports on the total transfer waiting time and the total number of transfers in each

re-timetabling iteration.

5.4. Re-timetabling 91

291000

291500

292000

292500

293000

293500

294000

294500

295000

295500

296000

1 2 3 4 5 6 7

H
o
u
rs

Iteration

(a) Equal distribution.

214500

214550

214600

214650

214700

214750

214800

214850

214900

1 2 3

H
o
u
rs

Iteration

(b) Just-in-time distribution.

Figure 5.7 Total travel time for the instance N and period time T = 60.

Table 5.6 Re-timetabling on instance N.

Equal Distribution Just-in-time Distribution

Iter Travel Waiting Transfers Travel Waiting Transfers

T = 15
1 830574000 3490920 33884 767315000 2295960 24064
2 830613000 2890030 33795 766881000 1858020 24130
3 830933000 2820150 38629 766881000 1858020 24130
4 830933000 2820150 38629

T = 20
1 856892000 4473620 34990 768755000 3047580 25143
2 856241000 3803680 36490 768579000 2896260 24988
3 856186000 3775960 37348 768579000 2896260 24988
4 854977000 3598000 36773
5 855257000 3632530 36773
6 855257000 3632530 36773

T = 30
1 907332000 6549220 34697 769878000 3796440 25942
2 908477000 5922900 35548 769878000 3796440 25942
3 909309000 6016150 37079
4 909309000 6016150 37079

T = 60
1 1061110000 15641400 38423 773552000 6452340 26221
2 1065570000 13244100 37528 772285000 5388540 26128
3 1048040000 13481700 43077 772285000 5388540 26128
4 1056230000 11067100 39764
5 1052650000 11569500 41708
6 1051810000 10817900 42160
7 1051810000 10817900 42160

6
Conclusions

In this thesis we studied mathematical models for periodic timetabling and inves-

tigated a rich set of existing and new integer programming formulations.

We think there remain some interesting topics concerning the X-PESP formu-

lations that we have developed for the PERIODIC EVENT SCHEDULING PROBLEM

(see Chapter 3). Until now we have not investigated primal heuristics for deter-

mining feasible start solutions. In particular, the combination of such heuristics

with constraint branching would be of interest. Another point concerns prepro-

cessing of the expanded event-activity graph. Lindner (2000) presents several tech-

niques by which we can tighten the time windows of the activities and reduce the

number of nodes in the event-activity graph. Minor adjustments included, we are

confident that these techniques can be used to reduce the size of the expanded

event-activity graph, and thus the size of the X-PESP formulations. Another idea

is to apply Lagrangian relaxation as done by Caprara et al. (2000) for a similar

model.

In our computational study, we tested the event fixation technique, described in

Section 3.3.1, only for a special case. We assumed that the running times as well

as the dwell times of the lines are fixed. It would be desirable to see if it is similar

effective in a more general setting. This, however, requires to find an alternative

for the valid equalities that we developed for the X-PESP formulations (see Sec-

tion 3.2.1). These proved extremely effective to strengthen the LP relaxation, but

only work under the special assumptions.

Furthermore, we are interested in an improvement of the constraint branching

scheme for solving the X-PESP formulations (see Section 3.3.2). We made the tests

with an implementation of preliminary nature. A deeper investigation could con-

firm the positive results on a more balanced branch-and-bound tree.

In Chapter 4 we examined an iterative approach of timetabling and passenger

routing. For the special case in which we do not optimize the timetable according

to the number of required vehicles, the quality of the resulting timetables could

be characterized. Our computational experiments confirmed these results for the

just-in-time distribution and show a relation between the timetable and the travel

behavior of the passengers. What is left is to investigate the equal distribution

while considering the initial waiting time in the timetable computation.

93

94 Chapter 6

A question still unanswered is whether the procedure converges if we also mini-

mize the number of required vehicles. If this is the case, it is natural to question

the quality of the computed timetable compared to a solution of an integrated ap-

proach.

Our computational study indicated that the mixed integer programs of the new

X-PESP formulations are large in size even though we have only considered a

small subset of timetable requirements. This is surely a limiting factor when solv-

ing the formulations by mixed integer programming.

The approach shows, however, that with the current PESP formulations, we have

not reached the end of the modeling possibilities. Whether time discretization is

an adequate method to formulate the PERIODIC EVENT SCHEDULING PROBLEM

remains to be seen.

A
Tables

In Section 5.3.3 we compared PESP and X-PESP formulations on a set of test in-

stances and for different period times. Here, we provide additional computational

results for two designated formulations. As a representative PESP formulation,

we consider PESP tree (2.7). This formulation is compared to X-PESP pro (3.5)

with line fixation (L), valid equalities (I), and constraint branching (C). In contrast

to the previous comparison, we now also give results for more theoretical period

times, such as T = 35. Table A.1 gives an overview of the tests. It follows an expla-

nation of the table headers.

T Period time

Conss Number of constraints

Vars Number of variables

Gap Primal-dual gap as defined in Section 5.3

Root Gap Primal-dual gap in the root node as defined in Section 5.3

Time Elapsed CPU time in seconds

Nodes Number of branching nodes

Table A.1 Overview of the tables.

PESP tree (2.7) X-PESP pro (3.5) LIC

N A.2 A.5
Ns A.3 A.6
P A.4 A.7

95

96 Tables

Table A.2 PESP tree (2.7) on instance N.

T Conss Vars Root Gap% Primal Bound Gap% Nodes Time

5 308 155 42.5 30839.2 0.0 373442 112.0
10 316 159 46.0 73389.1 0.0 1187039 349.0
15 314 159 43.1 107783 0.0 278162 90.0
20 316 159 44.9 153184 0.0 672164 268.0
25 316 159 44.6 194000 0.0 996196 322.0
30 314 159 48.4 229440 0.0 87793 36.0
35 312 157 39.8 264859 0.0 9950 4.0
40 316 159 49.2 304892 0.0 742201 235.0
45 316 159 40.4 332293 0.0 978141 382.0
50 316 159 45.6 378745 0.0 110917 46.0
55 316 159 40.8 402467 0.0 571675 229.0
60 314 159 47.9 440948 0.0 40483 14.0

Table A.3 PESP tree (2.7) on instance Ns.

T Conss Vars Root Gap% Primal Bound Gap% Nodes Time

5 194 98 44.8 35812 0.0 8327 3.0
10 198 100 54.7 76088.5 0.0 5567 1.0
15 198 100 47.1 119306 0.0 33490 9.0
20 198 100 49.2 171746 0.0 51225 12.0
25 198 100 45.7 197636 0.0 19708 4.0
30 198 100 51.3 233511 0.0 10127 3.0
35 198 100 52.3 298948 0.0 62389 14.0
40 198 100 52.7 347074 0.0 48683 14.0
45 198 100 47.0 378694 0.0 93886 20.0
50 198 100 51.8 426852 0.0 19000 5.0
55 198 100 49.5 488264 0.0 70953 17.0
60 198 100 44.5 534990 0.0 160665 30.0

Table A.4 PESP tree (2.7) on instance P

T Conss Vars Root Gap% Primal Bound Gap% Nodes Time

5 712 357 50.1 19491.2 0.0 636861 629.0
10 732 367 49.5 43762.7 0.1 2197169 2135.0
15 730 366 41.5 66739.8 0.1 1922820 1900.0
20 732 367 49.8 93458 0.1 2100666 2189.0
25 738 370 45.6 99153.5 0.1 1906383 2738.0
30 740 371 45.1 125266 0.1 1929843 2743.0
35 736 369 51.1 167395 0.1 1988811 2490.0
40 736 369 52.3 197736 0.1 1868981 1388.0
45 736 369 51.1 202464 0.1 2046663 2217.0
50 740 371 53.6 210069 0.1 2174814 3013.0
55 740 371 54.9 229663 0.1 1981413 2143.0
60 740 371 56.0 258422 0.1 1937384 2669.0

Tables 97

Table A.5 X-PESP pro (3.5) LIC on instance N.

T Conss Vars Root Gap% Primal Bound Gap% Nodes Time

5 1322 2870 20.6 30839.19 0.0 98 6.3
10 2592 11190 14.2 73389.09 0.0 209 37.5
15 3862 24960 16.9 107782.63 0.0 230 154.0
20 5132 44180 12.5 153183.89 0.0 250 457.2
25 6402 68850 11.4 194000.38 0.0 390 1584.8
30 7672 98970 8.2 229440.38 0.0 83 897.8
35 8942 134540 3.2 264859.08 0.0 20 444.9
40 10212 175560 9.7 304892.19 0.0 124 3226.4
45 11482 222030 12.1 339145.89 4.4 80 7200.0
50 12752 273950 10.6 383219.88 3.1 56 7200.0
55 14022 331320 8.4 1e+20 – 44 7200.0
60 15292 394140 2.0 440948.45 0.0 48 3001.5

Table A.6 X-PESP pro (3.5) LIC on instance Ns.

T Conss Vars Root Gap% Primal Bound Gap% Nodes Time

5 926 1964 9.6 35812 0.0 28 3.1
10 1826 7679 3.7 76088.5 0.0 10 5.2
15 2726 17144 7.4 119306.5 0.0 29 15.6
20 3626 30359 7.1 171746.5 0.0 65 52.0
25 4526 47324 2.0 197636.5 0.0 11 20.2
30 5426 68039 0.5 233511 0.0 12 94.9
35 6326 92504 6.0 298948.5 0.0 51 268.5
40 7226 120719 10.5 347074.5 0.0 158 999.6
45 8126 152684 8.5 378693.5 0.0 129 1517.8
50 9026 188399 6.1 426852 0.0 37 793.6
55 9926 227864 10.1 488264 0.0 170 3852.6
60 10826 271079 8.6 534990 0.0 106 5841.0

Table A.7 X-PESP pro (3.5) LIC on instance P.

T Conss Vars Root Gap% Primal Bound Gap% Nodes Time

5 3578 8614 – 19491.14 0.0 58 34.5
10 7098 34079 – 42426.27 0.0 656 926.0
15 10618 76394 – 65382.56 0.0 429 3341.7
20 14138 135559 – 93719.28 8.6 227 7200.0
25 17658 211574 – 1e+20 – 98 7200.0
30 21178 304439 – 1e+20 – 37 7200.0
35 24698 414154 – 1e+20 – 26 7200.0
40 28218 540719 – 1e+20 – 12 7200.0
45 31738 684134 – 1e+20 – 5 7200.0
50 35258 844399 – 1e+20 – 1 2851.8
55 0 0 – 1e+20 – 0 8.1
60 0 0 – 1e+20 – 0 10.0

Bibliography

Beale, E. and Tomlin, J. (1970). Special facilities in a general mathematical program-

ming system for nonconvex problems using ordered sets of variables. In Proceed-

ings of the Fifth IFORS Conference. 447–454.

Bollobás, B. (1998). Modern Graph Theory, Springer, vol. 184 of Graduate texts in

mathematics.

Brucker, P., Burkard, R. E., and Hurink, J. (1990). Cyclic schedules for r irregularly

occurring events. Journal of Computational and Applied Mathematics, 173–189.

Caprara, A., Fischetti, M., and Toth, P. (2000). Modeling and solving the train

timetabling problem.

Daduna, J. R. and Voß, S. (1993). Practical Experiences in Schedule Synchroniza-

tion. In Proceedings of the Sixth International Workshop on Computer-Aided Schedul-

ing of Public Transport. 39–55.

Domschke, W. (1989). Schedule synchronization for public transit Networks.

Fortet, R. (1960). Applications de lálgebre de Boole en recherche operationelle.

Revue Francaise Recherche Opérationelle, 4, 17–26.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability. Freeman.

Gertsbakh, I. and Serafini, P. (1991). Periodic transportation schedules with flexible

departure times : An interactive approach based on the periodic event schedul-

ing problem and the deficit function approach. European Journal of Operational

Research, 50(3), 298–309.

Klemt, W.-D. and Stemme, W. (1987). Schedule Synchronization for Public Transit

Networks. In Proceedings of the Fourth International Workshop on Computer-Aided

Scheduling of Public Transport. 327–335.

Kroon, L. G. and Peeters, L. W. P. (2003). A variable trip time model for cyclic

railway timetabling. Transportation Science, 37(2), 198–212.

Liberti, L. (2007). Compact linearization for binary quadratic problems. 4OR, 5(3),

231–245.

91

92 Bibliography

Liebchen, C. (2006). Periodic Timetable Optimization in Public Transport. Ph.D. thesis,

Technische Universität Berlin.

Liebchen, C. and Peeters, L. (2001). Some Practical Aspects of Periodic

Timetabling. In Operations Research Proceedings.

Lindner, T. (2000). Train Schedule Optimization in Public Rail Transport. Ph.D. thesis,

Universität Braunschweig.

Müller-Hannemann, M., Schulz, F., Wagner, D., and Zaroliagis, C. (2007). Algo-

rithmic Methods for Railway Optimization, Springer, chap. Timetable Information:

Models and Algorithms. To appear.

Nachtigall, K. (1996a). Cutting Planes for a Polyhedron associated with a Periodic

Network. DLR Interner Bericht 112-96/17.

Nachtigall, K. (1996b). Periodic network optimization with different arc frequen-

cies. Discrete Applied Mathematics, 69(1-2), 1–17.

Nachtigall, K. (1998). Periodic Network Optimization and Fixed Interval Timetables.

Ph.D. thesis, Universität Hildesheim.

Nachtigall, K. and Opitz, J. (2007). A Modulo Network Simplex Method for Solv-

ing Periodic Timetable Optimisation Problems. In Operations Research Proceed-

ings. Springer, 461–472.

Nemhauser, G. L. and Wolsey, L. A. (1999). Integer and Combinatorial Optimization.

Wiley.

Odijk, M. A. (1994). Construction of periodic timetables; part I: A cutting plane

algorithm. Tech. Rep. DUT-TWI-94-61, Delft, The Netherlands.

Peeters, L. W. (2003). Cyclic Railway Timetable Optimization. Ph.D. thesis, Erasmus

Universiteit Rotterdam.

Sahni, S. and Gonzalez, T. (1976). P-complete approximation problems. J. ACM,

23(3), 555–565.

Schrijver, A. (2003). Combinatorial Optimization. Springer.

Serafini, P. and Ukovich, W. (1989a). A mathematical model for periodic schedul-

ing problems. SIAM Journal on Discrete Mathematics, 2(4), 550–581.

Serafini, P. and Ukovich, W. (1989b). A mathematical model for the fixed-time

traffic control problem. European Journal of Operational Research, 42(2), 152–165.

	Eidesstattliche Versicherung
	Acknowledgments
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	Preface
	Timetabling
	The Planning Process in Public Transport
	Periodic Timetabling
	Prerequisites

	Models for Periodic Timetabling
	Model Assumptions
	The Periodic Event Scheduling Problem (PESP)
	The Quadratic Semi-Assignment Problem

	Time Discretization Applied to PESP
	Expanding the PESP Event-Activity Graph
	X-PESP Formulations
	Speedup Techniques

	Re-timetabling
	Model Assumptions
	The Timetable Graph
	Passenger Flow Computation
	The Re-timetabling Procedure

	Computational Results
	Test Instances
	Test Environment
	Periodic Timetabling
	Re-timetabling

	Conclusions
	Tables
	Bibliography

