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Abstract

We present a second order sharp interface finite volume method for the solution of
the three-dimensional elliptic equation ∇ � pβp~xq∇up~xqq � fp~xq with variable coeffi-
cients on Cartesian grids. In particular, we focus on interface problems with discon-
tinuities in the coefficient, the source term, the solution, and the fluxes across the
interface. The method uses standard piecewiese trilinear finite elements for normal
cells and a double piecewise trilinear ansatz for the solution on cells intersected by
the interface resulting always in a compact 27-point stencil. Singularities associated
with vanishing partial volumes of intersected grid cells are removed by a two-term
asymptotic approach. In contrast to the 2D method presented by two of the authors
in [M. Oevermann, R. Klein: A Cartesian grid finite volume method for elliptic equa-
tions with variable coefficients and embedded interfaces, J. Comp. Phys. 219 (2006)]
we use a minimization technique to determine the unknown coefficients of the dou-
ble trilinear ansatz. This simplifies the treatment of the different cut-cell types and
avoids additional special operations for degenerated interface topologies. The result-
ing set of linear equations has been solved with a BiCGSTAB solver preconditioned
with an algebraic multigrid. In various testcases – including large β-ratios and non-
smooth interfaces – the method achieves second order of accuracy in the L8 and
L2 norm.
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1 Introduction

We seek solutions of the three-dimensional variable coefficient elliptic equation

∇ �
�
βp~xq∇up~xq

	
� fp~xq, ~x P ΩzΓ (1)

defined in a domain ΩzΓ with an embedded interface Γ. For simplicity we
assume Ω to be a simple cuboid. The embedded interface Γ separates two
disjoint sub-domains Ω

�
and Ω

�
with Ω � pΩ� Y Ω

�q, see Fig. 1 for an
illustration. Along the interface we prescribe jump conditions for the solution

vuwΓ � u�p~xq � u�p~xq � gp~xΓq (2)

and for its gradient in the normal direction

vβunwΓ � β�u�n � β�u�n � hp~xΓq, (3)

with the notation un � p∇u � ~nq. The unit normal vector ~n on Γ is defined to

point from Ω
�

to Ω
�

.

Ω
�

Ω

~n

Γ

Ω
�

Figure 1. Domain Ω with sub-domains Ω�, Ω�, and embedded interface Γ.

Elliptic equations of type (1) with variable and discontinuous coefficients and
solution discontinuities often arise as a component in modelling physical prob-
lems with embedded boundaries. Examples include incompressible two-phase
flow with surface tension featuring jumps in pressure and pressure gradient
across the interface, projection methods for zero Mach-number premixed com-
bustion with jumps in the dynamic pressure and pressure gradient across the
flame front, heat conduction between materials of different heat capacity and
conductivity and interface diffusion processes. In the literature one can find a
vast number of different approaches for the numerical solution of this type of
problem. However, we limit our discussion here to methods on grids which are
not aligned with the interface. These methods have the advantage that they
do not need any re-meshing if the interface moves.

In Peskin’s immersed boundary method [30], singular forces arising from dis-
continuous coefficients and jump conditions are treated as delta functions.
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Using discretised discrete delta functions, the discontinuity is spread over sev-
eral grid cells making the method first order accurate. The method has been
used for many problems in mathematical biology and fluid mechanics. Cortez
and Minion [3] considerably improved Peskin’s method by improving its accu-
racy through higher order procedures for representing boundary forces. Recent
work by Tornberg and Engquist [37,38,5] generalizes the immersed boundary
approach and allows for high order approximations with minimal distribution
of discontinuities or singular source terms over the computational grid.

Mayo [24,25] presented a second order accurate method for Poisson’s equation
and the biharmonic equation on irregular domains using an integral equation
formulation. The resulting Fredholm integral equations of the second kind are
solved with a fast Poisson solver on a rectangular region. Although the method
captures solution discontinuities at the embedded interface, continuous deriva-
tives have been assumed to evaluate the discrete Laplacian. The method can
easily be extended to fourth order accuracy.

The immersed interface method [16,17,18] is a second order finite difference
method on Cartesian grids for second order elliptic and parabolic equations
with variable coefficients. Discontinuities in the solution and the normal gra-
dient at the interface are explicitly incorporated into the finite difference sten-
cil. Second order has been achieved by including additional points near the
interface into the standard 5-point stencil leading to a non-standard six-point
stencil in 2D. The resulting linear equation system is sparse but not sym-
metric or positive definite. Based on the immersed interface method Li and
Ito [19] present a second order finite difference method which satisfies the
sign property on the matrix coefficients which guarantees the discrete maxi-
mum principle. The resulting linear system of equations is non-symmetric but
diagonally dominant and its symmetric part is negative definite. The ideas
presented in [19] have been extended to 3D in [4].

A first order finite difference method on Cartesian grids was presented by
Liu et al. [21]. Interface jump conditions are explicitly incorporated into the
finite difference stencil as in the immersed interface method. Applying a one-
dimensional approach in each spatial direction by implicitly smearing out the
gradient jump condition, standard stencils (5-point in 2D, 9-point in 3D) for
the discrete Laplacian are achieved leading to a symmetric positive definite
matrix for the Poisson equation. The method shows first order accuracy for the
solution u in the L8-norm for constant coefficients β�. A convergence proof
of the method has been provided in [22] based on the weak formulation of the
problem. Due to its simplicity and robustness the methods has been used in
many engineering and scientific problems. The method has been independently
developed and applied to incompressible two-phase flow in [28].

A fourth order accurate finite difference method for elliptic problems with
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complex boundaries has been developed by Gibou and Fedkiw in [7]. By high
order extrapolation of the solution outside the domain they were able to ap-
ply high order finite difference formulas at and near the interface. Similar
ideas have been used in a series of papers by Wei and coworkers [43,42,41] for
elliptic problems with embedded interfaces. They developed finite difference
methods of up to sixth order in 3D for smooth interfaces and up to second
order for complex interfaces with sharp edges, wedges, and tips. Their meth-
ods can be viewed as a higher-order generalisation of the immersed interface
method. Solutions on both sides of the interface are smoothly extented beyond
the interface allowing the application of standard high order finite difference
formulas.

One of the first methods to model discontinuities in the finite element frame-
work without aligning the grid with the interface has been presented in [26,1].
In the so-called extended finite element method the original finite element
space is enriched by additional basis functions introducing new unknowns to
the problems. The choice of additional enrichment functions depends on the
type of discontinuity, e. g. step functions for solution discontinuities or dis-
tance functions for kinks [1]. Related approaches have been presented in [9,10].
The extended finite element method has been recently applied by Groß and
Reusken to model the pressure discontinuity arising from surface tension in
incompressible two-phase flow [8]. They observed locally slightly better than
first order of accuracy for the pressure. However, in their method they did not
make use of the jump condition of the pressure gradient in normal direction.

A finite element method on triangular meshes for solving second order elliptic
and parabolic equations for interface problems with rus � 0 and rβuns � 0 has
been proposed by Chen and Zou [2]. In their method the triangles are aligned
with the interface. In the L2-norm nearly second order accuracy (h2| log h|)
has been proved. The resulting linear system of equations is symmetric and
positive definite. Another finite element method based on uniform triangu-
lations of Cartesian grids was presented by Li et al. [20]. In contrast to [2],
the triangles need not to be aligned with the interface. Numerical results with
non-conforming finite elements demonstrate slightly less than second order of
accuracy in L8 and second order of accuracy with conforming finite elements
for a problem with homogeneous jump conditions rus � 0, rβuns � 0. The
general case with variable coefficients and non-homogeneous interface condi-
tions rus � 0, rβuns � 0 has been tackled recently by Hou and Liu [11] with
a finite element method. Similar to [20] they use uniform triangulations of
Cartesian grids. Their method is second order accurate in L8 if the solution
u is C2 and the interface is C2 or C1. To our knowledge these methods have
not been extended to three spatial dimensions.

Johansen and Colella [12] developed a second-order finite volume method on
Cartesian grids for the variable coefficient Poisson equation on irregular do-
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mains with Dirichlet and Neumann boundary conditions and combined the
method with an adaptive mesh refinement. Using central differencing for the
gradients, their method reproduces the standard five-point stencil on regular
cells. Using linear interpolation of gradients for internal edges and quadratic
polynomials in normal direction to the boundary for irregular cells leads to
a non-standard stencil. The final linear system is non-symmetric. Although
remotely related to our work in the sense of using a finite volume method,
the authors did not consider embedded boundaries with jump conditions of
the solution and the normal derivative. To our knowledge, their method has
not been extended to 3D. Furthermore, their method does not allow partial
volumes less than 10�6 times the normal cell volume.

Recently the authors presented in [27] a sharp interface finite volume method
on Cartesian grids for the solution of the variable coefficient Poisson equation
with solution discontinuities across an embedded interface in two spatial di-
mensions. Using a dual bi linear solution ansatz on cells intersected by the
interface the method achieves locally second order of accuracy. Singularities
arising from vanishing partial volumes and certain positions of the interface
relative to the underlying grid are removed in [27] by a two-term asymptotic
approach.

In this paper we extend the ideas presented in [27] to 3D. The piecewise bi-
linear solution ansatz of our 2D method is replaced by a piecewise trilinear
ansatz. In contrast to the 2D method, where we impose the jump conditions
at selected points of the interface, here we use a minimization approach for
the incorporation of the jump conditions and the determination of the 16 un-
known coefficients of the dual piecewise trilinear solution ansatz. This leads
to a unified treatment of the different types of cut-cells and avoids additional
special operations for degenerated interface topologies. The only singularity
arising from vanishing partial volumes of intersected cells is removed by an
asymptotic approach. The asymptotic treatment of this singularity leads to a
robust method which allows vanishing partial volumes down to the machine
accuracy without affecting the condition number of the minimization prob-
lem. In various examples including high β ratios, complex and non-smooth
interfaces the method shows locally second order of accuracy.

The vast majority of sharp interface methods on Cartesian grids is based on
finite difference methods. However, in many engineering problems such as fluid
flow or heat conduction the governing equations are often derived by a control
volume analysis with appropriate flux boundary and interface conditions. This
point of view has led in a natural way to many conservative finite volume
methods. The motivation for the finite volume approach presented in this work
stems from our interest in conservative finite volume projection methods for
Zero- and Low-Mach-number flow [31,15,13], with first-order accurate versions
of front tracking methods for flames and contact discontinuities presented
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in [36,14,33,32]. The divergence constraint of the velocity field leads to an
elliptic equation for the pressure in a finite volume form. The use of piecewise
trilinear ansatz function for the solution u makes our method quite similar to
finite element methods and allows us to construct improved exact projection
methods [39,40].

Compared to the cited literature, our method differs in the following points:
(i) we use a finite volume method instead of finite difference [16,21,41] or
finite elements [11,20,26,1,8], (ii) compared to the second and higher order
finite difference methods [16,41] we achieve always automatically a compact
27-point stencil without explicit incorporation of additional points near the
interface. In comparison to the finite element method presented in, e. g., [11]
and [8], we present a trilinear finite element which does not develop singular-
ities for vanishing partial volumes of intersected cells. In contrast to the cited
finite element methods our method results in a non-symmetric matrix. In case
of constant and equal coefficients we have a symmetric and positive definite
matrix.

2 Finite volume formulation

Integrating equation (1) over an arbitrary control volume Ω P Ω leads to

»
Ω
∇ � pβ∇uq dV �

»
Ω
f dV.

For a control volume Ω � Ω� Y Ω� intersected by the interface Γ we write

»
Ω�
∇ � pβ�∇u�q dV a�

»
Ω�
∇ � pβ�∇u�q dV a �

»
Ω
f dV.

After applying the divergence theorem on both integrals on the left hand side
we get »

BΩ
β p∇u � ~nq dS �

»
Ω
f dV �

»
ΓΩ

vβunw dS, (4)

where ΓΩ denotes the part of the embedded interface Γ lying inside Ω and
BΩ � pBΩ� Y BΩ�qzΓΩ. For ΓΩ � 0 we have for the source term

»
Ω
f dV �

»
Ω�
f� dV �

»
Ω�
f� dV. (5)

For a regular control volume without an embedded interface we have either
Ω � Ω� P Ω

� ^ Ω� � 0 or Ω � Ω� P Ω
� ^ Ω� � 0 and the last integral on

the right hand side of (4) vanishes. In the following sections we describe our
finite volume method to solve equations (4) and (5).
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3 Numerical method

x y

z

b

Ωi,j,k

∆x ∆y

∆z

i j

k

Figure 2. Control volume Ωi,j,k. Discrete solution values are located at grid nodes
i, j, k.

We discretise equation (4) on a uniform Cartesian grid in three-dimensional
space. Let ∆x, ∆y, ∆z be the grid spacing in x, y, and z-direction, respectively,
see Fig. 2. The values ui,j,k of our discretised solution are located at grid nodes
with the coordinates xi,j,k � x0� i∆y, yi,j,k � y0�j∆y, and zi,j,k � z0�k∆z.
The control volumes Ωi,j,k are centered around the corresponding grid nodes
pi, j, kq having edges of length ∆x, ∆y, and ∆z. The cuboids defined by the
Cartesian grid itself are called cells in this work. We denote the cell defined
by grid nodes pi, j, kq, pi � 1, j, kq, pi � 1, j � 1, kq, pi, j � 1, kq, pi, j, k � 1q,
pi � 1, j, k � 1q, pi � 1, j � 1, k � 1q, and pi, j � 1, k � 1q as Ci,j,k, see Figure
3. Let Ci,j,k be the set of cells with joint grid node pi, j, kq, i. e. those cells
having a partial volume in Ωi,j,k. Furthermore, we denote with Sci , c P Ci,j,k,
i P 1, 2, 3 the three parts of the surface of Ωi,j,k lying in cell c, see Figure 3 for
an illustration. As an example, the faces with numbers 1, 8, and 11 in Figure
3 are parts of the surface of Ωi,j,k.

With the notations introduced above we can now write the discrete form of
(4) for control volume Ωi,j as

¸
cPCi,j,k

3̧

i�1

»
Sc

i

β p∇u � ~nq dS �
»

Ωi,j,k

f dV �
»

ΓΩi,j,k

vβunw dS. (6)

To evaluate the left hand side of (6) we approximate the solution u with
piecewise trilinear ansatz on each cell c P Ci,j,k of the grid. This allows us
to evaluate the surface integrals on the left hand side of (6) analytically in
terms of the node values of u and, in case of an intersected control volume,
appropriate jump conditions at the interface.
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3
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7

11

10

9

4

12

∆
y

∆z

∆x

(i, j, k)

(i + 1, j, k)

(i, j, k + 1)

(i, j + 1, k + 1)

(i + 1, j + 1, k + 1)

Figure 3. Cell Ci,j,k with node indices. The grey shaded internal faces with indices
1–12 are surface parts of the control volumes having a partial volume within the
cell. The eight cuboids formed by the internal faces of the cell with edge lenghts
∆x{2, ∆y{2, and ∆z{2 belong to different control volumes and are called sub-cells.

4 Interface representation

We represent the interface Γ with a standard levelset approach [34,29] where
the interface is implicitly defined by the zero level of a signed distance function.
Geometric quantities such as interface normal vectors at the interface within
a cell pi, j, kq are calculated via trilinear interpolation of second order central
difference approximations at the nodes of the grid. In this study we only
consider cells which are cut by a single interface. Under this constraint we
can identify six different types of cut-cells which are qualitatively sketched in
Figure 4. Although we allow only cells with a single interface, control volumes
might still be intersected by more than one interface.

For a unique discretisation of the interface we introduce a triangulation of
the interface within each cell in the following manner: In the first step we
calculate the intersections of the interface with the edges of the cell by linear
interpolation of the levelset values between the nodes of the cell. In the second
step we calculate a point on the surface in the interior of the cell by averaging
the coordinates of the intersections determined in in the first step. A third
step could be the projection of this point in normal direction onto the interface
assuming a trilinear distribution of the levelset function on the cell. However,
in our numerical tests we did not see a noteworthy improvement of the results
and therefore we left this step.

The connection of the interface midpoint point of step two with all intersec-
tions of the interface with the cell edges defines a unique triangulation of the

8



I

b

b

b

b

b

bC

b

b

II

b

b

b

b

bC

bC

b

b

III

bC

bC

b

b

bC

b

b

b

IV

bC

bC

b

b

bC

bC

b

b

V

bC

bC

b

b

bC

b

b

bC

VI

bC

b

b

b

bC

bC

b

bC

Figure 4. Different types of cut-cells considered in this work. Nodes marked with �
and  respectively, are on the same side of the interface.

interface within a cell. Figure 5 shows triangulated interfaces for the different
cut-cell types considered in this work. The chosen triangulation of the inter-
face is a slight variation of the famous marching cubes algorithm [23] in the
sense that we use an additional point on the interface within the cell which
allows a unique representation of the interface with triangles.

In addition to to the cells composed by the Cartesion grid itself we introduce
so called sub-cells. Sub-cells are the (eight) parts of a cell belonging to differnt
control volumes, see Figure 3.

5 Piecewise trilinear ansatz

For the evaluation of the left hand side of equation (6) we approximate the
solution u by piecewise trilinear solution ansatz functions on cells. In the fol-
lowing presentation we need to distinguish between cells which are intersected
by an interface and those who are not.
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Figure 5. Interface discretisation by triangulation for the different types of cut-cells.
Discrete jump conditions are applied at the triangle corner points and the triangle
barycenters which are marked with circles.
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b

ξ

η

ζ

(i, j, k)
1

2

3
4

5

6

7

8

x

y
z ~x1

(i,j,k)

∆x

∆y

∆z

Figure 6. Node numbering and local coordinate system for a computational cell
pi, j, kq. For normal cells and non-singular cut-cells the origin of the local coordinate
system used for the trilinear solution ansatz is always at node number 1.

5.1 Normal cells

We denote cells without an intersection with the interface as normal cells, and
introduce the following set of local orthogonal coordinates, see Figure 6:

~ξ �

�
������
ξ

η

ζ

�
������ �

�
������

x�x1
pi,j,kq

∆x
y�y1

pi,j,kq

∆y
z�z1

pi,j,kq

∆z

�
������ , (7)

10



where x, y, z are global coordinates and ~x1
pi,j,kq � rx1

pi,j,kq, y
1
pi,j,kq, z

1
pi,j,kqsT de-

notes the global coordinates of node number one with local coordinates ξ �
η � ζ � 0, see Figure 6. Obviously, we have ξ, η, ζ P r0, 1s within a cell.

At normal cells we apply a trilinear solution ansatz upξ, η, ζq within a cell
pi, j, kq. Using standard finite element shape functions we have

upξ, η, ζq � x � a (8)

with

x �

�
�����������������

p1 � ξq p1 � ηq p1 � ζq
ξ p1 � ηq p1 � ζq
ξ η p1 � ζq

p1 � ξq η p1 � ζq
p1 � ξq p1 � ηq ζ

ξ p1 � ηq ζ

ξ η ζ

p1 � ξq η ζ

�
�����������������

T

(9)

and

a � ru1, u2, u3, u4, u5, u6, u7, u8sT . (10)

Here ui denotes the solution value at node i of the computational cell pi, j, kq,
see Figure 6 for the node numbering used. We have introduced the notation
a � b for the inner product of two arbitrary vectors a and b. In the case of a
normal cell the eight node values ui of the solution uniquely determine the
trilinear ansatz.

With the trilinear ansatz (8) defined in each normal cell of the computational
grid we can evaluate the surface integrals on the left side of (6) analytically in
terms of the unknown nodal values. With β � 1 and ∆x � ∆y � ∆z � 1 we
get a 27-point stencil with weights as shown in Figure 7. The stencil shown
in Figure 7 is the 3D analogue of the second order stencil of Süli [35], who
proved stability and convergence of the scheme.

5.2 Cut cells

On cells intersected by the interface we use separate trilinear solution ansatz
functions on both sides of the interface. We differentiate between cells with a
non-vanishing interface area, called non-singular cut-cells, and cut-cells with
potential singularities through vanishing interface areas and/or vanishing par-
tial volumes. For the following presentation we assume that node number 1,
Figure 6, lies within Ω�.
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Figure 7. Stencil elements for a control volume with β � 1, ∆x � ∆y � ∆z � 1
where all adjacent cells are normal cells not cut by an interface.

5.2.1 Non-singular cut-cells

On non-singular cut-cells we apply a dual piecewise trilinear ansatz in the
form

u�p~ξq � x � a,
u�p~ξq � x � b,

(11)

with

a � ra1, . . . , a8sT and b � rb1, . . . , b8sT , (12)

and a shape function vector ξ as given in (9)

In (11) we have defined the solutions on both sides of the interface using the
same shape functions as used for normal cells. That means the 16 unknown
coefficients a1, . . . , a8 and b1, . . . , b8 are the nodal values of the solutions u�

and u� at the grid nodes 1–8 of cell pi, j, kq. Depending on which side of the
interface the node exists these values are either real discrete solution values or
extrapolated values from the other side of the interface. In order to determine
the 16 unknown coefficients of the double trilinear solution ansatz we need –
apart from the eight nodal values – additional constraints. These constraints
will be derived from the prescribed jump conditions for the solution and its
gradient in normal direction at the interface.

The gradients of u in direction of ~n � rnx, ny, nzsT follow directly from (11)
and can be written as

p∇u� � ~nq � u�n p~ξq � y � a,
p∇u� � ~nq � u�n p~ξq � y � b,

(13)
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with

y � Bx
Bx nx �

Bx
By ny �

Bx
Bz nz. (14)

The partial derivatives

Bx
Bx � 1

∆x

Bx
Bξ ,

Bx
By �

1

∆y

Bx
Bη , and

Bx
Bz �

1

∆z

Bx
Bζ

are obtained by simple differentiation of (9). As an example, for the gradient
in x-direction we have

Bx
Bx � 1

∆x

Bx
Bξ �

1

∆x

�
�����������������

�p1 � ηq p1 � ζq
p1 � ηq p1 � ζ�q
η p1 � ζq

�η p1 � ζq
�p1 � ηq ζ

p1 � ηq ζ

η ζ

�η ζ

�
�����������������

T

.

In addition to the eight nodal values ui, i � 1, . . . , 8 we provide jump con-
ditions for the solution and the gradient in normal direction at the following
points of the triangulated interface: a) the triangle corner points and b) the
triangle barycenters, see Figure 5. As seen in Figure 5, the total number N of
discrete points on the interface at which we prescribe jump conditions varies
between 7 for cut-cells of type I and 13 for cut cells of type V and VI. Given two
jump conditions per point (one for the solution and one for normal derivative),
we have eight corner values plus 14 to 26 jump constraints to determine the 16
unknowns coefficients. We solve this overdetermined system by minimising the
difference between the prescribed and the calculated jump conditions under
the constraint of exact nodal values.

We denote with ~ξk � rξk, ηk, ζksT , k � 1, . . . , N the local coordinates of
the k’th point on the triangulated interface where we provide discrete val-

ues of jump conditions. The differences between the calculated jumps yvuw
and {vβunw from the trilinear ansatz and the prescribed jump values vuw and
vβunw can be written in the form of jump residuals r̃1 � rr1,1, . . . , r1,N sT and
r̃2 � rr2,1, . . . , r2,N sT . For the jump residual in u we have

r̃1,k � yvuwk � vuwk � ppxk � aq � pxk � bqq � vuwk (15)

and for the gradient jump residual

r̃2,k � {vβunwl � vβunwk �
�
β�py

k
� aq � β�py

k
� bq
	
� vβunwk (16)
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with k � 1, . . . , N . Depending on the location of the interface, the grid spac-
ing, and the values of β� and β� the individual components of r̃1 and r̃2 can
have different orders of magnitude. To give each jump condition a compara-
ble influence on the solution of the minimization problem we introduce scaled
residuals

r1,k � w1,k r̃1,k and r2,k � w2,k r̃2,k (17)

with weights

w1,k �
����xk, xk�����1

2
and w2,k �

����βAy
k
, βBy

k

�����1

2
. (18)

The scaled jump residuals (17) can be written in compact matrix notation as

r � X c� p (19)

with

X �
�
�� X

Γ
�X

Γ

β� Y
Γ

�β� Y
Γ

�
�� , c �

�
�� a
b

�
�� , p �

�
�� v
g

�
�� ,

v �

�
������
w1,1vuw1

...

w1,NvuwN

�
������ , g �

�
������
w2,1vβunw1

...

w2,NvβunwN

�
������ ,

and

X
Γ
�

�
������
w1,1 x1

...

w1,N xN

�
������ , Y

Γ
�

�
������
w2,1 y1

...

w2,N yN

�
������ .

For completeness we note that X P R2N�16, X
Γ
, Y

Γ
P RN�8, a P R8�1, b P

R8�1, c P R16�1 and p P R2N�1. Eq. (19) is a set of 2N linear equations for the
16 unknown coefficients a and b.

In our minimization approach we seek solutions for the coefficients c � ra, bsT
under the constraint of exact nodal values u � ru1, . . . , u8sT . This constraint
can be formulated as

B c� u � 0, (20)

with
B �

�
B� B�

�
(21)

and
B� � diagpb�1 , . . . , b�8 q. (22)

The elements of the diagonal matrices B� and B� are

b�i �
$'&
'%

1, if ui P Ω�

0, else
, (23)
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where ui is the solution at node number i in cell pi, j, kq.

Our constraint linear minimization problem may now be formulated using
Lagrange multipliers:

Lpc, λq � 1

2
pr � rq � λ � pB c� uq � min . (24)

A necessary condition for a minimum of Lpc, λq are vanishing partial deriva-
tives BL

Bc � 0 and
BL
Bλ � 0.

This leads to following set of linear equations:

�
��XT X BT

B 0

�
��

loooooooooomoooooooooon
M

�
�� c
λ

�
�� �

�
��XTp

u

�
�� (25)

with the solution �
�� c
λ

�
�� �

�
��M�1

11
M�1

12

M�1
21

M�1
22

�
��

loooooooooomoooooooooon
M�1

�
��XTp

u

�
�� .

We are only interested in the coefficients c – the actual values of the Lagrange
multipliers are irrelevant. Thus it is sufficient to consider

c �M�1
11
XT p�M�1

12
u. (26)

Equation (26) relates the coefficients c of the double trilinear solution ansatz
to the (yet unknown) nodal values u and the prescribed jump values at the
interface p.

Remark 5.1 One might ask why we include the triangle barycenters as ad-
ditional points for prescribing jump conditions. Even in the case of a type II
cut-cell (see Figure 5) the four triangle corner points alone provide eight jump
conditions which should be (in addition to the eight corner values) sufficient
to calculate the 16 unknown coefficients. However, there is a subtle problem
associated with the trilinear ansatz: On a plane interface with a constant nor-
mal vector ~n � rnx, ny, nzsT and ni � nj � 1{?2, nk � 0, i, j, k P x, y, z and
i � j, k � i, j (that is a plane interface at a 45� angle to one of the coordinate
axes) the gradient of the trilinear ansatz reduces to a linear function with only
two degrees of freedom. That means that for a cut-cell of type II or IV under
such conditions the interface triangle corner points provide five independent
conditions in the value jumps but only two in the gradients amounting to a
total of seven independent conditions. But also in the case of an interface that
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is slightly disturbed from the singular case described above the problem becomes
ill conditioned making the solution numerically difficult. The jump conditions
at the triangle barycenters ensure that we always provide sufficiently many
independent jump conditions.

Remark 5.2 Instead of solving the constrained minimization problem via La-
grange multipliers we could have used a direct approach. The coefficients (12)
are solution values at the nodes of the cell. Therefore, eight values of a and
b are directly given by the solution of u at the nodes of the grid. Instead of
enforcing exact nodal values via Lagrange multipliers in (24), the known nodal
values can be used to formulate the minimization problem directly in the re-
maining eight unknowns. However, we have chosen the Lagrange multiplier
approach here as it allows (for future applications) a more flexible handling of
different types of constraints and boundary conditions.

5.2.2 Singular cut-cells

The minimization approach in the presented form fails in cases of vanishing
interface areas or, equivalently, vanishing partial volumes within a cell. This
can only occur for cells of type I and II, see Figures 4 and 8. For cut-cells of type
I the interface can degenerate either into a point or a line, interfaces of type II
cells can degenerate to a line. In case of a vanishing interface area some or all of
the prescribed jump conditions fall onto the same point and the minimization
matrix M in (25) becomes singular. Even in cases of a non-vanishing but small
partial volume, the condition number of the matrix M becomes extremely
large rendering the calculation of the inverse of M numerically difficult or
even impossible. Common approaches found in the literature, e.g. [11,8] and
probably used in many codes is to simply limit the minimal allowed interface
area within a cell, which is not satisfying as it introduces new and unnecessary
sources of truncation errors

In order to obtain a robust method without artificially limiting the minimal
interface area within a cell, we follow the ideas presented in [27] and remove
those singularities by a two-term asymptotic approach. For this approach we
need to introduce a second coordinate system with an origin at a node in the
vanishing partial volume.

Let n P 1, . . . , 8 be the node in cell pi, j, kq with global coordinates ~xn
pi,j,kq �

rxn
pi,j,kq, y

n
pi,j,kq, z

n
pi,j,kqsT , see Figure 6. We introduce the following set of local
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orthogonal coordinates with origin at node n of cell pi, j, kq:

~ξn
pi,j,kq �

�
������
ξn
pi,j,kq

ηn
pi,j,kq

ζn
pi,j,kq

�
������ �

�
������

x�xn
pi,j,kq

∆x
y�yn

pi,j,kq

∆y
z�zn

pi,j,kq

∆z

�
������ , n P 1, . . . , 8. (27)

For n � 1 we have the same coordinate system as used in the minimization
approach for non-singular cells.

Without loss of generality we choose Ω� to be the vanishing partial volume of
cell pi, j, kq. For cut-cells of type I only one node with the number n is element
of Ω� (n � 6 in the exemplary configuration shown in Figure 8). Cut cells of
type II have two nodes n1 and n2 within the vanishing partial volume of the
cell (n1 � 5 and n2 � 6 in the example of Figure 8). Let ξ̂ P ξ, η, ζ be the
coordinate direction connecting nodes n1 and n2. Without loss of generality
we assume that n1 and n2 are ordered in such a way that ξ̂n1 � 0 and ξ̂n2 � 1,
and set n � n1 in (27) for type II cut-cells.

Furthermore, we define vuwni
with ni � n for type I cells and ni � n1, n2 for

type II cells to be the prescribed value jump on the triangulated interface
closest to the point ni. This ensures that we always use the correct jump of u
in the leading order solution in the case of a vanishing partial volume Ω�, see
below.

With the definitions above we introduce the following two-term ansatz for the
solutions u� and u� on both sides of the interface:

u�
�
~ξ1
	

� up�,0qp~ξ1q � ε up�,1qp~ξ1q,
u�
�
~ξn, ξ̃

	
� up�,0qp~ξnq � ε up�,1qp~̃ξq,

(28)

where up�,0q, up�,0q are leading order solutions, up�,1q, up�,1q are corrections to
the leading order solutions, and ε is a measure of the singularity of the cell to

be defined below. With ~̃ξ we denote scaled coordinates within the vanishing
partial volume Ω� which will be introduced below. We remark that we always
use coordinates ~ξ1 � ~ξ for the solution in Ω�, whereas the origin for the
solution ansatz in Ω� varies with the orientation of the interface.

5.2.2.1 Leading order solution The leading order solution is the so-
lution for a vanishing partial volume Ω�. This situation corresponds to an
interface touching only node n for cut-cells of type I or nodes n1 and n2 for
type II cells. In both cases the whole domain of the cell is effectively part of
ΩA. The solution values u�n for type I cells, u�n1

and u�n2
for type II cells are
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ξ6
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ξ1
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ζ1
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δη
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ξ5
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ζ5

ξ1
η1

ζ1

δξ
5,δξ

6

δη6

δζ
6

δζ
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δη5

b

b

b

b

bC

bC

b

b

Figure 8. Coordinate systems and naming conventions for the two-term asymptotic
solution approach. The pictures show exemplary configurations for a cut-cell of type
I with n � 6 on the left, and n1 � 5, n2 � 6 for a type II cut-cell on the right.

directly given by
u�ni

� u�ni
� vuwni

� uni
� vuwni

(29)

where uni
is the solution value at node ni of the cell. However, with (29) we

have eight corner values for u� on hand and we can set the leading order
solution in Ω� to be a full trilinear function:

up�,0q � x � ap0q (30)

with

a
p0q
i � u�i �

$'&
'%
ui � vuwni

, if i � ni

ui, else
, i � 1, . . . , 8.

and x defined in (9). This can be written in a slightly different form:

ap0q � u�D � vuw (31)

with
D � diagpd1, . . . , dNq, and dj � δnij, ni � n1, n2.

For type I cells the spatial distribution of the leading order solution in Ω� has
no importance and is set to be a constant, i. e.

u
p�,0q
I � un1 . (32)

For type II cells we set the leading order solution to be a linear function
between the two nodes n1, n2 P Ω�, which can be written as

u
p�,0q
II � p1 � ξ̂qun1 � ξ̂ un2 . (33)

Here, ξ̂ P ξ, η, ζ is the coordinate pointing from node n1 to n2 (ξ̂ � ξ in Figure
8). For later purpose we write the leading order solution in Ω� in the following
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form:

up�,0q � x� � bp0q (34)

with

bp0q � u

and

x� � rx�1 , . . . , x�8 sT , (35)

with

x�i � δin, i P 1, . . . , 8 (36)

for type I cut-cells and

x�i �

$'''''&
'''''%

p1 � ξ̂q, if i � n1

ξ̂, if i � n2

0, else

, i P 1, . . . , 8 (37)

for type II cells.

For the construction of the correction solution in the next section we sum-
marise the coefficients of the leading order solution as:

cp0q �
�
ap0q bp0q

�T � U u� P p, (38)

with

U �
�
I I

�T
, I P R8�8

p �
�
vuw, vβunw

�T
and

P �
�
��D 0

0 0

�
��

5.2.2.2 Correction solution For partial volumes |Ω�| ¡ 0 we need to
correct the leading order solution. For the correction solution we make a full
trilinear ansatz on both sides of the interface:

up�,1q � x � ap1q,
up�,1q � x̃ � bp1q,

(39)

with x defined in (11) and x̃ similarly defined with ξ, η, ζ replaced with the
scaled coordinates ξ̃, η̃, ζ̃. The scaled coordinates for the correction solution
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up�,1q in Ω� are given as

~̃ξ �

�
������
ξ̃

η̃

ζ̃

�
������ �

�
������
ξn{δξ
ηn{δη
ζn{δζ

�
������ . (40)

The scaling factors δξ, δη, δζ are defined as the distances from nodes n1 or
n2 to the interface along the edges of the cell in direction of ξn, ηn, ζn axes,
respectively, see Figure 8. For cut-cells of type I we define

δξ � δξn, δη � δηn, δζ � δζn, (41)

and for type II cells we define

δξ � maxpδξn1 , δξn2q,
δη � maxpδηn1 , δηn2q,
δζ � maxpδζn1 , δζn2q

(42)

and remark that the scaling factor in the connecting direction between the
nodes n1 and n2 is defined to be unity. With this scaling we always achieve
Opξ̃q � Opη̃q � Opζ̃q � 1 within an Ω� and avoid situations of ξ̃, η̃, ζ̃ Ñ 8 for
cut-cells of type II. In addition we define the small parameter ε as

ε � minpδξ, δη, δζq. (43)

The introduction of scaled coordinates ensures that the distance between the
different points of prescribed jump conditions in ξ̃, η̃, ζ̃ space is independent
of ε and always of order Op1q. This guarantees that the prescribed jump
conditions always lead to a set of linearly independent equations for the min-
imization.

The gradients in direction of ~n follow from (28) as

p∇u� � ~nqp~ξq � y � ap0q � ε py � ap1qq,
p∇u� � ~nqp~ξn, ~̃ξq � y� � bp0q � ε pỹ � bp1qq,

(44)

where y is defined in (14). The leading order solution for type I cells is a
constant leading to

y� � 0

for such cells. The leading order gradient in Ω� for type II cells follows from
(33) as

y� � bp0q � p�ξ̂un1 � ξ̂un2qnξ̂
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with nξ̂ P nx, ny, nz corresponding to alignment of ξ̂.

For the solution gradient in normal direction we have in scaled coordinates

ỹ � Bx̃
Bx nx �

Bx̃
By ny �

Bx̃
Bz nz, (45)

where

Bx̃
Bx � 1

∆x δξ

Bx̃
Bξ̃ ,

Bx̃
By �

1

∆y δη

Bx̃
Bη̃ , and

Bx̃
Bz �

1

∆z δζ

Bx̃
Bζ̃ .

As an example, for the gradient in x-direction we have

Bx̃
Bx � 1

∆x δξ

�
�����������������

�p1 � η̃q p1 � ζ̃q
p1 � η̃q p1 � ζ̃q
η̃ p1 � ζ̃q

�η̃ p1 � ζ̃q
�p1 � η̃q ζ̃

p1 � η̃q ζ̃

η̃ ζ̃

�η̃ ζ̃

�
�����������������

T

.

Note that ỹ Ñ 8 for ε Ñ 0. However, this singularity is canceled by the ε
term in the asymptotic expansion (44).

Given the two-term ansatz (28) we can write the jump residual in u and βun
as

r̃1,k � yvuwk � vuwk � yvuwp0qk � εyvuwp1qk � vuwk
�
��
xk � ap0q

	
�
�
x�k � bp0qq



� ε

��
xk � ap1q

	
�
�
x̃k � bp1q

		
� vuwk (46)

r̃2,k � {vβunwk � vβunwk � {vβunwp0qk � ε {vβunwp1qk � vβunwk
�
�
β�
�
y
k
� ap0q

	
� β�

�
y�
k
� bp0q

		
� ε

�
β�
�
y
k
� ap1q

	
� β�

�
ỹ � bp1q

		
� vβunwk (47)

To give each individual component of the residuals a comparable influence on
the minimization solution we introduce as before the scaled residuals

r1,k � w1,k r̃1,k and r2,k � w2,k r̃2,k (48)

with weights

w1,k �
����xk, xk�����1

2
and w2,k �

����β�y
k
, β�ỹ

k

�����1

2
. (49)
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The scaled jump residuals (48) can be written in compact matrix notation as

r � X̃ cp1q �X cp0q � p (50)

with

X �
�
�� X

Γ
�X�

Γ

β� Y
Γ

�β� Y �
Γ

�
�� , X̃ �

�
�� X

Γ
�X̃

Γ

β� Y
Γ

�β� Ỹ
Γ

�
��

cp0q �
�
�� ap0q
bp0q

�
�� , cp1q �

�
�� ap1q
bp1q

�
�� , p �

�
�� v
g

�
�� ,

v �

�
������
w1,1vuw1

...

w1,NvuwN

�
������ , g �

�
������
w2,1vβunw1

...

w2,NvβunwN

�
������

and

X
Γ
�

�
������
w1,1 x1

...

w1,N xN

�
������ , Y

Γ
�

�
������
w2,1 y1

...

w2,N yN

�
������ ,

X�
Γ
�

�
������
w1,1 x

�
1

...

w1,N x
�
N

�
������ , Y �

Γ
�

�
������
w2,1 y

�

...

w2,N y
�

�
������ ,

X̃
Γ
�

�
������
w1,1 x̃1

...

w1,N x̃N

�
������ , Ỹ

Γ
�

�
������
w2,1 ỹ1

...

w2,N ỹN

�
������ .

The unknowns in (50) are the coefficients cp1q �
�
ap1q, bp1q

�T
, whereas cp0q

is already known from the leading order solution. In accordance with the
procedure for normal cells in Section 5.2.1 we want to minimise the residual
r under the constraint of exact nodal values. Since the leading order solution
fullfills already the condition of exact nodal values, the correction solution has
to be zero at the nodes of the cell, i.e.,

B cp1q � 0, (51)

where B is given in (21).
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The problem of minimising the residual vector r under constraint (51) can
now be stated as

Lpcp1q, λq � 1

2
pr � rq � λ � pB cp1qq � min . (52)

The necessary conditions for a minimum of Lpcp1q, λq are

BL
Bcp1q � 0 and

BL
Bλ � 0

leading to the following set of linear equations:

�
�� X̃

T
X̃ BT

B 0

�
��

loooooooooomoooooooooon
M̃

�
�� cp1q
λ

�
�� � �

�
�� X̃

T
X cp0q

0

�
���

�
�� X̃

T
p

0

�
�� . (53)

Using (38) we can write for the second order solution

cp1q�
"
�M̃�1

11
X̃
T
X cp0q � M̃

�1

12
X̃
T
p
*

�
"
�M̃�1

11
X̃
T
X U u�

�
M̃

�1

11
X̃
T
X P � M̃

�1

12
X̃
T


p
*
, (54)

where M̃
�1

11
and M̃

�1

12
, are sub-matrices of M̃

�1
in (53).

Figure 9 demonstrates the effectivity of our two-term asymptotic representa-
tion. The figure compares the condition number of the minimization matrix M
using a single step minimization as for non-singular cut-cells and the two-term
asymptotic approach. For the figure we have used a singular cut-cell of type
I with β� � β� � 1 and ε � δξ � δη � δζ. The condition number for the
single step minimization matrix according to (25) quickly becomes extremely
large making the computation of the inverse prone to errors or even impossi-
ble. In contrast, down to the machine accuracy the condition number for the
two-term asymptotic approach in (53) is essentially independent of the small
parameter ε.

5.2.2.3 Composite solution With the results from the preceding sec-
tions we can now summarise the complete solution (28) as

u�
�
~ξ
	

� x � ap0q � ε
�
x � ap1q

	
,

u�
�
~ξn, ~̃ξ

	
� xn � bp0q � ε

�
x̃ � bp1q

	
,

(55)
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Figure 9. Condition number of the minimization matrix M according to (25) and
(53) for a singular cut-cell of type I with β� � β� � 1 and ε � δξ � δη � δζ.

where x, xn, ap0q, ap1q, bp0q, and bp1q are given by (9), (35), (37), (38), and (54),
respectively. The shape function vector x̃ is formally identical to (9) with
ξ, η, ζ replaced with the scaled coordinates ξ̃, η̃, ζ̃.

5.3 Evaluation of the discrete Laplacian

With (8) - (10) for normal cells, (11) with (26) for non-singular cut-cells, and
(55) for singular cut-cells we can express the piecewise trilinear distribution
of u on each cell of the grid as function of discrete node values and jump
conditions. This allows us to evaluate the surface integrals on the left hand
side of (6) analytically which leads to a sparse system of linear equations for
the solution values ui,j,k on the nodes of the grid.

If the surface element Sci in (6) has an intersection with the interface we split
the integral in two parts,

»
Sc

i

β∇u � ~n dS �
»
Sc,�

i

β�∇u� � ~n dS �
»
Sc,�

i

β�∇uB � ~n dS, (56)

and evaluate each part of the integral analytically using (11), (26) or (55) for
the solutions on the different sides of the interface.

For the evaluation of the integrals on the right hand side of (56) we assume
the intersection between the interface Γ and Sci to be a straight line, i. e. Sc,�i
and Sc,�i can always be represented by triangles and/or rectangles, see Figure
10 for an illustration.
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Figure 10. Piecewise linear representation of the intersections between the boundary
of control volume Ωi,j,k and the interface Γ. The parts of the surface bounded by
the dashed lines are the inner faces of cells around node pi, j, kq as shows in Figure
3.

The dependence of the piecewise trilinear solution on the jump conditions at
the interface leads – in addition to the terms on the right hand side of (6) – to
a contribution of surface integrals to the right hand side of the global linear
system of equations. However, for normal cells as well as for cut cells we always
get a compact 27-point stencil. For β� � β� we end up with a symmetric and
diagonally dominant matrix. However, in the general case of β� � β� the
resulting matrix is non-symmetric. That also means that we cannot a priori
guarantee that our methods fullfils a discrete maximum principle.

5.4 Evaluation of source terms

For a second order approximation of (5) we use

»
Ω
f dV � |Ω�| f�px�

s q � |Ω�| f�px�
s q, (57)

where x�
s denotes the barycenter of Ω�.

For the integral of the gradient jump over the interface Γ we use a triangulation
of the interface as described in Section 4 based on sub-cells. Let Ci,j,k denote
the set of sub-cells composing control volume Ωi,j,k. If Tc, c P Ci,j,k is the set
of interface triangles in sub-cell c we can write for the second integral on the
right hand side of (5)

»
ΓΩi,j,k

vβunw dS � ¸
cPCi,j,k

¸
τPTc

»
τ
vβunw dS � ¸

cPCi,j,k

¸
τPTc

|τ | vβunwτ , (58)

where vβunwτ is the discrete value of the gradient jump in the barycenter
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of triangle τ . Equation (58) is a standard second order approximation of an
integral over a triangulated surface.

6 Results

In the following examples we compare numerical results with given analytic
solutions u�p~xq and u�p~xq and prescribed coefficients β�p~xq and β�p~xq. We
use the analytic solutions to provide values for f�p~xq in the barycenter(s) of
Ω� and/or Ω� of (57) and to evaluate discrete values of the jump conditions
vuw and vβunw. Furthermore, the analytic solutions provide Dirichlet boundary
conditions on BΩ.

All geometric information about the interface is evaluated to second order of
accuracy using standard levelset techniques as described in textbooks [34,29].
The interface is defined by the zero level of the signed normal distance function
φp~xq. We set Ω� and Ω� to be the region with φp~xq ¡ 0 and φp~xq   0,
respectively. Intersections of the interface with the edges of cells and sub-cells
have been evaluated assuming linear distributions of φ between grid points.
The unit normal vector pointing from Ω� to Ω� is given by ~n � � ∇φ

|∇φ| . The
normal vectors needed at various locations of the triangulated interface, see
Fig. 5, are evaluated by trilinear interpolation of second order node centered
normal vectors.

The arising linear systems of equations have been solved with the hypre library
[6] using a BiCGSTAB solver preconditioned with an algebraic multigrid solver
using the standard parameters for the multigrid solver as described in the
manuals of the hypre library.

We evaluate the performance of our method by convergence studies in the
usual L8 and L2 norms. Furthermore, we provide convergence results for an
interface norm LB, which is the L2-norm of all grid points of intersected cells.
The order of convergence for all examples below has been evaluated by a linear
least square fit of the error results on successively refined grid from 10�10�10
to 120 � 120 � 120 grid points. Usually we omit the results on the coarsest
grid levels for the linear least square fit as the results on very coarse grids
are usually not suitable for convergence studies. Furthermore, in all examples
with a geometric symmetry of the interface we have shifted the interface by
a small value εx|y|z   ∆x, ∆y, ∆z in all coordinate directions to avoid the
(positive) influence of symmetries on the solutions.
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6.1 Example 1

The first example is the 3D analogue of a 2D test case used in [11] and [27].
We solve (1) in the domain �1 ¤ x, y, z ¤ 1. The interface is a simple sphere
with radius 0.5 and midpoint at p0, 0, 0q. The analytic solutions u� and the
coefficients β� are given as:

u� � lnpx2 � y2 � z2q, u� � sinpx� y � zq,
β� � sinpx� y � zq � 2, β� � cospx� y � zq � 2.

The solution as well as the the normal derivative are discontinuous across the
interface. This example is characterized by a simple geometry of the interface
with constant curvature, non-linear solutions on both sides of the interface,
and a relatively small ratio of the coefficients β� and β�.
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Figure 11. Solution for example 1 at z � 0 (left) and convergence results (right).
The slope s of the linear least square fit is the order of convergence.

Figure 11 shows on the left side the solution at z � 0. The figure demonstrates
the sharp and discontinuous representation of the solution without any peaks.
The convergence results for this example are summarised on the right hand
side of Figure 11. For this test case the method shows second order of accuracy
in the L2, L8, and the boundary norm LB. Not surprising, the error in the
L8-norm is the largest and about one order of magnitude larger than the error
in the LB-norm, but the order of convergence is � 2.0 in allnorms.
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Figure 12. Convergence results for example 2 with a spherical interface and different
ratios of the coefficients β� : β�. The slope s of the linear least square fit is the
order of convergence.

6.2 Example 2

This case follows an example investigated by Li in [18] and [27] in 2D. We use
again a spherical interface radius 0.5 and midpoint at p0, 0, 0q. The analytic
solutions on the computational domain 0 ¤ x, y, z ¤ 1 are given as

u� � r4 � C0 logp2 rq
β�

, u� � r2

β�
,

β� � const., β� � const.,

with r � ?
x2 � y2 � z2 and C0 � �0.1. The solution and the gradient are

discontinuous across the interface, however, the jump of the gradient in normal
direction vβunw is independent of the β ratio here. We use this test case to
evaluate the performance of our scheme under various ratios of the coefficients
β� : β�. For large values of β� the solution becomes nearly constant in Ω�.

Figure 12 shows convergence results for different ratios of the coefficients β� :

28



β�. For all combinations of β� : β� we see second order (or above for β� :
β� � 1000 : 1) of accuracy in the L8-, LB-, and L2-norms. It can further be
observed from Figure 12 that the absolute value of the error at a certain grid
resolution seems to depend more on the values of β v itself than on their ratio.
For the β-ratios investigated here we see an increasing difference between the
errors in the L8- and LB-norm with increasing β-ratio. Furthermore, at large
β ratios we see occasionally a non-smooth convergence in the L8 norm.
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Figure 13. CPU times for solving the resulting set of linear equations of example
2 as a function of the total number of grid points and the ratio of the coefficient
β� : β�. The scaling factors s has been evaluated using a linear least square fit.

Figure 13 shows CPU times for solving the set of linear equations as a function
of grid size and β-ratio. All results have been obtained on an Intel 8400 Core
2 Duo processor running at 3 GHz clock speed. The BiCGSTAB solver of the
hypre package preconditioned with the algebraic multigrid solver BOOMER
has been used here. The convergence tolerance for the solver has been set to
1e� 13. The scaling factor s in Figure 13 has been obtained by a linear least
square fit. The results show a slightly less than linear scaling of the CPU time
over the number of grid points for all β-ratios. It is a known fact that the
condition number of the resulting set of linear equations strongly depends on
the ratio of the coefficient β and that problems of the type considered here
become notoriously difficult to solve numerically for limitingly large ratios of
the coefficients. In our examples we made the experience that the algebraic
multigrid solver BOOMER used as a direct solver works very reliably and fast
for low ratios of the coefficient β. However, for high β-ratios it was necessary
to use a preconditioned solver as mentioned above.

The CPU times in Figure 13 for the high β-ratio cases β� : β� � 1 : 1000 and
β� : β� � 1000 : 1 are roughly 2-3 times longer than for β� : β� � 1 : 1 on
the same grid. The CPU times shown in Figure 13 are representative for all
other results presented in this paper. For brevity we omit the detailed CPU
times for most other examples.
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6.3 Example 3

In this example we consider the case of a complex interface, varying and high
β-ratios, and nonlinear solutions on both sides of the interface. The interface
is given in parametric form as

rpφ, θq � R � ∆Rφ cos3pθq cospωφ φq � ∆Rθ cospωθ θq, (59)

with 0 ¤ φ ¤ 2π, 0 ¤ θ ¤ π, R � 0.65, ∆Rφ � ∆Rθ � 0.15, ωφ � 6, and
ωθ � 4, see Figure 14 for an illustration of the interface. We use the same
nonlinear solutions u� and u� as in example 1 with the following different
combinations of β values:

I: β� � sinpx� y � zq � 2, β� � cospx� y � zq � 2,

II: β� � sinpx� y � zq � 2, β� � 250 cospx� y � zq � 500,

III: β� � 250 cospx� y � zq � 500, β� � sinpx� y � zq � 2.

Cases II and III lead to a maximum ratio of the coefficients β� : β� � 1 : 750
and β� : β� � 750 : 1, respectively.

Figure 14. Surface error plot of the star like interface of example 3.

Figure 15 summarises the convergence results for the different test cases. For
all combinations of β� : β� values we get second order of accuracy in the
L8, LB, and L2 norm. As in the examples before, the difference between the
error in the L8 and LB-norm increases with increasing ratio of the coefficients
β� and β�. From the results in Figure 15 and the results of the preceeding
examples we conclude that the convergence ratio seems not to decrease with
a) increasing β-ratio and b) complexity of the interface. However, the absolute
value of the error is strongly affected by the β-ratio.
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Figure 15. Solution for example 3 at z � 0.2 and convergence results for different
β-ratios for the star-example. The scaling factors s has been evaluated using a linear
least square fit.

CPU times for the solution of the linear system of equations are shown in
Figure 16 for the different cases. We see again an almost linear scaling of the
CPU time with the number of grid points. The numbers are in the same order
of magnitude as in Example 2 indicating a weak influence of the interface
complexity on solution times of the linear equation system solver.

6.4 Example 4 – oak acorn

This example has been taken from [41]. The solutions and coefficients on both
sides of the interface are given as

u� � 10 px� y � zq � 1, u� � 10 cospk xq cospk yq cospk zq,
β� � 80, β� � 1,

(60)
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Figure 16. CPU times for solving the resulting set of linear equations as a function of
the total number of grid points and different ratios of the coefficient β. The scaling
factors s has been evaluated using a linear least square fit.

with k � 3. The interface is an oak acorn defined by

�
x
d

	2 �
�y
d

	2 � pz � qq2, if z ¡ 0

x2 � y2 � pz � gq2 � R2, if z ¤ 0,

with q � �6{7, g � 1{2, R � 15{7, and d �
b
pR2 � g2q{q2. The interface is

depicted as a plot of the error at the interface in Figure 17. The computational
domain is set to �5 ¤ x, y, z ¤ 5. The oak acorn is a simple example of a
non-smooth interface featuring a tip and an edge. The surface error plot in
Figure 17 shows a maximum at the tip and some minima at and around the
edge of the oak acorn.
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Figure 17. Error at the interface and convergence results for the oak acorn (example
4). The surface error plot has been been obtained on a grid with 100 � 100 � 100
points. The scaling factors s has been evaluated using a linear least square fit.
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The convergence plot on the right side of Figure 17 demonstrates again second
order of accuracy in the L8, LB, and L2 norms. We also observe again that
the error in the L8-norm is an order of magnitude larger than the average
error at the interface represented by LB.

6.5 Example 5 - cylinder

The last example has also been taken from [41]. The interface is a cylinder
with diameter π and height 2π, see Figure 18. The computational domain
has been set in accordance with [41] to �4 ¤ x, y ¤ 4 and �2 ¤ z ¤ 8.4.
The analytic solutions and the coefficients on the two sides of the interface
are given by (60). The cylinder is another example of a non-smooth interface
featuring two edges.

Figure 18 shows on the left hand side a surface error plot on a grid with a
resolution of 120�120�120 points. Although the analytic solution is identical
to the example of the oak acorn, we observe the extreme values of the error
not at the edges but on the sides of the cylinder correlating with the large
amplitudes of the harmonic solution u�, equation (60). Yu and Wei observed
a similar behaviour of their method in [41].

On the right hand side of Figure 18 we see second order of convergence in the
L8, LB, and L2 norms. In contrast to the oak acorn example the errors in the
LB and L2 norms show the same order of magnitude. The order of magnitude
in the L8-norm is comparable to the example of the oak acorn.
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Figure 18. Surface error plot and convergence results for a cylinder interface. The
scaling factors s has been evaluated using a linear least square fit.
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7 Conclusion

We have developed a second order sharp interface finite volume method on
Cartesian grids for the solution of elliptic equations in 3D with variable coef-
ficients and discontinuities across an embedded interface.

In contrast to most sharp interface methods in the literature we use a finite
volume approach on Cartesian grids using ideas from finite element methods
in reconstructing the solution within grid cells. On cells which are intersected
by the interface we apply a dual piecewise trilinear solution ansatz leading to
a finite element for irregular cut-cells taking into account known jump condi-
tions of the solution and the normal gradient across the interface. The work
extends our 2D method presented in [27] to 3D and introduces new concepts
for the construction of the double trilinear solution ansatz via a minimiza-
tion approach. Singularities arising from vanishing partial volumes within a
cell are removed in analogy to [27] by a two-term asymptotic approach. This
asymptotic approach allows partial volumes down to machine accuracy with-
out affecting the condition number of the local minimization problem.

In the 2D method [27] we were always able to impose exactly as many jump
conditions as unknowns at the cost of another singularity besides vanishing
partial volumes. However, the analog of the 2D method in 3D would have lead
to additional singularities of the type mentioned in Remark 5.1. The present
minimization approach avoids additional special asymptotics for this type of
degenerated interface topologies and, therefore, simplifies the treatment of the
different cut cell types.

Our discretisation scheme always leads to a compact 27-point stencil for the
discrete Laplacian, with appropriately adjusted weights near the interface.
The resulting set of linear equations is usually non-symmetric and reduces
to a symmetric and diagonally dominant system in cases of equal coefficients
β� � β�. We used the BiCGSTAB solver preconditioned with the algebraic
multigrid BOOMER of the public domain package hypre [6] for the solution of
the system of linear equations. Near optimal scaling for all test cases including
complex interfaces and large ratios of the coefficients β� and β� was observed.

The examples investigated in this work all demonstrate locally second order of
accuracy of the method. This includes examples with smooth and non-smooth
interfaces as well as constant and variable coefficients at moderate and high
ratios. Although the subject of this work is the numerical solution of elliptic
equations we note that our trilinear finite element might be equally useful for
the reconstruction of any other discontinuous function on Cartesian grids (e.
g.: the velocity field in premixed combustion) and, of course, for finite element
methods itself.
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Problems of the type considered here become notoriously difficult to solve
numerically for limitingly large ratios of the coefficients, say β� : β� Ñ 8.
We will address this issue systematically, again using asymptotic methods, in
a forthcoming publication.
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[1] T. Belytschko, N. Möes, S. Usui, and C. Parimi. Arbitrary discontinuities in
finite elements. International Journal for Numerical Methods in Engineering,
50:993–1013, 2000.

[2] Z. Chen and J. Zou. Finite element methods and their convergence for elliptic
and parabolic interface problems. Numerische Mathematik, 79:175–202, 1998.

[3] R. Cortez and M. Minion. The blob projection method for immersed boundary
problems. Journal of Computational Physics, 138:428–453, 2000.

[4] S. Deng, K. Ito, and Z. Li. Three-dimensional elliptic solvers for interface
problems and applications. Journal of Computational Physics, 184:215–243,
2003.

[5] B. Engquist, A.-K. Tornberg, and R. Tsai. Discretization of dirac delta functions
in level set methods. Journal of Computational Physics, 207:28–51, 2005.

[6] R.D. Falgout and U.M. Yang. hypre: a library of high performance
preconditioners. In P.M.A. Sloot, C.J.K. Tan, J.J. Dongarra, and A.G.
Hoekstra, editors, Computational Science - ICCS 2002 Part III, volume 2331
of Lecture Notes in Computer Science, pages 632–641. Springer-Verlag, 2002.

[7] F. Gibou and R. P. Fedkiw. A fourth order accurate discretization of the Laplace
and heat equations on arbitrary domains, with applications to the Stephan
problem. Journal of Computational Physics, 202:577–601, 2005.

[8] S. Groß and A. Reusken. An extended pressure finite element space for two-
phase incompressible flows with surface tension. Journal of Computational
Physics, 224:40–58, 2007.

[9] A. Hansbo and P. Hansbo. An unfitted finite element method, based on
Nitsche’s method, for elliptic interface problems. Computer Methods in Applied
Mechanics and Engineering, 191(47-48):5537–5552, 2002.

35



[10] P. Hansbo, C. Lovadina, I. Perugia, and G. Sangalli. A Lagrange multiplier
method for the finite element solution of elliptic interface problems using non-
matching meshes. Numerische Mathematik, 100(1):91–115, 2005.

[11] S. Hou and X. Liu. A numerical method for solving variable coefficient elliptic
equation with interfaces. Journal of Computational Physics, 202:411–445, 2005.

[12] H. Johansen and P. Colella. A cartesian grid embedded boundary method for
Poisson’s equation on irregular domains. Journal of Computational Physice,
147:60–85, 1998.

[13] S. Y. Kadioglu, M. L. Minion, and R. Klein. A fourth-order auxiliary
variable projection method for zero-mach number gas dynamics. Journal of
COmputational Physics, 227:2012–2043, 2008.

[14] R Klein. Numerics in combustion. In L. Vervisch D. Veynante, editor,
Introduction to Turbulent Combustion, Brussels, Belgium, January 6-9 1999.
von Karman Institute for Fluid Dynamics.

[15] R. Klein, N. Botta, L. Hofmann, A. Meister, C. . Munz, S. Roller, and T. Sonar.
Asymptotic adaptive methods for multiscale problems in fluid mechanics.
Journal of Engineering Mathematics, 39:261–343, 2001.

[16] R. J. LeVeque and Z. Li. The Immersed Interface Method for Elliptic Equations
with Discontinuous Coefficients and Singular Sources. SIAM Journal on
Numerical Analysis, 31(4):1019–1044, 1994.

[17] R. J. LeVeque and Z. Li. Immersed Interface Methods for Stokes Flow with
Elastic Boundaries or Surface Tension. SIAM Journal on Scientific Computing,
18:709–735, 1997.

[18] Z. Li. A fast iterative algorithm for elliptic interface problems. SIAM Journal
of Numerical Analysis, 35(1):230–254, 1998.

[19] Z. Li and K. Ito. Maximum principle preserving schemes for interface problems
with discontinuous coefficients. SIAM Journal of Scientific Computing,
23(1):339–361, 2001.

[20] Z. Li, T. Lin, and X. Wu. New cartesian grid methods for interface problems
using finite element formulation. Numerische Mathematik, 96:61–98, 2003.

[21] X. Liu, R. P. Fedkiw, and M. Kang. A boundary condition capturing method
for poisson’s equation on irregular domains. Journal of Computational Physics,
160(1):151–178, 2000.

[22] X.-D. Liu and T. C. Sideris. Convergence of the ghost fluid method for elliptic
equations with interfaces. Mathematics of Computation, 72(244):1731–1746,
2003.

[23] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface
construction algorithm. Computer Graphics, 21(4):163–169, 1987.

36



[24] A. Mayo. The Fast Solution of Poisson’s and the Biharmonic Equation
onIrregular Regions. SIAM Journal on Numerical Analysis, 21(2):285–299,
1984.

[25] A. Mayo. Fast high order accurate solutions of Laplace’s equation on irregular
domains. SIAM Journal Sci. Stat. Comput., 6(1):144–157, 1985.
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