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Abstract

Regional hyperthermia is a cancer therapy aiming at heating tu-
mors using phased array applicators. This article provides an overview
over current mathematical challenges of delivering individually opti-
mal treatments. The focus is on therapy planning and identification
of technical as well as physiological quantities from MR thermometry
measurements.
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1 Introduction

Hyperthermia is a cancer therapy aiming at heating tumors in order to either
destroy cancer cells directly or to make them more susceptible to an accom-
panying radio- or chemotherapy. Several different mechanisms are responsible
for the cytotoxic effect of hyperthermia [7, 9]. Different technological means
are used to deliver heat to the tumor. Heating techniques applied mostly to
smaller or more superficial tumors are RF ablation [1], highly focused ultra-
sound [11], or magnetic nanoparticles [10].
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Figure 1: Hybrid MR-hyperthermia treatment system in Berlin (Charité).

For large, deeply seated, and inoperable tumors, regional hyperthermia is
used [25]. Here, a time-harmonic electrical interference field is generated by a
phased array of antennas which can be controlled individually by amplitude
and phase. During a treatment session of up to two hours, the patients’s tis-
sue absorbs energy from the electrical field. The heat is distributed inside the
body, resulting in a leveraged temperature distribution. By now, several clin-
ical studies have demonstrated the beneficial effect of regional hyperthermia.

In order to deliver an optimal therapy, the phased array applicator needs to be
controlled in such a way that the tumor is maximally heated without damaging
healthy tissue by excessive temperatures. Due to individually varying tumor
location and patient geometry, individual therapy planning is necessary. The
physical processes of field interference and heat distribution inside the very
heterogeneous human body is too complex to be optimized manually. Thus,
optimization algorithms are required for therapy planning, which is considered
in Section 2.

The reliability of the mathematical optimization depends on the accuracy of
the models describing the physical situation. As is quite common in biomedical
settings, in particular the physiological parameters are individually varying
to a significant amount, such that a priori models are subject to significant
modeling errors. Online parameter identification based on magnetic resonance
imaging (MRI) may be a remedy. This is considered in Section 3.

Due to both, the technical complexity of the HF power generation and distri-
bution and the irregular geometry, modeling errors for computing the electri-
cal field are virtually unavoidable. Thus, even accurate solution of Maxwell’s
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equations will not provide the actual electrical field. Again, MRI can be used
for identification of the applicator parameters, which is considered in Section 4.

2 Therapy Planning with Interior Point Meth-

ods

The distribution of heat in the patient’s body is a dynamic process. However,
the transient heating phase takes about 15 minutes, while the duration of a
single treatment session is about two hours. For this reason, usually only the
steady state of the temperature distribution is optimized, which results in a
significantly simpler optimization task.

Objective. The ultimate goal of hyperthermia is the destruction of the tu-
mor. The thermal damage inflicted on cancer cells follows the Arrhenius
law [3], with a rate constant

k(T ) = Ae−
∆E
RT .

Frequency factor A and activation energy ∆E depend on the tissue type,
and R is the universal gas constant. Now an estimate s of the fraction of
surviving cells is given by ṡ(t, T ) = −k(T )s(t, T ) with s(0, T ) = 1 and hence
s(τ, T ) = exp(−k(T )τ). The cost functional to be minimized is then the total
number of surviving cancer cells:

min

∫
tumor

exp
(
Aτe−

∆E
RT

)
dx (1)

The thermal isoeffect dose is an established quantity for assessing the thera-
peutic benefit of a treatment [3,18]. Treatment planning based on the tumor
cell survival has been proposed for thermoseed placement [21], but up to now
rather ad hoc cost functionals based on the temperature distribution [1,15] or
on the absorption rate density [16] have been used for regional hyperthermia.

Constraints. The state equation is given by the bio-heat transfer equation
(BHTE) describing the distribution of heat in the human body. The most
simple variant dates back to [17]:

div(κ∇T ) + cbw(Ta − T ) +
σ

2
|E|2 = 0 in Ω (2)

κ∂nT = h(Tout − T ) on ∂Ω (3)
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Figure 2: Arrhenius model of fraction of surviving cancer cells versus temper-
ature.

Here, κ is the tissue’s heat conductivity, cb heat capacity of blood, w the
perfusion, and σ the electric conductivity. The domain Ω covers the part of
the patient’s body that is relevant for therapy planning.

The electrical field E satisfies the time-harmonic Maxwell’s equation

curl
1

µ
curlE − ω2E = iω

n∑
k=1

ukJk in ΩE, (4)

where the n antenna currents ukJk are determined by the applicator control
u ∈ Cn. The computational domain ΩE for (4) includes Ω as well as the water
bolus, the applicator antennas, and a region of air around the applicator.
On the boundary ∂ΩE, approximately transparent boundary conditions are
prescribed to avoid artificial reflections.

Since (4) is linear and its solution is expensive, inside the optimization algo-
rithm the electric field E = V u is computed as a superposition of antenna
profiles Vk satisfying (4) with ui = δik. Thus, equation (4) needs to be solved
only n times.

Of course, healthy tissue should not be damaged by too high temperatures.
Therefore, an upper bound is imposed on the temperature:

T ≤ Tlim (5)

Typical values for Tlim are 44◦C for muscle, fat, and bone tissues, and 42◦C
for more sensitive organs such as bladder or intestine.
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Material properties. The wavelength of the electrical field in the body is
around 30cm, such that the absorption rate density cannot be focused nar-
rowly on the tumor alone. In fact, the most important effect of treatment
planning is to construct negative interference in regions where otherwise hot
spots would limit the overall power that can be deposited in the patient.
Nevertheless, temperatures above 45◦C are rarely achieved. In contrast to
RF ablation and focused ultrasound therapies, electrical and thermal tissue
properties do not change significantly in this low temperature range. For this
reasons, these values are simply taken as constants depending only on tissue
type as given in [2, 15].

On the other hand, the perfusion w depends on the temperature due to au-
toregulation capabilities of the tissue. Moreover, at least in abdominal hyper-
thermia, the systemic thermoresponse seems to play a significant role. Dif-
ferent perfusion models have been proposed, covering a broad spectrum of
homogenized and discrete vascular models [8, 12, 15,23].

Function space interior point methods. Combining (1)–(5) we end up
with a nonlinear stationary state-constrained scalar PDE optimization prob-
lem. Due to the distributed state constraint (5), the Lagrange multipliers
are usually only measure-valued, which makes the theoretic and algorithmic
treatment intricate. Following [24], we apply primal interior point methods
directly to the infinite dimensional optimization problem. The inequality con-
straints (5) are moved into the objective using an integrated barrier function
b:

min

∫
tumor

exp
(
Aτe−

∆E
RT

)
dx+ µ

∫
Ω

b(Tlim − T ) dx

s.t. div(κ∇T ) + cbw(Ta − T ) +
σ

2
|E(u)|2 = 0 in Ω

κ∂nT = h(Tout − T ) on ∂Ω

This translates the state-constrained problem into a parametric unconstrained
problem, the solutions of which form the so-called central path. Existence and
convergence of the central path to the solution of the original problem have
been shown in [20] for rational barrier functions of sufficiently large order. An
efficient damping strategy has been worked out in [19].

The central path is followed by a numerical continuation method employing
an inexact Newton corrector. Note that both pathfollowing and Newton cor-
rector are working on the continuous problem setting, using adaptive finite
element discretization only on the lower level for solving linear KKT operator
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Figure 3: Structure of the function space interior point method.

equation systems, see Fig 3. The linear PDE systems are solved to an accuracy
that is chosen by the inexact Newton corrector such that linear convergence
towards the central path is obtained. An example of optimized temperature
distributions is shown in Fig. 4.

3 Perfusion Identification

One of the most important but least known quantities in regional hyperther-
mia therapy planning is the perfusion w. It varies highly between individuals
and depends on the patient’s condition at treatment time as much as on the
temperature distribution. For this reason, a priori perfusion models used for
therapy planning are bound to incur significant quantitative errors. A pos-
sible remedy is to measure the perfusion during the treatment and to adapt
the applicator control based on a reoptimization with updated model in a
closed-loop fashion. However, 3D distributed direct perfusion measurements
require the injection of contrast agents, which is possible at most one or two
times during a therapy seesion.

In contrast, MR based thermometry measurements [6] are readily available
online in a hybrid MR-hyperthermia system (see Fig.1). The 3D voxel data
m can be obtained approximately every other minute from proton resonance
frequency shifts. Since m ≈ aT + bw is affected by both, temperature T and
perfusion w, we can formulate the regularized identification problem

min
1

2
‖aT + bw −m‖2

L2(Ω) +
α

2
‖w − wref‖2 (6)
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Figure 4: Optimized emperature distribution inside a patient’s body. The
tumor is drawn with black lines. Isothermal surfaces are shown for 43.5◦C.
Note that the hot spots in healthy tissue limit the total power and hence the
tumor temperature.

subject to the bio heat transfer equation

divκ∇T + cbw(Ta − T ) +
σ

2
|E|2 = 0. (7)

The coefficients a and b are assumed to be equal in muscle tissue whereas a = 0
holds for fatty tissue. This PDE-constrained optimization problem has been
considered in [4]. Preliminary numerical experiments on a 2D cross section of
a clinical patient showed promising results. In particular, the temperature de-
viation between simulation and a temperature probe positioned in the vicinity
of the tumor was decreased by a factor of three, and the low-perfused necrotic
core of the tumor that had not been modeled in the reference perfusion was
identified.

Taking a closer look at the structure of the identification problem, however,
reveals a possible non-uniqueness of the solution due to the nonlinearity of the
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bio heat transfer equation. Neglecting heat diffusion and regularization, (6)
and (7) reduce to

min
1

2

(
a

(
σ

2cbw
|E|2 + Ta

)
+ bw −m

)2

(8)

in each point in space. In fatty tissue with a = 0, w = m/b is the only
physiological solution. But in muscle tissue with a = b, and in case

Ta −
m

a
>

√
2σ

cb
|E|,

two separate local minima of (8) exist. Since diffusion is comparatively small
and moderate regularization tends to only shift the local minima by some
amount, two different temperature and perfusion values, respectively, may be
expected to satisfy the BHTE and to match the measurement simultaneously.
This is actually observed in numerical examples.

Figure 5: Example setting for misleading perfusion identification. Top left:
actual perfusion used to compute m. Bottom left: reference perfusion. Right:
3D geometry with simulated temperature distribution. Cross-cuts shown on
the left are taken from the horizontal plane also shown on the right. Muscle
tissue appears green.
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Fig. 5 shows one situation where the identification seems to be trapped in
the wrong local minimum of (8). Simulated measurement data has been com-
puted from the actual perfusion (top left), the associated temperature given
by the solution of the BHTE, and relative noise. The reference perfusion used
for moderate L2 regularization is constant on each tissue type. Identification
results are given in Fig. 6. Perfusion and temperature values are in reasonable
agreement with the actual values on the left of the cross section. However, in
the central area and on the right, perfusion is overestimated and temperature
is underestimated in muscle tissue. Note that this is not due to strong reg-
ularization, as the same effect is visible in the low noise situation with small
regularization factor α. In fact, on the right hand side, the structure of the
actual perfusion is still present in the low noise identified perfusion, but with
too large values.

Computing the posterior probability distribution of w and T would give a
more complete picture and reveal the non-uniqueness. However, the clinical
benefit of such an approach is questionable, since therapeutical decisions have
to be made based on temperature and perfusion values. It seems as if the
acquisition of complementary measurement data for disambiguation would be
more useful.

4 Antenna Profile Adaptation

A second significant source of therapy planning errors is the behavior of the
hyperthermia system itself. First of all, the fidelity of the HF power generator
output is less than optimal. Second, the feed network consisting of coax cables
contains plug-in connectors with unknown and varying contact resistances, at
which the HF signal is partially reflected. Finally, the electrical field itself is
affected by impurities in the water bolus changing the water’s conductivity, by
simplifications of the applicator geometry in the FE model, and by any mobile
conducting material in the vicinity of the applicator. For this reason, the
electrical fields emanating from each antenna individually (antenna profiles)
are computed to moderate accuracy at best [5], leading to significant errors
in the computed energy absorption as shown in Fig. 7.

A quite radical approach is to drop the solution of Maxwell’s equation al-
together and instead try to identifiy the action matrix M = V HV from MR
thermometry measurements, as has been proposed in [13,14]. This can be done
in each voxel. However, a quick calculation shows that for an applicator with
n channels the Hermitian matrix M contains n2 degrees of freedom. A full
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Figure 6: Identification results. Left: perfusion. Right: temperature. Top
row: actual values used to compute the measurement m. Middle row: identi-
fied values for high noise data with strong regularization. Bottom row: iden-
tified values for low noise data with small regularization.

Figure 7: Absorption rate density in a cross section of a heterogeneous phan-
tom. Left: predicted ARD from FDTD computations of the antenna profiles.
Right: ARD computed from MR thermography measurements.
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identification would require at least n2 different temperature measurements
spanning the whole control space. Modern applicators employed in clinical
practice feature 12 channels, such that, assuming one minute per MR mea-
surement, a patient would have to endure two hours of heating with clinically
questionable absorption rate patterns before the model is adjusted.

Therefore, a less radical approach has been proposed in [22], where MR ther-
mometry measurements are used only to adapt a priori computed antenna pro-
files to the measurements. Moreover, instead of the action matrix M = V HV ,
the antenna profile matrix V ∈ C3×n itself is adapted. Note that V contains
only 6n real degrees of freedom, of which three have no thermal impact (si-
multaneous phase shifts and simultaneous rotation of field vectors). For larger
numbers of channels, the reduction in model size should be significant, but
leads to a nonlinear identification problem.

From the instationary BHTE we obtain

c
T (t+ δt)− T (t)

δt
≈ cṪ = div(κ∇T ) + cbw(Ta − T ) +

σ

2
|E|2.

In the most simple approach, diffusion and perfusion are neglected, such that
approximate ARD measurements are available from two successive MR ther-
mometry measurements as

ARDm = c
T (t+ δt)− T (t)

δt
.

Defining the data mismatch for a certain applicator control u as

F (V, u,ARDm) = uHV HV u− σ

2
ARDm,

we can formulate a nonlinear least squares problem

min
k∑

i=1

F (V, ui,ARDm
i )2 (9)

for k different controls with associated measurements. Note that due to the
low number of available measurements compared to the degrees of freedom
in V , (9) is highly underdetermined. Therefore, instead of (9), the nonlinear
total least squares problem

min
V
‖V − V0‖2

F subject to
k∑

i=1

F (V, ui,ARDm
i )2 = min (10)
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Figure 8: Closed loop results. Left column: ARD prediction based on solution
of Maxwell’s equation (4). Middle column: ARD prediction for next control
based on adapted antenna profiles. Right column: ARD measurements for
current control. Controls for each row successively have been selected by
maximizing ARD in the dotted target region based on the adapted antenna
profiles.

is solved approximately by a Gauß-Newton method. A closed loop controller
is then given by the following scheme:

compute V0 by solving (4)
for k = 1, . . .

compute uk by minimizing (1) based on Vk−1

apply uk and measure ARDm
k

solve (10) for Vk

The first few steps of this loop applied to heating a heterogeneous phantom
are shown in Fig. 8. The reduction of the discrepancy between prediction and
measurement is clearly visible.

Phantom experiments in [22] demonstrated a reduction of ARD prediction
error by a factor of two and more, but showed no significant difference between
adapting either M or V . More importantly, devising new applicator controls
based on adapted antenna profiles during actual therapy recently led to a
significant increase of tumor temperature, see Fig.9.
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Figure 9: Improved tumor heating due to online reoptimization based on
adapted antenna profiles. Cross sections of a patient with color coding by
ARD, tumor region shaded. Left: applicator control a optimized with an-
tenna profiles from FDTD, computed with adapted antenna profiles. Center:
applicator control b optimized with adapted antenna profiles. Right: MR
measurement for the applicator control b.

5 Conclusion

Therapy planning for regional hyperthermia still poses interesting problems
to modelling and numerical analysis. From a practical point of view, available
algorithms are possible to perform treatment design reasonable well. De-
spite significant uncertainties in the models, the temperature prediction for
regional hyperthermia in the pelvic region is surprisingly accurate with devi-
ations of around 0.5◦C to 1◦C from temperature probe values. Nevertheless,
since the therapeutic effect can crucially depend even on such small temper-
ature differences, improving the model and prediction accuracy by parameter
identification is very important. This is particularly the case in more com-
plex situations such as abdominal hyperthermia or special vascular structures
where interregional and systemic thermoregulation mechanisms play an im-
portant role.

While the identification or at least adaptation of electrical fields from MR
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thermography measurements is quite promising, identification of perfusion
seems to require different or additional measurement data to disambiguate
the results.
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