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Abstract

It is well known that competitive analysis yields too pessimistic re-
sults when applied to the paging problem and it also cannot make a dis-
tinction between many paging strategies. Many deterministic paging
algorithms achieve the same competitive ratio, ranging from inefficient
strategies as flush-when-full to the good performing least-recently-used
(LRU).

In this paper, we study this fundamental online problem from the
viewpoint of stochastic dominance. We show that when sequences
are drawn from distributions modelling locality of reference, LRU is
stochastically better than any other online paging algorithm.

1 Introduction

The paging problem is one of the most fundamental problems in online opti-
mization. It models an optimization problem occuring in a two-level memory
system. The first level, called the slow memory, stores a fixed set M of pages
and the second level, which is the fast memory or cache, contains up to k
pages of the set M . We will also refer to k as the cache size. In paging,
one needs to serve a sequence of requests for pages σ ∈ Mn, where n is the
number of pages requested. To serve a request for page p ∈ M , the system
needs to have this page in the cache. If a requested page is not in the cache
a page fault occurs. The requested page must then be loaded into the cache,
and whenever the cache contains k pages, at least one page must be evicted
from the fast memory. A paging algorithm needs to decide which page(s)
will be evicted from the cache on a page fault. The goal is to minimize the
number of page faults. Standard paging strategies include the following.

• Least recently used (LRU): whenever there is a page fault, evict the
page whose most recent request was earliest.
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• First in first out (FIFO): on a page fault, evict the page that has been
in the cache the longest.

• Deterministic marking algorithms: whenever a page is requested, the
page is labeled ‘marked’. On a page fault and when the cache contains
k pages, a marking algorithm evicts an ‘unmarked’ page from the cache.
When there are no unmarked pages in the cache, it labels all pages as
unmarked, before loading the (marked) page into the cache.

• Flush when full (FWF): On a page fault, when the cache is full, it
evicts all pages from the cache.

• Longest forward distance (LFD): On a page fault, LFD evicts the page
whose next request is farthest in the future.

All these algorithms, except LFD, are online algorithms. That is, they
decide upon which page to evict without knowledge of which requests will
come afterwards nor of the number of requests in the sequence. As LFD is
not an online algorithm, it cannot be used in practice. However, LFD is an
optimal page eviction strategy [5]. Note that LRU as well as FWF are both
marking algorithms, whereas FIFO is not.

The standard yardstick for online algorithms has become competitive
analysis [16, 13]. An online algorithm is called c-competitive if, for all re-
quest sequences, the cost of the algorithm, i. e., the number of page faults
is at most c times the optimal offline costs. The smallest c for which an al-
gorithm is c-competitive is also known as the competitive ratio. Sleator and
Tarjan [16] showed that LRU and FIFO have a competitive ratio of k and
that this is the best possible. Karlin et al. [13] gave a different proof for the
same results and in addition they showed that FWF also has a competitive
ratio of k. Torng [17] extended these results showing that all deterministic
marking algorithms are k-competitive.

Related work. As FIFO, LRU and all other marking algorithms have the
same competitive ratio, competitive analysis obviously fails to distinguish be-
tween these algorithms. Therefore, there has been research on the refinement
of competitive analysis and alternative models for assessing online paging al-
gorithms. Young [18, 20] introduced the notion of loose competitiveness, in
which paging algorithms are evaluated for varying sizes of the fast memory,
ignoring input sizes that have a high competitive ratio only for few cache
sizes. He showed that several deterministic paging strategies where loosly
O(ln k) competitive. The Max/Max ratio of Ben-David and Borodin [6]
compares the worst case amortized behavior of an algorithm with that of an
optimal offline algorithm. An algorithm is said to have Max/Max ratio c if
it is guaranteed that on no request sequence will it ever have to pay more
than c times the maximal cost that an optimal offline algorithm pays on a
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sequence of the same length. Koutsoupias and Papadimitriou [14] introduced
the diffuse adversary. In the concept of diffuse adversary, an average case
competitive analysis is performed, but instead of selecting any probability
distribution on the input sequence the diffuse adversary may only select a
probability distribution from a prespecified class of distributions. Young [19]
also performed a diffuse adversary analysis for the paging problem. They
showed the optimality of LRU against some specific diffuse adversary. In
the relative worst-order ratio [9] two algorithms are compared each on their
respective worst-case permutation of a request sequence. Boyar et al. [9]
showed that LRU is better than FWF, but LRU and FIFO are equally good
according to this measure. Recenty, bijective analysis was introduced [2, 3].
In bijective analysis, one tries to find a bijective mapping from the set of in-
stances on itself such that the preferred algorithm delivers on each instance a
better objective function value than the algorithm, to which it is compared,
has on the mapped instance. Angelopoulos and Schweitzer [3] showed that
LRU is an optimal algorithm under this framework for a restricted class of
sequences.

One of the reasons that competitive analysis is not able to make a dis-
tinction between the performance of several paging algorithms is that it con-
siders arbitrary request sequences. In practice, however, request sequences
have some structure, which is often refered to as locality of reference. This
means that if a page is referenced, it is likely to be referenced again in the
near future. Borodin et al. [8] presented the model of the access graph for
locality of reference. The access graph models which pages can be requested
after a certain page has been asked. Using this model, they showed that
LRU is at least as good as FIFO.

Torng [17] introduces a model for locality of reference, based on Denning’s
working set concept [10, 11] by lower bounding the length of a subsequence
containing a certain number of different pages. He shows that, among other
algorithms, LRU achieves a constant competitive ratio.

Albers et al. [1] gave another model for locality of reference, also based
on Denning’s working set concept. They showed that LRU is an optimal
online algorithm in their model and that FIFO and marking strategies are
not optimal in general.

Becchetti [4] performs a diffuse adversary analysis, where the diffuse ad-
versary is only allowed to choose a probability distribution on the request
sequences that models locality of references. Given a certain prefix sequence,
recently asked pages have a higher probability to be requested than not so
recently asked pages. He shows that in this model, LRU outperforms FWF.

Our results. One of the weaknesses of competitive analysis is that it fails
to distinguish between all kinds of algorithms. Therefore, alternative mea-
sures for the performance of online algorithms are needed. In this paper,
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we compare the performance of paging algorithms on random input se-
quences directly using stochastic dominance. This method for comparing
online algorithms has been introduced in [12]. Given a probability dis-
tribution on all possible input sequences, we let XAlg denote the random
variable of the number of pages faults of an online algorithm Alg. We say
that online algorithm Alg1 is stochastically better than online algorithm
Alg2 if the random variable XAlg1 is stochastically dominated by XAlg2 ,
i. e., Pr

[
XAlg1 ≥ x

]
≤ Pr

[
XAlg2 ≥ x

]
for all x ∈ R.

In this paper, we discuss two families of distribution functions on the
input sequences which both model locality of reference. The first family of
probability distributions is due to Becchetti [4], who gives a higher prob-
ability to pages recently asked than those asked further in the past. The
second family is a set of probability distributions inspired by the determin-
istic models for locality of reference introduced by Torng [17] and by Albers
et al. [1].

For both families of distributions we give simple proofs that LRU is
stochastically better than any other online algorithm. Moreover, we provide
some ideas how to generalize these families maintaining the optimality of
LRU. As the uniform distribution over all sequences of a certain length fits
into the model of Becchetti, our results imply that also according to bijective
analysis LRU is an optimal paging algorithm. Moreover, the optimality of
LRU w. r. t. stochastic dominance implies that LRU is also a best algorithm
w. r. t. the average number of page faults as well as the average competitive
ratio.

2 Mode of analysis and locality of reference models

We start by recalling some basic notions for paging algorithms. A standard
tool is the partitioning of a sequence into phases, see e. g., [7]. The first
phase starts with the first request. Phase ` starts with the (k + 1)st distinct
request after the start of phase `− 1. Each phase ends just before the start
of the next phase or at the end of the sequence, whichever comes first.

Given a request sequence σ, we say that a page p is marked w. r. t. σ
if it has been requested in the final phase of σ; otherwise, we say that p
is unmarked w. r. t. σ. Note that by definition of the phases, there cannot
be more than k marked pages w. r. t. a request sequence. Also note that
all pages are unmarked w. r. t. the empty sequence. Moreover, the partition
into phases and the set of marked pages at any point in the sequence do
not depend on the algorithm. Observe that a marking algorithm has, at any
point in time, all marked pages in its cache, which justifies the name.
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2.1 Stochastic dominance analysis of online algorithms

The competitive ratio as a measure of the performance of an online algorithm
has been critized for being too pessimistic. For the paging problem, it fails
to discriminate between algorithms that perform very differently in practice.

In our approach [12] we compare the performance of algorithms on ran-
dom request sequences drawn according to certain probability distributions.
In contrast to competitive analysis or diffuse adversary analysis, we directly
compare two algorithms to each other without refering to an optimal offline
solution. We compare the performance of online algorithms using stochastic
dominance, a well-known stochastic order. A random variable X is said to
be stochastically dominated by a random variable Y , written X ≤st Y , if

Pr [X ≥ x] ≤ Pr [Y ≥ x] for all x ∈ R. (1)

One way to think of this approach is that we compare the distributions of
the performances of two online algorithms instead of aggregate statistics like
the expected value or the maximum. We will later see that in some cases,
there are distribution-free interpretations of a stochastic dominance result.

Stochastic dominance has some interesting properties [15]. Abusing no-
tation, we denote the random variable for the performance of an algorithm
Alg by the same symbol, Alg. The first interesting consequence of stochastic
domination of the performance of one algorithm by another, i. e., Alg1 ≤st

Alg2, is that the expected performance of Alg1 is also better than that of
Alg2, i. e., E [ Alg1 ] ≤ E [ Alg2 ]. This again implies that the average com-
petitive ratio of Alg1 is not worse than that of Alg2: E [ Alg1 ] /E [ Opt ] ≤
E [ Alg2 ] /E [ Opt ]. Finally, if we have an increasing function f on the pos-
sible outcomes for Alg1 and Alg2, then f(Alg1) ≤st f(Alg2). This can be
used to conclude that Alg1 is also better than Alg2 in the full access cost
model [17], where a page in the cache incurs cost 1, when requested, and a
page fault incurs cost 1 + p for some parameter p > 0.

In case Alg1 ≤st Alg2 holds for the uniform distribution on (a subset of)
the sequences, this is equivalent to the existence of a bijective mapping φ on
the sequences such that Alg1(σ) ≤ Alg2(φ(σ)) for any σ. This strong way of
comparing online algorithms is called bijective analysis and has been intro-
duced in [2]. Thus stochastic dominance results for the uniform distribution
share the favorable properties of bijective analysis results discussed in [2].

2.2 Paging with locality of reference

There are three models for paging with locality of reference we are aware
of [17, 4, 1]. We define families of probability distributions on the request
sequences based on these models. Like in [14, 19, 4], the considered proba-
bility distributions on the request sequences are completely described by the
probability that page p is requested given that the sequence up to this page
is σ, Pr [p |σ].
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The age model Becchetti [4] introduced the following probabilistic model
which we call age model. In the age model, the next request for a prefix se-
quence σ is generated based on the age of the pages. For a prefix sequence σ,
the age of a page p ∈ M is defined by

age(p, σ) :=

{
l if p is the lth most recently requested page,
∞ if p does not appear in σ.

We say that a probability distribution over the request sequences is an
age model distribution if it arises in the following way. Let D be the set of
distributions over {1, . . . , |M |} with monotone non-increasing distribution
functions. Given a prefix sequence σ, the probability Pr [p |σ] is determined
by an age distribution δ ∈ D. The age distribution δ gives the age of the
new request page p, i. e., if a is a realization according to δ, the next page is
p ∈ M with age(p, σ) = a. If there is no page with age a one of the pages
with age ∞ is chosen arbitrarily.

Note that considering age distributions from D models locality of refer-
ence: Pages requested more recently have a high probability to be requested
next. Becchetti [4] has additional restrictions on the distributions in D, but
we will only consider this more general probabilistic model for locality of
reference.

The concave function model and the k-phase model In contrast to
the age model, the concave function model [1] and the k-phase model [17]
are deterministic models which restrict the set of request sequences.

Albers et al. [1] propose the concave function model which models work-
ing sets. Locality of reference is modeled by a concave function f : N → N,
which specifies the maximum number f(l) of distinct pages in a (contiguous)
subsequence of length l for any l ∈ N. A request sequence for which each
subsequence of length l has at most f(l) distinct pages is called f -consistent.

For a fixed concave function f : N → N, we consider the following prob-
ability distribution on f -consistent sequences which we call the f -consistent
distribution. The idea is that for a prefix sequence σ, the next request is cho-
sen uniformly at random such that the resulting sequence is still f -consistent.
Hereto, we denote by λ(σ, l) the subsequence consisting of the last l requests
of σ and M(σ′) is the set of distinct pages in a sequence σ′. Furthermore,
l∗(σ) is the smallest l such that |M(λ(σ, l))| = f(l), which is ∞ if this condi-
tion is not satisfied for any l. Finally, we denote the pages requested in the
last l∗(σ) requests by M∗(σ), i. e., M∗(σ) = M(λ(σ, l∗(σ))), for l∗(σ) < ∞,
and M∗(σ) = M(σ) otherwise.

Suppose the sequence σ has already been generated. The next request is
chosen

• uniformly at random from M if l∗(σ) = ∞ or
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• uniformly at random from M∗(σ) if l∗(σ) < ∞.

Proposition 2.1 Every sequence which has a positive probability under the
f -consistent distribution is f -consistent.

Proof. Suppose σ is generated as described above. Since every 1-element
sequence is trivially f -consistent, we can assume for purposes of induction
that σ′ = (σ, p) with σ being f -consistent. By definition, all subsequences
of σ are f -consistent. It is therefore sufficient to show that λ(σ′, l) satisfies
|M(λ(σ′, l))| ≤ f(l) for 2 ≤ l ≤ |σ′|. If l < l∗(σ) we have that

|M(λ(σ′, l))| ≤ |M(λ(σ, l − 1))|+ 1 ≤ f(l),

whereas in the case l ≥ l∗(σ)

|M(λ(σ′, l))| = |M(λ(σ, l − 1))| ≤ f(l)

holds. 2

Torng [17] introduces the k-phase model for locality of reference by using
the partitioning of each sequence into phases and requiring that each phase
has a minimum length. In particular, a sequence σ is called a-local for some
a ≥ 1 if every phase of σ consists of at least ak requests.

Similarly to the concave function model, we consider the following proba-
bility distribution on the a-local sequences which we call a-local distribution.
Suppose the prefix sequence σ has already been generated and denote by
ρ(σ) the subsequence of σ corresponding to the last phase and by M(ρ(σ))
the set of the corresponding pages. The next request is chosen

• uniformly at random from M(ρ(σ)) if |M(ρ(σ))| = k and |ρ(σ)| < ak
or

• uniformly at random from M otherwise.

Obviously, the generated sequences are a-local.

3 Optimality of LRU for paging with locality of
reference

In this section we show that LRU incurs stochastically fewer page faults than
any other paging algorithm for paging with locality of reference, i. e., LRU
is optimal w. r. t. to stochastic dominance. In particular, we show that LRU
is an optimal algorithm for the probability distributions over the sequences
defined in Section 2.2. We also note that LRU is also optimal for natural
probability distributions over a larger class of sequences exhibiting locality
of reference.
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3.1 Preliminaries

Given an online algorithm Alg and a prefix sequence σ, the random variable
WAlg(σ) = 1 if the next request after σ leads to a page fault in Alg, and
WAlg(σ) = 0 otherwise. For given j = 1, . . . , n and a sequence σ of length
|σ| = j − 1, the random variable XAlg

j (σ) = 1 if the first j − 1 requests are
given by σ and Alg encounters a page fault on the jth request; otherwise
XAlg

j (σ) = 1. The random variable Yj(σ) = 1 if |σ| = j and the first j
requests are as in σ; otherwise Yj(σ) = 0. Given a sequence σ of length
|σ| ≥ j and an online algorithm Alg, the variable ZAlg

j (σ) = 1 if the jth
request leads to a page fault when Alg operates on σ and ZAlg

j (σ) = 0

otherwise. Note that ZAlg
j (σ) is deterministically determined by Alg, j, and

σ.
On a sequence σ ∈ Mn, an online algorithm Alg has

∑n
j=1 ZAlg

j (σ) page
faults. Therefore, the value of Alg can be expressed as

Alg =
∑

σ∈Mn

n∑
j=1

ZAlg
j (σ)Yn(σ).

Finally, we denote by CAlg(σ) the of pages in the cache if the sequence σ is
processed by algorithm Alg.

Lemma 3.1 The value of an online algorithm Alg can be written as

Alg =
n∑

j=1

∑
σ∈Mj−1

XAlg
j (σ).

Proof.

Alg =
∑

σ∈Mn

n∑
j=1

ZAlg
j (σ)Yn(σ) =

n∑
j=1

∑
σ∈Mn

ZAlg
j (σ)Yn(σ)

=
n∑

j=1

∑
σ1∈Mj−1

∑
p∈M

∑
σ2∈Mn−j

ZAlg
j (σ1pσ2)Yn(σ1pσ2)

as Alg is an online algorithm, we have

=
n∑

j=1

∑
σ1∈Mj−1

∑
p∈M

ZAlg
j (σ1p)

∑
σ2∈Mn−j

Yn(σ1pσ2)

due to the fact that Yj(σ1) =
∑

σ2∈Mn−j Yn(σ1σ2), we can write

=
n∑

j=1

∑
σ1∈Mj−1

∑
p∈M

ZAlg
j (σ1p)Yj(σ1p)

=
n∑

j=1

∑
σ1∈Mj−1

XAlg
j (σ1),
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where the last equality follows from that fact that XAlg
j (σ1) = 1 for all

realizations of the request sequence that start with σ1 and the jth request p
leads to a page fault, i. e., ZAlg

j (σ1p) = 1. 2

Lemma 3.2 Let Alg1 and Alg2 be two online paging algorithms. Denote by
P the random request generated after prefix sequence σ. Suppose that

Pr
[
P ∈ CAlg1(σ)

]
≥ Pr

[
P ∈ CAlg2(σ)

]
(2)

for any sequence σ. Then Alg1 ≤st Alg2.

Proof. By Lemma 3.1, we only need to show

X
Alg1
j (σ) ≤st X

Alg2
j (σ),

for all j = 1, . . . , n, and all sequences σ ∈ M j−1. As the variables XAlg
j (σ)

are binary random variables, this is equivalent to

Pr
[
X

Alg1
j (σ) = 1

]
≤ Pr

[
X

Alg2
j (σ) = 1

]
. (3)

For any online algorithm Alg, j ∈ {1, . . . , n}, and σ ∈ M j−1, we can write

Pr
[
XAlg

j (σ) = 1
]

= Pr
[
Yj−1(σ) = 1 ∧ XAlg

j (σ) = 1
]

= Pr
[
XAlg

j (σ) = 1 |Yj−1(σ) = 1
]
· Pr [Yj−1(σ) = 1]

= Pr
[
WAlg(σ) = 1 |Yj−1(σ) = 1

]
· Pr [Yj−1(σ) = 1]

= Pr
[
WAlg(σ) = 1

]
· Pr [Yj−1(σ) = 1] .

Since Yj−1(σ) does not depend on the algorithm, (2) is equivalent to Pr
[
WAlg1(σ)

]
≤

Pr
[
WAlg2(σ)

]
and thus it implies (3), 2

3.2 Optimality results

Theorem 3.3 Suppose the request sequence is chosen according to an age
model distribution. Then the number of page faults of LRU is stochastically
dominated by that of any online algorithm.

Proof. Let Alg be any online paging algorithm. We show that condition (2)
of Lemma 3.2 is satisfied. Note that always |CLRU(σ)| ≥ |CAlg(σ)| holds.
By definition of LRU, there is an injective mapping φ : CAlg(σ) → CLRU(σ)
that maps a page from CAlg(σ) to a page in CLRU(σ) which is not older.
Let p be some page that Alg has in the cache and denote by P the random
next request generated according to the age model distribution. Clearly,
Pr [P = φ(p)] ≥ Pr [P = p], which implies condition (2). 2
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As the uniform distribution over all sequences belongs to the family of age
model distributions, we have the following corollary to the previous theorem.

Corollary 3.4 (1) LRU is an optimal algorithm w. r. t. bijective analysis
for the set of all request sequences. (2) LRU has the best average competitive
ratio when the request sequence is chosen from an age model distribution.

Theorem 3.5 The number of page faults of LRU is stochastically dominated
by that of any online algorithm when the request sequence is chosen

1. according to the f -consistent distribution or

2. according to the a-local distribution.

Proof. Let us first address the f -consistent distribution. Consider the prefix
sequence σ. In the case that |M∗(σ)| ≤ k, LRU has all pages in cache that
have been asked during the last l∗(σ) page requests. Therefore,

Pr
[
p ∈ CLRU(σ)

]
= 1 ≥ Pr

[
p ∈ CAlg(σ)

]
.

On the other hand, if |M∗(σ)| ≥ k, we have

Pr
[
p ∈ CLRU(σ)

]
=

k

|M∗(σ)|
≥ Pr

[
p ∈ CAlg(σ)

]
,

as any algorithm can have at most k pages in its cache and LRU has the k
most recently asked pages, which is a subset of M∗(σ), in its fast memory.

The proof for the a-local distribution is similar. 2

Note that both the f -consistent and the a-local distribution are not the
uniform distributions on the respective sequence sets. Therefore Theorem 3.5
does not imply bijective analysis results.

Remark In fact, the proof of Theorem 3.5 works for a larger class of locality
of reference models. For a given sequence σ, we define N(σ) as the set of all
possible pages that may be asked as the next request. For example, for the
f -consistent distribution N(σ) = M∗(σ) or N(σ) = M . For the f -consistent
and a-local distributions, the set N(σ) consists of the most recent requests
or it is equal to M . We relax this condition in such a way that if there
are only few, i. e., at most k, possible pages to be asked, then N(σ) should
be contained in the set of k most recent pages. Otherwise, of course, the
k most recent pages should be contained in N(σ). Like in the f -consistent
and the a-local distributions, request sequences arise by choosing the next
request uniformly at random from the set N(σ), given a sequence σ seen
so far. These conditions on N(σ) are essentially the arguments used in the
proof of Theorem 3.5. Therefore, LRU is also stochastically optimal in this
model.
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