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Abstract

This article introduces constraint integer programming (CIP), which is
a novel way to combine constraint programming (CP) and mixed integer
programming (MIP) methodologies. CIP is a generalization of MIP that
supports the notion of general constraints as in CP. This approach is
supported by the CIP framework SCIP, which also integrates techniques
for solving satisfiability problems. SCIP is available in source code and
free for noncommercial use.

We demonstrate the usefulness of CIP on three tasks. First, we ap-
ply the constraint integer programming approach to pure mixed integer
programs. Computational experiments show that SCIP is almost com-
petitive to current state-of-the-art commercial MIP solvers. Second, we
demonstrate how to use CIP techniques to compute the number of opti-
mal solutions of integer programs. Third, we employ the CIP framework
to solve chip design verification problems, which involve some highly non-
linear constraint types that are very hard to handle by pure MIP solvers.
The CIP approach is very effective here: it can apply the full sophisticated
MIP machinery to the linear part of the problem, while dealing with the
nonlinear constraints by employing constraint programming techniques.

1 Introduction

In the recent years, several authors showed that an integrated approach of con-
straint programming (CP) and mixed integer programming (MIP) can help to
solve optimization problems that were intractable with either of the two meth-
ods alone [21, 36, 56]. Different approaches to integrate CP and MIP into a
single framework have been proposed, [7, 11, 20, 33, 51, 52] amongst others.

Most of the existing work followed the concept of extending a CP framework
by basic MIP techniques. In contrast, this paper introduces a way to incorpo-
rate CP specific solving methods and its strong modeling capability into the
sophisticated MIP solving machinery.

A previous version of this paper can be found in [3].
⋆ Supported by the DFG Research Center Matheon Mathematics for key

technologies in Berlin.
⋆⋆ Supported by the DFG Priority Program 1307 “Algorithm Engineering”.
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This is achieved by a very low-level integration of the two concepts. The
constraints of a CP usually interact through the domains of the variables. As in
[11, 20, 51, 52], the idea of constraint integer programming (CIP) is to offer a sec-
ond communication interface, namely the linear programming (LP) relaxation.
Furthermore, the definition of CIP restricts the generality of CP modeling as
little as needed to still gain the full power of all primal and dual MIP solving
techniques.

Therefore, CIP is well suited for problems that contain a MIP core comple-
mented by some nonlinear constraints. As an example for such a problem type,
the property checking problem is presented in Section 6.

The concept of constraint integer programming is realized in the branch-and-
cut framework SCIP. It combines solving techniques from CP, MIP, and the
field of solving satisfiability problems (SAT) such that all involved algorithms
operate on a single search tree, which yields a very close interaction. A detailed
description of the concepts and the software can be found in [2].

The plugins that are provided with the standard distribution of SCIP suf-
fice to turn the CIP framework into a full-fledged MIP solver. In combination
with either SoPlex [58] or CLP [25] as LP solver, it is currently one of the
fastest noncommercial MIP solvers, see [45] and the results in Section 4. Us-
ing Cplex [34] as LP solver, the performance of SCIP is even comparable to
state-of-the-art commercial codes.

As a library, SCIP can be used to develop branch-cut-and-price algorithms,
and it can be extended to support additional classes of nonlinear constraints by
providing so-called constraint handler plugins. We present a solver for the chip
design verification problem as one example of this usage.

SCIP is freely available in source code for academic and noncommercial
use and can be downloaded from http://scip.zib.de. The current version
1.1.0—as of this writing—has interfaces to five different LP solvers and consists
of 275 640 lines of C code. The code is actively maintained and extended.

The article is organized as follows: in Section 2, we introduce constraint
integer programs. Section 3 presents the building blocks of the constraint inte-
ger programming framework SCIP. In Sections 4–6, we demonstrate the usage
of SCIP on three applications. First, we employ SCIP as a stand-alone MIP
solver. Second, we count optimal solutions with SCIP. Third, we use SCIP as
a branch-and-cut framework to solve chip design verification problems. Com-
putational results are given in Sections 4, 5 and 6.4.

2 Constraint Integer Programming

The hope of integrating CP, MIP, and SAT techniques is to combine their
advantages and to compensate for their individual weaknesses. A constraint
program is defined as follows.

Definition (constraint program). A constraint program is a triple CP = (C, D, f)
with D = D1 × . . . × Dn representing the domains of finitely many variables
xj ∈ Dj, j = 1, . . . , n, C = {C1, . . . , Cm} being a finite set of constraints
Ci : D → {0, 1}, i = 1, . . . , m, and f : D → R being the objective function.
It consists of solving

(CP) f⋆ = min{f(x) | x ∈ D, C(x)},
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with C(x) :⇔ ∀i = 1, . . . , m : Ci(x) = 1. A CP where all domains D ∈ D are
finite is called a finite domain constraint program (CP(FD)).

Note that, with a slight abuse of notation, we use the abbreviation CP for
the term constraint programming as well as for the term constraint program.
The same holds for MIP and CIP. In case the meaning is not clear from context
we use the long versions.

To solve a CP(FD), the problem is recursively split into smaller subprob-
lems, thereby creating a branching tree and implicitly enumerating all potential
solutions. At each subproblem, domain propagation is performed to exclude
further values from the variables’ domains.

Due to the very general definition of a CP, solvers have to rely on constraint
propagators, each of them exploiting the structure of a single constraint class.
Usually, the only communication between the individual constraints takes place
via the variables’ domains. An advantage of CP is, however, the possibility to
model the problem more directly than in MIP, using very expressive constraints,
which maintain the structure of the problem. In MIP, we are restricted to linear
constraints, a linear objective function, and integer or real-valued domains. A
mixed integer program is defined as follows.

Definition (mixed integer program). Given a matrix A ∈ Rm×n, vectors b ∈Rm, and c ∈ Rn, and a subset I ⊆ N = {1, . . . , n}, the corresponding mixed
integer program MIP = (A, b, c, I) is to solve

(MIP) c⋆ = min {cT x | Ax ≤ b, x ∈ Rn, xj ∈ Z for all j ∈ I} .

Note, that MIPs in maximization form can be transformed to minimization
form by multiplying the objective function vector by −1. Similarly, “≥” con-
straints can be multiplied by −1 to obtain “≤” constraints. Equations can be
replaced by two opposite inequalities.

Like CP solvers, most modern MIP solvers recursively split the problem into
smaller subproblems. However, the processing of the subproblems is different.
Because MIP includes only one type of constraints, MIP solvers can apply so-
phisticated techniques that operate on the subproblem as a whole. Usually, for
each subproblem, the LP relaxation is solved, which is constructed from the MIP
by removing the integrality conditions. The LP relaxation can be strengthened
by cutting planes which use the LP information and the integrality restrictions
to derive valid linear inequalities that cut off the solution of the current LP
relaxation without removing feasible MIP solutions. The LP relaxation usually
gives a much stronger bound than the one that is provided by simple dual prop-
agation of CP solvers. Solving the LP relaxation usually requires much more
time, however.

Satisfiability problems is also a very specific case of CPs with only one type
of constraints, namely Boolean clauses. The Boolean truth values false and true
are identified with the values 0 and 1, respectively, and Boolean formulas are
evaluated correspondingly.

Definition (satisfiability problem). Let C = C1 ∧ . . .∧Cm be a logic formula in
conjunctive normal form on Boolean variables x1, . . . , xn. Each clause Ci = ℓi

1∨
. . .∨ ℓi

ki
is a disjunction of literals. A literal ℓ ∈ L = {x1, . . . , xn, x̄1, . . . , x̄n} is

either a variable xj or the negation of a variable x̄j . The task of the satisfiability
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problem (SAT) is to either find an assignment x⋆ ∈ {0, 1}n, such that the
formula C is satisfied, i.e., each clause Ci evaluates to 1, or to conclude that C

is unsatisfiable, i.e., for all x ∈ {0, 1}n at least one Ci evaluates to 0.

Modern SAT solvers also use a branching scheme to split the problem into
smaller subproblems and they apply Boolean constraint propagation on the sub-
problems, which is a special form of domain propagation. In addition, they
analyze infeasible subproblems to produce conflict clauses. These help to prune
the search tree later on. Furthermore, SAT solvers support periodic restarts of
the search in order to revise the branching decisions after having gained new
knowledge about the structure of the problem instance.

Boolean clauses can easily be linearized, but the LP relaxation is rather
useless, as it cannot detect the infeasibility of subproblems earlier than domain
propagation. Therefore, SAT solvers mainly exploit the special problem struc-
ture to speed up the domain propagation algorithm.

To specify our approach of integrating CP, MIP, and SAT solving techniques,
we propose the following slight restriction of CP, which allows the application
of MIP solving techniques:

Definition (constraint integer program). A constraint integer program
CIP = (C, I, c) consists of solving

(CIP) c⋆ = min{cT x | C(x), x ∈ Rn, xj ∈ Z for all j ∈ I}

with a finite set C = {C1, . . . , Cm} of constraints Ci : Rn → {0, 1}, i = 1, . . . , m,
a subset I ⊆ N = {1, . . . , n} of the variable index set, and an objective function
vector c ∈ Rn. A CIP has to fulfill the following additional condition:

∀x̂I ∈ ZI ∃(A′, b′) : {xC ∈ RC | C(x̂I , xC)} = {xC ∈ RC | A′xC ≤ b′} (1)

with C := N \ I, A′ ∈ Rk×C , and b′ ∈ Rk for some k ∈ Z≥0.

Restriction (1) ensures that the remaining subproblem after fixing all integer
variables always is a linear program. This means that in the case of finite
domain integer variables, the problem can be—in principle—completely solved
by enumerating all values of the integer variables and then solving the remaining
LPs.

Note, that this does not forbid quadratic or even more involved expressions.
Only the remaining part after fixing (and thus eliminating) the integer variables
must be linear in the continuous variables. Furthermore, the linearity restriction
of the objective function can be compensated by introducing an auxiliary ob-
jective variable z that is linked to the actual nonlinear objective function with a
constraint z = f(x). Analogously, general variable domains can be represented
as additional constraints.

Therefore, every CP that meets Condition (1) can be represented as a CIP.
Especially, the following proposition holds.

Proposition. The notion of constraint integer programming generalizes finite
domain constraint programming and mixed integer programming:

(a) Every CP(FD) can be modeled as a CIP.

(b) Every MIP can be modeled as CIP.
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Proof. The notion of a constraint is the same in CP as in CIP. The linear
system Ax ≤ b of a MIP is a conjunction of linear constraints, each of which is
a special case of the general constraint notion in CP and CIP. Therefore, we
only have to verify Condition (1).

For a CP(FD), each variables xj , j = 1, . . . , n has a finite domain and can
therefore be equivalently represented as integers. The only noninteger variable
is the auxiliary objective variable z, i.e., xC = (z). Therefore, Condition (1)
can be satisfied for a given x̂I by setting

A′ :=

(

1
−1

)

and b′ :=

(

f(x̂I)
−f(x̂I)

)

.

For a MIP, partition the constraint matrix A = (AI , AC) into the columns
corresponding to the integer variables I and to the continuous variables C. For
a given x̂I ∈ ZI set A′ := AC and b′ := b − AI x̂I to meet Condition (1).

3 A Framework to Solve Constraint Integer Pro-

grams

SCIP (Solving Constraint Integer Programs) is a framework for constraint in-
teger programming. It is based on the branch-and-bound procedure, which is a
very general and widely used method to solve discrete optimization problems.

The idea of branching is to successively divide the given problem instance
into smaller subproblems until the individual subproblems are easy to solve.
The best of all solutions found in the subproblems yields the global optimum.
During the course of the algorithm, a branching tree is created with each node
representing one of the subproblems.

The intention of bounding is to avoid a complete enumeration of all potential
solutions of the initial problem, which usually are exponentially many. If a
subproblem’s lower (dual) bound is greater than or equal to the global upper
(primal) bound, the subproblem can be pruned. Lower bounds are calculated
with the help of a relaxation which should be easy to solve. Upper bounds
are found if the solution of the relaxation is also feasible for the corresponding
subproblem.

Good lower and upper bounds must be available for the bounding to be
effective. In order to improve a subproblem’s lower bound, one can tighten
its relaxation, e.g., via domain propagation or by adding cutting planes (see
Sections 3.2 and 3.4, respectively). Primal heuristics, which are described in
Section 3.5, contribute to the upper bound.

The selection of the next subproblem in the search tree and the branching
decision have a major impact on how early good primal solutions can be found
and how fast the lower bounds of the subproblems increase. More details on
branching and node selection are given in Section 3.6.

SCIP provides all necessary infrastructure to implement branch-and-bound
based algorithms for solving constraint integer programs. It manages the branch-
ing tree along with all subproblem data, automatically updates the LP relax-
ation, and handles all necessary transformations due to presolving problem mod-
ifications, see Section 3.7. Additionally, a cut pool, cut filtering, and a SAT-like
conflict analysis mechanism, see Section 3.3, are available. Capabilities to han-
dle symmetries, see Section 3.8, can be realized via specific constraint handlers.
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Furthermore, SCIP provides its own memory management and plenty of statis-
tical output.

Besides the infrastructure, all main algorithms are implemented as external
plugins. In the remainder of this section, we will describe the key ingredients
of a branch-and-bound based CIP solver and discuss their role for the solving
process.

3.1 Constraint Handlers

Since a CIP consists of constraints, the central objects of SCIP are the con-
straint handlers. Each constraint handler represents the semantic of a single
class of constraints and provides algorithms to handle constraints of the corre-
sponding type. The primary task of a constraint handler is to check a given
solution for feasibility with respect to all constraints of its type existing in the
problem instance. This feasibility test suffices to provide an algorithm which
correctly solves CIPs with constraints of the supported types. To improve the
performance of the solving process, constraint handlers may provide additional
algorithms and information about their constraints to the framework, besides
others

• presolving methods to simplify the problem’s representation,

• propagation methods to tighten the variables’ domains,

• a linear relaxation, which can be generated in advance or on the fly, that
strengthens the LP relaxation of the problem, and

• branching decisions to split the problem into smaller subproblems, us-
ing structural knowledge of the constraints in order to generate a well-
balanced branching tree.

The standard distribution of SCIP already includes a constraint handler for
linear constraints that is needed to solve MIPs. Additionally, some special-
izations of linear constraints like knapsack, set partitioning, or variable bound
constraints are supported by constraint handlers, which can exploit the special
structure of these constraints in order to obtain more efficient data structures
and algorithms. Furthermore, SCIP provides constraint handlers for logical con-
straints, such as and, or, and xor constraints and for nonlinear constraints,
like SOS1, SOS2, and indicator constraints.

3.2 Domain Propagation

Constraint propagation is an essential part of every CP solver [10]. The task
is to analyze the set of constraints of the current subproblem and the current
domains of the variables in order to infer additional valid constraints and domain
reductions, thereby restricting the search space. The special case where only the
domains of the variables are affected by the propagation process is called domain
propagation. If the propagation only tightens the lower and upper bounds of
the domains without introducing holes it is called bound propagation.

In mixed integer programming, the concept of bound propagation is well-
known under the term node preprocessing. Usually, MIP solvers apply re-
stricted versions of the preprocessing algorithms, that are used before starting
the branch-and-bound process, to simplify the subproblems [30, 53].
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Besides the integrality restrictions, there are only linear constraints in a
MIP. In contrast, CP models can include a large variety of constraint classes
with different semantics and structures. Thus, a CP solver usually provides
specialized constraint propagation algorithms for every single constraint class.

Constraint based (primal) domain propagation is supported by the con-
straint handler concept of SCIP. In addition, it features two dual domain re-
duction methods that are driven by the objective function, namely the objective
propagation and the root reduced cost strengthening [46].

3.3 Conflict Analysis

Most MIP solvers discard infeasible and bound-exceeding subproblems without
paying further attention to them. Modern SAT solvers, in contrast, try to
learn from infeasible subproblems, which is an idea due to Marques-Silva and
Sakallah [44]. The infeasibilities are analyzed in order to generate so-called
conflict clauses. These are implied clauses that help to prune the search tree.
They also enable the solver to apply so-called nonchronological backtracking. A
similar idea in CP are no-goods, see [54].

Conflict analysis can be generalized to CIP and, as a special case, to MIP.
There are two main differences of CIP and SAT solving in the context of conflict
analysis. First, the variables of a CIP do not need to be of binary type. There-
fore, we have to extend the concept of the conflict graph: it has to represent
bound changes instead of variable fixings, see [1] for details.

Furthermore, the infeasibility of a subproblem in the CIP search tree usually
has its reason in the LP relaxation of the subproblem. In this case, there is no
single conflict-detecting constraint as in SAT or CP solving. To cope with
this situation, we have to analyze the LP in order to identify a subset of all
bound changes that suffices to render the LP infeasible or bound-exceeding.
Note that it is an NP-hard problem to identify a subset of the local bounds of
minimal cardinality such that the LP stays infeasible if all other local bounds are
removed. Therefore, we use a greedy heuristic approach based on an unbounded
ray of the dual LP, see [1].

After having analyzed the LP, the algorithm works in the same fashion as
conflict analysis for SAT instances: it constructs a conflict graph, chooses a cut
in this graph, and produces a conflict constraint which consists of the bound
changes along the frontier of this cut.

3.4 Cutting Plane Separators

Besides splitting the current subproblem into two or more easier subproblems
by branching, one can also try to tighten the subproblem’s relaxation in order
to rule out the current LP solution x̌ and to obtain a different one. The LP
relaxation can be tightened by introducing additional linear constraints aT x ≤ b
that are violated by x̌ but do not cut off feasible solutions of the subproblem.
Thus, the current solution x̌ is separated from the convex hull of the feasible
solutions of the subproblem by the cutting plane aT x ≤ b.

The theory of cutting planes is very well covered in the literature. For an
overview of computationally useful cutting plane techniques, see [30, 42]. A
recent survey of cutting plane literature can be found in [39].
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SCIP features separators for knapsack cover cuts [12], complemented mixed
integer rounding cuts [41], Gomory mixed integer cuts [32], strong Chvátal-
Gomory cuts [40], flow cover cuts [50], implied bound cuts [53], and clique
cuts [37, 53]. Detailed descriptions of these cutting plane algorithms and an
extensive analysis of their computational impact can be found in [57].

Almost as important as finding cutting planes is the selection of the cuts
that actually enter the LP relaxation. Balas, Ceria, and Cornuéjols [13] and An-
dreello, Caprara, and Fischetti [8] proposed to base the cut selection on efficacy
and orthogonality. The efficacy is the Euclidean distance of the corresponding
hyperplane to the current LP solution. An orthogonality bound ensures that
the cuts added to the LP form an almost pairwise orthogonal set of hyperplanes.
SCIP follows these suggestions. Furthermore, it considers the parallelism w.r.t.
the objective function.

3.5 Primal Heuristics

Primal heuristics have a significant relevance as supplementary procedures inside
a MIP solver: they aim at finding good feasible solutions early in the search
process, which helps to prune the search tree by bounding and allows to apply
more reduced cost fixing and other dual reductions that tighten the problem
formulation.

Overall, there are 24 heuristics integrated into SCIP. They can be roughly
subclassified into four categories:

• Rounding heuristics try to iteratively round the fractional values of an LP
solution in such a way that the feasibility of the constraints is maintained
or recovered by further roundings.

• Diving heuristics iteratively round a variable with fractional LP value and
resolve the LP, thereby simulating a depth first search (see Section 3.6)
in the branch-and-bound tree.

• Objective diving heuristics are similar to diving heuristics, but instead of
fixing the variables by changing their bounds, they perform “soft fixings”
by modifying their objective coefficients.

• Improvement heuristics consider one or more primal feasible solutions that
have been previously found and try to construct an improved solution with
better objective value.

Detailed descriptions of primal heuristics for mixed integer programs and an in-
depth analysis of their computational impact can be found in [17], an overview
is given in [18].

3.6 Node Selection and Branching Rules

Two of the most important decisions in a branch-and-bound algorithm are the
selection of the next subproblem to process (node selection) and how to split
the current problem Q into smaller subproblems (branching rule).

The most popular branching strategy in MIP solving is to split the domain
of an integer variable xj , j ∈ I, with fractional LP value x̌j /∈ Z into two parts,
thus creating two subproblems Q1 = Q∩{xj ≤ ⌊x̌j⌋} and Q2 = Q∩{xj ≥ ⌈x̌j⌉}.
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Methods to select such a fractional variable for branching are discussed in [2, 5].
SCIP implements most of the discussed branching rules, especially reliability
branching which is a very effective general branching rule for MIPs.

In CP, it is also common to branch on constraints. A typical example is
branching on special ordered sets (SOS) [15], where multiple variables are fixed
to zero simultaneously, thus creating two special ordered sets of roughly half the
size of the original SOS. SCIP supports arbitrary branching schemes such as
branching on constraints or branchings that create more than two subproblems,
which may be used for variables or constraints with small finite domains. In par-
ticular, the SOS1 and SOS2 constraint handlers branch on their corresponding
constraints.

Besides a good branching strategy, the selection of the next subproblem
to be processed is an important step of every branch-and-bound based search
algorithm.

Depth first search always chooses a child of the current node as the next
subproblem or backtracks to the most recent ancestor with an unprocessed
child, if the current node has been pruned. Depth first search is the preferred
strategy for pure feasibility problems like SAT problems. Additionally, it has
the benefit that successively solved subproblems are very similar, which reduces
the subproblem management overhead. In particular, this speeds up resolving
the LP relaxation by the dual simplex algorithm.

Best bound search aims at improving the global dual bound as fast as possible
by always selecting a subproblem with smallest dual bound of all remaining
leaves in the tree. Given that the branching rule is fixed [1], there exists a node
selection rule of best bound search type that leads to a minimal number of nodes
that need to be processed.

Best estimate search was suggested by Forrest et al. [29]. For each sub-
problem, it estimates the minimum value of a rounded solution and chooses a
node with minimal estimate. The aim is to quickly find good feasible solutions.
However, this node selection strategy may perform very poor in improving the
global dual bound.

The default node selection strategy of SCIP is a combination of these three
strategies: it performs depth first search for a few consecutive subproblems
after which a node with best estimate is chosen. At a certain frequency, a node
with smallest dual bound is selected instead of a node with best estimate. This
strategy is also referred to as interleaved best bound/best estimate search with
plunging.

3.7 Presolving

Presolving transforms the given problem instance into an equivalent instance
that is (hopefully) easier to solve. The most fundamental presolving concepts
for MIP are described in [53]. For additional information, see [30].

The task of presolving is threefold: first, it reduces the size of the model by
removing irrelevant information such as redundant constraints or fixed variables.
Second, it strengthens the LP relaxation of the model by exploiting integrality
information, e.g., to tighten the bounds of the variables or to improve coeffi-
cients in the constraints. Third, it extracts information from the model such
as implications or cliques which can be used later for branching and cutting
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.

plane separation. SCIP implements a full set of primal and dual presolving
reductions for MIP problems, see [1].

Restarts differ from the classical presolving methods in that they are not
applied before the branch-and-bound search commences, but abort a running
search process in order to reapply other presolving mechanisms and start the
search from scratch. They are a well-known ingredient of SAT solvers, but have
not been used so far for solving MIPs.

Cutting planes, primal heuristics, strong branching [9], and reduced cost
strengthening in the root node often identify fixings of variables that have not
been detected during presolving. These fixings can trigger additional presolving
reductions after a restart, thereby simplifying the problem instance and im-
proving its LP relaxation. The downside is that we have to solve the root LP
relaxation again, which can sometimes be very expensive.

Nevertheless, the above observation leads to the idea of applying a restart
directly after the root node processing if a certain fraction of the integer variables
has been fixed during the processing of the root node. In our implementation,
a restart is performed if at least 5% of the integer variables have been fixed.

3.8 Symmetry Handling

In mathematical programming, symmetries within a problem formulation usu-
ally detoriate the performance of state-of-the-art solvers.

There is a variety of symmetry handling techniques in constraint program-
mming, an overview is given in [31]. In integer programming, there are only few
approaches to deal with generic symmetries, see [38, 49, 43] besides others. All
of them consist of a global approach which operates on the LP relaxation.

Both, constraint specific symmetry handling and a global approach, which
for example uses an additional symmetry breaking constraint, may be used in
constraint integer programming. We are currently in the process of implement-
ing symmetry handling capabilities into SCIP.

4 Solving MIPs with CIP Techniques

In Section 2, we proved that mixed integer programming is a specific case of
constraint integer programming. As discussed in the previous section, most
of the MIP solving algorithms can be generalized to the much richer class of
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Table 1: Results for five MIP solvers on the Miplib 2003. If a solver hit one of
the limits, we report the primal-dual gap in percent instead of the solving time
in seconds.

SCIP/CLP SCIP/Cplex SCIP/SoPlex Cplex CBC/CLP

Name Nodes Time Nodes Time Nodes Time Nodes Time Nodes Time

10teams 166 19.5 250 9.3 2844 114.8 140 3.6 142 9.7

aflow30a 1756 22.9 1887 15.5 3393 34.0 2885 14.4 142 k 713.6

air04 75 124.4 165 73.2 129 215.9 405 14.1 840 85.2

air05 272 89.4 278 32.4 178 101.6 430 8.5 1085 61.8

cap6000 2543 5.2 3108 3.9 3024 6.5 4066 0.8 21 k 52.3

disctom 5682 1528.1 1 4.0 1 14.3 1 6.3 1 3.9

fiber 13 1.1 16 0.9 22 1.2 60 0.2 90 4.7

fixnet6 12 3.5 16 2.1 13 5.5 37 0.7 250 6.4

gesa2-o 8 1.5 5 1.4 5 1.5 514 1.1 1683 36.8

gesa2 7 1.6 11 1.6 6 1.4 112 0.3 403 9.6

manna81 1 1.0 2 1.1 2 1.6 1 0.1 1 1.0

mas74 3216 k 1715.4 3140 k 1071.7 2862 k 3138.0 2673 k 256.9 3643 k 2454.2

mas76 331 k 131.9 327 k 84.5 314 k 166.4 403 k 45.5 494 k 273.2

misc07 33 k 51.2 17 k 17.7 29 k 38.6 15 k 14.9 22 k 91.1

mod011 1477 314.0 1749 89.2 2136 537.4 74 34.8 500 68.8

modglob 29 0.9 149 1.1 118 1.3 164 0.1 2621 9.9

mzzv42z 808 1103.3 2159 343.2 1025 3565.9 324 42.2 238 121.0

nw04 6 51.8 34 44.8 205 580.3 189 27.1 1888 69.4

opt1217 1 0.5 1 0.4 1 0.4 1 0.1 1 0.4

p2756 80 2.3 118 2.2 36 2.5 11 0.3 34 2.7

pk1 255 k 172.2 219 k 89.9 229 k 204.7 193 k 117.0 214 k 160.0

pp08a 603 2.2 709 1.4 145 2.9 702 1.2 6705 33.5

pp08aCUTS 376 2.5 300 2.0 540 3.0 1400 1.6 1899 19.6

qiu 11 k 210.2 9150 66.9 13 k 283.1 2130 20.5 30 k 440.7

rout 21 k 83.3 22 k 34.5 16 k 60.0 9611 15.9 207 k 741.4

set1ch 15 0.7 15 0.6 20 0.9 307 0.3 80 k 903.6

vpm2 607 2.3 364 1.1 222 1.7 1153 0.4 309 5.0

aflow40b 153 k 2.9% 309 k 2418.1 88 k 3.3% 479 k 1.1% 320 k 6.4%

arki001 301 k <0.1% 1034 k 2666.8 148 k <0.1% 2133 k <0.1% 205 k <0.1%

fast0507 1207 0.8% 2655 1250.8 842 0.9% 4060 981.3 11 k 2801.9

harp2 4610 k <0.1% 9453 k <0.1% 706 k 0.2% 379 k 238.1 900 k <0.1%

mzzv11 2778 2011.0 2503 449.8 64 0.9% 1 85.7 6146 1002.7

net12 7337 64.3% 3568 783.7 351 125.5% 1225 51.2% 547 77.3%

noswot 306 k 235.7 574 k 242.5 262 k 144.8 4698 k 4.7% 1857 k 4.7%

swath 226 k 27.4% 333 k 15.0% 184 k 27.3% 227 k 1626.0 480 k 36.6%

tr12-30 690 k <0.1% 1024 k 3523.4 981 k <0.1% 426 k 761.5 28 k 1.1%

Geom. Mean 1581 59.5 1641 31.4 1131 68.5 1542 17.0 4379 114.4

Solved Instances 29 34 28 32 29

≥ 10% faster — 25 6 31 8

≥ 10% slower — 1 18 1 19

constraint integer programs. In this section, we show, that this still preserves
the computational power for MIP solving. We evaluate the performance of the
constraint integer programming solver SCIP for solving MIPs.

With the default plugins that are included in the distribution 1.1.0, SCIP

can be used as a stand-alone MIP solver. Some of the plugins have been de-
scribed in Section 3.

We tested SCIP 1.1.0 running on a 2.66GHz Intel Core 2 Quad (32 bits)
with 4GB RAM and 4MB cache, using CLP 1.8stable [25] as underlying LP
solver. We set a time limit of one hour and a memory limit of 3 GB. For
comparison, we applied the same test with SCIP 1.1.0 using Cplex 11.0 [34]
or SoPlex 1.4.0 [58] to solve the LPs, Cplex 11.0 as stand-alone MIP solver,
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Table 2: Results of five MIP solvers on the Miplib 2003 (continued). (⋆) For
markshare1 and markshare2, we report the primal bound instead of the primal-
dual gap; the dual bound is zero in all cases.

SCIP/CLP SCIP/Cplex SCIP/SoPlex Cplex CBC/CLP

Name Nodes Gap [%] Nodes Gap [%] Nodes Gap [%] Nodes Gap [%] Nodes Gap [%]

a1c1s1 47 k 25.2 136 k 22.9 41 k 24.8 117 k 5.7 33 k 48.8

atlanta-ip 516 27.1 4939 8.5 43 22.5 2107 9.0 435 —

dano3mip 89 25.6 2071 24.8 179 30.4 2165 20.9 5301 30.9

danoint 183 k 3.8 634 k 3.1 141 k 3.9 390 k 2.9 206 k 3.1

ds 49 619.2 672 351.1 95 670.2 803 428.4 565 1773.4

glass4 2591 k 72.2 4258 k 90.8 1842 k 77.4 1998 k 16.7 636 k 45.9

liu 204 k 160.7 1129 k 161.1 282 k 137.1 143 k 107.9 16 k 204.3

mkc 428 k 2.0 921 k 1.7 482 k 2.0 121 k 0.2 452 k 1.6

momentum1 157 — 3679 — 300 — 7143 25.1 1144 —

momentum2 324 — 5691 27.9 377 — 3060 40.6 1536 —

msc98-ip 24 49.9 1273 12.1 1 — 915 12.1 307 —

nsrand-ipx 110 k 6.3 419 k 4.5 150 k 6.3 113 k 1.1 88 k 3.3

protfold 242 — 9100 — 1126 — 8689 47.7 14 k 51.4

rd-rplusc-21 49 k — 46 k >10 000 11 k >10 000 14 k >10 000 7621 —

roll3000 169 k 2.3 434 k 0.9 104 k 1.3 395 k 1.7 28 k 1.4

seymour 15 k 3.2 40 k 3.0 8596 3.5 58 k 2.2 13 k 3.8

sp97ar 2654 4.5 25 k 3.8 2651 4.6 112 k 1.0 8186 14.9

stp3d 1 — 6 — 1 — 1 — 1 —

timtab2 1986 k 80.0 2295 k 68.7 1488 k 72.5 692 k 58.4 145 k 165.5

markshare1 23M 7⋆ 32M 4⋆ 32M 6⋆ 11M 5⋆ 14M 6⋆

markshare2 18M 17⋆ 28M 12⋆ 24M 11⋆ 10M 11⋆ 12M 17⋆

and CBC 2.20 with CLP 1.8stable [25] as LP solver. Cplex is a very fast
commercial MIP solver, CBC is a very fast open-source MIP solver. We used the
provided default settings for all solvers. As test set we chose the 60 instances of
the Miplib 2003 [6]. We left out the instances momentum3, t1717, and timtab1

for which at least one of the solvers returned a wrong answer or reported an
error.

Tables 1 and 2 compare the results of the five solvers. The first part of
Table 1 lists all instances which were solved to optimality by all solvers, the
second part those which were solved by at least one solver, and Table 2 those
for which all solvers reached the time limit. Note, that the memory limit was
not reached in any test run.

For each instance, listed in the “Name” column, the tables show the number
of branch-and-bound nodes and the time in seconds needed to solve it with each
of the five solvers. For instances which could not be solved within the time
limit, we report the primal-dual gap in percent instead of the solving time. The
primal-dual gap is defined as γ = (ĉ− č)/inf[č, ĉ] with ĉ being the upper (primal)
and č being the lower (dual) bound. The symbol “—” indicates instances for
which no feasible solution was obtained within the time limit.

The results are summarized at the bottom of Table 1. There were 27 in-
stances, for which all solvers were able to prove optimality within the time limit.
The row “Geom. Mean” reports the geometric means of the number of branch-
and-bound nodes and the solving times taken over these instances. Figure 1
visualizes the relations of the geometric means of the solving times. There were
36 instances, for which at least one solver was able to prove optimality within the
time limit. The row “Solved Instances” states the number of solved instances
for each individual solver. The rows “≥ 10 % faster” and “≥ 10 % slower” give
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the number of instances for which the solver was at least 10 % faster and at
least 10 % slower than SCIP/CLP, respectively.

Although SCIP supports the much more general concept of constraint inte-
ger programming, it is competitive to state-of-the-art commercial and noncom-
mercial MIP solvers. On this test set, SCIP/CLP turned out to be the fastest
noncommercial solver w.r.t. the geometric mean of the solving times taken
over those instances, which were solved by all solvers. SCIP/CLP was 3.5 and
SCIP/Cplex only 1.84 times slower than Cplex. Furthermore, SCIP/CLP

solved only three instance less, SCIP/Cplex even two instances more than
Cplex within the time limit.

5 Counting Optimal Solutions with CIP Tech-

niques

It is possible to enrich a branch-and-bound algorithm to be capable to count
or enumerate all feasible or all optimal solutions of a given problem instance
(branch-and-count). With release 1.1.0 we extended the framework SCIP to be
able to solve counting problems of constraint integer programs.

Branch-and-bound algorithms can be adapted to enumerate all feasible so-
lutions of a given problem instance by traversing the whole search tree and
collecting all feasible solutions step-by-step. If we can deduce and construct all
solution vectors contained in a subtree, it can be pruned without explicitly enu-
merating all leaves. The two most simple structures are subtrees which have no
solutions and subtrees for which any variable assignment constitutes a feasible
solution. These subtrees are called infeasible subtrees and unrestricted subtrees
(see [4]). These two cases are handled in SCIP.

In this section, we regard the problem of computing the number of optimal
solutions of integer programs. We compare the constraint integer programming
approach to existing methods, in particular those of azove [16], Cplex [26],
LattE [27], and zerOne [23]. We selected all instances contained in the Mi-

plib [19] which only have integer variables. This gives a set of 30 instances. In
a first step, we computed the optimal objective value c⋆ for each instance and
added an additional linear constraint cT x = c⋆ to the integer program. Thus,
for the resulting problem, each feasible solution is an optimal solution.

We ran our tests in the same computational environment as in the previous
Section 4. The results are presented in Table 3. For each instance listed in
the “Name” column, the table reports the number of optimal solutions (“#So-
lutions”) and the running time in seconds of each solver. If a solver did not
solve an instance, due to an error or hitting one of the limits, we indicate this
by an “—”. None of the solvers could solve the instances cracpb1 and p2756.
Therefore, we do not list them in Table 3.

Column “SCIP/Cplex” gives the results for SCIP 1.1.0 with Cplex 11.0
as underlying LP solver. We used the setting “emphasis/counter.set” which is
provided by SCIP. In order to ensure a correct counting process, it disables fea-
tures which may cut off feasible, but suboptimal solutions and result in finding
solutions twice, such as dual presolving and primal heuristics, respectively,

For azove, we present the results of two different versions: 1.1 and 2.0.
Here, we used the “-c” option in order to count the number of feasible solutions
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Table 3: Result for counting the number of optimal solutions.
Name #Solutions SCIP/Cplex azove 1.1 azove 2.0 Cplex LattE zerOne

air01 2 0.3 1.9 — 0.1 — 1.0

air02 1 3.0 — — 2.1 — 21.0

air03 1 72.0 — — 41.4 — 51.0

air04 8 151.8 — — 2521.2 — —

air05 2 54.7 — — — — —

air06 1 163.6 — — 2.5 — 72.0

bm23 1 0.1 1.2 — 0.1 — 1.0

diamond 0 0.0 0.0 0.0 0.0 0.0 0.0

enigma 2 0.1 — — 0.9 — 3.0

l152lav 1 26.3 — — 220.9 — 24.0

lp4l 24 0.8 — — 2.4 — 5.0

lseu 2 1.7 5.6 — 0.6 — 12.0

misc02 4 0.0 — — 0.1 — 0.0

misc03 24 0.5 — — 2.6 — 0.0

misc07 72 17.4 — — 95.1 — 0.0

mod008 6 6.0 8.2 — 1.4 — 9.0

mod010 128 20.3 — — 9.9 — 134.0

p0033 9 0.0 0.0 — 0.0 — 1.0

p0040 1 0.0 0.4 — 0.0 — 0.0

p0201 4 0.3 — — 2.0 — 58.0

p0282 1 0.3 — — 5.7 — —

p0548 151 165 440 135.9 — — — — —

pipex 1 0.1 14.0 — 0.0 — 0.0

sentoy 1 0.1 — — 0.1 — 0.0

stein9 54 0.0 0.0 0.0 0.0 11.0 0.0

stein15 315 0.1 0.0 0.0 0.1 — 0.0

stein27 2 106 2.7 0.1 — 3.2 — 5.0

stein45 70 53.9 300.7 — 36.1 — 105.0

Solved Instances 28 12 3 26 2 24

implicitly. For the solver Cplex 11.0, we set the number of threads to one and
set the integrality tolerance to zero to ensure a proper result. Finally, column
“LattE” gives the results of the tool LattE macchiato 1.2-mk-0.9 and the last
column reports the results of zerOne 1.81 with Cplex 11.0 as LP solver.

In this test, the branch-and-bound based solvers Cplex, zerOne, and SCIP

were superior to the other solvers. This is probably due to that general mixed
integer programs are in favor for this type of tools. Cplex solved more instances
than zerOne; SCIP solved more instances than Cplex. The instances air05
and p0548were only solved by SCIP. For the latter one, the unrestricted subtree
detection [4] was essential.

6 Property Checking with CIPs

One of the key technologies in the design of integrated circuits is the verification
of the correctness of the chip design [35]. An important aspect of this process is
the so-called property checking problem, which consists of verifying that certain
inherent properties of the chip design are satisfied.

Today’s techniques validate these properties on the so-called gate level by
transforming the properties into Boolean clauses and hence modeling the prop-
erty checking problem as a SAT instance. However, complex arithmetic op-
erations like multiplication lead to difficult SAT instances with involved inter-
relationships between the variables, which are hard to solve for current SAT
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solvers.
Our approach is to tackle the problem on a higher level, the register transfer

level. The property checking problem at the register transfer level can be formu-
lated as a constraint integer program on bit vector variables ̺ ∈ {0, . . . , 2w̺−1}
of width w̺. The constraints r = C(x, y, z) model the circuit operations.

For each bit vector variable ̺, we introduce single bit variables ̺b ∈ {0, 1},
with b ∈ {0, . . . , w̺ − 1}, for which linking constraints

̺ =

w̺−1
∑

b=0

2b̺b (2)

define their correlation. In addition, we consider the following circuit operations:
add, and, concat, eq, ite, lt, minus, mult, not, or, read, shl, shr,
signext, slice, sub, uand, uor, uxor, write, xor, zeroext with semantics
as defined in [1, 22]. All these operations can be expressed as specific constraints
according to the CIP paradigm.

6.1 Constraint Programming Techniques

For the bit linking constraints (2) and for each type of circuit operation, we
implemented a specialized constraint handler which includes a domain propa-
gation algorithm that exploits the special structure of the constraint class. In
addition to considering the current domains of the bit vectors ̺ and the bit
variables ̺b, we exploit knowledge about the global equality or inequality of bit
vectors or bits, which is obtained in the preprocessing stage of the algorithm.

Some of the domain propagation algorithms are very complex. For exam-
ple, domain propagation of mult constraints uses term algebra techniques to
recognize certain deductions inside its internal representation of a partial prod-
uct and overflow addition network. Others, like the algorithms for shl, slice,
read, and write constraints, involve reasoning that mixes bit- and word-level
information.

6.2 Mixed Integer Programming Techniques

Because property checking is a pure feasibility problem, there is no natural
objective function. However, the LP relaxation usually detects infeasibility of
local subproblems much earlier than domain propagation.

Table 4 shows the linearizations of circuit operation constraints that are used
in addition to the bit linking constraints (2) to construct the LP relaxation of
the problem instance. Very large coefficients like 2wr in the add linearization
can lead to numerical difficulties in the LP relaxation. Therefore, we split the
bit vector variables into words of 16 bits and apply the linearization to the
individual words. The linkage between the words is established in a proper
fashion. For example, the overflow bit of a word in an addition is added to the
right hand side of the next word’s linearization. The relaxation of the mult

constraint involves additional variables yn and rn which are “nibbles” of y and
r with L = 8 bits.

No linearization is generated for shl, slice, read, and write constraints.
Their linearizations are very complex and would dramatically increase the size
of the LP relaxation, thereby reducing the solvability of the LPs. For example,
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Table 4: LP relaxation of circuit operations. l̺ and u̺ are the lower and upper
bounds of a bit vector variable ̺.

Name Operation Linearization

and r = and (x,y) rb ≤ xb, rb ≤ yb, rb ≥ xb + yb − 1
or r = or (x,y) rb ≥ xb, rb ≥ yb, rb ≤ xb + yb

xor r = xor (x,y) xb − yb − rb ≤ 0, −xb + yb − rb ≤ 0,
−xb − yb + rb ≤ 0, xb + yb + rb ≤ 2

unary and r = uand (x) r ≤ xb, r ≥
Pwx−1

b=0
xb − wx + 1

unary or r = uor (x) r ≥ xb, r ≤
Pwx−1

b=0
xb

unary xor r = uxor (x) r +
Pwx−1

b=0
xb = 2s, s ∈ Z≥0

equal r = eq (x,y) x − y = s − t, s, t ∈ Z≥0,
p ≤ s, s ≤ p(ux − ly), p ∈ {0, 1},
q ≤ t, t ≤ q(uy − lx), q ∈ {0, 1},
p + q + r = 1

less than r = lt (x,y) x − y = s − t, s, t ∈ Z≥0,
p ≤ s, s ≤ p(ux − ly), p ∈ {0, 1},
r ≤ t, t ≤ r(uy − lx),
p + r ≤ 1

if then else r = ite (x,y,z) r − y ≤ (uz − ly)(1 − x)
r − y ≥ (lz − uy)(1 − x)
r − z ≤ (uy − lz)x

r − z ≥ (ly − uz)x

add r = add (x,y) r + 2wr o = x + y, o ∈ {0, 1}
multiply r = mult (x,y) vbn ≤ uynxb, vbn ≤ yn, vbn ∈ Z≥0

vbn ≥ yn − uyn(1 − xb)

on +
P

i+j=n

PL−1

l=0
2lviL+l,j

= 2Lon+1 + rn, on ∈ Z≥0

a straight-forward linearization of the shl constraint on a 64-bit input vector x
that uses internal ite-blocks for the potential values of the shifting operand y
already requires 30944 inequalities and 20929 auxiliary variables.

6.3 SAT Solving Techniques

Conflict analysis is particular useful on feasibility problems like property check-
ing. By applying reverse propagation, one or more conflict constraints can be
extracted from the conflict graph of an infeasible subproblem. In our imple-
mentation, we use the 1-FUIP [59] rule for generating conflict constraints. In
addition to 1-FUIP conflict constraints, we extract clauses from reconvergence
cuts [59] in the conflict graph to support nonchronological backtracking [44].

6.4 Computational Results

We examined the computational effectiveness of the described CIP techniques
on industrial benchmarks obtained from verification projects conducted together
with Infineon and OneSpin Solutions. The specific chip verification algo-
rithms were incorporated into SCIP. All calculations given is this section were
performed in the same environment as described in Section 4. We used ver-
sion 1.1.0 of SCIP with Cplex 11.0 as LP solver. For reasons of comparison,
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Table 5: ALU properties. (time in seconds)

register width
Prop Meth 5 10 15 20 25 30 35 40

muls SAT 0.3 3560.2 — — — — — —

CIP 0.0 0.0 0.1 0.2 0.6 1.3 2.8 7.5

neg flag SAT 0.1 46.1 — — — — — —

CIP 1.3 4.5 11.2 23.4 50.2 99.0 187.0 336.8

zero flag SAT 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.4

CIP 1.4 6.7 17.9 7.2 58.0 71.0 233.1 381.6

Table 6: Biquad properties.
variant

Property Meth A B C

g checkgpre SAT 12.9 32.2 16.5

CIP 27.4 22.3 34.4

g2 checkg2 SAT 3575.7 — —

CIP 253.8 203.2 202.3

g25 checkg25 SAT 0.0 1.5 1.6

CIP 102.3 34.6 32.3

g3 negres SAT 0.0 0.0 0.0

CIP 0.5 0.0 0.0

gBIG checkreg1 SAT 115.1 70.7 69.8

CIP 230.2 73.3 67.3

Table 7: Multiplier properties. (time in seconds)

register width
Layout Meth 6 7 8 9 10 11 12 13 14

booth SAT 0.3 2.1 13.0 74.0 422.7 3488.4 — — —

signed CIP 11.1 47.1 63.3 257.9 127.9 1156.1 1101.7 — 2693.4

booth SAT 0.4 1.6 11.4 60.7 442.3 1876.0 — — —

unsgnd CIP 7.4 43.6 73.3 253.8 302.8 1360.7 2438.7 3046.9 —

nonbth SAT 0.3 2.2 13.3 74.5 596.3 3004.7 — — —

signed CIP 7.3 34.7 55.5 199.9 263.1 420.3 876.1 1568.8 1847.3

nonbth SAT 0.2 1.2 10.4 50.2 470.1 2454.6 — — —

unsgnd CIP 2.3 19.6 58.3 119.5 222.5 511.9 703.7 1258.5 2454.9

we also solved the instances with SAT techniques on the gate level. We used
MiniSat 2.0 [28] to solve the SAT instances obtained after a preprocessing step.

The experiments were conducted on the valid properties included in the fol-
lowing sets of property checking instances: ALU (an arithmetical logical unit
which performs add, sub, shl, shr, and signed and unsigned mult operations),
Biquad (a DSP/IIR filter core obtained from [48] in different representations),
and Multiplier (gate level net lists for Booth and non-Booth encoded architec-
tures of signed and unsigned multipliers).

Tables 5–7 compare the results of MiniSat and our CIP approach on the
valid properties. For each property or layout and each input register width or
variant, the tables show the time in seconds of the two algorithms needed to
solve the instance. Results marked with “—” could not be solved within the time
limit. The experiments show that our approach outperforms SAT techniques for
proving the validity of properties on circuits containing arithmetics. For invalid
properties, which are not shown in the tables, our algorithm usually is inferior
to SAT techniques for finding counter-examples. This is due to the much more
involved procedures employed in the CIP approach, which may cause much more
computational effort per branch-and-bound node.
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7 Future Research

Further research in the field of constraint integer programming should enrich the
variety of CIP solver features like counting feasible solutions, see Section 5, and
help to deal with typical issues of mathematical programming, like numerical
inaccuracy, see Section 7.2, and complex symmetries, see Section 3.8. We also
plan to extend the spectrum of problem classes which can be handled by CIP
methods, see Sections 7.1 and 7.3.

7.1 Nonconvex Mixed Integer Nonlinear Programming

Given twice continuously differentiable functions f : Rn → R and g : Rn → Rm,
vectors l, u ∈ Rn, and a subset I ⊆ N = {1, . . . , n}, the general mixed integer
nonlinear program (MINLP) is to solve

min {f(x) | g(x) ≤ 0, l ≤ x ≤ u, x ∈ Rn, xj ∈ Z for all j ∈ I} .

For MINLPs where the functions f and g are convex, several software pack-
ages are available. Most of these solvers extend an LP based branch-and-cut
approach for MIPs by linearizing nonlinear functions whenever appropriate. For
nonconvex MINLPs, there are numerous application specific approaches. Only
few codes exist, however, that can handle nonconvex MINLPs in general, among
them the solvers BARON [55] and LaGO [47]. The latter implements a con-
vexification based branch-and-cut algorithm. Here, nonconvex quadratic terms
are convexified by applying the so-called alpha-underestimating technique, while
nonconvex nonquadratic functions are first underestimated by a quadratic func-
tion, which is then convexified.

Bringing together the expertise of SCIP and LaGO, we are developing a
general purpose LP based branch-and-cut solver for nonconvex MINLPs. Ap-
plications are, among others, in fare planning, in mine production planing, and
in the optimization of the design and operation of complex energy conversion
systems.

7.2 Exact Constraint Integer Programming

As most standard MIP solvers, SCIP is based on floating-point arithmetic,
which may cause slight rounding errors in arithmetic operations. For most ap-
plications, this error-proneness can be neglected—the computed solutions meet
the accuracy requirements. The situation changes fundamentally, if CIPs are
used to study theoretical problems, if pure feasibility problems are considered,
and if wrong answers can have legal consequences. For such applications, an
exact solver is required.

We are developing an approach for the exact solution of CIPs. Extending
the framework SCIP, we want to provide a solver that always produces correct
answers for both feasible and infeasible CIP instances, i.e., an exact optimal
solution or an exact infeasibility certificate.

7.3 Solving Scheduling Problems with CIP Techniques

Scheduling is an optimization problem where jobs or duties have to be assigned
to resources minimizing, e.g., the overall makespan. A variety of solving methods
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for difficult scheduling problems has been proposed in the constraint program-
ming literature [14] as well as in the integer programming literature [24]. The
strong CP propagation methods for, e.g., precedence constraints are a powerful
tool for constructing high-quality feasible solutions, while MIP techniques like
column generation allow to solve very large scale problem instances.

As scheduling problems seem to be more tractable by CP techniques, but
often additional instance specific requirements can be better dealt with by MIP
solvers, we are developing a constraint integer programming approach, which
incorporates solving features from both fields.

8 Conclusion

We introduced constraint integer programming, a new approach to integrate
constraint programming and mixed integer programming. We presented vari-
ous solving techniques from different fields of mathematical programming and
showed how they can be used to solve constraint integer programs and how
they are incorporated into the SCIP framework. Although SCIP is able to
solve the much broader class of constraint integer programs, it is currently one
of the fastest MIP solvers and competitive to state-of-the-art commercial and
noncommercial solvers.

Taking the chip design verification problem as an application, we demon-
strated the usefulness of constraint integer programming techniques to solve
problems which were intractable by previous nonintegrated approaches. We
presented new computational results and suggested possible directions of future
development in the field of constraint integer programming.
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Salesman Problem. Princeton University Press, Princeton, 2006.

[10] K. R. Apt. Principles of Constraint Programming. Cambridge University
Press, 2003.

[11] I. D. Aron, J. N. Hooker, and T. H. Yunes. SIMPL: A system for integrating
optimization techniques. In Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Problems, CPAIOR
2004, volume 3011 of Lecture Notes in Computer Science, pages 21–36,
2004.

[12] E. Balas. Facets of the knapsack polytope. Mathematical Programming,
8:146–164, 1975.
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