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Abstract

By use of asymptotic analysis Carqué et al. [1] derived an asymptotic
column model for deep convective clouds based on the three dimensional
compressible flow equations and a bulk microphysics parameterization. In
the present study we check the plausibility of the reduced model equations
by comparing implications of the model for the scaling of various terms in
the governing equations with those extracted from large eddy simulation
data based on the computational model UCLA-LES1.1. This code solves
an anelastic system of equations with complete droplet based microphysics
and LES closures.

We observe that the simulation data corroborate the basic assump-
tions of the asymptotic analysis and the main conclusions implied by the
asymptotically reduced model.

The code output reflects the scales of space and time: The deep
convective clouds show an anisotropic structure where the horizontal scale
is considerably narrower than the vertical scale; with a period of about
20min, from emergence to breakup, the life cycle of one particular deep
convective cloud corresponds exactly to the reference time of the reduced
model.

The characteristic properties of dynamics as predicted by the re-
duced model are also reflected in the simulation data: The horizontal flow
is controlled by the pressure field; the vertical velocity develops freely
independent of pressure over the depth of the convective column; the
vertical velocity is directly determined by the buoyancy induced by the
potential temperature deviation relative to the background stratification.

With respect to grid resolution we observe that refining the spatial
step size of the equidistant computational grid from 125m to 62.5m does
not influence the results: Even with the coarser grid the relevant physical
phenomena are sufficiently resolved.

Somewhat surprisingly, the Coriolis term involving vertical velocity
and acting on the horizontal (east-west) velocity component appears at
leading order in the asymptotics. Accordingly, we expected to find a
nontrivial impact of this Coriolis effect on the horizontal flow velocity
components within columns of updrafts. However, switching the term on
and off in subsequent simulations did not sizeably affect the results.
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iv NOTATION

Notation

Latin Symbols
a radius of the Earth
cp specific heat capacity at constant pressure for dry air
e∞ triple-point vapour pressure
f vertical Coriolis parameter
f ∗ horizontal Coriolis parameter
g acceleration of gravity
h height
k vertical unit vector
l length
Lcond specific latent heat of condensation
p pressure
r mixing ratio
R specific gas constant
S source term
Sθ source term due to latent heat release
t time coordinate
u horizontal velocity component in x-direction
v horizontal velocity component in y-direction
v velocity vector
vt terminal falling velocity of rain drops
w vertical velocity
x horizontal coordinates with respect to hsc

z vertical coordinate

Greek Symbols
γ isentropic exponent
ε asymptotic scaling parameter
θ potential temperature
ξ horizontal coordinates with respect to εhsc

̺ density
φ degree of latitude
Ω diurnal rotation frequency
Ω Earth rotation vector

Ω̂ normalised Earth rotation vector

Dimensionless Numbers
M Mach-Number
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Mathematical Expressions and Operators
D
Dt substantial derivative

exp[·] exponential function
ln[·] natural logarithm function (to the basis e)
sin[·] sine function
cos[·] cosine function
O(·) Landau-Symbol
(·)(i) i: order of the asymptotic expansion
(·)t differentiation with respect to t
(·)z differentiation with respect to z
∇ Nabla-Operator
∇x Nabla-Operator regarding x

∇ξ Nabla-Operator regarding ξ

∇2 = ∆ Laplace-Operator

Indices
c cloud water
cloud subdomain defining the deep convective cloud
0 surface
d dry air
hor horizontal
max maximum
min minimum
out outside the deep convective column
r rain water
ref reference
sat saturated
sc scale
tr tropopause
un undersaturated
v water vapour
ver vertical
vs saturated water vapour
(·)

q
horizontal part of a vector

(·)
⊥

vertical part of a vector

(·) averaged quantity
|(·)| absolute value of a quantity
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1 Introduction

The asymptotic deep convective column model derived by Carqué et al. [1]
is based on the analysis of the three dimensional compressible flow equations
coupled with a bulk microphysics parameterization consisting of transport
equations for the mixing ratios of the moisture species water vapour, cloud
water, and rain water. This reduced model for moist atmospheric convection is
characterised by an anelastic divergence constraint for the horizontal flow with a
two dimensional Poisson equation for the corresponding perturbation pressure.

The aim of the present study is to compare the conclusions that can be
drawn from the reduced asymptotic system of equations to simulation data
based on a detailed model. For this purpose the UCLA (University of California
Los Angeles) Large-Eddy Simulation Code UCLA-LES1.1 is used. This code
solves an anelastic system of equations with complete droplet based micro-
physics. In order to confirm the plausibility of the asymptotic deep convective
column model, it has to be checked whether its features are reflected in the
UCLA-LES1.1 simulation data.

In this way, provided that the reduced model captures the essential mech-
anisms of moist convection, its solution with efficient numerical methods using
moderate computational resources could then be used as a subgrid model of cloud
formation and precipitation in large scale numerical weather prediction (NWP)
models in the sense of superparameterization instead of a computationally
intensive cloud resolving model (CRM).

So far in the superparameterization technique for each column of the coarser
grid a CRM is run explicitly on a finer grid. Detailed discussions of this method
are provided by Grabowski [3], [4], [5], Khairoutdinov and Randall [6] and in
the review paper by Randall et al. [11]. Recent publications on this topic are
provided by Majda [9] and Majda and Xing [10]. The comparison between
superparameterization and conventional subgrid models of convective clouds
for the NCAR (National Center for Atmospheric Research) climate model by
Khairoutdinov et al. [7] shows that the superparameterization technique is
very computing time consuming at present and can therefore not be applied to
weather forecast models right now. Perhaps the asymptotically reduced model
investigated in this study might be used for superparameterization in operational
weather forecast models in the future.

In section 2 we show the equations of the asymptotically reduced model
from [1] for saturated and undersaturated conditions. Section 3 presents the
model equations, the parameterizations and the numerical algorithm imple-
mented in UCLA-LES1.1. This section also describes the initial and boundary
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conditions used to initialise deep convection and illustrates the characteristics of
the observed deep convective clouds. In section 4 we explain how the asymptotic
perturbation quantities are extracted from the code-output. In order to get to
know the behaviour of the code, we also study its representation of hydrostatics
and the compliance with the divergence constraint in this section. Section 5
provides the detailed discussion of the correlations between the asymptotic un-
knowns themselves and between the terms in the asymptotic vertical momentum
balance. This section also discusses the simulation with higher spatial resolution
and the simulation with the horizontal Coriolis parameter. In section 6 we draw
the conclusions of the comparison between the asymptotically reduced model
and the UCLA-LES1.1 data.
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2 Summary of the asymptotic model equations

Before we embark on the plausibility check, here we show the equations of
the asymptotically reduced model from [1] for saturated and undersaturated
conditions.

In the saturated air regime the final system of equations contains the un-
known variables p(6), θ(4), v

(1)
q

and w(0). With these quantities the coupled mixing
ratios of cloud and rain water can be determined. The equations read as follows:

Saturated Air

Mass Balance

̺(0)∇ξ · v
(1)
q

+ (̺(0)w(0))z = 0,

Horizontal Momentum Balance

v
q

(1)
t + (v

(1)
q

· ∇ξ)v
(1)
q

+ w(0)v
q

(1)
z + (w(0)Ω̂

q
× k) +

1

̺(0)
∇ξp

(6) = 0,

Vertical Momentum Balance

w
(0)
t + v

(1)
q

· ∇ξw
(0) + w(0)w(0)

z = θ(4) − θ
(4)
out,

Transport Equation for the Potential Temperature

θ
(4)
t + v

(1)
q

· ∇ξθ
(4) + w(0)θ(4)

z = w(0)(θ(4)
z )out,

Transport Equation for the Cloud Water Mixing Ratio

Kvcw
(0)rvs

(0)
z + Ccr,1r(0)

c r(0)
r = 0,

Transport Equation for the Rain Water Mixing Ratio

rr
(0)
t + v

(1)
q

· ∇ξr
(0)
r + w(0)rr

(0)
z − Vr

1

̺(0)
(̺(0)

1

2 r(0)
r )z − Ccr,2r(0)

c r(0)
r = 0.

The reduced system for the undersaturated air regime consists of the following
equations with p(6), r

(0)
v , r

(0)
r , v

(1)
q

and w(0) as unknown variables:

Under-Saturated Air

Mass Balance

̺(0)∇ξ · v
(1)
q

+ (̺(0)w(0))z = 0,



4 3 THE UCLA LARGE-EDDY SIMULATION CODE

Horizontal Momentum Balance

v
q

(1)
t + (v

(1)
q

· ∇ξ)v
(1)
q

+ w(0)v
q

(1)
z + (w(0)Ω̂

q
× k) +

1

̺(0)
∇ξp

(6) = 0,

Transport Equation for the Potential Temperature

w(0)θ(2)
z = −ΓLE(0)

r ,

Transport Equation for the Water Vapour Mixing Ratio

rv
(0)
t + v

(1)
q

· ∇ξr
(0)
v + w(0)rv

(0)
z = E(0)

r ,

Transport Equation for the Rain Water Mixing Ratio

rr
(0)
t + v

(1)
q

· ∇ξr
(0)
r + w(0)rr

(0)
z − V

1

̺(0)

(
(̺(0))

1

2 r(0)
r

)

z
= −E(0)

r .

The above equations originate from the asymptotic analysis of a convective
system on the horizontal bulk micro scale of 1 km for the moist atmosphere.
It is characterised by the deep convective vertical scale of 10 km and the
corresponding convective time scale of 20 min.

The resulting model shows some special features:

• The continuity equation provides an anelastic divergence constraint for the
horizontal flow. The perturbation pressure representing the corresponding
Lagrange multiplyer obeys a two dimensional Poisson equation.

• The horizontal momentum balance contains the product of the leading-
order vertical velocity and the horizontal Coriolis parameter, a term that is
usually neglected in meteorological applications.

• In the saturated column, the vertical velocity is directly determined by the
potential temperature deviation between inside the column and outside,
which is a conserved quantity. In the undersaturated regime, the vertical
velocity depends on the leading order evaporation rate which in turn is
constituted by the saturation deficit and the amount of rain water present.

For a detailed discussion of the model’s properties we refer the reader to [1].

3 The UCLA Large-Eddy Simulation Code

3.1 Survey of UCLA-LES1.1

UCLA-LES1.1 [14] is a large eddy simulation (LES) model for meteorological
studies. In contrast to Reynolds averaged Navier Stokes (RANS) models, where
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the underlying set of equations is ensemble filtered, in LES the filter operation
acts spatially. In this section the filtered quantities will be dentoted by an
overbar. Whereas in RANS only the turbulent eddies of integral scales are
resolved, in LES also smaller eddies with length scales down to the filter induced
cut-off are taken into account.

UCLA-LES1.1 is configured to solve a spatially filtered system of anelastic
equations on the f -plane in three space dimensions x, y, z and time t. It is
written in F90/95, and is parallelised using a one-dimensional decomposition
and MPI. The grid is doubly periodic in the horizontal (x-y) and bounded in
the vertical, z. The vertical is spanned by a stretchable grid, the horizontal
by uniform squares. Prognostic variables include the three components of the
wind (ui ≡ {u, v, w}), the liquid-water potential temperature, θl, the total-water
mixing ratio, qt, and an arbitrary number of scalars, φm, in support of mi-
crophysical processes, more sophisticated sub-grid models, or studies of tracer
transport or chemical processes. Time-stepping of the momentum equations is by
the leap-frog method. Scalars are advanced using a forward-in-time integration
scheme. Scalar advection is based on a directional-split monotone up winding
method while momentum advection uses directionally-split fourth-order centered
differences.

3.1.1 Model Equations

The form of the equations solved by the model are (in tensor notation) as follows:

∂ūi

∂t
= −ūj

∂ūi

∂xj
− cpΘ0

∂π̄

∂xi
+

gθ̄′′v
θ0

δi3 + fk(ūj − uj,g)ǫijk +
1

ρ0

∂(ρ0 τij)

∂xj
,(1)

∂φ̄

∂t
= −ūj

∂ φ̄

∂xj

+
1

ρ0

∂(ρ0 γφj)

∂xj

+
∂Fφ

∂xj

δj3, (2)

subject to the anelastic continuity equation

∂(ρ0ui)

∂xi

= 0 (3)

and a constitutive equation which we take to be the ideal gas law for a perfect
mixture:

θv = θ (1 + (Rv/Rd − 1)qt − (Rv/Rd)ql) . (4)

In the above π̃ = (p̃/p00)
R/cp is the dynamic pressure perturbation. Fφ denotes a

flux whose divergence contributes to the evolution of φ (for instance radiation in
the case of φ = θl), fk = {0, 0, f} is the Coriolis parameter, uj,g is the geostrophic
wind, and

τij ≡ uiuj − ūiūj and γφj ≡ φuj − φ̄ūj (5)
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denote the sub-grid fluxes. In (2) φ denotes an arbitrary scalar. Depending on
the level of microphysical complexity this can include θl and qt or an arbitrary
number of additional variables, for instance to represent microphysical habits or
categories. The symbols δjk and ǫijk denote the Kronecker-delta and Levi-Civita
symbol respectively.

The anelastic approximation solves for perturbations about a hydrostatic
basic state of fixed potential temperature, i.e.,

dπ0

dz
= −

g

cpΘ0

, (6)

where subscript 0 denotes a basic state value, which depends only on z (Θ0 being
constant). In (1) θ̄′′v denotes the deviation of θv from its horizontal average (rather
than from the basic-state). This ensures that no mean vertical accelerations arise.
For consistency we introduce a second pressure, π1 :

d

dz
(π0 + π1) = −

g

cpθ̄v

, (7)

that contains the contribution of deviations from the Θ0 reference state to the
pressure. This pressure depends on time, and is updated in the code by finding
the pressure that balances the mean accelerations, such that

dπ1

dz
= Θ0w, (8)

with π1(z = 0) fixed at its initial value.

The model represents the First Law of thermodynamics by (2) with φ = θl.
Where we define θl as:

θl = Tπ exp

(
−

qlLv

cpT

)
(9)

Hence the model satisfies an approximate form of the First Law, but one
generally consistent with the overall level of approximation. In the above Lv,
Rd, Rv, cp and p00 are thermodynamic parameters which adopt standard values
given in the code documentation [14]. Finally, g is the gravitational acceleration.

The continuity equation (3) yields π̃ through the inversion of the Poisson
equation

∂

∂xi

(
ρ0

∂π̃

∂xi

)
=

1

cpΘ0

[
∂

∂xi

(
−ρ0ūj

∂ūi

∂xj
+

ρ0gθ̄′′v
θ0

δi3 + ρ0fk(ūj − ujg)ǫijk +
∂(ρ0 τij)

∂xj

)]
.

(10)
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3.1.2 Parameterizations

Since the basic fluid equations have been spatially filtered, the net effect of
the subgrid or better subfilter scales has to be given. This is normally called
parameterization or closure. Note that this process might be very crucial
depending on the origin of the investigated problem. For flows dominated by
large eddies one can argue that the results are not too sensitive to a variation of
parameterization, while for small scale dominated flows the closure is the most
crucial point. In the code the following closures are used.

Turbulence
The sub-grid fluxes τij and γφj are not known explicitly and thus must be
modeled. This constitutes the model closure. The basic or default form of the
closure makes use of the Smagorinsky model, wherein

τij = −ρ0KmDij and γφj = −
Km

Pr

∂φ̄

∂xj
, (11)

where

Dij =
∂ūi

∂xj

+
∂ūj

∂xi

is the resolved deformation, Km is the eddy viscosity, and Pr is an eddy Prandtl
number. The Smagorinsky model calculates the eddy viscosity as

Km = (Csℓ)
2S

√
1 −

Ri

Pr
where Ri =

N2

S2
(12)

and

S2 ≡
∂ūi

∂xj

Dij and N2 =
g

Θ0

∂θ̄v

∂z
. (13)

In the above Cs is the Smagorinsky constant and takes values near 0.2, and

ℓ−2 = (∆x∆y∆z)−2/3 + (zκ/Cs)
−2,

where κ = 0.35 is the von Kármán constant in the model. The geometric averaging
between a grid scale and a length scale proportional to the height above the
surface allows Km/(u∗z) to approach κ in the neutral surface layer (the log-law).
Other options (not used in the present study) include Lagrangian averaged
scale-dependent and scale-independent models, the Deardorff-Lilly sub-grid
turbulence kinetic energy (TKE) model, and for scalars the option of having all
the dissipation carried by the numerics.

Cloud microphysics
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A variety of microphysical complexity can be included into UCLA-LES1.1. In
the standard distribution a warm-rain microphysical scheme (level 3, type 2) is
implemented following the work of Seifert and Beheng [13]. In this scheme cloud
droplets are assumed to be in equilibrium with a fixed (specified) concentration.
Cloud, or rain, drops defined as liquid condensate with appreciable fall velocities
are allowed to evolve under the action of the ambient flow and microphysical
processes (auto-conversion, accretion, self-collection, sedimentation). The repre-
sentation of these processes leads to the inclusion of two additional prognostic
equations, one for rain mass the other for rain concentration.

A saturation adjustment scheme (level 2, type 0) is also implemented in
the model. This scheme has no rain category and diagnoses cloud drop mass
concentrations by assuming homogeneity on the grid-scale and equilibrium
thermodynamics. Sedimentation of cloud droplets can be implemented as a
source term in the model (level=2, type=1). For details we refer the reader to [14].

Boundary conditions and surface fluxes
To enforce the boundary conditions, the model can either implement free slip or
no-slip boundary conditions on the grid-scale tangential velocities, with free-slip
being the default. These grid-scale quantities do, however, feel accelerations,
or tendencies as a result of sub-grid scale fluxes which are parameterized. The
model supports different methodologies for specifying the sub-grid fluxes at
the lower boundary. They can be prescribed, calculated based on prescribed
gradients, or prescribed surface properties. For the latter two similarity functions
are chosen to relate the fluxes at the surface to the grid-scale gradients there.
For details we refer the reader again to [14].

3.1.3 Numerical Algorithm

In the following we summarise the numerical procedure used in UCLA-LES1.1.

Time-stepping
The model uses a hybrid time-stepping strategy. At the top of the timestep

Figure 1: Schematic depiction of the model time-step.

velocities are given at time level n and n+1 and scalars are given at time level n.



3.1 Survey of UCLA-LES1.1 9

The scalars are then marched forward using an Euler forward step to time-level
n + 1. Velocities from time-level n are then taken forward using a leapfrog step
to time-level n + 2 which concludes a single step. On a timestep tendencies are
accumulated in a tendency array and then applied at the end of the step. An
exception to this are the subgrid fluxes, which involve a diffusion operation. The
vertical component of this operation is solved semi-implicitly which requires a
sparse matrix solve (a tri-diagnonal solver). The new velocity is then differenced
with the old velocity to define an effective forward tendency which is accumulated
like the other forcings in the tendency array. Mathematically, if the time-level is
indicated by a superscript, then

(
∂φ

∂t

)

sgs

=
φ̃n+1 − φn

∆t
where φ̃n+1 = φn + ∆t

∂

∂z

(
Kn ∂φ̃n+1

∂z

)
, (14)

where K ≡ Km/Pr is the eddy diffusivity. Another exception is the pressure
gradient term which is solved so as to ensure that the discretized version of

∂

∂xi
(ρ0ūi) = 0 (15)

is satisfied to machine precision.

Computational Grid
The model uses the Arakawa-C grid, which means that u(k, i, j) lies a distance of

Figure 2: Schematic depiction of the model grid and where variables locate on it.

∆x
2

to the right of θl(k, i, j). To state this more generally, velocities are staggered
half a grid point up-grid (in the direction of the specific velocity component)
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of the thermodynamic and pressure points. Also note that the grid indexing
has the z dimension first. This k, i, j indexing is chosen in realisation of the
fact that many of the operations in the model are done column-wise. The grid
configuration, and some height variables that are commonly used in the code
(i.e., zm, zt, dzm, and zt ) are illustrated in a schematic drawing in figure 2.

Pressure Solver
Pressure is solved by a fractional step method so as to ensure that the velocities
at the end of the timestep satisfy (3) to machine accuracy. The solver takes
advantage of the periodicity in the horizontal to use 2-D FFTs to transform the
Poisson-equation to a second order ODE in the vertical. Schematically

∂2π

∂x2
i

−→ (l2 + m2)
d2π

dz2
, (16)

where l and m denote the horizontal wave-numbers. The resultant ODE is then
solved using a tri-diagnonal solver.

3.2 Setting of the simulations

In our simulations the extent of the computational domain amounts to 32 km in
the horizontal and 15 km in the vertical. This volume is discretised by an equidis-
tant grid with a spacing of 125 m. Thus the resolution results in 256 x 256 x 120,
so almost 8 million grid points. At the beginning of the computation the
temporal step size is 2.0 s which is adaptively reduced to values between 1.0 s
and 1.5 s during the run so that the CFL number always stays smaller than 0.8.
A time period of 21600 s =̂ 6 h is simulated. The UCLA-LES-Code is run in par-
allel on 32 processors and performs about 16800 time steps in a total of about 20 h.

The parallel high performance computing is carried out on the IBM p655
Cluster with a total of 240 IBM Power4 CPU at the Potsdam Institute for
Climate Impact Research (PIK). The cluster is run under the AIX5 operating
system and uses the IBM Load Leveler batch queuing system. For more
information, see [18].

3.2.1 Basic state

In order to initialise deep convective events, constant surface fluxes of sensible
and latent heat are prescribed. The potential temperature θ and relative humidity
U profiles for the initial sounding are defined following the paper by Weisman
and Klemp [20] also used by Seifert [12] to simulate deep convective clouds:

θ(z) =





θ0 + (θtr − θ0)

(
z
ztr

)(5/4)

: z ≤ ztr

θtr exp
[

g
cpTtr

(z − ztr)
]

: z > ztr

(17)
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U(z) =

{
Umax − (Umax − Umin)

(
z
ztr

)(5/4)

: z ≤ ztr

Umin : z > ztr

(18)

In the above equations ztr = 12 km, θtr = 343 K and Ttr = 213 K represent
the height, potential temperature and actual temperature, respectively, at the
tropopause, θ0 = 300 K is the surface potential temperature. Relative humidity
takes values between Umin = 0.25 and Umax = 1.00.

Preprocessing is done using the numerical computing environment MATLAB
R2007a from The MathWorks, Inc. [16]. The potential temperature and relative
humidity profiles are visualised in figures 3 and 4.

300 320 340 360 380 400 420
0

2000

4000

6000

8000

10000

12000

14000

16000

θ [K]

z 
[m

]

Basic State: Potential Temperature

Figure 3: Potential temperature of the initial sounding.

When converting the relative humidity into the water vapour mixing ratio dis-
tribution needed for the code’s input file a maximum mixing ratio of 12 g kg−1

near the ground is fixed to describe the well mixed boundary layer. Even though
a higher mixing ratio in the bundary layer moves the lifting condensation level
upwards computations by the authors showed no influence on the location of the
cloud top. Figure 5 shows the water vapour mixing ratio profile of the basic state.

As for the simulations discussed in this work the atmosphere is at rest, i.e. there
is no wind profile prescribed, u = v = 0 ms−1.
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2000

4000

6000

8000

10000

12000

14000

16000

U [−]

z 
[m

]
Basic State: Relative Humidity

Figure 4: Relative humidity of the initial sounding.

0 2 4 6 8 10 12
0

2000

4000

6000

8000

10000

12000

14000

16000

r [g/kg]

z 
[m

]
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Figure 5: Water vapour mixing ratio of the initial sounding.
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3.2.2 Reference run

After three hours of simulated time the first deep convective columns can be
observed. All of them are characterised by the spatial anisotropic structure that
is consistent with the scaling chosen for the asymptotic analysis.

In the following we illustrate this with a column whose dimensions and
velocity values are representative for the clouds occuring throughout the compu-
tation. This column around the local maximum of vertical velocity after three
hours and fifty minutes of simulated time provides the basis for the detailed
discussion in section 5.

Postprocessing of the netCDF1-data is done using the NCAR Command
Language (NCL) from the National Center for Atmospheric Research (NCAR)
[17]. Figure 6 shows the contour plot of vertical velocity for the region of that
specific column on a vertical slice through the maximum of vertical velocity.

We observe an isotropic region around the maximum vertical velocity of 21 ms−1

reached at a height of about 5 km. This region is characterised by steep spatial
(vertical and horizontal) gradients of vertical velocity. In contrast, the vertical
velocity varies much more slowly with height through the lower part of the
column.

To visualise the depth of the convective towers, figure 7 shows the corre-
sponding vertical slice of the whole domain.

Figure 8 presents the contour plot of vertical velocity in a horizontal slice through
the maximum of vertical velocity for the deep convective cloud from figure 6.

We observe the nearly cylindrical cross section of the tower and the nearly
axisymmetric velocity distribution with steep spatial gradients inside the column.
Outside the column the region of compensating downward motion with negative
vertical velocity can be identified.

In figure 9 the corresponding horizontal slice through the whole domain is
displayed. It illustrates the distribution of deep convective events over the
computational area at one particular instance in time.

To visualise the horizontal flow, we plot in figure 10 the streamlines for differ-
ent horizontal slices through the deep convective column, the background colour
indicates the absolute value of horizontal velocities.

The first three graphs show cross sections at 375 m, 250 m and 125 m below

1netCDF (network Common Data Form) is a set of software libraries and machine-
independent data formats that support the creation, access, and sharing of array-oriented sci-
entific data [19].
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Figure 6: Vertical velocity of a vertical slice through the deep convective column.

the maximum vertical velocity, respectively, illustrating the air flow that moves
towards the cloud centre to compensate the upwards mass transport. The
following three graphs represent cross sections at 125 m, 250 m and 375 m above
the maximum vertical velocity, respectively, where the air is displaced outwards.
The absolute value of horizontal velocities continuously rises over this part of
the cloud.

The vertical slice in figure 11 displays the usual surface bubbles of warm
and moist air building due to the prescribed surface fluxes of sensible and latent
heat.
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Figure 7: Vertical velocity of a vertical slice through the whole domain.

Figure 8: Vertical velocity of a horizontal slice through the deep convective col-
umn.

Figures 12 and 13 describe the entire life cycle of the deep convective column.
The graphs in both figures are to be read row by row, each with the sequence
from the left to the right. The colour code changes from graph to graph.
In both figures the graphs follow each other in one minute intervals. The passage
from figure 12 to 13 also accounts for a one minute interval.

Thus from emergence to breakup the life cycle of the deep convective cloud
covers a period of 18 min. This is in perfect accordance to the reference time of
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Figure 9: Vertical velocity of a horizontal slice through the whole domain.

about 20 min the reduced asymptotic model is based on.

In figure 12 we see that at some point the bubble raises and loses contact
with the boundary layer. It then rises independently of the surface fluxes,
i.e. it is not continously fed from below but by the latent heat release due
to condensation. The first picture of the third row is the same as figure 6. It
represents the moment of the maximum vertical velocity in the tower.

In figure 13 negative values of vertical velocitity do not only occur at the
edges of the cloud where air moves downwards for continuity reasons. We also
observe regions of negative vertical velocity in the inner of the column indicating
falling rain drops.

In order to demonstrate that the region of positive vertical velocity per-
fectly correlates with the region of positive cloud water content, figures 14 and
15 present the contour plots of cloud water mixing ratio on the vertical and
horizontal slices through the tower, respectively.

Figure16 represents a three dimensional snapshot of the whole computational
domain at an arbitrary moment during the last three hours of simulated time.2

White colour denotes the cloud water mixing ratio, dark blue colour stands

23D-graphics and movies are produced using the visualisation and graphical analysis tool
VISIT from the Lawrence Livermore National Laboratory (LLNL) [15].
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Figure 10: Streamlines and absolute value of horizontal velocities for cross sections
of the cloud at different height levels. First row: 375 m below and 250 m below
wmax. Second row: 125 m below and 125 m above wmax. Third row: 250 m above
and 375 m above wmax.
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Figure 11: Bubbles of warm and moist air near the surface.

for the rain water mixing ratio. Displayed are values greater than or equal to
2 gkg−1. The maximum values amount to 8 gkg−1 for both quantities at that
particular point in time. In grey coloured regions dark blue rain water shows
through the white cloud water.

This snapshot illustrates impressively the transition from cloud water to
rain water. Moreover it communicates a good impression of the distribution of
deep convective towers over the computational domain. Those are indeed very
concentrated and separated from each other which is in agreement with the basic
assumptions of the theory.

In order to obtain an overview over several single deep convective events,
table 1 summarises characteristic velocities and dimensions of clouds occuring
throughout the last three hours of simulated time.

For each point in time the cloud around the local maximum of vertical velocity is
listed. Their locations in the computational area differ completlely one from the
other. Table 1 provides the maximum velocities wmax, umax, vmax, the height of
the maximum vertical velocity hwmax

and the extensions of the deep convective
cloud ∆zcloud, ∆xcloud, ∆ycloud. The last row yields the averaged values of the
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Figure 12: Part of the cloud life cycle without rain.
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Figure 13: Part of the cloud life cycle with rain.
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Figure 14: Cloud water mixing ra-
tio of the vertical slice through
wmax.

Figure 15: Cloud water mixing ra-
tio of the horizontal slice through
wmax.
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Figure 16: Cloud water and rain water mixing ratios for values greater than or
equal to 2 gkg−1.

table’s sample.

Figures 17 and 18 again show contour plots of w on vertical and horizon-
tal slices through the maximum vertical velocity, respectively. This time we
display the cross sections for the cloud around the global maximum of vertical
velocity occuring throughout the whole computation. When examining the
reference run with an output frequency of 10 min this global maximum of w
amounting to 31 ms−1 is registered after four hours and fifty minutes of simulated
time at a height of about 6 km (cp. table 1).

It can be seen that not all the towers are as compact as the one chosen for
detailed analysis (cp. figures 6 and 8). On the other hand a compact column is
not an exception either.
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Figure 17: Vertical velocity of a
vertical slice through the tower
around wmax of the whole com-
putation.

Figure 18: Vertical velocity of a
horizontal slice through the tower
around wmax of the whole compu-
tation.
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t wmax umax vmax hwmax
∆zcloud ∆xcloud ∆ycloud[

h : min
] [

ms−1
] [

ms−1
] [

ms−1
] [

km
] [

km
] [

km
] [

km
]

3 : 00 15.376 4.341 4.076 3.875 4.625 1.000 1.125

3 : 10 19.243 7.646 7.097 4.125 4.750 1.000 1.250

3 : 20 21.742 12.105 11.657 6.125 7.750 2.375 2.000

3 : 30 18.778 10.786 15.263 4.125 5.125 1.125 1.000

3 : 40 20.493 9.654 9.973 4.250 3.875 1.125 1.125

3 : 50 20.999 10.186 9.839 4.875 4.250 1.125 1.125

4 : 00 20.750 9.975 9.629 8.000 8.375 1.625 2.375

4 : 10 22.456 12.138 11.267 5.875 4.375 1.375 1.375

4 : 20 18.842 10.827 12.493 5.750 5.500 5.125 2.250

4 : 30 25.624 11.105 13.090 8.125 5.500 2.500 1.750

4 : 40 22.735 10.492 8.070 6.250 7.000 1.875 1.250

4 : 50 30.993 13.856 12.591 5.875 10.375 2.375 2.125

5 : 00 20.323 9.976 10.595 7.875 5.000 4.125 1.625

5 : 10 21.232 10.557 15.415 7.750 4.625 2.875 3.500

5 : 20 18.890 11.727 11.383 4.125 3.500 1.125 1.500

5 : 30 26.219 13.915 11.946 8.750 8.250 3.375 2.625

5 : 40 23.254 12.119 15.560 6.250 5.125 3.125 1.875

5 : 50 20.380 11.027 12.570 9.500 7.125 2.125 3.125

6 : 00 18.796 10.132 8.531 5.750 5.750 2.625 1.375

Ø 21.428 10.661 11.108 6.171 5.836 2.211 1.809

Table 1: Characteristic velocities and dimensions for the simulation with a spatial
step size of 125 m.

We round this section off with contour plots of w on vertical and horizon-
tal slices through wmax of two other columns chosen arbitrarily. Figures 19 and
20 show the plots for the tower around the local maximum vertical velocity after
four hours of simulated time, figures 21 and 22 show the plots for the tower
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around the local maximum vertical velocity after six hours of simulated time.

Figure 19: Vertical slice. t = 4 h,
wmax = 20.750 ms−1, hwmax

=
8.000 km.

Figure 20: Horizontal slice. t =
4 h, wmax = 20.750 ms−1, hwmax

=
8.000 km.
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Figure 21: Vertical slice. t = 6 h,
wmax = 18.796 ms−1, hwmax

=
5.750 km.

Figure 22: Horizontal slice. t =
6 h, wmax = 18.796 ms−1, hwmax

=
5.750 km.
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4 How to compare equations to data?

The basic idea for the comparison of the simulation data with the physical state-
ments of the model equations is to extract the model’s dependent variables from
the code-output. These asymptotic unknowns can be quantities of leading order,
as in the case of the vertical velocity w(0), or higher order perturbation quantities.

4.1 Extraction of the asymptotic quantities from the

code-output

The asymptotic deep convective column model consists of two distinct systems
of equations for the saturated and the undersatureted air regimes, respectively.
In this report we concentrate on the evaluation of the saturated case while
the undersaturated case is left for future investigations based on simulations
including vertical wind shear. As the saturated setting is characterised by strong
updrafts driven by the release of latent heat due to condensation, the vertical
velocity data are used to filter the code-output. For a specific time-level, the
maximum vertical velocity is detected. Starting from there, the vertical velocity
values are checked moving horizontally outward up to the identification of the
first value less or equal to zero. The inner area defines the horizontal extent of
the cloud. In the vertical direction the cloud-subdomain contains all the grid
points of the computational domain.

Concerning a particular physical quantity, the code-output at one specific
grid point of the subdomain represents the total value of this quantity at
that location. Hence in theory an asymptotic unknown can be calculated by
subtracting the contributions of the lower orders of the asymptotic expansion
from the respective simulation data.

Regarding the thermodynamic variable pressure, the asymptotic expansion
reads as follows (p has to be expanded up to p(6) whereas p(5) does not appear in
the final system of equations, see [1]):

p = p(0) + εp(1) + ε2p(2) + ε3p(3) + ε4p(4) + ε6p(6). (19)

Consequently the perturbation part p(6) which is the dependent pressure variable
in the asymptotic deep convective column model can be expressed as:

p(6) = (p − p(0) − εp(1) − ε2p(2) − ε3p(3) − ε4p(4))ε−6. (20)

As p(0) up to p(4) are known analytically, p(6) could be computed by subtracting
the ε-weighted analytical results from the code-output. For the purpose of the
asymptotic model’s plausibility check, however, we follow the guideline not to
mix up code-output with external analytical results.
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Thus the lower order contributions to total pressure inherent to the simu-
lation data have to be figured out. The pressure parts p(0) to p(4) represent the
hydrostatic background stratification and vary only with height, p(6) has to
adjust in such a way that the divergence constraint from the continuity equation
is fulfilled and therefore also varies horizontally.

Using code-output, the background stratification can be expressed by the
pressure averaged horizontally over the whole computational domain. Subtract-
ing this only z-dependent quantity from total pressure results in the pressure
part also varying in the horizontal directions which corresponds to p(6). The
evaluation of the simulation data is generally done after nondimensionalisation
of the code raw data with the reference values used in the asymptotic analysis
(see [1]). The scaling is not done with a fixed ε but by making use of the
corresponding maximum Mach number of the cloud-subdomain. Hence p(6) is
computed in the following way:

p(6) =
(
pcode, subdomain − phor

code

) 1

M2
hor

. (21)

Analogously, the potential temperature θ(4) is extracted from the code-output:

θ(4) =
(
θcode, subdomain − θ

hor

code

) 1

M2
ver

. (22)

As we assume v
(0)
q

= 0 (see [1]), the horizontal velocities v
(1)
q

are accessed via:

v
(1)
q

= v
q code, subdomain

1

M
(1/3)
hor

. (23)

To complete the set of asymptotic unknowns of the saturated air regime, the
vertical velocity w(0) is still needed:

w(0) = wcode, subdomain. (24)

In order to evaluate all the terms appearing in the asymptotic model’s balances,
the basic state density ̺(0) is missing as yet. As the explicit formula is to be
avoided, ̺(0) is expressed by the ideal gas law with the definition of potential
temperature inserted. The hydrostatic values for potential temperature and pres-
sure are again represented by their horizontally averaged simulation results:

̺(0) =
1

θ
hor

code

phor
code

(1/γ)
. (25)

In the model equations, the mixing ratios of the moisture species generally appear
at leading order. The values computed by the code have to be referred to the
appropriate reference values to obtain the asymptotic quantities.
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4.2 Hydrostatics through analysis, asymptotics and nu-

merics

As a preliminary step, the code’s representation of hydrostatics is examined in
order to provide a reliable basis for the described postprocessing strategy. In
three differently stratified atmospheres, the hydrostatic pressure distribution is
computed:

(a) For the hydrostatic state in a dry adiabatic atmosphere, we compare the
analytic solution of the hydrostatics equation, its asymptotic solution and
the solution by the code.

(b) For the hydrostatic state in a moist adiabatic atmosphere, the solution of
the hydrostatics equation by numerical integration with MATLAB using
an explicit fourth-order Runge-Kutta method, the asymptotic solution and
the solution by the code are compared.

(c) For the hydrostatic state in an atmosphere stratified according to the sound-
ing used for the simulations of this work, we compare the solution of the
hydrostatics equation by numerical integration with MATLAB and the so-
lution by the code.

(a)
As θ is constant, the hydrostatics equation

dp

dz
= −̺ (26)

and the ideal gas law with the definition of potential temperature inserted

̺ =
1

θ
p(1/γ) (27)

result in an ordinary differential equation with p as the only unknown:

dp

dz
= −

1

θ
p(1/γ). (28)

This ODE can be solved analytically and yields the following explicit formula for
the pressure:

p(z) =
(
1 −

γ − 1

γ
αz
)( γ

γ−1

)
. (29)

The dimensionless parameter α in equation (29) originates from the nondimen-
sionalisation process and reads as follows:

α =
lrefg

θrefRd
≈ 1.25 . (30)
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This parameter also occurs in the asymptotic solution of equation (28). The
leading order pressure for the dry adiabatic case is given by

p(0)(z) = exp(−αz). (31)

Based on the constant potential temperature field, the code computes its
hydrostatic pressure distribution.

Figure 23 shows the analytic, the asymptotic and the code’s solution of
the hydrostatics equation in a dry adiabatically stratified atmosphere.

Figure 23: Pressure distribution in a dry adiabatic atmosphere as it results from
solving the hydrostatics equation analytically, asympotically and by the code.

(b)
In addition to equations (26) and (27) the condition for moist adiabaticity is
needed, which is a consequence of the transport equation for potential tempera-
ture:

∂θ

∂z
=

1 − γ

γ

θ̺

p
L

∂rvs

∂z
. (32)

Inserting the equation of state (27) into equation (32) leads to

∂θ

∂z
=

1 − γ

γ
p

(
1−γ

γ

)
L

∂rvs

∂z
, (33)
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providing – together with equation (28) – a system of two ODEs with two un-
knowns, namely potential temperature θ and pressure p, that is solved numeri-
cally. In doing so, the saturation vapour mixing ratio rvs is given by the formu-
lation in terms of the saturation vapour pressure whose temperature dependence
in turn is described by the Clausius-Clapeyron-equation (see [1]):

rvs =
R exp

[
A
(
1 − 1

θ

(
1
p

)( γ−1

γ

))]

p − P exp
[
A
(
1 − 1

θ

(
1
p

)( γ−1

γ

))] . (34)

The asymptotic solution for the pressure field determined by the system of
equations (28) and (33) is at leading order identical to that for the dry adiabatic
stratification and hence given by equation (31). The moisture processes come
into play from the second asymptotic order onwards.

In order to obtain the code’s solution for the pressure field, the potential
temperature distribution provided by numerical integration and the water
vapour mixing ratios computed with θ and p - both resulting from numerical
integration of equations (28) and (33) - are passed to the code as input data.

The numerical, the asymptotic and the code-based representations of the
hydrostatic state in a moist adiabatically stratified atmosphere are plotted in
figure 24.

Additionally it is checked whether the code preserves a given basic state
that is already in hydrostatic balance. For this purpose the potential tempera-
ture and pressure fields obtained numerically are passed to the code as well as
the resultant values for rvs. Examination of the output after one time step shows
that the pressure profile is identical to the input and with it also to the pressure
distribution calculated by the code on its own starting from the moist adiabatic
θ and rvs. The velocities remain zero as well.

(c)
We insert the potential temperature profile used for the deep convective simu-
lations into equation (28) and obtain in this way an ODE with pressure as the
only unknown. This ODE is solved by numerical integration with an explicit
fourth-order Runge-Kutta method.

The resulting pressure field is compared to that produced by the code on
the basis of the same potential temperature profile and the values of the water
vapour mixing ratio (see section 3.2).

In figure 25 the curves of the hydrostatic pressure in the backgroung stratifica-
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Figure 24: Pressure distribution in a moist adiabatic atmosphere as it results from
solving the hydrostatics equation numerically, asympotically and by the code.

tion of the simulations can be found; they result from fourth-order numerical
integration and from computation with the code respectively.

A comparison of the hydrostatic states in the dry adiabatic, the moist adiabatic
and the sounding’s stratifications respectively on the basis of the pressure fields
provided by the code is shown in figure 26. It reflects the slight difference between
the dry and the moist case already seen in the asymptotic analysis where the
contributions of the moisture processes do not occur until the second order. The
potentially unstable stratification of the sounding shows a smaller absolute value
of the pressure gradient dp/dz than both adiabatic curves.
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Figure 25: Pressure distribution in an atmosphere stratified according to the
sounding used for the simulations as it results from solving the hydrostatics equa-
tion numerically and by the code.
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Figure 26: Hydrostatic pressure distribution for the dry adiabatic, the moist adi-
abatic and the sounding’s stratification computed by the UCLA-LES-Code.
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4.3 Compliance with the divergence constraint

During a run with the code, pressure is adjusted in such a way that the resulting
velocity field satisfies the discretised version of the continuity equation to machine
accuracy. This anelastic divergence constraint in its continous formulation reads:

∇ · (̺0v) = 0. (35)

As the basic state density ̺0 only varies with height, equation (35) can equiva-
lently be written as:

̺0∇q
· v

q
+ (̺0w)z = 0. (36)

In order to check whether the compliance of the velocity field with the anelastic
divergence constraint can be reproduced during postprocessing, we use the
same discretisation for the continuity equation as in the code. Herein the
differential quotients are discretised by a second order centered finite difference
approximation.

The code uses a staggered grid where velocities are located on the cell
faces while pressure and density reside in the cell centres. Thus formulating
the product of density and vertical velocity requires the interpolation of ̺0 on
the respective w-face. The product of density and the horizontal divergence of
the horizontal velocity vector, however, can be built without any interpolation
because ̺0 does not vary horizontally. The centered difference quotients of
second order are constructed around the cell centres using the code raw data on

the cell faces, i.e. the stencil’s spacing is 2 ∆x
2 = ∆x. As the grid is equidistant,

the same spacing is valid in all three spatial directions.

The scatter plot in figure 27 shows the accumulated continuity equation,
i.e. the terms appearing on the left hand side of equation (36) are discretised
in the way described above and added up: For each height-level all the values
of the corresponding cross section of the cloud-subdomain are plotted. As the
horizontal extent of the cloud-subdomain consists of ten grid points in both
directions, one hundred values belong to each height level.
It can be seen that the divergence constraint is fulfilled to an accuracy of 2 x 10−8.
In order to judge this order of magnitude, we have a look at the normalised
divergence, i.e. the sum of the terms in equation (36) is referred to the sum of
their absolute values. For the exact compliance with the divergence constraint
this quotient equals zero since the numerator becomes zero. Otherwise it takes
values between the minimum of −1.0 and the maximum of +1.0.

Figure 28 shows that by far the largest part of the points scores lies be-
tween −10−6 and +10−6. The whole scatter covers the interval from −9 x 10−6 to
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Figure 27: Accumulated continuity equation of the cloud-subdomain; second order
discretisation with ∆x-spacing of the stencil.

+9 x 10−6.

Using a discretisation that is also second order accurate but different from that
used for the divergence in the UCLA-LES-Code leads to quite different results.
At first velocities are interpolated to the cell centres, then the centered difference
quotients are constructed around the cell centres using the code raw data of the
neighbouring cell centres, i.e. the stencil’s spacing is 2 ∆x.

As figure 29 reveals, the divergence constraint in this case is merely ful-
filled to an accuracy of 2 x 10−2.

The scatter plot of the normalised divergence in figure 30 covers the entire interval
from −1.0 to +1.0. Only in the upper part of the atmosphere, i.e. above the cloud
top, the points scores are more concentrated around zero, namely in the interval
between −2 x 10−1 and +2 x 10−1.

Using a fourth order centered finite difference scheme to discretise the divergence
(spacing of the stencil: 4 ∆x) produces nearly the same results as the second
order scheme with the 2 ∆x-spacing of the stencil.
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Figure 28: Accumulated and normalised continuity equation of the cloud-
subdomain; second order discretisation with ∆x-spacing of the stencil.

From these observations we conclude that it is essential for the reproduc-
tion of code-results during postprocessing to use the same discretisations as
in the code. This issue emerges again during the analysis of the asymptotic
momentum balance (cp. section 5).

Remark:
The investigation of the continuity equation in this section is accomplished by
means of equation (36) in conjunction with the code raw data. In the continuity
equation of the asymptotic model (see section 2), however, velocities appear
in different asymptotic orders, gradients are built on different length scales.
As described in section 4.1, the evaluation of the asymptotic model equations
is generally done after nondimensionalisation of the code raw data with the
appropriate reference values and scaling according to the respective powers of
the expansion parameter.

In the case of the continuity equation, the scalings of the horizontal diver-
gence operator and the horizontal velocity vector cancel each other. Hence we
are left with a nondimensionalisation which corresponds to a multiplication of
each term in the equation by a factor of 8 x 102. For the exact compliance with
the divergence constraint this factor has no consequences. Concerning a discrete
divergence constraint, however, that is fulfilled to some finite accuracy only, this
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Figure 29: Accumulated continuity equation of the cloud-subdomain; second order
discretisation with 2 ∆x-spacing of the stencil.

factor is directly reflected in the result of the accumulated balance equation.
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Figure 30: Accumulated and normalised continuity equation of the cloud-
subdomain; second order discretisation with 2 ∆x-spacing of the stencil.
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5 Discussion of the results

The main data basis for the discussion in this section is provided by the
subdomain of the deep convective column shown in figures 6 and 8.

As stated in section 4.1, the nondimensionalisation of the code raw data
is done with the reference values used in the asymptotic analysis, the scaling
of the dimensionless quantities is done with the corresponding maximum Mach
number of the cloud-subdomain.

5.1 The asymptotic unknowns

In this section we show the distributions over height of the asymptotic pertur-
bation quantities extracted from the simulation data. The graphs illustrate that
the values of the asymptotic variables in the cloud region are of O(1).

Figure 31 shows the distribution of the leading order vertical velocity w(0).
In order to obtain the corresponding dimensional quantity, we would have to
multiply by the reference value of 10 ms−1.

Figure 31: Leading order vertical velocity w(0) of the cloud-subdomain.

The vertical velocity profile reflects very well the cloud’s vertical extent and
structure. From the cloud base at about 2000 m upwards, the vertical velocity
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continously increases up to its maximum of 21 m/s in the upper cloud part at
about 5000 m. From there vertical velocity decreases and reaches 0 m/s at the
cloud top at 6500 m.

Figure 32 provides the scatter plot of p(6), the pressure part guaranteeing
compliance with the divergence constraint from the continuity equation.

Figure 32: Asymptotic perturbation pressure p(6) of the cloud-subdomain.

This pressure profile is characterised by the sharp changes of sign of the vertical
gradient before and after the maximum of vertical velocity discussed in figure 31.

In figure 33 the absolute value of the first order horizontal velocity vec-
tor v

(1)
q

is plotted. In order to obtain the corresponding dimensional
quantity, we would have to multiply by the scaled reference value of
M

(1/3)
hor · 10 ms−1 = 0.3 · 10 ms−1 = 3 ms−1.

The maximum of the absolute value of horizontal velocities arises shortly above
the maximum of vertical velocity where pressure attains its maximum (cp. figure
32), and the air is displaced outwards. Above the maximum there is a very steep
negative gradient leading to a region with little horizontal motion at the cloud top.

Below the maximum of vertical velocity the absolute value of horizontal
velocities is also relatively large. This is physically consistent because at that
level a considerable air flow has to move towards the cloud centre in order to
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Figure 33: Absolute value of the asymptotic horizontal velocity vector v
(1)
q

of the
cloud-subdomain.

compensate the mass transport upwards which is reflected in the minimum of
pressure.

These observations underline clearly that pressure controls the horizontal
flow, one of the conclusions of the reduced asymptotic model.

Figure 34 represents the asymptotic model’s potential temperature θ(4).

It can be seen that potential temperature continously increases because of the
latent heat release due to condensation. Once all the water vapour has been
condensed there is no more heating and hence no vertical acceleration. This level
corresponds to the height of the vertical velocity maximum.

The distribution of leading order vertical velocity w(0) in figure 31 per-
fectly correlates with the potential temperature deviation from the background
stratification represented by θ(4). This approves another result of the asymptotic
analysis: In the saturated column vertical velocity is directly determined by
the buoyancy induced by potential temperature differences between inside the
column and outside.
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Figure 34: Asymptotic perturbation potential temperature θ(4) of the cloud-
subdomain.

Figure 35 shows the distribution over height of the leading order vertical
velocity w(0) in conjunction with the perturbation pressure part p(6).
As discussed above, horizontal velocities directly follow the shape of the pressure
profile.

Figure 35 illustrates impressively that the leading order vertical velocity,
however, is developing freely independent of pressure over the whole depth of
the convective column, one of the main statements of the reduced asymptotic
model; only the horizontal divergence is controlled by a pressure field.

Pressure fluctuations of order
̺w2

p would be the fluctuations normally ex-

pected if vertical velocity inertia was comparable to the pressure fluctuation
gradients. That would mean variations of p(4) = O(1), i.e. pressure variations by
ε−2 larger than those actually observed.
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Figure 35: Leading order vertical velocity w(0) and asymptotic perturbation pres-
sure p(6) of the cloud-subdomain.



5.2 The asymptotic vertical momentum balance 45

5.2 The asymptotic vertical momentum balance

The asymptotic column model analysed in this report represents a closed system
of equations for the leading order vertical velocity in deep convective clouds.
In this section we have a detailed look at the terms in the asymptotic vertical
momentum balance.

Figure 36 shows the individual terms of the vertical momentum balance.

In order to demonstrate the structure of each term, the plots do not have
the same scales. Spatial gradients are approximated using a second order
discretisation with a ∆x-spacing of the stencil (cp. section 4.3).

The first four scatter plots display the time derivative, vertical and hori-
zontal advection and buoyancy, i.e. the terms contained in the asymptotic
vertical momentum balance.

The asymptotic model does not include the physical process of turbulent
friction.3 The turbulence term representing the sub-filter scale contribution to
momentum, however, is an inherent part of the momentum equations solved
by the code. As we reconstruct the vertical momentum balance with quantities
extracted from the code output, we have to complete the balance by the
respective turbulence term. The distribution over height of this term is shown in
the fifth plot of figure 36.

In order to judge the possible influence of the pressure deviation from the
background on the evolution of vertical velocity, the sixth plot of figure 36 yields
the vertical gradient of p(6) where the scaling is done by the vertical Mach number.

It can be seen that the time derivative and advection terms are of the
same order of magnitude that is by a factor of ten larger than the order of
magnitude of the buoyancy, turbulence and pressure gradient terms.

In figure 37 the terms of the asymptotic vertical momentum balance – i.e.
the individual plots of figure 36 – are added up successively.

In order to judge the contribution of each term to the whole balance, all the
plots have got the same scales. We observe that the sum of the terms is smaller
than the time derivative and advection terms themselves. As the discrete balance
is not fulfilled exactly but only to some finite accuracy, nondimensionalisation is
directly reflected in the result of the accumulated balance equation (see remark

3This process could be considered by including a turbulence parameterization in the set of
equations for the asymptotic analysis, i.e. in the same way as microphysics is accounted for.
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Figure 36: Individual terms of the vertical momentum balance. First row: Time
Derivative: w

(0)
t , Vertical Advection: w(0)w

(0)
z . Second row: Horizontal Advection:

v
(1)
q

· ∇ξw
(0), Buoyancy: θ(4) − θ

(4)
out. Third row: Turbulence: 1

̺0
∇ · (̺0

~~τ ), Pressure

Gradient: p
(6)
z .
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Figure 37: Vertical momentum balance, added up successively. First row: w
(0)
t and

w
(0)
t + w(0)w

(0)
z . Second row: w

(0)
t + w(0)w

(0)
z + v

(1)
q

· ∇ξw
(0) and w

(0)
t + w(0)w

(0)
z +

v
(1)
q

·∇ξw
(0)− (θ(4)−θ

(4)
out). Third row: w

(0)
t +w(0)w

(0)
z +v

(1)
q

·∇ξw
(0)− (θ(4) −θ

(4)
out)−

1
̺0

∇ · (̺0
~~τ ) and w

(0)
t + w(0)w

(0)
z + v

(1)
q

· ∇ξw
(0) − (θ(4) − θ

(4)
out)−

1
̺0

∇ · (̺0
~~τ ) + p

(6)
z .
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at the end of section 4.3). In this case looking at the dimensional form of the
equation would result in a sum that is by a factor of 10−2 smaller.

Figures 38 to 40 compare the accumulated vertical momentum balance for
three different discretisations of the advection terms: Two second order discreti-
sations (one with a ∆x- and one with a 2 ∆x-spacing of the stencil) and one
fourth order discretisation with a 4 ∆x-spacing of the stencil.
We observe that all three discretisations produce nearly the same results, the
shape of the scatter becomes somewhat more compact with growing spacing of
the stencil and higher accuracy. As the code does not use the same discretisation
for divergence constraint and momentum advection, it cannot be expected that
the second order finite difference scheme with the ∆x-spacing of the stencil
that leads to high accuracy concerning the compliance with the divergence
constraint during postprocessing also produces comparable results with regard
to momentum advection.

Figure 41 shows time derivative and vertical advection of the vertical mo-
mentum balance as individual terms along the centreline of the cloud, i.e. along
the vertical line through the maximum of vertical velocity.

In figure 42 the sum of these two terms is displayed.

On the centreline of the cloud time derivative and vertical advection of
vertical velocity nearly balance each other. This means that the dynamics on the
centreline can approximatively be described by the inviscid Burgers’ equation:

w
(0)
t + w(0)w(0)

z = 0. (37)

Although we observe simple wave propagation the potential for shock formation
is hence given [8] (and indeed, steep gradients of w near the cloud top do arrise).

To round this section off, we present the analysis of a cloud different to
that used for discussion so far. By means of the accumulated vertical momentum
balance we show that the result does not differ considerably when we examine
another deep convective column than that of figures 6 and 8. Exemplarily we
analyse the column of figures 17 and 18. This is the column around the global
maximum of vertical velocity of the whole computation, the global wmax column.

In analogy with figure 38 the spatial gradients for the scatter plot of the
global wmax column are approximated using the second order discretisation with
the ∆x-spacing of the stencil. Figure 43 reflects the shape of the global wmax

column. The range of the main part of the points scores is of the same order of
magnitude as for the column analysed before.
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Figure 38: Accumulated vertical
momentum balance of the cloud-
subdomain; second order discreti-
sation with ∆x-spacing of the
stencil.

Figure 39: Accumulated vertical
momentum balance of the cloud-
subdomain; second order discreti-
sation with 2 ∆x-spacing of the
stencil.

Figure 40: Accumulated vertical
momentum balance of the cloud-
subdomain; fourth order discreti-
sation with 4 ∆x-spacing of the
stencil.
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Figure 41: Time derivative (w
(0)
t )

and vertical advection (w(0)w
(0)
z )

of the vertical momentum bal-
ance on the centreline of the
cloud.

Figure 42: Sum of time deriva-
tive and vertical advection (w

(0)
t +

w(0)w
(0)
z ) of the vertical momen-

tum balance on the centreline of
the cloud.

Figure 43: Accumulated vertical momentum balance for the global wmax column
of the reference run.
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5.3 Simulation with higher spatial resolution

For the discussion in this section we perform a computation with half the grid
size, i.e. the equidistant step size amounts to 62.5 m in all directions. Besides
this, the setting is the same as described in section 3.2.

It has to be emphasised that changes in the spatial resolution of the com-
putational grid influence the stochastic behaviour of cloud formation. Therefore
no direct comparison between low and high resolution is possible because the
same columns as in the usual setting do not occur any more.

We investigate the deep convective column forming around the global maximum
of vertical velocity, the global wmax column. In the computation with higher spa-
tial resolution the global maximum of vertical velocity amounts to 29.395 ms−1

and is observed after five hours and forty minutes of simulated time (output
frequency: 10 min) at a height of 7.063 km.

At first we follow the question whether a higher resolution has an impact
on the result of the accumulated balance. Figure 44 provides the scatter plot of
the accumulated vertical momentum balance for the highly resolved simulation.

Figure 44: Accumulated vertical momentum balance for the global wmax column
of the simulation with a spatial step size of 62.5 m.
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The corresponding scatter plot for the global wmax column of the simulation
with a spatial step size of 125 m is figure 43. Both plots do not show considerable
differences regarding the order of magnitude of the accumulated balance. We
conclude that the higher spatial resolution during the computation does not lead
to a more accurate approximation of the spatial gradients during postprocessing.

Figures 45 and 46 show the usual contour plots of w on vertical and hor-
izontal slices through the cloud region, respectively. (For comparison: The
contour plots of the global wmax column for the simulation with low resolution
are figures 17 and 18).

Figure 45: Vertical slice of the
global wmax column from the
computation with a spatial step
size of 62.5 m.

Figure 46: Horizontal slice of the
global wmax column from the
computation with a spatial step
size of 62.5 m.

Even if this particular convective tower is quite frayed table 2 proves that the
typical values of velocities and dimensions are comparable to those for the towers
in the simulation with lower resolution.
In analogy with table 1 concerning the simulation with the 62.5 m step size,
table 2 lists the columns around the local maxima of vertical velocity for the
simulation with the 125 m step size. The table contains the maximum velocities
wmax, umax, vmax, the height of the maximum vertical velocity hwmax

and the
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t wmax umax vmax hwmax
∆zcloud ∆xcloud ∆ycloud[

h : min
] [

ms−1
] [

ms−1
] [

ms−1
] [

km
] [

km
] [

km
] [

km
]

3 : 00 14.186 8.618 7.683 4.688 4.813 1.313 1.250

3 : 10 17.000 11.853 11.266 5.688 8.250 1.000 1.313

3 : 20 17.478 9.662 10.004 6.125 3.563 1.625 1.125

3 : 30 14.936 10.612 10.073 6.125 4.250 1.188 1.000

3 : 40 15.498 9.602 8.659 3.563 2.375 0.875 0.250

3 : 50 21.415 8.738 10.207 5.000 4.188 0.750 0.875

4 : 00 14.939 10.404 9.581 5.000 3.438 0.688 0.688

4 : 10 19.004 12.099 13.151 6.313 3.625 3.563 1.375

4 : 20 16.975 9.589 8.661 4.313 5.813 1.125 1.313

4 : 30 19.277 10.087 9.640 3.813 4.938 1.750 1.125

4 : 40 20.110 11.647 11.882 4.500 3.938 1.063 1.875

4 : 50 20.652 9.996 10.628 4.313 3.750 2.125 1.625

5 : 00 17.737 13.583 12.593 9.000 6.813 2.563 2.875

5 : 10 21.500 14.584 10.593 6.000 3.875 2.625 1.438

5 : 20 13.568 9.990 11.431 3.563 2.813 1.313 0.813

5 : 30 21.070 11.696 10.527 4.125 4.938 1.000 1.250

5 : 40 29.395 20.148 19.736 7.063 5.938 1.500 3.313

5 : 50 12.741 9.240 8.938 3.563 3.188 1.125 2.625

6 : 00 13.405 7.782 8.420 3.125 2.250 1.500 0.813

Ø 17.941 11.049 10.720 5.046 4.355 1.510 1.418

Table 2: Characteristic velocities and dimensions for the simulation with a spatial
step size of 62.5 m.

extensions of the deep convective cloud ∆zcloud, ∆xcloud, ∆ycloud. The last row
yields the averaged values of the table’s sample.

The sample of table 2 shows somewhat smaller values with respect to the
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maximum vertical velocity and the spatial extensions of the cloud compared
to the simulation with lower resolution. The characteristic scales and orders
of magnitude in the deep convective events, however, do not change with the
refinement of the computational grid. This means that the spatial step size of
125 m is probably sufficient for resolving the relevant physical phenomena.
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5.4 Simulation with the horizontal Coriolis Parameter

To remind the reader of the role of the different Coriolis Forces, the momentum
balances are stated as they are given by Etling [2]:

∂u
∂t

+ u∂u
∂x

+ v∂u
∂y

+ w∂u
∂z

− fv + f ∗w = −1
̺

∂p
∂x

∂v
∂t

+ u∂v
∂x

+ v∂v
∂y

+ w∂v
∂z

+ fu = −1
̺

∂p
∂y

∂w
∂t

+ u∂w
∂x

+ v∂w
∂y

+ w∂w
∂z

− f ∗u = −1
̺

∂p
∂z

− g

(38)

In the above equations f = 2Ω sin φ and f ∗ = 2Ω cos φ represent the vertical and
the horizontal Coriolis parameters, respectively, where Ω is the earth’s rotation
frequency and φ is the geographical latitude.

The horizontal Coriolis parameter f ∗ is usually neglegted in meteorologi-
cal applications. It is not implemented in the standard version of UCLA-LES1.1
either whereas the vertical Coriolis parameter f is.

A first approach to judge the importance of the Coriolis term involving
the horizontal Coriolis parameter and occuring in the horizontal momentum
balance for the u-velocity is to look at its order of magnitude. This is done in
the same way as for the individual terms of the vertical momentum balance
discussed in section 5.2. Based on the output of the reference run the Coriolis
term of interest is computed during postprocessing. Figure 47 shows the usual
scatter plot over height for the Coriolis term assuming geographical mid latitude.

In figure 48 we plot the distribution over height of the time derivative from the
u-equation.
We observe a situation comparable to that of the vertical momentum balance:
In the w-equation, the time derivative term is by one order of magnitude larger
than the buoyancy term, in the u-equation, the time derivative term is by one
order of magnitude larger than the Coriolis term.

For the purpose of performing a simulation with the horizontal Coriolis
parameter it is implemented in UCLA-LES1.1. Besides this, we stay with the
same setting described in section 3.2. In this way we are able to compare
simulation data of the computation without to that with the horizontal Coriolis
parameter.

It has to be emphasised that as soon as there are changes in the equa-
tions there are changes in the stochastic process of cloud formation. For one fixed
system the results are deterministic and reproducible but with a different setting
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Figure 47: Dimensionless Coriolis term of the u-equation (w(0)Ω̂
q
× k) =

w(0) cos φ.

the same columns as in the usual setting cannot be observed. So there is no direct
comparison possible by means of the same tower in time and space for both cases.

We choose the deep convective column forming around the global maxi-
mum of vertical velocity, the global wmax column, for detailed analysis. In the
computation with the horizontal Coriolis parameter the global maximum of
vertical velocity amounts to 31.401 ms−1 and is observed after five hours and
forty minutes of simulated time (output frequency: 10 min). Figures 49 and 50
show the usual contour plots of w on vertical and horizontal slices through the
cloud region, respectively. (For comparison: The contour plots of the global wmax

column for the standard setting without the horizontal Coriolis parameter are
figures 17 and 18).

From these plots we cannot deduce an influence of the inclusion of the horizontal
Coriolis parameter on the dynamics of the deep convective column. Also the
scatter plot of the accumulated vertical momentum balance in figure 51 does not
show considerable differences to figure 43 which is the corresponding plot from
the simulation without the horizontal Coriolis parameter.

The reduced asymptotic model suggests the prominent role of the horizontal Cori-
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Figure 48: Dimensionless time derivative of the first order u-velocity u
(1)
t .

olis parameter in the u-equation. As visualisation of the horizontal flow stream-
lines are plotted for the horizontal cross section through the maximum vertical
velocity of the specific cloud. We show two examples from the reference case with-
out the horizontal Coriolis parameter: The column analysed in detail in sections
5.1 and 5.2 (see slices in figures 6 and 8) whose streamlines are displayed in figure
52 and the global wmax column of the reference run (see slices in figures 17 and
18) whose streamlines are situated in figure 53. In contrast figure 54 presents the
streamlines of the global wmax column of the run including the horizontal Coriolis
parameter (see slices in figures 49 and 50). The background colour in all three
plots indicates the absolute value of horizontal velocities.
There is no difference to observe that could be attributed to the absence or
presence of the horizontal Coriolis parameter during the computation.

The horizontal Coriolis parameter acts only on the u-velocity and not on
the v-velocity. This suggests that there should be a preferential direction among
the components of horizontal velocity in the data of the simulation including the
horizontal Coriolis parameter. Such a difference between u and v should not be
observable in the data of the simulation without the horizontal Coriolis parameter.

To find out whether this is true, we build averages of the velocity compo-
nents themselves and their absolute values, respectively, over the deep convective



58 5 DISCUSSION OF THE RESULTS

Figure 49: Vertical slice of the
global wmax column from the
computation including the hori-
zontal Coriolis parameter.

Figure 50: Horizontal slice of the
global wmax column from the
computation including the hori-
zontal Coriolis parameter.
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Figure 51: Accumulated vertical momentum balance for the global wmax column
from the computation including the horizontal Coriolis parameter.

column. This means we add up all the values of the cloud-subdomain and devide
by the number of grid points contained in it. This is done for both the simulation
without (table 3) and with (table 4) the horizontal Coriolis parameter.
For each point in time the tower around the local maximum of vertical velocity
is listed. Both tables provide the maximum velocity in the cloud wmax, the
averaged velocity components w, u, v, the averaged absolute values of the
velocity components |w|, |u|, |v| and the number of grid points in the cloud. The
last row in both tables yields the average values of the table’s sample.

There is no preferential direction to detect in the computation with the
horizontal Coriolis parameter (in the computation without neither). The differ-
ence between u computed without horizontal Coriolis parameter and u computed
with horizontal Coriolis parameter is due to the slightly higher velocity level in
the sample of the simulation including the horizontal Coriolis parameter.
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Figure 52: Streamlines and absolute
value of horizontal velocities for the
column of figures 6 and 8 – computa-
tion without horizontal Coriolis pa-
rameter.

Figure 53: Streamlines and absolute
value of horizontal velocities for the
column of figures 17 and 18 – com-
putation without horizontal Coriolis
parameter.

Figure 54: Streamlines and absolute
value of horizontal velocities for the
column of figures 49 and 50 – com-
putation with horizontal Coriolis pa-
rameter.
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t wmax w |w| u |u| v |v| # grid points[
h : min

] [
ms−1

] [
ms−1

] [
ms−1

] [
ms−1

] [
ms−1

] [
ms−1

] [
ms−1

] [
−
]

3 : 00 15.376 0.805 1.084 0.003 0.421 0.008 0.438 3420

3 : 10 19.243 1.630 1.933 −0.065 0.696 0.016 0.765 3861

3 : 20 21.742 1.808 2.520 0.027 1.179 −0.066 1.174 21420

3 : 30 18.778 0.754 1.477 −0.133 0.684 −0.050 0.623 3780

3 : 40 20.493 2.227 2.874 0.044 1.040 −0.200 0.966 3200

3 : 50 20.999 1.462 2.161 −0.122 0.907 −0.014 1.021 3500

4 : 00 20.750 2.459 3.034 −0.024 1.339 0.085 1.347 19040

4 : 10 22.456 2.063 2.665 −0.154 1.178 0.170 1.255 5184

4 : 20 18.842 1.424 2.124 −0.086 1.179 −0.034 1.221 35910

4 : 30 25.624 4.026 4.567 −0.116 2.112 −0.454 2.136 14175

4 : 40 22.735 2.008 2.562 0.177 1.207 −0.055 1.165 10032

4 : 50 30.993 2.615 3.135 0.059 1.592 0.118 1.619 30240

5 : 00 20.323 2.016 2.770 0.074 1.761 −0.252 1.500 19516

5 : 10 21.232 1.957 2.501 −0.270 1.570 0.240 1.685 26448

5 : 20 18.890 2.457 3.403 0.096 2.046 0.091 1.711 3770

5 : 30 26.219 3.124 3.710 0.061 1.917 0.038 1.767 41272

5 : 40 23.254 3.620 4.443 0.240 2.117 0.109 2.447 17472

5 : 50 20.380 3.247 3.686 −0.461 2.122 −0.342 2.384 27144

6 : 00 18.796 2.245 3.030 0.208 1.570 −0.256 1.616 12408

Ø 21.428 2.208 2.825 −0.023 1.402 −0.045 1.413 15883

Table 3: Velocities averaged over the cloud-subdomain – simulation without hor-
izontal Coriolis parameter.
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t wmax w |w| u |u| v |v| # grid points[
h : min

] [
ms−1

] [
ms−1

] [
ms−1

] [
ms−1

] [
ms−1

] [
ms−1

] [
ms−1

] [
−
]

3 : 00 14.435 0.771 1.019 0.003 0.573 0.002 0.539 7020

3 : 10 19.343 1.239 1.517 0.012 0.562 0.057 0.593 4554

3 : 20 19.998 1.234 1.633 −0.019 0.637 0.055 0.591 4700

3 : 30 23.251 2.694 3.183 −0.089 1.424 0.034 1.431 10608

3 : 40 19.955 1.510 2.230 0.107 0.893 0.136 0.915 3200

3 : 50 20.749 2.793 3.434 0.080 1.328 −0.038 1.576 4920

4 : 00 17.628 1.798 2.617 −0.097 1.778 −0.081 1.582 21120

4 : 10 17.936 1.441 1.785 0.108 1.117 −0.057 1.181 6480

4 : 20 22.537 4.125 4.726 −0.276 1.903 0.210 2.614 13860

4 : 30 22.082 1.894 2.861 0.111 1.492 −0.185 1.525 6006

4 : 40 22.241 2.210 2.795 −0.043 1.456 0.278 1.373 9450

4 : 50 20.415 3.002 3.514 0.312 1.846 0.414 2.032 6840

5 : 00 28.610 2.273 2.945 −0.018 1.609 0.043 1.522 41400

5 : 10 27.534 3.805 4.579 0.108 1.898 −0.230 1.832 10208

5 : 20 22.949 3.148 3.814 0.031 2.024 0.033 2.209 34500

5 : 30 21.016 2.802 3.266 −0.037 1.436 −0.225 1.509 8064

5 : 40 31.401 2.207 2.798 −0.023 1.491 −0.080 1.499 51842

5 : 50 29.501 3.892 4.351 0.050 2.190 0.001 2.026 23919

6 : 00 28.141 3.423 3.863 0.220 2.166 0.083 1.814 27600

Ø 22.617 2.435 2.996 0.028 1.464 0.024 1.493 15594

Table 4: Velocities averaged over the cloud-subdomain – simulation with horizon-
tal Coriolis parameter.
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6 Conclusions

This work checks the plausibility of the asymptotic column model for deep
convective clouds derived by Carqué et al. [1]. For this purpose the physical
statements of the reduced model equations are compared to the simulation data
of a detailed computational model.

The simulation data confirm the basic assumptions of the asymptotic analysis.
The deep convective columns are characterised by a spatially anisotropic struc-
ture where the horizontal scale is considerably narrower than the vertical scale.
From emergence to breakup the life cycle of one particular deep convective cloud
covers a period of about 20 min. The deep convective events are concentrated
towers separated from each other.

The main statements of the asymptotically reduced model are approved
by the simulation data. The pressure field controls the horizontal flow. The
vertical velocity develops freely independent of pressure over the whole depth of
the convective cloud. The vertical velocity is directly determined by the buoy-
ancy induced by the potential temperature deviation relative to the background
stratification.

The asymptotic perturbation quantities are extracted from the simulation
data. Their values in the cloud region are of O(1).

The sum of the terms in the vertical momentum balance equation computed
during postprocessing is considerably smaller than the large time derivative and
advection terms themselves.

Refining the spatial step size of the equidistant computational grid from
125 m to 62.5 m does not influence the results in a qualitative sense: Even with
the coarser grid the relevant physical phenomena appear to be represented.

Analysing the streamlines reveals no preferential direction among the com-
ponents of horizontal velocity in the computation with the horizontal Coriolis
parameter.
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