
Skeleton-Based Visualization of
Massive Voxel Objects with
Network-Like Architecture

Steffen Prohaska
geb. am . September 

in Pirmasens

Potsdam, den . April 

Dissertation
zur Erlangung des akademischen Grades

„doctor rerum naturalium“
(Dr. rer. nat.)

in der Wissenscha(sdisziplin Informatik

eingereicht an der
Mathematisch-Naturwissenscha(lichen Fakultät

der Universität Potsdam

This work is licensed under the Creative Commons Attribution-Noncommercial-Share
Alike 2.0 Germany License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/de/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Elektronisch veröffentlicht auf dem
Publikationsserver der Universität Potsdam:
http://opus.kobv.de/ubp/volltexte/2007/1488/
urn:nbn:de:kobv:517-opus-14888
[http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14888]

http://creativecommons.org/licenses/by-nc-sa/2.0/de/

Abstract

)is work introduces novel internal and external memory algorithms for computing
voxel skeletons of massive voxel objects with complex network-like architecture and for
converting these voxel skeletons to piecewise linear geometry, that is triangle meshes
and piecewise straight lines.)e presented techniques help to tackle the challenge
of visualizing and analyzing d images of increasing size and complexity, which are
becoming more and more important in, for example, biological and medical research.
Section .. contributes to the theoretical foundations of thinning algorithms with a

discussion of homotopic thinning in the grid cell model.)e grid cell model explicitly
represents a cell complex built of faces, edges, and vertices shared between voxels. A
characterization of pairs of cells to be deleted is much simpler than characterizations
of simple voxels were before.)e grid cell model resolves topologically unclear voxel
configurations at junctions and locked voxel configurations causing, for example, interior
voxels in sets of non-simple voxels. A general conclusion is that the grid cell model is
superior to indecomposable voxels for algorithms that need detailed control of topology.
Section .. introduces a noise-insensitive measure based on the geodesic distance

along the boundary to compute two-dimensional skeletons.)e measure is able to retain
thin object structures if they are geometrically important while ignoring noise on the
object’s boundary.)is combination of properties is not known of other measures.)e
measure is also used to guide erosion in a thinning process from the boundary towards
lines centered within plate-like structures. Geodesic distance based quantities seem to be
well suited to robustly identify one- and two-dimensional skeletons. Chapter  applies the
method to visualization of bone micro-architecture.
Chapter  describes a novel geometry generation scheme for representing voxel

skeletons, which retracts voxel skeletons to piecewise linear geometry per dual cube.
)e generated triangle meshes and graphs provide a link to geometry processing and
efficient rendering of voxel skeletons.)e scheme creates non-closed surfaces with
boundaries, which contain fewer triangles than a representation of voxel skeletons using
closed surfaces like small cubes or iso-surfaces. A conclusion is that thinking specifically
about voxel skeleton configurations instead of generic voxel configurations helps to deal
with the topological implications.)e geometry generation is one foundation of the
applications presented in Chapter .
Chapter  presents a novel external memory algorithm for distance ordered homotopic

thinning.)e presented method extends known algorithms for computing chamfer
distance transformations and thinning to execute I/O-efficiently when input is larger than
the available main memory.)e applied block-wise decomposition schemes are quite
simple. Yet it was necessary to carefully analyze effects of block boundaries to devise
globally correct external memory variants of known algorithms. In general, doing so is
superior to naive block-wise processing ignoring boundary effects. Chapter  applies the
algorithms in a novel method based on confocal microscopy for quantitative study of
micro-vascular networks in the field of microcirculation.

iii

iv

Zusammenfassung

Die vorliegende Arbeit führt I/O-effiziente Algorithmen und Standard-Algorithmen
zur Berechnung von Voxel-Skeletten aus großen Voxel-Objekten mit komplexer,
netzwerkartiger Struktur und zur Umwandlung solcher Voxel-Skelette in
stückweise-lineare Geometrie ein. Die vorgestellten Technikenwerden zur Visualisierung
und Analyse komplexer drei-dimensionaler Bilddaten, beispielsweise aus Biologie und
Medizin, eingesetzt.
Abschnitt .. leistet mit der Diskussion von topologischem)inning

im Grid-Cell-Modell einen Beitrag zu den theoretischen Grundlagen von
)inning-Algorithmen. Im Grid-Cell-Modell wird ein Voxel-Objekt als Zellkomplex
dargestellt, der aus den Ecken, Kanten, Flächen und den eingeschlossenen Volumina der
Voxel gebildet wird. Topologisch unklare Situationen an Verzweigungen und blockierte
Voxel-Kombinationen werden aufgelöst. Die Charakterisierung von Zellpaaren, die im
)inning-Prozess entfernt werden dürfen, ist einfacher als bekannte Charakterisierungen
von so genannten »Simple Voxels«. Eine wesentliche Schlussfolgerung ist, dass das
Grid-Cell-Modell atomaren Voxeln überlegen ist, wenn Algorithmen detaillierte
Kontrolle über Topologie benötigen.
Abschnitt .. präsentiert ein rauschunempfindliches Maß, das den geodätischen

Abstand entlang der Oberfläche verwendet, um zweidimensionale Skelette zu
berechnen, welche dünne, aber geometrisch bedeutsame, Strukturen des Objekts
rauschunempfindlich abbilden. Das Maß wird im weiteren mit)inning kombiniert,
um die Erosion von Voxeln auf Linien zuzusteuern, die zentriert in plattenförmigen
Strukturen liegen. Maße, die auf dem geodätischen Abstand au-auen, scheinen
sehr geeignet zu sein, um ein- und zwei-dimensionale Skelette bei vorhandenem
Rauschen zu identifizieren. Eine theoretische Begründung für diese Beobachtung steht
noch aus. In Abschnitt  werden die diskutierten Methoden zur Visualisierung von
Knochenfeinstruktur eingesetzt.
Abschnitt  beschreibt eineMethode, umVoxel-Skelette durch kontrollierte Retraktion

in eine stückweise-lineare geometrische Darstellung umzuwandeln, die als Eingabe für
Geometrieverarbeitung und effizientes Rendering vonVoxel-Skeletten dient. Es zeigt sich,
dass eine detaillierte Betrachtung der topologischen Eigenscha(en eines Voxel-Skeletts
einer Betrachtung von allgemeinen Voxel-Konfigurationen für die Umwandlung zu einer
geometrischen Darstellung überlegen ist. Die diskutierte Methode bildet die Grundlage
für die Anwendungen, die in Abschnitt  diskutiert werden.
Abschnitt  führt einen I/O-effizienten Algorithmus für)inning ein. Die

vorgestellte Methode erweitert bekannte Algorithmen zur Berechung von
Chamfer-Distanztransformationen und)inning so, dass diese effizient ausführbar
sind, wenn die Eingabedaten den verfügbaren Hauptspeicher übersteigen. Der
Einfluss der Blockgrenzen auf die Algorithmen wurde analysiert, um global korrekte
Ergebnisse sicherzustellen. Eine detaillierte Analyse ist einer naiven Zerlegung, die die
Einflüsse von Blockgrenzen vernachlässigt, überlegen. In Abschnitt  wird, au-auend
auf den I/O-effizienten Algorithmen, ein Verfahren zur quantitativen Analyse von
Mikrogefäßnetzwerken diskutiert.

v

vi

Contents

1 Introduction 1

2 Voxel Skeletons 9
. Shape Representations and Shape Analysis 
. Review of Methods for Computing Skeletons 

..)inning and Boundary Propagation 
.. Medialness Function Based Methods 
.. Wavefront Propagation . 
.. Geometric Methods . 

. Voxel and Grid Cell Skeletons . 
.. One-Dimensional Skeletons:)inning 
.. Two-Dimensional Skeletons: Geodesic Boundary Distance 
.. Mixed Dimensional Skeletons 

3 Piecewise Linear Geometric Representation of Voxel Skeletons 43
. Geometry of Voxel Skeletons . 

.. Manifold Type of Voxels Based on a Local Cell Complex 
.. Line Sets and Graphs . 
.. Surfaces . 

. Geometry of Grid Cell Skeletons . 

4 Skeletons of Synthetic Examples 61

5 External Memory Algorithms for Computing Skeletons 71
. Chamfer Distance Transformation . 
.)inning . 
. Geodesic Boundary Distance . 
. Geometric Representation of Voxel Skeletons 
. Timings . 

6 Applications 83
. Reconstruction and Visualization of Micro-Vascular Networks 
. Visualization and Analysis of Bone Micro-Architecture 

7 Conclusions 101

Bibliography 104

vii

Contents

viii

List of Figures

. Processing steps from image data to skeletons to rendered images 
.)e process of visualization in three semantic contexts 
. Scalar field visualizations of a micro-CT scan of a human vertebrae 
. Visualizations of a vascular network using skeletonization 

. Schematic objects and their skeletons . 
. Representation of voxels as unit cubes and inflated cubes 
. Adjacency of neighboring object voxels and background voxels 
.)e three grid point adjacency relations 
. A voxel decomposed into grid cells . 
. A voxel configuration and its equivalent grid cell configuration 
. Enumerating grid points and grid cells on a regular grid in d 
. A homotopy equivalent object that is not a skeleton 
. A voxel configuration and its Schlegel diagram 
. Set of non-simple voxels containing interior voxels 
. A homotopic skeleton that is not medial and a medial skeleton 
. An object and a skeleton that is able to reconstruct the object 
. An object and a skeleton that fails to reconstruct the object 
. Propagation masks used in d chamfer raster scans 
. Distance map containing two-voxel-thick layer with same values 
. Result of removing sequentially and of removing »in parallel« 
. Masks selecting spatial sub-iterations . 
. Skeleton that fails to reconstruct an object 
. Skeleton, with local end-points, capable of reconstructing the object . . . 
. End-points of branches of various lengths 
. Junctions with unclear interpretation . 
. Junction in the grid cell model . 
. Locked voxel configuration that can not be further eroded 
. Deletable pairs of grid cells . 
. A -cell, a -cell and incident -, and -cells 
. A (,)-cell path . 
. Object, medial axis, and maximal spheres 
. Instability of the medial axis under boundary pertubations 
. Two points and their nearest boundary points 
. Degree of separation measured by geodesic distance 
. -cell path along the boundary of a voxel object 

ix

List of Figures

. Short cutting voxel path . 
. Another short cutting voxel path . 
. Forbidden diagonal background path . 
. Representing grid cell surfaces by voxels 
. Object which does not touch boundary of computation domain 
. Encoding of distance values . 

. Retracting voxel objects to voxel skeletons to PL geometry 
. Complex voxel configurations . 
. Two dual cube configurations and their deformation retracts 
. Dual cube . 
. Local construction of a cell complex . 
. Rules for adding -cells . 
.)e  dual cell configurations and associated cell complexes 
. Examples of cell complexes in a -neighborhood 
. Manifold types of -cells in a cell complex 
. Interpretation of a complex junction configuration 
. Options for representing junctions . 
. Reduced dual cube . 
. Voxels, graph, simplified graph . 
. Triangulations of -cells . 
. Rejecting triangles based on the reduced dual cube 
. Improved triangulations of case , ,  
. Triangulation of a complex voxel configuration 
. Triangulation of a »self-folding« voxel configuration 
. Simple piecewise linear geometric representation of a grid cell skeleton . . 
. Subdivision scheme for grid cells . 
. Classifying sub-divided grid cells . 
. Voxel line, grid cell line, smoothed geometry 
. Detailed piecewise linear geometric representation of a grid cell skeleton . 
. Self-folding grid cell skeleton . 

. Skeletons of rod-like structure computed in the grid point model 
. Grid cell skeletons of rod-like structure 
. Influence of architecture on distance ordered thinning 
. Influence of strong noise on thinning . 
. Grid cell skeletons of plate-like structure 
. Grid cell skeletons of a structure including a sphere-like part 
. Grid cell skeletons of a mixed rod- and plate-like structure 
.)e influence of cavities on a geodesic distance based skeleton 
. Comparison of thinning ordered by distance and by geodesic distance . . 

. External memory model . 
. Chamfer mask . 

x

List of Figures

. Area of influence of a chamfer propagation 
. Overlapping blocks . 
. Propagation interrupted by block boundaries 
. Example of a block boundary during thinning 
. Block overlap for thinning . 
. Example requiring multiple thinning scans 
. Decomposition of output; margin on input 
. Margin for computing the geodesic distance based measure 
. I/O rates during processing . 

. Data acquisition from a thick section of human brain tissue 
. Part of a reconstructed micro-vascular network 
. A vene tree and an artery tree extracted from a larger network of vessels . 
. Comparison of the reconstructed network with the original image data . . 
. Microscope views and a hand-drawn illustration of a vascular network . . 
. Measuring deviation from the tubular case 
. Iso-surfaces and skeletons of a bone biopsy 
. Local thickness color-coded on a skeleton 
. Skeleton filtered by local thickness . 
. Deviation from tubular structure color-coded on a skeleton 
. Skeleton filtered by deviation from tubular structure 
. Deviation from tubular structure color-coded on a skeleton 
. One-dimensional skeleton filtered by deviation from tubular structure . . 
. Bone structure decomposed into structural elements 
. Landmarks on a human vertebral body used for registration 
. Search for micro-cracks in a human vertebral body 

. Selecting an appropriate skeletonization method 

xi

List of Figures

xii

List of Tables

. Latencies and bandwidths in the memory hierarchy 
. Timings for distance transformations and thinning 

xiii

List of Tables

xiv

List of Algorithms

 Basic distance ordered homotomic thinning 
 Smooth distance ordered homotopic thinning 
 Distance ordered grid cell thinning . 

 External memory chamfer distance transformation 
 External memory thinning . 

xv

List of Algorithms

xvi

Acknowledgements

I thank all members of the Department of Visualization and Data Analysis at the Zuse
Institute Berlin (ZIB) and people working on the development of Amira at Mercury
Computer Systems, Inc. for their support and valuable discussions. I also like to thank all
collaborators in the MAP-Project AO--, which was funded by the European Space
Agency under ESA Contract , and all partners of the project »MVD, Analysis of
vascular networks«, which was funded by a »Fond de la Recherche Technologique« grant
of the French government. Finally, I wish to thank the members of my committee for
their support and their encouragement.

xvii

List of Algorithms

xviii

1 Introduction

)ree-dimensional imaging devices are becoming a workhorse in biological and medical
research as well as clinical practice. Computed tomography (CT) andmagnetic resonance
imaging (MRI) are used on a daily basis in diagnostics. High-resolution variants,
like micro-CT (Rüegsegger et al., ) and high-resolution MRI (Majumdar et al.,
), become abundant in basic research. Confocal microscopy extends traditional
two-dimensional histomorphometry to the third dimension.
On an abstract level all imaging techniques can be described as sampling some

three-dimensional physical signal, O : R3 → R, at regularly spaced points, resulting in a
three-dimensional image.)is thesis will only consider scalar signals, although vector or
tensor datamay also be acquired, for example inMRI, as well as multi-variate data joining
multiple signals per sample point.
)e image signal is the result of some underlying physical process and its spatial

distribution typically represents objects contained in the volume under examination.
Examples from medical diagnostics are bone, measured by a CT-scanner; brain tissue,
measured by anMRI-scanner; examples from basic research are bonemicro-architecture,
measured bymicro-CT; andmicro-vascular networks, measured by confocal microscopy.
)e latter two examples are illustrated in Figure . and Figure .. Both examples
share the property that the object’s architecture forms a complex network, built of either
tube-like parts only, in the case of vessels, or rods and plates, in the case of bone.
)e objective of this thesis is to visualize and analyze objects with such complex,

network-like architecture using a skeleton representation as one part of the processing
pipeline as illustrated in Figure .. In a first step, the original image is preprocessed and
segmented.)e resulting voxel object is input to a skeletonization step, which computes a
voxel skeleton that is converted to geometry. A(er geometry post-processing, rendering
yields the image presented to the user. Figure . displays an example: on the very right,
it depicts a rendering of the center lines extracted from the image data in the center.)e
complex graph formed by the vessel network is explicitly available and can be utilized for
further analysis like high-lighting vein and artery trees. Chapter  presents more details.
Visualization’s overall goal is to gain knowledge about data by a process including

user feedback to control a computer which is generating a visual representation of the
data (Brodlie et al. (), van Wijk (), Johnson et al. ()). Fig . illustrates
the idea. Following Brodlie et al. (), the process can be split in three semantic
contexts illustrated in the figure from bottom to top: »Making displayable by a computer«
captures the technical process transforming input data into images.)e visualization
pipeline is a conceptual description of this transformation: A data source, in our case the
imaging device, provides raw data. A subset of the data is selected in a filtering step and
mapped to a geometric representation, which is rendered resulting in a two-dimensional



 Introduction

Image Data

Preprocessing:
- Noise Removal
- Stitching Blocks
- Segmentation

Voxel Object
as Binary Image

Skeletonization Voxel Skeleton Conversion to
Geometry

- Graph w/ 3d Positions
- Triangle Surface
- 1d/2d Simplicial Complex

Postprocessing:
- Smoothing
- Triangle Decimation

Smooth, Decimated
Simplicial Complex Rendering Image

contributions of this thesis

contributions of this thesis

Discussion of thinning
in the grid cell model
contributing to the
theoretical foundations of
thinning (Section 2.3.1)

Novel external
memory algorithm
for distance ordered
homotopic thinning
(Chapter 5)

A noise-insensitive measure
to compute two-dimensional
skeletons based on the geodesic
distance along the boudary
(Section 2.3.2)

Novel geometry
generation scheme
retracting voxel skeletons
to piecewise linear
geometry (Chapter 3)

Application of presented algortihms
in a novel method based on confocal
microscopy for quantitative study of micro-
vascular networks and in visualization of
bone micro-architecture (Chapter 6)

existing methods

existing methods

Figure 1.1: Processing steps from image data to skeletons to rendered images. Preprocessing
of input data, including segmentation, yields a voxel object to which skeletonization
is applied. The resulting voxel skeleton is converted to a piecewise linear geometric
representation and used, after postprocessing, for rendering. Main contributions of this
thesis are depicted as annotations. All other steps rely on existing methods.

image presented to the user.)e stages of the pipeline are controlled by specifications
(parameters).)e objective is to generate a real image (»making visible to one’s eye«)
that effectively enables the human viewer to build a mental image of the data (»making
visible to one’s mind«). Based on the mental image, she would be able to understand
the data, draw conclusions, and make decisions; that is to gain knowledge. Knowledge is
also the basis for further exploration of the data by modifying the specification that guide
the image generation process. Efficient utilization of available resources, such as main
processor (CPU),mainmemory (RAM), and specialized graphics processors (GPUs)with
specialized video memory (VRAM), helps to generate images at interactive frame rates.



Figure 1.2: The process of visualization in three semantic contexts. Visualization includes a
feedback loop of creating images from the data, looking at these images, gaining
knowledge, and exploring the data further by adjusting the specifications. The
visualization pipeline depicts the detailed steps required for making data displayable by
a computer. The illustration is adapted from van Wijk (2005), Johnson et al. (2006), and
Brodlie et al. (2004).

)e skeletonization pipeline introduced in the previous paragraph and discussed in more
detail below is one instance of the generic concept described in this paragraph.
Techniques from image processing, computer vision, computer graphics, and user

interface studies are used to achieve the overall goal of visualization and started to
merge to a scientific field of its own. Hundreds of articles have been published on
visualization methods during the last twenty years, a(er the seminal NSF Landmark
Report »Visualization in Scientific Computing« (McCormick et al., ) was published.
A comprehensive overview of the current state can be found in Hansen and Johnson
(). Research challenges are also discussed in Johnson et al. ().
Visualization algorithms can be classified by the data type of the input (Haber and

McNabb, ) or similarly by the underlying data model used during computations, as
proposed by Tory and Möller (). Information visualization of abstract data is o(en
discussed separately from scientific visualization of physical data (see for example Card
et al., ).
Image data falls in the category of scalar data over a three-dimensional domain.)us,

direct scalar field visualization techniques can be applied. Two of the most thoroughly
researched techniques are direct volume rendering and iso-contouring/iso-surfacing.
Figure . displays examples: on the le(and top a volume-rendering of human vertebral
bone and on the right an iso-surface rendering of a small sub-volume.



 Introduction

Figure 1.3: Scalar field visualizations of amicro-CT scan of a human vertebrae. Volume rendering
was used to generate the overview of the full volume (left and top). Iso-surface rendering
was used to create the close-up view on the trabecular bone structure at the bottom
right.

Figure 1.4: Visualizations of a vascular network using skeletonization. A photograph of a slice
of human brain tissue is displayed on the left. In the center, the confocal microscopy
image data acquired from a small area of brain tissue is depicted as a maximum intensity
projection with color-coded depth value. On the right, center lines computed using
skeletonization are rendered for a sub-volume corresponding to the area of the blue box.
A vein tree is highlighted in blue, an artery tree in red.

)e ever increasing size and complexity of input data poses challenges to visualization.
)e rapidly increasing resolution of imaging devices illustrates this fact: CT-scanners
regularly acquire data at µ resolution in data matrix sizes of ³; commercially
available research scanner at µ/³; and synchrotron CT-imaging reach µ in matrix
sizes of up to ³. Confocal microscopes achieve .µ/³ in one scan, and motorized
stages allow to collect hundreds of such images, which can be automatically stitched to
a single, large volume. Figure . and Figure . depict structures contained in such
acquired images.
Twomain challenges of massive data are ) to deal with the sheer size of the data and )

to clearly display the complex structure hidden in the data.)e challenges of dealing with



the data size may be tackled by hierarchical methods, compression, and external memory
algorithms and data structures (Silva et al., ).
)is thesis explores the approach to deal with massive data by extracting higher level

information in a pre-processing step and subsequently display data on a more abstract
level. In addition to dealing with the size of the data, this approach bears the opportunity
of generating expressive and effective visualizations of complex structures. Data is
analyzed in a feature extraction step that computes such high level structural information.
It is typically run as an offline batch computation prior to interactive visualization.
Extending algorithms to massive data may be easier achievable in a batch computation
than in an interactive scenario with on-line computations.)e results of the batch
computations contain the essential information about the input data in compressed form.
We will focus on voxel objects with a network-like architecture.)e network may

be built of tubular structures, as illustrated in Figure ., or it may consist of plate-like
and tube-like parts, as illustrated in Figure .. We will limit our investigations to voxel
objects resulting from image segmentation, that is classifying an image into object and
background.
)e central question discussed throughout the thesis is »How to visualize (and analyze)

massive voxel objects with complex, network-like architecture?«. A supported claim is
that skeletonization allows to generate a high level representation, the skeleton, requiring
only a reduced amount of data, which can be used to create effective visualizations.
Following the idea of skeletonization, the central question splits into »How to efficiently

compute skeletons of massive voxel objects?« and »How to render those skeletons?«.
)ese questions will be discussed for specific data types—voxels and piecewise linear
geometry—and specific architectures—rods or plates—of the input object. Restricting the
discussion to specific cases is justified by the claims that ) knowing the architecture of
the object simplifies skeletonization methods; ) voxels are an efficient representation for
computing and storing skeletons; and ) a piecewise linear representation, that is straight
line segments and triangles, is efficient for rendering.
)e following list presents the specific questions that will be answered throughout the

text:

• How to compute one-dimensional (curve) voxel skeletons of massive voxel objects?

• How to represent one-dimensional and two-dimensional structures and junction
by voxels?

• How to compute two-dimensional voxel skeletons (›central surfaces‹) that are
robust to noise in the input?

• How to compute line skeletons of plate-like structures?

• How to compute mixed one-/two-dimensional skeletons that guarantee certain
topological properties starting from mixed one-/two-dimensional structures?

• How to render voxel skeletons using piecewise linear geometry?



 Introduction

• How to visualize huge and complex micro-vascular networks?

• How to visualize huge and complex networks of interconnected bone rods and
plates?

Figure . illustrates the processing steps and the contributions made by this thesis to
answer these questions.)is text presents algorithms to extract skeletons, that is center
lines and central surfaces, of objects represented in the input data. Domain specific
knowledge is incorporated to decide if one-dimensional structures, like for example
blood vessels, or two-dimensional structures, like for example trabecular bone plates,
are searched for.)e results are skeletons of the original object, concisely representing
its structure. Algorithms are extended to external memory allowing to process data of
virtually any size.)e remainder of the introduction briefly discusses the data types and
processing steps; and gives and overview over the following chapters.
Original input data is given as samples comprising a three-dimensional image, which is

formally described as a function I : Z3 → R assigning a real value to each sample point.
In real world applications the integer positions would need to be scaled and translated
to match physical units. Samples may be interpreted as weights for some interpolation
scheme, which would reconstruct a scalar function on whole R3. We will not follow this
interpretation—except for some preprocessing—but instead assume that samples can be
segmented in either belonging to the foreground voxel object P ⊂ Z3 or belonging to
the background P̄ = Z3 \ P by some classification procedure, for example filtering and
thresholding.
A classification of each voxel as either foreground or background can also be expressed

as a characteristic function I : Z3 → {0, 1}, which is called a binary image.)e
representation of objects as binary images not only naturally emerges from the data
acquired by imaging devices, but is also efficient in regards of computation time and space.
Binary images can be stored as bits in a regular array. All the neighborhood information
is implicitly given by the structure of Z3. Voxel objects resulting from the segmentation
and voxel skeletons resulting from skeletonization are two examples of objects stored as
binary images.
Later in the processing pipeline, voxel skeletons are converted to piecewise linear

geometry represented as a simplicial complexC = (V, E, T). V = {vi ∈ R3 | i = 1 . . . n}
contains the vertices of the geometry. E = {eij = (vi, vj)} ⊂ V 2 describes edges
connecting two vertices each. T = {tijk = (vi, vj, vk)} ⊂ V 3 holds the triangles formed
by three vertices each.)e edges of each triangle must also be contained in E, while E
may contain edges that are not incident with a triangle. Examples of simplicial complexes
are triangle meshes and line sets with piecewise straight line segments.
In a first step, Chapter  investigates topological properties of binary images and

presents algorithms to compute voxel skeletons. One well known technique is thinning,
which is based on the notion of a simple voxel, that is a voxel that can be removed from
a voxel object without changing its topology. Various characterizations of a simple voxel
have been given in the past.)ey all demand some non-trivial computations in a voxel’s
neighborhood.



Section . contributes to the theoretical foundations of thinning with a discussion of
thinning in the grid cell model.)e grid cell model explicitly represents a cell complex
built of faces, edges, and vertices shared between voxels. A characterization of deletable
pairs of cells is much simpler than characterizations of simple voxels were before. A
general conclusion is that the grid cell model is superior to the grid point model for
algorithms that need detailed control of topology. Many other known algorithms, but
not all, may benefit from the grid point model, too.
Skeletonization algorithms that retain geometric features of the input object are o(en

susceptible to noise.)ey typically compute a subset of the medial axis. It is well known
that the medial axis is unstable under perturbations of the object’s boundary. For example
small changes on the object surface may cause large side branches in the medial axis.
Section .. introduces a measure for computing skeletons based on the geodesic

distance along the boundary of a voxel object, which is robust to noise. Two-dimensional
voxel skeletons representing plate-like structures are extracted by a simple threshold on
this measure.)e measure is also used to guide erosion in a thinning process from
the boundary towards lines centered within plate-like structures.)is enables us to
compute one-dimensional skeletons of non-tubular structures.)e proposed measure
was experimentally observed to be well suited to define one-dimensional skeletons
directly from objects containing plate-like structures.)eoretical investigations of the
observed properties should be conducted in the future.
Chapter  discusses a novel method for converting voxel skeletons to piecewise linear

geometry, that is triangle meshes and line sets. Such representations can be rendered
efficiently by today’s rendering pipelines, which are based upon triangles as rendering
primitives and typically implemented in the hardware of a graphics processing unit
(GPU).)e construction of geometry is defined locally in the neighborhood of a voxel and
retracts sub-voxels to a piecewise linear geometric representation.)e method creates
non-closed surfaces with boundaries, which contain less triangles than a representation
of voxel skeletons by closed surfaces like small cubes or iso-surfaces. A look-up table
based on a  ×  ×  voxel configuration suffices to provide pre-computed geometry,
which is stitched to form a global geometry. A conclusion drawn from the presentation
is that thinking specifically about voxel skeleton configurations instead of generic voxel
configurations helps to deal with the topological implications.
Chapter  presents synthetic examples processed by the algorithms discussed in

Chapter  and Chapter .
Applying the presented algorithms to data exceeding the size of main memory is

tackled in Chapter , which presents newly developed external memory variants for the
chamfer distance transformation, thinning, the computation of the geodesic distance
based measure, and geometry generation. Data of any size may be processed as long
as input and intermediate results can be stored on disk and the resulting geometric
representation fits into main memory, whereas the original algorithms required all data
to reside in main memory for efficient processing.)e applied block-wise decomposition
schemes are quite simple. Yet it was necessary to carefully analyze effects of block
boundaries to devise globally correct external memory variants of known algorithms. In
general, doing so is superior to naive block-wise processing ignoring boundary effects.



 Introduction

Chapter  presents two applications of the methods to bio-medical image data.)e first
example introduces a novel method based on confocal microscopy for quantitative study
of micro-vascular networks. One-dimensional skeletons are computed and visualized as
line sets or serve as a basis for further quantitative analysis.)e second example analyzes
and visualizes bone micro-architecture containing rod- and plate-like parts. Skeletons
provide a way to highlight various aspects of the bone structure.)ey also proved a useful
tool in detecting alterations in the bonemicro-architecture, for example a(er compression
testing.
Finally, Chapter  gives a summary of results, conclusions, and ideas for future work.



2 Voxel Skeletons

)e intuitive idea of skeletonization is to shrink an object to a lower dimensional
representation which still captures major features of the original object. Skeletons can
be used to visualize important aspects of an object. Compared to the original input data,
skeletons require less storage and thus may be more suitable for interactive rendering:

Figure 2.1: Schematic objects and their skeletons.

)e following properties should be fulfilled by a skeleton:

• homotopy: the skeleton should be homotopic to the original object;

• thinness: the skeleton should have a lower dimension than the original object. A
skeleton of a three-dimensional object would comprise one and two-dimensional
parts;

• medialness: the skeleton should be located at the center of the object;

• reconstructability: the original object should be reconstructable from the skeleton.
To do so, additional information, for example local thickness, is required at every
point of the skeleton.

Not all of the above properties are fulfilled simultaneously by every skeleton. For
instance, strict homotopy makes a skeleton highly sensitive to noise on the object’s
boundary. Loosening this requirement can make a skeleton more robust to noise.
Other type of shape representations exist besides skeletons.)e introduction already

mentioned voxel objects as another example for a shape representation. Before discussing
how to compute skeletons of binary images, the next section will briefly reviewmore ways
of representing shapes and computing skeletons.

2.1 Shape Representations and Shape Analysis

Important classes of shape representations are volumetric representations, boundary
representations, and hierarchical representations describing a shape built of its parts.



 Voxel Skeletons

In this thesis, initially, shapes are always provided in a volumetric representation, as
voxel objects. Level sets, which define the boundary of an object implicitly by a level
set of a scalar function, are another variant of volumetric representations. Objects can
be converted between volumetric representations and boundary representations. For
example, the Marching Cubes algorithm (Lorensen and Cline, ) allows to convert
a volumetric representation to a triangulated surface; voxelization (Kaufman et al., )
to reverse the process. Boundaries can also be directly modeled using splines, for example
NURBS; constructive solid geometry (CSG); or specified either implicitly or explicitly by
various analytic functions. Scene graphs are a basic data structure of rendering systems.
)ey represent shapes in a hierarchical data structure, which builds the shape of its parts.
For example the shape of a robot can be built of the body with a head, two arms and two
legs attached to.
Skeletons can be considered a type of shape representation or theymay be understood as

the result of a shape analysis. Loncaric () classified shape analysis methods in space
domain techniques vs. scalar transformations. Space domain techniques transform the
shape to another spatial representation while scalar transformations compute a feature
vector of numbers from the shape.)ese numbers need not necessarily have any direct
geometric meaning.)ey may, for example, be used as a key to a database system.
)e medial axis (Blum, ) is probably the most prominent space domain technique

for shape analysis. In a first description, Blum defined the medial axis as the location of
maximal spheres inscribed to the object touching the boundary at two or more points.
His second definition is given in analogy with a fire front. If a fire was lit at the boundary
of the object and propagated towards the center the fire fronts would finally meet at the
medial axis.)e shocks of the propagating waves form the medial axis.
)emedial axis is a well defined mathematical starting point for defining skeletons, but

is known to be unstable under perturbations of the object’s boundary.)is instability is
one reason why a lot of heuristics are involved in computing skeletons. In practice, the
medial axis needs to be filtered to select important parts and suppress parts induced by
noise on the object’s boundary. Recent developments try to understand and control this
instability in detail (Attali et al., ; Chazal and Lieutier, ).

2.2 Review of Methods for Computing Skeletons

)e objective of the more detailed review of skeletonization methods below is to identify
suitable methods for computing skeletons of massive voxel objects with network-like
architecture. Hence methods must be able to scale to large input data and they must be
able to deal with the complex topology of the input.
A common way of classifying skeletonization methods is to distinguish between

thinning (grassfire propagation), ridge detection in distance transformations, and Voronoi
based methods. Cornea et al. (b) differentiate four classes: thinning and boundary
propagation, methods using a distance field, geometric methods, and general field function
based methods. Without further justification they introduce general field function based
methods as a distinct class. Field functions and distance transformations are similar in



. Review of Methods for Computing Skeletons

spirit: both indicate medialness in the object.)erefore, we follow Pizer et al. (b) an
subsume field functions and distance transformations under medialness function based
methods. Fol-Leymarie () proposes six categories (see also Giblin and Kimia, ):
thinning, ridge following in distance transformations, wavefront propagation, boundary
models, Voronoi diagram based methods, and analytical bisector computation.)e latter
three classes can be summarized as geometric methods. Considering the dynamics of
wavefront propagations adds to the static analysis of a medialness function and will
therefore be listed as a distinct class.
In conclusion, we group skeletonization methods into four classes:

• thinning and boundary propagation;

• medialness function based methods;

• wave front propagation and shock detection;

• geometric methods, including Voronoi diagram based methods.

2.2.1 Thinning and Boundary Propagation

)inning is an image processing method taking a binary image as its input and eroding
it to a skeleton.)inning erodes boundary pixels according to certain rules guaranteeing
homotopy equivalence of the result with the input object.)e process stops if no more
pixels can be removed without violating the rules.)e result is a skeleton represented as
a binary image.)inning of two-dimensional images has a long history starting in the
s. Lam et al. () give an overview over the state of the art in .)ey classify
thinning algorithms into sequential removal or removal in parallel, which is o(en further
subdivided by the number of sub-iterations of the algorithm. Correctness of sequential
algorithms is easier to prove. Parallel algorithms provide the potential of speed-up by
parallel execution.
)ree-dimensional thinning algorithms emerged in the s and continue to be an active

field of research. Various authors propose different heuristics to achieve medialness
of the result within the object, for retaining end-points of lines, and for retaining
boundary points of faces (Bernard andManzanera, ; Borgefors et al., ; Jonker and
Vossepoel, ; Lee et al., ; Ma, ; Ma and Sonka, ; Ma and Wan, , ;
Ma et al., ; Manzanera et al., c,a; Palági and Kuba, ; Saha and Chaudhuri,
; Saha et al., ; Marion-Poty and Miguet, ).)inning in higher dimensional
spaces is also investigated (Manzanera et al., b; Jonker, , , ).
Some non-standard approaches to thinning are highlighted in the following. Deutsch

() investigates thinning on hexagonal grids. He claims that »the hexagonal grid
has advantages over the regular grid as far as processing time and data reduction are
concerned«. Amini et al. () present thinning of octree encoded objects to speed up
computation.)inning of two-dimensional surfaces embedded in a three-dimensional
binary image is presented by Svensson and Borgefors () and Nyström et al. ().



 Voxel Skeletons

Ordering voxel processing by the distance to the boundary (Pudney, ; Vincent,
) provides an elegant way to ensure medialness of the resulting skeleton. Distance
ordered thinning will be discussed in more detail in Section ... Its runtime complexity
is O(n + m), with the number of voxel n and the number m of voxels processed multiple
times, which depends on the topology of the object (and is usually much smaller than
n). Distance ordered thinning combines the benefit of thinning, being based on a
local investigation of a small neighborhood around a voxel, with the benefit of distance
transformations (see below), which provide a global view of the location inside the object.
)inningmethods are well suited for handling voxel objects. Our input data is large and

given on regular grids as binary images. Low runtime complexity and efficient memory
utilization are key to achieving practical solutions.)e linear runtime of thinning is
a promising starting point for scaling algorithms to massive data.)inning naturally
operates on binary images and can thus be directly applied to voxel objects.

2.2.2 Medialness Function Based Methods

Another prominent class of skeletonization algorithms has its foundation in the distance
transformation of the object, which encodes the distance to the nearest background
point for all object points. Distance transformations can be computed in linear time
(Cuisenaire, ). Critical points in the distance transformation indicate medialness.
)ey can be searched and linked by following ridges (Arcelli and di Baja, ; Ge
and Fitzpatrick, ; Remy and)iel, , ; Zhou et al., ) or in a hybrid
approach with thinning (Gagvani, ; Svensson et al., ). Ma et al. () propose
to analyze a level set representation of the object based on radial basis functions and claim
»skeletons generated with this approach conform more to the human perception«.)e
main reason is that radial basis functions provide a controlled way for creating a smooth
object boundary. Methods based on tracing shortest paths in a weighted sum of the
distance to the background and the distance to a seed point are a robust means to extract
center lines (Bitter et al., ) and tree-like skeletons (Bitter et al., ; Sato et al., );
but they are not yet able to detect loops.
Several authors propose to analyze a (generalized) potential function induced by the

object’s boundary instead of the distance transformation. Abdel-Hamid and Yang ()
extract a one-dimensional skeleton by tracing field lines of a potential function.)e idea
is further developed to generalized potential functions by Ahuja and Chuang ();
Chuang et al. (); and Cornea et al. (a).)ese authors claim that potential
function based methods are less susceptible to noise because of averaging over a larger
region of the object boundary; but thin regions may lead to numerical instabilities. All
potential function based algorithms only compute one-dimensional skeletons.)ey
are more expensive compared to distance transformation based methods.)e time
complexity is O(n · m) with n boundary elements and m traced skeleton points.
Measures that directly indicate medialness by a scalar value and select skeletons by

a threshold are another major class of skeletonization algorithms. Talbot and Vincent
() propose to derive a measure based on the angle formed by an object point and
its nearest background points.)inning may be used to establish strong topological



. Review of Methods for Computing Skeletons

guarantees in a subsequent step (Malandain and Fernández-Vidal, ; Couprie and
Zrour, ). Costa () bases a measure on the geodesic distance along the object’s
boundary. A similar approach will be presented later in this thesis. All these approaches
have in common that they are robust to noise but do not in general guarantee homotopy
equivalence of the skeleton with the original object.
Burbeck and Pizer () fit medial atoms to the grey value image of an object. Medial

atoms have a location, orientation, and a thickness, which match the boundary of the
object.)is idea was further developed to m-reps, which form a network of medial atoms
(Pizer et al., a). If the topology of the object is known in advance, a model of the
object built from medial atoms can be fit to the image data. If the topology is not know
such a model of medial atoms can not be built in advance. Hence applying the method to
object with unknown topology is not straight forward.
Topological analysis of scalar functions is an interesting recent approach to capture

the information contained in a distance transformation; see for example (Hilaga et al.,
; Takahashi et al., ). A hope is that a well defined way of pruning »unimportant«
topological features, for example small loops, can be based on suchmethods. Zomorodian
() proposes in his outlook section to create a hierarchical representation of themedial
axis based on morse complexes of a distance transformation.
Some medialness function based methods match our type of input. Methods

for efficiently computing distance transformations of voxel objects with low runtime
complexity, path tracing, and combinations with thinning will be used below as a
foundation for skeletonization algorithms scaling to massive data and dealing with the
complex architecture of the input object.

2.2.3 Wavefront Propagation

Blum’s analogy with fire propagation is the foundation of methods simulating wave front
propagation starting at the object’s boundary.)e shocks of the meeting fire fronts
can be classified (Siddiqi et al., ; Giblin and Kimia, , ) and organized as
a hypergraph called the shock scaffold (Fol-Leymarie, ).)e hypergraph structure
reveals the organization of the medial axis in a compact representation, which is useful in
shape recognition and other applications. Siddiqi et al. () investigate simulated wave
propagation and detection of shocks based on the flux of a vector field. Bouix ()
proposes a combination with thinning, see also Bouix and Siddiqi (), to establish
topological guarantees.
We will not further explore wavefront propagation because most of the shock

classification methods do not match our input type but require a geometric boundary
representation.

2.2.4 Geometric Methods

)e last class of methods is based on computational geometry; mainly on the Voronoi
diagram. Several authors (Attali et al., ; Reddy and Turkiyyah, ; Ogniewicz
and Kübler, ) propose to compute and analyze variants of the Voronoi diagram.



 Voxel Skeletons

)e guiding idea is to compute the full Voronoi diagram of a point sampled boundary
representation and prune unstable side branches in a second step (Shaked and Bruckstein,
) to achieve an approximation of the medial axis. In two dimensions a subset of
the Voronoi diagram can be chosen, which converges (under some technical conditions)
towards the medial axis with increasingly dense sampling of the boundary. In three
dimensions the situation is more complex.)e Voronoi diagram may contain vertices
near to the object boundary and far from the medial axis, even if sampling of a smooth
boundary is noise free and arbitrarily dense. To solve this problem, Amenta et al. ()
replace the euclidean metric by the power distance and define the power crust, which
»produces a surface mesh and an approximated medial axis«.)e worst-case complexity
of computing three-dimensional Voronoi diagrams is quadratic in the number of input
points. In real-world examples runtime is o(en measured to be linear. Amenta et al.
() cite implementations capable of handling hundred thousands of input points in
minutes.
Other types of geometric methods are based on analytical and piecewise linear

representations of skeletons. Peternell () discusses bisectors of »low-degree rational
curves and surfaces, since they are of particular interest in surface modeling«. Kégl and
Krzyżak () propose to fit piecewise linear curves in two dimensions to find a skeleton.
)e authors claim their algorithm »finds a smooth medial axis of the great majority of
a wide variety of character templates and substantially improves the pixelwise skeleton
obtained by traditional thinning methods«.
We will not further explore geometric methods. Geometric methods do not utilize the

specific organization of our input on a regular grid but instead start from point samples or
an analytic boundary representation.)e size of input that can be handled by geometric
methods today is far from the size of the massive voxel objects targeted in this thesis.

2.3 Voxel and Grid Cell Skeletons

)inning and medial function based algorithms are promising foundations for devising
skeletonization methods for massive voxel objects with complex architecture. Efficient
algorithms operating on regular grids exist for both type of methods, as discussed in the
previous section.
Wewill now transfer topological notions from the continuous spaceR3 to binary images

and develop a clear understanding of how to shrink a binary image to its skeleton.)is
process is commonly denoted as thinning; see for example Lam et al. ().)inning
successively removes voxels starting at the boundary of the object. Voxels are eligible for
removal if homotopy equivalence is preserved.)eses voxels are called simple. A detailed
characterization will be given shortly but first a more formalized view of binary images is
required for an in-depth discussion of voxel skeletons.
We start with the definition of a binary image (which was already sketched in the

introduction). A binary image is a function I : Z3 → {0, 1}. Elements of the finite
set P ⊂ Z3 of points that map to 1 are called object voxels or foreground voxels. P is
called a voxel object. Elements of P̄ = Z3 \ P are called background voxels.



. Voxel and Grid Cell Skeletons

An intuitive starting point for understanding topological properties of binary images is
thinking of them as geometrically represented in continuous space, which is achieved by
the function

R‘ : Z3 → P(R3)

p ‘→ R‘(p) =
≠

x | Îx − pÎmax Æ 1

2
+ ‘

Æ (.)

which maps object voxels to unit cubes in R3 inflated by ‘ and centered at the voxel
position p.)e object is mapped to the union of the images of its voxels.)e background
of the binary image is mapped to R3 \ R‘(P). Note the asymmetry in the mapping of
foreground and background.)e asymmetry is present even for ‘ = 0. But it is easier
to grasp for a small positive ‘, which inflates the unit cubes to avoid singular edges and
vertices:

Figure 2.2: Representation of voxels as unit cubes and inflated cubes.

)e geometric representation R‘(P) has two properties that help intuition:

. Its boundary ∂R‘(P) is a two-dimensional manifold separating interior from
exterior.

. If two object voxels p, q ∈ Z3 are connected by a path in R‘(P), this path can be
chosen to be located completely in the interior of R‘(P).

)e following discussion presupposes some basic knowledge of topology. Here, notions
will be formally defined only if essential for the further discussion. An introduction to
basic concepts of topology is found in, for example, Jänich (). Combinatorial aspects
are discussed in Aleksandrov () or Boltianskij and Efremovich (); Hatcher
() focuses on cell complexes and homotopy theory (andmore) in amodern language.

The Grid Point Model

)e connectivity in a local neighborhood behaves differently for background and for
foreground voxels. Two object voxels p and q1/2/3 (see figure below) can be connected
by a straight path in their geometric representation R‘({p, q1/2/3}) if each of their integer
coordinates differs by not more than one.)e situation is slightly different for two
background voxels r and s. Independently of the surrounding configuration they can only
then always be connected by a straight path in their geometric representation if exactly



 Voxel Skeletons

one coordinate differs by not more than one, and all other coordinates are equal (r and
t2/3 in the figure below can not be connected by a straight path):

Figure 2.3: Adjacency of neighboring object voxels and background voxels.

)is observation is formalized in the grid point model as follows (see Klette and
Rosenfeld () for a comprehensive introduction to all parts of digital geometry and
topology). Voxels are interpreted as grid points together with an adjacency relation. Two
grid points (also called voxels) p, q ∈ Z3 are –-adjacent, in the following way: they are

-adjacent, if 0 Æ |p − q| Æ 1 ;

-adjacent, if 0 Æ |p − q| Æ
√

2 ;

-adjacent, if 0 Æ |p − q| Æ √
3 .

A voxel q is said to be an–-neighbor of p, if q is–-adjacent to p. All–-neighbors of a voxel
p form its –-adjacency set A–(p). N–(p) = A–(p) fi {p} is called the –-neighborhood of
p.)e prefixed numbers indicate the number of –-neighbors:

Figure 2.4: The three grid point adjacency relations.

We also need the notion of a path and a (connected) component. An –-path from voxel
q to voxel r is a sequence of points fl = (p0, . . . , pn), with p0 = q, pn = r, such that pi+1

is –-adjacent to pi for i = 0, . . . , n − 1.)e length of the path is n. q and r are said
to be –-connected (by the path fl). A maximal set of –-connected points is called an
–-component.
Consistency with the geometric representation in R3 requires that object voxels

are chosen to be -adjacent while background voxels are -connected reflecting the
asymmetry in their geometric representation.)is text will only use (,)-adjacency,
although other valid pairings may be investigated as well; for example -connected
foreground and -connected background. See Klette and Rosenfeld () for a
comprehensive discussion.



. Voxel and Grid Cell Skeletons

)e grid point model can be used to efficiently analyze questions such as computing
connected components, computing distance transformations, and thinning, as presented
below. But its reduction of voxels to points related by adjacency may restrict intuitive
understanding of the topological properties of the represented object. Transferring
notions from continuous topology may also be difficult. A second interpretation of
binary images, the grid cell model, is more successful in representing details of topological
configurations of lower dimension.

The Grid Cell Model

In the grid cell model voxel objects are understood as cell complexes.)e presentation
loosely follows Klette and Rosenfeld (); see also Kovalevsky (). A unit cube may
be regarded as decomposed into cells of dimensions  up to , so called d-cells cd, which
form a cell complex. A (finite dimensional) cell complex X is built in the following way:

•)e discrete set of -cells forms the -skeleton X0.

• Inductively build the d-skeleton Xd from Xd−1 by attaching d-dimensional disks,
the d-cells, such that the boundary of each disk is continuously mapped to Xd−1.

• Stop the process at a finite stage d < ∞ and set X = Xd.

We will only regard cell complexes of up to d =  in the following.
In the grid cell model, a cube is decomposed into a cell complex with  vertices (-cells),

 edges (-cells),  faces (-cells) and the enclosed volume (-cell).)e different cells will
be depicted as cuboids, scaled and oriented according to the cell dimension, position, and
orientation:

Figure 2.5: A voxel decomposed into grid cells.

)e grid cell complex X(Z3) of all voxels p ∈ Z3 is built from cubic geometric
representations R(p) = R‘=0(p) in the following way (see also Figure .):

•)e intersection of the geometric representation of eight pairwise -adjacent
voxels p1, . . . , p8 forms a -cell c0

{p1,...,p8} =
u

i=1...8 R(pi).)ese cells are the vertices
shared by cubic voxels.

•)e intersection of the geometric representation of four pairwise -adjacent voxels
p1, . . . , p4 forms a -cell c1

{p1,...,p4} =
u

i=1...4 R(pi).)ese cells are the edges shared
by cubic voxels.



 Voxel Skeletons

Figure 2.6: A voxel configuration and its equivalent grid cell configuration. Two object voxels, p, q,
six background voxels, r, s, t, u, v, w, and some of the associated grid cells are depicted.
The labeled grid cells are a 0-cell c0 = c0

{p,q,r,s,t,u,v,w}, a 1-cell c1 = c1
{q,s,u,w}, a 2-cell

c2 = c2
{q,w}, and a 3-cell c3 = c3

{q}.

•)e intersection of the geometric representation of two -adjacent voxels p, q forms
a -cell c2

{p,q} = R0(p) fl R(q).)ese cells are the faces shared by cubic voxels.

•)e geometric representation of a voxel forms a -cell c3
{p} = R(p).)ese cells are

the voxels itself.

A voxel objectP is represented as a sub-complexX(P) ⊂ X(Z3). Cells cd
S are included

in the grid cell complexX(P) if any of the voxels in the setS, labeling the cell, is included
in the object P , that is if S fl P ”= ∅; in other words if any of the voxels sharing the cell is
an object voxel. An example is depicted in Figure .. X(P) itself is a cell complex while
its complement in X(Z3), representing the background, is not a cell complex.
Two cells are said to be incident if one is a subset of the other. Based on their dimension,

a partial order is defined on the cells of a complex by cd ≺ ce if cd incident with ce and
d < e.)is relation will be denoted as the partial incidence order.
)e overall number of grid cells is eight times the number of corresponding voxels.

Each cube has six faces and each face is shared by two cubes. Hence the number of -cells
is three times the number of -cells. Similarly, the number of -cells is three times the
number of -cells ( edges shared by  cubes each). Finally, the number of -cells is the
same as the number of -cells ( vertices shared by  cubes).)e overall number of cells
computes to  +  +  +  =  times the number of voxels.
)is suggests that cells can be enumerated by Z3 using  ×  ×  elements per voxel.

Indeed, we succeed by associating every cell cd
S with x = 2 · ÈSÍ + (1, 1, 1), with ÈSÍ the

mean value of S’s elements computed as the mean of the coordinates of S’s elements in
each dimension as illustrated below:



. Voxel and Grid Cell Skeletons

Figure 2.7: Enumerating grid points and grid cells on a regular grid in 2d.

)e discussion of the grid cell model could also start from a discrete topology defined
on Z with alternating open and closed points (, ,… closed; , ,… open).)e cartesian
product of three such topological spaces defines the so-called Khalimsky digital space K3

(Khalimsky et al., ). Kong et al. () showed that this is equivalent with the above
discussion of the grid cell model.
)e grid cell model and the topological properties of its cells can be efficiently

represented by an array requiring eight times the storage space of a grid point model.
)e integer coordinates’ parities completely determine the topological properties of a cell
in the following way. For a cell cd

x, with x = (x1, x2, x3) ∈ Z3,

• the dimension d equals the number of odd coordinate entries in x;

• the cell is incident with two higher dimensional cells in the coordinate direction i
if entry xi is even;

• the cell is incident with two lower dimensional cells in the coordinate direction i if
entry xi is odd.

Simple integer operations on the coordinates allow to compute topological properties.
Encoding cell coordinates as single packed integers may reduce storage space and allows
efficient topological operations as discussed by Lachaud ().
A major advantage of the grid cell model compared to the grid point model will

become apparent below: lower dimensional cells are explicitly represented.)is gives the
opportunity of encoding digital surfaces and lines explicitly, in contrast to approximating
them by voxels.

2.3.1 One-Dimensional Skeletons: Thinning

We will continue the discussion with how to shrink a voxel object to an one-dimensional
voxel skeleton. One requirement on a skeleton is to preserve the main topological
structure, that is the skeleton must be homotopy equivalent to the object. Intuitively
this means the object can be transformed to the skeleton by elastic deformations such
as bending and shrinking (see a textbook on topology for exact definitions).
However, homotopy equivalence is not strong enough to characterize skeletons as

illustrated in Figure ..)e figure illustrates how a homotopy can be established between
the original object at the top and the object at the bottom, from which one voxel was



 Voxel Skeletons

≃

≃ ≃

≃

≃

≃

≃

Figure 2.8: A homotopy equivalent object that is not a skeleton. The object at the bottom is
created from the object at the top by removing the indicated voxel. Towards the right
both objects are retracted to a ring. The ring can be expanded to any of the original
objects to establish a homotopy. But there is no deformation retraction from the object
before and after removing the indicated voxel. Hence the object at the bottom should
not be a skeleton of the original object at the top.

removed. If homotopy equivalence with the original object was a sufficient requirement
for a skeleton the object at the bottom would be a skeleton of the object at the top. But
this contradicts the intuition of contracting an object to its skeleton.
Restricting elastic deformations to continuous shrinking of the object (excluding

bending and inflation) establishes a stronger condition than homotopy equivalence. In
topological terms this is expressed as a deformation retraction. Assume a subset Y ⊂ X .
A (strong) deformation retraction is a mapping fl : X ◊ [0, 1] → X with (x, t) ‘→
fl(x, t) = flt(x), such that fl0 ≡ idX , fl1(X) = Y, flt|Y ≡ idY , and fl is continuous in x
and t.)e subset Y is said to be a deformation retract of X . You may think of deflating
the volumeX continuously until Y remains. Every deformation retraction is a homotopy
and the deformation retract Y is homotopy equivalent to the starting set X .
One necessary condition for ahomotopic voxel skeletonS is to be a deformation retract

of the original voxel objectP , in the sense that this holds for the geometric representations,
that is R‘(S) is a deformation retract of R‘(P), and thus also for their grid cell complexes
X(S) andX(P). Wewill use »deformation retract« in this sense on voxel objects directly.
As explained shortly, being a deformation retract is not always sufficient for a definition
of a voxel skeleton as other properties, such as medialness or reconstructability, may also
play a role.

Simple Voxels

In practice, a deformation retraction is not given explicitly but instead so called simple
voxels are removed sequentially such that each removal preserves homotopy equivalence.
A voxel p of a voxel object P is said to be a simple voxel if P \ {p} is a deformation
retract of P . Various characterizations have been given for simple voxels. Klette ()
compares some of them. All are equivalent to the definition in terms of a deformation
retraction. But they may have the advantage of being computationally more tractable or



. Voxel and Grid Cell Skeletons

Figure 2.9: A voxel configuration and its Schlegel diagram. The Schlegel diagram of voxel x is
depicted at the right. Faces in the Schlegel diagram are associated with 6-neighbors,
edges with 18-neighbors, and vertices with 26-neighbors. An element of the diagram is
colored black if a neighboring voxel is present.

being defined directly on the grid point model, without recurring to homotopy theory.
Two characterization will be presented in more depth now.
Kong () proved that the definition based on deformation retraction is equivalent

to a characterization given in terms of the P -attachment set.)e P-attachment set of
a voxel p of a voxel object P contains all grid cells of P \ {p} that are incident with p.
)ese are all cells in the boundary of p that are also contained in a neighboring object
voxel.)eP -attachment set can be visualized in a Schlegel diagram, see Figure .. Faces
in the Schlegel diagram are associated with -neighbors, edges with -neighbors, and
vertices with -neighbors. Elements are labeled with  (indicated in black in Figure .)
if the associated neighbor is an object voxel; they are labeled with  if the neighbor is a
background voxel.)e outside of the Schlegel diagram represents the front face of the
voxel.)us the diagram represents the configuration in the -neighborhood of a voxel.
Kong proved the following (in a slightly different formulation):

Characterization  A voxel p is simple in P if and only if both the P -attachment set, and
the complement of that set in the boundary of p (that is in the Schlegel diagram of p) are
non-empty and connected.

)emain idea of his proof is to subdivide the voxel p into  tetrahedra by splitting each
face into two triangles and choosing the centroid of the voxel as the fourth vertex. Starting
from the non-empty background component, all these tetrahedra can be collapsed. Next,
the induced triangles in the boundary of p are collapsed until the P -attachment set
remains.)is sequence constructs a strong deformation retraction from P to P \
{p}. For the remainder of the proof—that a strong deformation retract implies two
components—the reader is referred to Kong’s article.
Kong also proved that his characterization is equivalent to characterizations based

on the investigation of connected components in the neighborhood of a voxel. Such
characterizations are discussed by Saha et al. (); Malandain and Bertrand ();
and Bertrand andMalandain ().)e characterization given in the last paper is stated
below:



 Voxel Skeletons

Characterization  A voxel p of an object P is simple if it is -adjacent to exactly one
-component of voxels in its -adjacency set A26(p) and it is -adjacent to exactly one
-component of background voxels in its -adjacency set A18(p).

)e presented characterizations are used in thinning algorithms to construct a voxel
skeleton by sequentially removing simple object voxels p1, . . . , pn until nomore voxels can
be removed. Each of these voxels pi must be simple in the objectPi−1 = P \{p1, . . . , pi−1}
remaining a(er removal of the first i−1 voxels of the sequence.)e construction induces
a deformation retraction of the voxel object P0 to the object Pn. Hence, homotopy
equivalence is preserved during the process. We also require that all voxels of Pn are
non-simple. Otherwise removal could continue.
)e goal is to create a thin voxel object, that is a voxel object in which every voxel has a

background neighbor. In some cases, this is not achievable and thinning stops at a point
where interior voxels remain in the result. In the following two-dimensional example

Figure 2.10: Set of non-simple voxels containing interior voxels.

all voxels are non-simple but the voxels in the center do not have any background
neighbors. Similar configurations can be constructed in three dimensions.)inning in
the grid point model fails to resolve such configurations. As discussed below, they can be
resolved in the grid cell model or by enforcing an interpretation of voxel configurations
as geometry of a specific dimension, for example by collapsing a connected component
of interior voxels to a single point.
)inning, discussed so far, achieves homotopy and thinness (in most cases) of the

constructed skeleton but medialness and reconstructability may also be required, as
already mentioned in the introduction to this chapter. Medialness means each point on
the skeleton has at least two nearest neighbors on the boundary of the object. In the figure
below, the dashed line on the le(illustrates a homotopic set, which is not medial:

Figure 2.11: A homotopic skeleton that is not medial and a medial skeleton.

If this set were chosen as a skeleton, it would give misleading information about the
position of the original object.)e dashed line on the right illustrates a medial set which
is a suitable skeleton.
Reconstructability means the original object can be reconstructed from the skeleton.

)is can be achieved by storing the local thickness at each skeleton point, that is the
distance to the nearest background point, and reconstructing the object as the union of
balls centered at all skeleton points with a radius given by the local thickness. Depending



. Voxel and Grid Cell Skeletons

on the details of the process, the reconstructed object will either match the original object
exactly or only approximately.)e following skeleton on the right is able to reconstruct
the original object on the le(:

Figure 2.12: An object and a skeleton that is able to reconstruct the object.

Whereas the skeleton in the following counter example fails to reconstruct the original
object:

Figure 2.13: An object and a skeleton that fails to reconstruct the object.

Medialness will be discussed in more detail next; reconstructability shortly a(er.

Distance Ordered Homotopic Thinning

Pudney () proposes distance ordered homotopic thinning (DOHT), a simple and
efficient method to compute a medial voxel skeleton. Algorithm  presents the basic
version of the algorithm. Distance ordered homotopic thinning stores voxels waiting
for processing in a priority queue. Voxels with a low distance to the nearest boundary
are processed first. Processing starts by queuing all boundary voxels. Other voxels are
added to the priority queue only a(er their neighborhood changed and tests for their
deletionmight succeed. Medial voxels have a high distance value and therefore are deleted
last or are retained if they are non-simple. Some voxels may be queued several times if
their neighborhood changed more than once.)e overall number of tests for deletion is
O(n + m), with the number of voxels n and the number m of voxels queued multiple
times, which depends on the topology of the object.
In addition to the binary image itself, DOHT requires a distance transformation.)e

distance transformation of a voxel object P is a mapping d : P → R that assigns every
foreground voxel p the distance to the nearest background voxel

d(p) = min
q∈P̄

d(p, q)

where d(p, q) is a metric. If exact medialness is desired, the euclidean metric should
be used. Otherwise an approximation of the euclidean metric may be sufficient. A
comprehensive discussion of algorithms for computing distance transformations can be
found in Cuisenaire ().
)e chamfer distance transformation is an efficient approximation of the exact distance

map. Its computation is based on integer weights along voxel paths to the background.
)eweighted length of a path fl = (p0, . . . , pn) is computed as len(fl) =

Pn
i=1 d(pi−1, pi).



 Voxel Skeletons

Algorithm  Basic Distance Ordered Homotopic)inning takes a voxel object P and
its distance transformation d; and shrinks P to its homotopic skeleton. Adapted from
Pudney ().
: procedure BɪDOHT(P , d)
: for all p ∈ P do
: if A6(p) fl P̄ ”= ∅ then ! If p has -neighbor in background,
: Enqueue(Q, p, d(p)) ! queue with priority for low distances.
: l(p) √ QUEUED
: else
: l(p) √ UNQUEUED
: end if
: end for
:
: while Q not empty do
: r √ Dequeue(Q) ! Take head of queue.
: l(r) √ UNQUEUED
: if r deletable in P then
: P √ P \ {r}
: for all s ∈ A26(r) fl P do ! Place -object neighbors,
: if l(s) = UNQUEUED then ! if not already queued,
: Enqueue(Q, s, d(s)) ! into queue.
: l(s) √ QUEUED
: end if
: end for
: end if
: end while
: end procedure

)e chamfer distance transformation is defined as assigning to a voxel p ∈ P the lowest
weighted length along all paths from p to the background

dC(p) = min
fl(p,q)with q∈P̄

len(fl(p, q))

)eeuclidean distance between two neighboring points is approximated by integer values.
)is allows to save storage space and computation time.)e following integer values are
used in the original paper:

d(p, q) =






3 if |p − q|2 = 1

4 if |p − q|2 = 2

5 if |p − q|2 = 3

)ese values minimize the upper bound on the difference of the chamfer distance
transformation and the euclidean distance transformation, as proved by Borgefors ().



. Voxel and Grid Cell Skeletons

Figure 2.14: Propagation masks used in 3d chamfer raster scans. The value stored at the center
voxel is increased by the integer weights 3, 4, 5 noted at the neighboring voxels. Two
masks are used. The first mask propagates to the right, back and top. The second mask
propagates to the left, front, and bottom.

Chamfer distance transformations can be efficiently computed by shortest path
propagation with integer weights (Verwer et al., ) or two raster scans (Borgefors,
). Path propagation uses a bucket sorted queue to store a front of propagating voxels
sorted by their current integer distance and propagates the lowest value to neighboring
voxels.)e raster scan algorithmuses the twomasks illustrated in Figure . in a forward
and a backward raster scan. Values at the central voxel are increased by the value indicated
in the mask and propagated if the sum is smaller than the value at the target voxel.
Equipped with a distance transformation, basic DOHT is straight forward as detailed in
Algorithm .
A potential problem is that BɪDOHT’s results may depend on the input order.

BɪDOHT removes voxels sequentially. Because deletion of a voxel may influence
tests for deletion of neighboring voxels, the result can strongly depend on the input
order, in which the voxel object is processed.)e problem is especially obvious for large
two-dimensional planes of voxels. Such planes may contain two-voxel-thick layers of
voxels with the same distance value. An example is illustrated by a two-dimensional slice
through a plane in three dimensions:

Figure 2.15: Distance map containing two-voxel-thick layer with same values.

)eorder of tests depends on the input order of the voxels. Most resulting skeletonswould
not be centered within the two-dimensional plane. Imposing restrictions on the order of
processing may improve the »smoothness« of the shrinking process and alleviate these
deficiencies.
Organizing the algorithm in iterations of voxels deleted simultaneously tackles the

problem of inter-dependency of tests for deletion.)e skeleton is constructed as a



 Voxel Skeletons

sequence S0, S1, . . . of iterations. Tests for deletion in iteration Si are based only on Si−1.
)is idea is o(en denoted as testing voxels in parallel (Lam et al., ). As noted above,
tests for deletion can not be performed independently of the removal of neighboring
voxels. Care must be taken to guarantee that Si is in fact a deformation retract of Si−1.
But obviously subsets of voxels exist that can be removed simultaneously. A set Q ⊂ P is
said to be a simple set in P if there exists an ordering q1, . . . , qn of its elements, such that
each qi is simple in the object Pi−1 = P \ {q1, . . . , qi−1} remaining a(er removal of the
first i − 1 voxels. Each ∆S = Si−1 \ Si must be a simple set in Si−1.
One way to guarantee simple sets are restrictions in each iteration on the candidate

voxels tested for deletion. Note, the -neighborhood of a voxel fully determines whether
it is simple. Both characterizations of simple voxels given earlier only rely on the direct
-neighbors of a voxel.)us, every second voxel in each dimension can be tested and
removed independently of each other.)is partitions the image into eight so called
sub-fields. Weaker restrictions may be sufficient, as discussed, besides others, by Kong
() or Ma et al. ().
Homotopy can also be preserved by a strategy denoted by Lee et al. () as sequential

rechecking. A first processing step searches candidate voxels for deletion by testing all
voxels in Si−1 and a second step removes voxels sequentially, but only if they are still
deletable in the remaining object. Cases like the one illustrated below are now handled as
expected.)e skeleton is located in the center of the voxel configuration because voxels
are deleted »in parallel« from both sides:

Figure 2.16: Result of removing sequentially and of removing »in parallel«.

Difficulties caused by two-voxel-thick planes with the same distance value can be
mitigated by introducing sub-iterations. Each iteration is split in two sub-iterations. In
each sub-iteration only selected spatial directions are tested. For example in the first
sub-iteration only voxels at the top boundary would be tested, in the second sub-iteration
only voxels at the bottom.)e -neighbors define  spatial directions that can be
grouped into two sub-iterations as illustrated in Figure ..)e depicted masks will
be used in SʜDOHT (see Algorithm ) to compute subiteration(t, P) for a voxel
t ∈ P depending on the configuration in its neighborhood. Only a single sub-iteration is
processed »in parallel«. If the object contains no plate-like structures sub-iterations may
be omitted.
Algorithm  presents the discussed modifications to DOHT. SʜDOHT computes

a centered homotopic skeleton.)e process is split into iterations and sub-iterations.
Sub-iterations alternate based on an integer counter. In each sub-iteration sequential
rechecking is applied to ensure homotopy equivalence when removing voxels »in
parallel«.



. Voxel and Grid Cell Skeletons

Algorithm  Smooth Distance Ordered Homotopic)inning takes a voxel object P and
its distance transformation d; and shrinks P to its homotopic skeleton.
: procedure SʜDOHT(P , d)
: for all p ∈ P do
: if A6(p) fl P̄ ”= ∅ then ! If p has -neighbor in background,
: Q(d(p)) √ Q(d(p)) fi {p} ! queue for processing at distance d(p).
: l(p) √ QUEUED
: else
: l(p) √ UNQUEUED
: end if
: end for
: i √ 0 ; dmax √ max(d(P))
: repeat
: i √ i + 1 ; d √ 0
: X √ ∅ ! Set of matched sub-iterations.
: while d Æ dmax ∧ X = ∅ do ! Break if a voxel was deleted.
: T √ Q(d) ; Q(d) √ ∅ ! Take all voxels with distance d.
: for all t ∈ T do ! First, parallel check.
: l(t) √ UNQUEUED
: if t deletable in P then
: l(t) √ (CANDIDATE, subiteration(t, P))
: X √ X fi {subiteration(t, P)}
: end if
: end for
: if X ”= ∅ then
: x √ choosesubiteration(X, i) ! select sub-iteration based on counter i
: for all t ∈ T do ! Sequential rechecking
: if l(t) = (CANDIDATE, x) then ! of selected sub-iteration.
: l(t) √ UNQUEUED
: if t deletable in P then
: P √ P \ {t}
: for all s ∈ A26(t) fl P do ! Queue -object neighbors,
: if l(s) = UNQUEUED then ! if not queued,
: Q(d(s)) √ Q(d(s)) fi {s} ! for processing.
: l(s) √ QUEUED
: end if
: end for
: end if
: else if l(t) = (CANDIDATE, ·) then ! Re-queue other sub-iterations.
: Q(d(t)) √ Q(d(t)) fi {s}
: l(t) √ QUEUED
: end if
: end for
: end if
: d √ d + 1
: end while
: until X = ∅ ! Continue as long as deletable voxels were found.
: end procedure



 Voxel Skeletons

Figure 2.17: Masks selecting spatial sub-iterations. The indicated object and background voxels
must match a mask to select the central voxel, which is omitted in the figure,
for processing. Neighbors left free in the figure are ignored during matching.
Representative masks to detect face, edge, and corner configurations are depicted from
left to right. The masks to select a sub-iteration are illustrated at the very right. The
object voxel of a face, edge, or corner mask must be located at any of the indicated
positions to be included in sub-iteration 1 respectively 2.

)e skeleton computed by SʜDOHT is not yet necessarily able to reproduce the
original shape of the object if all simple voxels are removed as illustrated below:

Figure 2.18: Skeleton that fails to reconstruct an object.

)e le(side branch is not represented in the skeleton, although it is homotopic to the
object. We did not yet require reconstructability of the original object from its skeleton.
Changing the rule for deletion of a voxel provides a way to integrate reconstructability

with thinning. Being simple alone is no longer sufficient, but geometric properties, for
example not being an end-point, are tested in addition:

Figure 2.19: Skeleton, with local end-points, capable of reconstructing the object.

Other geometric properties, for examples not being a boundary voxel of a surface, may be
regarded, too. See for example Borgefors et al. (); Jonker (, ).
Geometric properties that are specified in a local neighborhoodof a voxel are susceptible

to noise. Spurious side branches are a typical problem. Several authors propose to
remove them in a post-processing pruning step; among others, see Shaked and Bruckstein
(). Modifying the geometric conditions included in the test for deletion allows to
avoid them early in the process.)e following discussion covers only one-dimensional
voxel skeletons.)e idea might be extended to two dimension. A measure of the local
importance of a surface boundary voxel would than be needed. But this is beyond the



. Voxel and Grid Cell Skeletons

scope of this thesis.
)e test for end-points based on an investigation of the local A26 neighborhood can

be improved by considering a larger neighborhood. An end-point is a voxel with only
one neighbor. Requiring a certain »length« of the branch ending there makes the
characterization more robust to noise.)e idea is formalized in the following. An object
voxel p ∈ P is said to be a local end-point of P , if p has exactly one -neighbor. A
path following a side branch is used to compute the importance of an end-point as the
length of a path fl = (p0, . . . , pn) with p0 = p, such that the first n − 1 voxels pi are local
end-points of the objects Pi = P \ {p0, . . . , pi−1}, with P0 = P .)e last voxel pn is not an
end-point of Pn. It »roots« the path in the »body« of the object. Some cases are illustrated
below:

Figure 2.20: End-points of branches of various lengths.

)e test for deletion in the thinning algorithm is modified by integrating a parameter
dependent end-point detection in the following way. A voxel p is deletable if

• p is simple;

• p is not a local end-point of a side branch longer than a user specified threshold l.

)e parameter l controls sensitivity of detecting side branches and needs to be balanced
against susceptibility to noise.
)e utility of skeletons computed by the presented thinning algorithm depends on the

architecture of the input object. Figure . (all examples are collected in Chapter )
depicts the results of thinning of a rod-like architecture without cavities. If no end-points
are preserved, thinning will compute a skeleton representing only the topologically
stable features, that is the loops. A low threshold on the importance of end-points
yields a skeleton with many side branches, which are supressed at a higher threshold.
)e threshold allows to trade reconstructability versus robustness to noise. Figure .
illustrates objects with plate-like and sphere-like elements. Plate-like structures are
represented by the computed skeleton to some extent.)e topological features are
reflected, while details of the geometry, like for example the main direction of the plates,
are not.)e situation is similar for a sphere-like part. Cavities however change the
situation. Cavities are a topological feature and thus always preserved by thinning.)e
result is no longer one-dimensional but contains a surface enclosing the cavity.
Noise may cause topological changes that lead to substantially different skeletons

because thinning guarantees strict homotopy equivalence. Figure . depicts an example
with a high level of noise.)e skeleton includes loops and closed surfaces, which are not
present in the noise-free object.)e skeleton captures every topological change, which
limits its utility in the presence of high noise levels.



 Voxel Skeletons

Strict homotopy equivalence is not always a desired feature. For example it could be
more appropriate to consider small loops as noise. But thinning preserves homotopy
equivalence. If homotopy equivalence is not a primary objective, other algorithms might
be a better choice.)e TEASAR algorithm (Sato et al., ), as one example, is designed
to detect tree like branching structures only. All loops will be ignored, which makes the
TEASAR algorithm highly robust to noise.

Thinning grid cell complexes

We noted earlier that voxels sometimes fail to exactly represent lower dimensional
structures, especially at junctions:

Figure 2.21: Junctions with unclear interpretation.

)e voxel configuration on the le(can not be further eroded. Voxels lock each other in
a way that no voxel is simple. At the right, the interpretation of a voxel configurations
representing a junctions poses similar problems. While it is obvious how to interpret
voxel configurations as lines if each voxel has exactly two neighbors, it is not obvious for
the junction in the center. A human viewer would probably connect the two loops at a
single point located in the center, between the four voxels forming the junction. But a
formalization of this human interpretation is challenging.
)e grid cell model can explicitly capture lower dimensional structures and is therefore

superior to the grid point model for representing skeletons:
Figure 2.22: Junction in the grid cell model.

)e two rings are now represented as a one-dimensional cell complex. Ambiguities in
the interpretation have vanished. Note, this cell complex has no interpretation as a voxel
object, as voxels are represented by -cells but the complex only contains - and -cells.
)e representation of all dimensions in the grid cell model explicitly gives this freedom.
Skeletons are a lower dimensional representation. Hence, the grid cell model’s capability
of capturing lower dimensional structures faithfully may provide advantages compared to
the grid point model.
Another example of failure of the grid point model to represent topology are voxel

configurations that are homotopy equivalent to a point but can not be eroded by thinning.
In the following example, each of the two »towers« encloses a tunnel:



. Voxel and Grid Cell Skeletons

Figure 2.23: Locked voxel configuration that can not be further eroded.

)e two tunnels join at the base and are connected to the outside in the center.)e object
can be retracted to a point but thinning fails to do so. No simple voxel exists to start the
retraction. Obviously, such configurations can be infinitely large.
)e following paragraphs establish a process that is similar to thinning of voxels but

operates on grid cells and solves the described problems.)e input voxel object P
is converted to its grid cell complex X(P).)e grid cell skeleton is a sub-complex
Y ⊂ X(P), which is a deformation retract of X(P). Note, Y in general is not a grid
cell complex of a voxel object because Y will not contain -cells. Grid cell skeletons share
the same principal properties with voxel skeletons.)ey should also be medial, thin, and
be able to reconstruct the original object.
)e only reference sketching a similar idea as the one presented shortly is Kovalevsky

(). But Kovalevsky computes skeletons in the grid cell model that are not necessarily
cell complexes. As a consequence,more complex rules for deletion of cells are needed than
in the solution presented below. Defining grid cell skeletons as sub-complexes links them
more closely to the well known theory of cell complexes than Kovalevsky’s discussion.
In a first step, we establish a simple rule for deletion of cells based on the Euler

characteristic. A(er each deletion the remaining object shall be a cell complex and
a deformation retract of the object before deletion.)e Euler characteristic is a well
known homotopy invariant, which remains unchanged under a homotopy. Deformation
retractions are homotopy maps.)us deformation retracts must have the same Euler
characteristic as the original object.)e Euler characteristic ‰ is computed from the
number –i of i-cells in a cell complex X as

‰(X) =
X

i

(−1)i–i

In the three-dimensional case this reduces to

‰ = –0 − –1 + –2 − –3

Deleting one cell alone will never keep ‰ invariant.)us at least two cells need be deleted
simultaneously. Pairs of cells contributing with different signs to ‰ must be chosen.)e
four combinations c0/c1, c0/c3, c1/c2, c2/c3 are the only candidates for deletion. We also
required that a cell complex remains a(er deletion.)erefore, lower dimensional cells



 Voxel Skeletons

Figure 2.25: Deletable pairs of grid cells. The pairs of cells—c0/c1, c1/c2, c2/c3—indicated on the
left are removed to form the deformation retract depicted at the right.

can only be removed together with all incident higher dimensional cells. Otherwise, the
higher dimensional cells’ boundary would become open.)e removal of a c0/c3 pair is
thus ruled out because the faces and edges of c3 are also incident with c0:

Figure 2.24: A 3-cell, a 0-cell and incident 1-, and 2-cells.

)e rules for deletion of the pairs of cells can be concisely summarized in a single rule:

Proposition  A pair of cells {cd, cd+1} can be removed from a cell complex X such that the
remaining sub-complex is a deformation retract of X if and only if cd is incident with only
cd+1 but no other cell.

)e deformation retraction is obvious for all three cases as illustrated in Figure ..
In analogy with the grid point model, a pair of cells C = {cd, cd+1} ⊂ X is said to be

a simple pair of cells in the grid cell complex X if its deletion results in a sub-complex



. Voxel and Grid Cell Skeletons

Y = X \ C , which is a deformation retract of X . A characterization of simple pairs is
given by the proposition right above.

Grid cell thinning is sequentially removing simple pairs of grid cells until no further
simple pair is found. Distance ordered homotopic thinning can be modified to compute
grid cell skeletons in the following way. (the details are presented in Algorithm ).
Simple pairs near to the boundary with low dimensional cells will be removed with
priority.)e process starts at the boundary of the object with -cells incident to a
background -cell. Tests are performed in parallel. Sub-iterations are not needed because
the organization of the process by the dimension of the tested cells already cares for
handling two-voxel-thick configurations. Deletion of a cell cd influences tests for deletion
at incident lower dimensional cells cd−1.)us all these cells are queued for each of the
two cells of a deleted pair.

End-point preservation can also be integrated in the tests for deletion.)e importance
of an end-point is computed as the length of a (,)-cell path. A (,)-cell path is a
sequence fl = (c0

0, c1
0, . . . , c0

n−1, c1
n−1, c0

n) such that every -cell is incident with the two
neighboring -cells: c0

i ≺ c1
i−1 and c0

i ≺ c1
i ; for example:

Figure 2.26: A (0,1)-cell path.

)e length of the path is n, the number of -cells. A -cell c0 is a local cell end-point
in the grid cell complex X if c0 is incident with exactly one c1 ∈ X .)e importance
of a cell end-point is computed as the length of a (,)-cell path with the property that
each c0

i is a local cell end-point in the cell complex X \ {c0
0, c1

0, . . . , c0
i−1, c1

i−1} remaining
a(er removal of the first i − 1 cell pairs of the path. Similar to the grid point model, a
user specified length selects the cell end-points kept in the final skeleton. Note, short
end-points naturally emerge a(er the removal of c1/c2-pairs (see Figure ., middle
right).)erefore, a sufficiently large threshold must be chosen.

Grid cell thinning computes skeletons similar to the results of thinning in the grid point
model. Figure . illustrates results of grid cell thinning of an object built of rod-like
elements.)e skeletons are virtually undistinguishable from the grid point skeletons
displayed in Figure .—except for skeletons computed with a low threshold on the
importance of cell end-points. End-point naturally emerge during grid cell thinning. As
a consequence a larger threshold is needed to suppress side-branches.)e behaviour for
all types of architecture is comparable to thinning in the grid point model.

At the price of a higher storage cost, grid cell thinning resolves all configurations that
the grid point models fails to resolve. It unequivocally represents junction configurations
and is able to retract complex voxel configurations that would be locked in the grid point
model.



 Voxel Skeletons

AlgorithmDistance ordered grid cell thinning takes a grid cell complexX and a distance
transformation d; and shrinks X to its homotopic grid cell skeleton.
: procedure SʜDOGTT(X , d)
: for all cx ∈ X do
: if dim(cx) = 2 ∧ cx ≺ cy ∈ X̄ then ! If cx is boundary cell
: Q(d(cx), dim(cx)) √ Q(d(cx), dim(cx)) fi {cx} ! queue at distance d(cx).
: l(cx) √ QUEUED
: else
: l(cx) √ UNQUEUED
: end if
: end for
: i √ 0 ; dmax √ max(d(X))
: repeat
: i √ i + 1
: m √ false ! If cell complex was modified restart loop over all distances
: for d √ (0, 0), . . . , (0, 2), (1, 0), . . . , (dmax, 2) ∧ ¬m do ! and dimensions.
: T √ Q(d) ; Q(d) √ ∅ ! Take all cells matching distance and dimension.
: for all ct ∈ T do ! First, parallel check.
: l(ct) √ UNQUEUED
: if ∃{ct, cu} deletable in X then
: l(ct) √ CANDIDATE
: m √ true
: end if
: end for
: if m then
: for all ct ∈ T do ! Sequential rechecking
: if l(ct) = CANDIDATE then ! of marked candidates.
: l(ct) √ UNQUEUED
: if ∃C = {ct, cu} deletable in X then
: X √ X \ C
: for all cv ∈ {cy ∈ X | cy ≺ ct ∨ cy ≺ cu} do ! Incident cells
: if l(cv) = UNQUEUED then ! are queued if required.
: Q(d(cv), dim(cv)) √ Q(d(cv), dim(cv)) fi {cv}
: l(cv) √ QUEUED
: end if
: end for
: end if
: end if
: end for
: end if
: end for
: until ¬m ! Continue until nothing changed.
: end procedure



. Voxel and Grid Cell Skeletons

Implementation of thinning

Deletion tests are performedO(n+m) times during thinning, withn = |P | the number of
voxels of the object P and m counting the number of multiple checks of one voxel, which
depends on the topology of the voxel object. For large n an efficient implementation is
crucial.
In the grid point model, tests for simplicity, for being part of a sub-iteration, and

for being a local end-point can all be decided in the A26 neighborhood. A direct
implementation of the discussed characterizations probably would be complex and
inefficient. A solution could be to build a look-up table indexed by the neighboring
configuration. By symmetry considerations, the size of the table might be reduced.
A much more elegant solution for evaluating local tests is based on binary decision

diagrams, as proposed by Robert and Malandain (). Local tests can be considered
boolean functions over  variables (or  variables if the central voxel itself is included).
)e possible outputs of such a function can be efficiently encoded as a rooted, directed,
acyclic graph: the binary decision diagram (BDD). Any reference implementation
may be used to compute the truth table from which optimized representations can
automatically be generated. Here, the BuDDy library from http://buddy.sourceforge.net
was used (see also Cohen, ).)e resulting BDD is output as C source code and
directly included in the implementation.
In the grid cell model all tests can easily be computed based on the integer coordinates

of the grid cells.)e characterization of deletable pairs was implemented as boolean tests
without further optimization.

2.3.2 Two-Dimensional Skeletons: Geodesic Boundary Distance

)inning can be used to compute two-dimensional skeletons but it is susceptible to noise
if preservation of geometric features based on local decisions is integrated. Homotopic
skeletons of objects with cavities naturally contain two-dimensional voxel surfaces, which
separate the enclosed background component from the outside.)inning, as presented
in the previous section, is able to compute them. But pure homotopy is rarely sufficient
in applications. Geometric properties and reconstructability are o(en equally or more
important.)ose could be established by local tests for surface boundaries as in Borgefors
et al. (); Jonker (, ). But these approaches have the disadvantage of being
susceptible to noise.
Distance transformations, which encode global information of the voxel object,

introduce a »global view« that may help to devise methods more robust to noise.
Building on previous work, Malandain and Fernández-Vidal () present a measure
to characterize skeleton voxels based on the distance transformation.)ey propose to
reconstruct homotopy in a second step by homotopic thinning. Costa () proposes
a measure based on the geodesic distance along the boundary of the object. Ogniewicz
and Kübler () use a similar measure to compute hierarchical Voronoi diagrams in
two dimensions. Dey and Sun () introduce the »medial geodesic function« to define
and compute curve skeletons in three dimensions, which is is similar in spirit to the



 Voxel Skeletons

approach introduced below.)e guiding idea in all cases is to include a global view into
the characterization of skeleton voxels. Distance transformations provide this view.
)emedial axis is amathematical object that is o(en used as a starting point for defining

skeletons. In the continuous view R3, the medial axis is defined by the loci of maximal
inscribed spheres touching the boundary of the object at two or more points.)e set of
nearest point in the background is denoted as ≈ (x) = {y ∈ P̄ | d(x, y) = d(x, P̄)}.)e
medial axis M is now defined as all points with at least two nearest background points,
that is M = {x ∈ P | |≈ (x)| Ø 2}:

Figure 2.27: Object, medial axis, and maximal spheres.

It is well known that the medial axis is unstable under perturbation of the boundary
(see Attali et al. () for a detailed review):

Figure 2.28: Instability of the medial axis under boundary pertubations.

)is property inhibits a direct use of the continuous medial axis to define skeletons for
real-world voxel objects as their boundary always contains perturbations.
)e discussion below introduces a graded representation of the medial axis, which

associates an importance measure with every point. In a first step, this idea is developed
in the continuous view. In a second step, a method is described operating on voxel grids,
which follows the lines of the continuous view.)e importance measure allows to select
voxels skeletons stable under small changes of the boundary.
)e basic idea is to use the nearest background points of a pair of points to decide if

they are separated by the skeleton:
Figure 2.29: Two points and their nearest boundary points.

Assume a distance transformation that is able to provide not only the value to the nearest
background point but also the coordinates of this background point. It is not uniquely
defined for points on the medial axis as two (or more) background points are at the same
distance. One of them is chosen in these cases. Analyzing the nearest background points
b(p) and b(q) of a pair of neighboring points p and q reveals if they are separated by the



. Voxel and Grid Cell Skeletons

skeleton surface. Loosely spoken, if the points are on two distinct sides of the object, they
are separated.)is decision can be based on the location of p, q, b(p) and b(q). Malandain
and Fernández-Vidal () propose to analyze the distance of b(p) and b(q) and the angle
formed by b(p), p ≈ q, b(q). Near to the boundary or at small structures the proposed
measure is susceptible to noise. Ogniewicz and Kübler () and similarly Costa ()
integrate measures based on the shape of the object’s boundary.
)e idea developed here, which is also presented in Prohaska and Hege (), is to

measure how much the object separates two background points by the geodesic distance
along the boundary.)e idea is illustrated below:

Figure 2.30: Degree of separation measured by geodesic distance.

Small variations of the surface have little influence on the geodesic distance.)is gives
hope that a measure can be derived, which is robust to noise. A more precise definition
in the continuous view is omitted. Instead we directly skip to voxel representations.
)e geodesic distance of the nearest background points shall be computed in the voxel

representation. For a binary object P the nearest background point transformation
b : P → P̄ maps each voxel to the nearest background voxel (by a chamfer
path).)e geodesic distance along the boundary can be approximated by paths in the
one-voxel-thick background layer L = {q ∈ P̄ | q is -adjacent to P }. At convex parts
of the object, paths in L give a good approximation of the geodesic distance. At concave
parts a pathmay underestimate the geodesic distance by »taking a short-cut« as discussed
below.
Difficulties may arise with the details of estimating the geodesic distance.)e grid cell

model could describe the boundary of the object exactly by -cells incident with an object
and a background voxel:

Figure 2.31: 2-cell path along the boundary of a voxel object.

Computing a geodesic distance would require definitions of adjacency and paths in sets
of -cells. In the following example this would be a real advantage:

Figure 2.32: Short cutting voxel path.



 Voxel Skeletons

Here, the background boundary layer fails to approximate the geodesic distance because
the two boundaries can be short cut by a »straight« voxel path. But we are only interested
in cases where the object separates the two boundaries, thus connecting them along a
straight path is not possible. Nonetheless, propagation in the boundary background voxel
layer may yield different results from propagation in the -cell boundary at concave parts
of the object:

Figure 2.33: Another short cutting voxel path.

Such deviations from the correct value are ignored in the following. You may assume the
resolution of the binary image is high enough such that at least one background voxel
separates concave parts and the paths in L cannot take a short-cut. If this is not true for
the input data computing paths in sets of boundary -cells should be considered.
Putting the discussed difficulties aside, the geodesic distance may be approximated in

a one-voxel-thick background layer.)e geodesic distance g : L ◊ L → N of two
background points p and q in the background layerL is given by the length of the shortest
-path connecting them in L. If no path exists, the distance is ∞ by definition. Note,
we need to respect the correct background adjacency relation (-adjacency) to correctly
separate two sides of the object:

Figure 2.34: Forbidden diagonal background path.

)e characterization of a skeleton is now given by a threshold on the geodesic distance.
Here the grid cell model proves superior to the grid point model because it allows to
explicitly represent two-dimensional structures. A value is associated with every -cell
of the object’s grid cell complex. Cells above a chosen threshold belong to the skeleton.
Two points of the continuous case are associated with a pair of -neighbors p, q.)e
geodesic distance between the two nearest background points is associated with the -cell
c2

{p,q} incident with both voxels. A threshold selects the skeleton -cells. In summary:

• For each voxel p ∈ P the nearest background voxel is given by b(p).

• For two voxels p, q in the background layer L = {q ∈ P̄ | q -adjacent to P }, their
distance g(p, q) is given by the length of the shortest -path connecting them in L.

•)e skeleton importance of a -cell c2
{p,q} is given by g(b(p), b(q)).

• All -cells above the threshold t together with their lower dimensional neighboring
cells form the skeleton Yt.

)e selected -cells have no one-to-one correspondence to voxels. Nonetheless, a
representation of the skeleton in the grid point model can be achieved as follows. Each



. Voxel and Grid Cell Skeletons

-cell c2
{p,q} has at least one incident -cell contained in the object’s grid cell complex. If

only one -cell, say c3
{p}, is incident the grid point p will be included in the grid point

skeleton. If two -cells c3
{p} and c3

{q} are incident, only the smaller grid point p < q will
be included in the grid point skeleton. p < q is defined by component-wise comparison
starting with the lowest index. Unfortunately the selected voxels do not necessarily form
a thin set.)ey o(en contain non-simple voxels that could be removed without loosing
geometric information:

Figure 2.35: Representing grid cell surfaces by voxels.

)e le(»staircase« results in a thin set but not the right one. A post-processing step can be
applied removing all simple voxels while preserving geometry (see Borgefors et al., ).
Following the above rules implicitly allows to perform all computations in the grid point

model.)e importance of a voxel is computed

• by considering the three -neighbors with lower coordinates;

• by considering each of the three other -neighbors only if it is a background voxel;

• and taking the maximum of the geodesic distances.

Similar to thinning, the utility of the geodesic distance based skeletons depends on the
architecture of the original object. Figure . illustrates skeletons of plate-like structures.
)e threshold on the geodesic distance selects skeletons that are stable to noise. Note
however, in contrast to thinning homotopy equivalence is not guaranteed. For example
the rod-like parts in Figure . are not stable with increasing thresholds.)e skeletons
in row two and three from the top fail to capture the rod-like parts.)inning was
used to solve this deficiency in the bottom two rows (see next section for more details).
Sphere-like parts cause spiky sheets in the skeleton as depicted in Figure ..)ough
topology is in general not preserved, cavities are a topological feature that is retained in
all geodesic distance based skeletons. Figure . illustrates an example with plate-like
structures attached to a hollow sphere. In this case the structure of the object is well
reflected by the skeleton.

Implementation

A naive implementation of the geodesic distance based skeleton would require runtime
quadratic with the input size.)e next paragraphs give some details on how to efficiently
implement the proposed measure. Assume a voxel object P with k = |P | foreground
voxels. P is stored as an array representing a sub-domainD ⊂ Z3 containingn = |P |+|P̄ |
voxels.)e sub-domain is assumed to be sufficiently large, so that background voxels P̄
surrounds P everywhere:



 Voxel Skeletons

Figure 2.36: Object which does not touch boundary of computation domain.

)e nearest background voxel transformation is computed with chamfer propagation in
O(n) time. A naive implementation would now locate the two nearest background voxels
for each of the O(3k) -cells and compute the geodesic distance. In the worst case this
would require a propagation through the complete background layer by Verwer’s bucked
sorted shortest path algorithm (Verwer et al., ), which may be of size O(k) as well.
Hence the overall runtime would be O(k2). Input data in our case is usually large and
O(k2) is too slow.
)e runtime can be reduced when limiting the distance of propagation and assuming

well formed input data. A first general consideration is that we know an upper bound on
the distances g(p, q), which allows to reduce the complexity. Values above the importance
threshold t need not be further differentiated.)us we may restrict the propagation to a
subset of L of worst case size O(t3) resulting in O(kt3) overall runtime. A practical value
of t is , thus t3 = 106, which still is a huge constant. Typically the background layer L
forms a two-dimensional surface and not a three-dimensional volume.)us propagation
up to the maximum value t in such »well formed« input takes only t2 steps. Many object
voxel pairs map to boundary points located near each other. In these cases propagation
will terminate even earlier. Voxels with a high importance value make up only a fraction
of the k object voxels (approximately k divided by the mean radius r̄ of maximal spheres).
Hence, the typical runtime is of order kt2/r̄, which is linear in input size, however with a
large but practical constant t2/r̄.
Unnecessary initialization of the arrays used to store results must be avoided. A

naive implementation of the propagation of g(p, q) starts with initialization of an array
representing the background layer.)e array has size O(k). Computing g(p, q) would
be bound by the initialization of this array, and the above arguments would be invalid.
A carefully chosen encoding scheme for the current distance transformation rooted at
p avoids the initialization. For each new point p the geodesic distance is encoded in a
different integer range [z, z + t]:

Figure 2.37: Encoding of distance values.

)e range is advanced for every new base point.)e array is only initialized once at the
beginning of the computation, or on overflows of the integer type used for encoding the
distances.



. Voxel and Grid Cell Skeletons

2.3.3 Mixed Dimensional Skeletons

A fusion of thinning and the skeleton characterization based on geodesic distances allows
to extract voxel and grid cell skeletons containing rod-like and plate-like parts. In a
first step a plate-like skeleton is computed. Its elements are locked during a subsequent
thinning step guided by a distance transformation.)e resulting skeleton faithfully
represents one and two-dimensional parts of the object.)e lower two rows in Figure .
depict skeletons computed in this way. Still, the input must not contain volumetric,
sphere-like parts as the discussed methods would fail to represent them properly.
)e geodesic distance along the boundary can also guide thinning directly to compute

one-dimensional skeletons of objects with plate-like parts.)e thresholding step is
skipped but instead the geodesic distance values are used as the guiding distance
in SʜDOHT.)e geodesic distance increases towards the center of plate-like
structures.)inning is thus guided towards the center of these structures resulting in a
one-dimensional skeleton centered within the plates. Figure . compares such skeletons
with the results of standard distance ordered thinning. Although differences are minor
they are clearly visible.)e geodesic distance based skeletons are centered within the
plates while the skeletons computed by standard distance ordered thinning are located at
the thickest parts of the structure.
)e overall computation time may increase dramatically compared to the thresholding

method depending on the structure of the object. When using the geodesic distance
to guide thinning no threshold is used and, therefore, propagation for computing the
geodesic distance can not be terminated early.

Summary

• Skeletons provide a low dimensional representation capturing the shape of an
object. Desirable properties of skeletons are homotopy equivalence with the object,
thinness, medialness, and reconstructability.

• Skeletons can be computed by thinning and boundary propagation, medialness
function basedmethods, wave front propagation and shock detection, or geometric
methods.

•)e grid point model represents voxel objects as points connected by an adjacency
graph.

•)e grid cell model represents voxel objects as a cell complex formed by zero-, one-,
two-, and three-dimensional cells. It needs eight times the storage space of the grid
point model.)e grid cell model is superior to the grid point model for algorithms
that need detailed control of topology.

•)inning erodes the boundary of a voxel object by local operations to compute a
deformation retract of the object in linear time. Erosion is guided by a distance
transformation encoding the distance to the nearest background voxel.



 Voxel Skeletons

• End-points of tubular structures can be retained during thinning.)e sensitivity of
the end-point detection needs to be controlled to avoid spurious branches.

•)inning was extended to the grid cell model. A characterization of pairs of grid
cells that can be deleted during thinning is simpler than characterizations of voxels
that can be deleted in the grid point model.

• A measure indicating skeleton plates centered in the object was established based
on the geodesic distance along the object boundary of two nearest boundary voxels
of a pair of voxels. Skeletons are either selected by a threshold or a combinationwith
thinning is used. Computing the measure requires runtime linear in the number of
voxels but including a large constant given by the square of the threshold.

• Geodesic distance based quantities seem to be well suited to robustly identify one-
and two-dimensional skeletons. A sound theoretical foundation of this observation
is yet missing.



3 Piecewise Linear Geometric
Representation of Voxel Skeletons

)is chapter’s primary goal is to generate piecewise linear geometry for voxel and grid
cell skeletons. Such skeletons, as computed by the techniques discussed in the previous
chapter, are the input to the methods presented now.)e locations of voxel and grid
cell skeletons are restricted to the underlying integer sets of the binary images used to
represent them. In the process of generating piecewise linear geometry the discrete
positions are smoothed and approximations of continuous one- and two-dimensional
geometries are generated, which are represented as line sets and triangle meshes.)ese
are particularly suitable for rendering on contemporary graphics hardware.
A secondary goal is to convert skeletons to more abstract representations. In the case of

pure one-dimensional skeletons, for example, abandoning the geometric locations gives
rise to an interpretation as graphs of junction nodes connected by edges, without direct
geometric meaning.
Several authors discuss approaches to establish a notion of a surface completely defined

in the grid point model with properties comparable to surfaces in the continuous domain.
All the following approaches’ goal is to establish methods based solely on grid points a(er
transferring notions from the continuous domain. Morgenthaler and Rosenfeld ()
introduce digital surfaces in the grid point model.)ey describe conditions on a set of
voxels for having the Jordan property, that is the property to separate the background
in two components. Couprie and Bertrand () use an extended definition, which
includes the case of so-called Morgenthaler surfaces. Based on a framework for digital
topology presented by Ayala et al. (), Ciria et al. (, ) propose to transfer
topological properties from continuous analogs to characterize digital surfaces.
In contrast, the goal of this chapter is to interpret voxel representations of surfaces with

boundaries as continuous geometries and give piecewise linear approximations thereof.
)e voxel surfaces with boundaries introduced below do not separate the domain into
disjoint regions as level sets of smooth functions do. Note, this task is different from
constructing iso-surfaces of (continuous) scalar functions defined by a three-dimensional
image. Iso-surfaces represent interfaces between regions below and above a threshold and
can, for example, be approximated by theMarchingCubes algorithm (Lorensen andCline,
) or similar algorithms with more detailed topology control (Lachaud, ).
Here, we need to deal with non-closed surfaces. Wang et al. () discuss how to

reconstruct non-manifold surfaces from point clouds. As an intermediate representation
they use a voxel representation.)ey reconstruct geometry by building a connectivity
graph and triangulating loops of this graph as presented in Azernikov et al. () and
Azernikov and Fischer ().)eir idea is similar to our idea in Prohaska and Hege



 Piecewise Linear Geometric Representation of Voxel Skeletons

(), which is presented in an extended version below. Building on our work, Fujimori
et al. () propose to locally label voxels in the neighborhood of a skeleton voxel and
define an interface surface which is triangulated by locally applying the Marching Cubes
algorithm.
For voxel input data, utilizing the voxel representations can be superior to geometric

methods based on the Voronoi diagram, which are an alternative for constructing a
geometric representation of a skeleton. Geometric methods start from a point sampled
representation of the boundary and compute a geometric skeleton.)ey seem to be
a natural choice if a geometric representation is requested. But as briefly discussed in
Section . geometric methods are more expensive in terms of computation time and
required storage than voxel based algorithms. Hence combining voxel based methods
and geometric methods may be beneficial.
)emethods presented below provide a link from a voxel representation to a geometric

representation of a skeleton. Results of voxel based skeletonization is accepted as input
and can be converted to a geometric representation.)e resulting geometry may either
be post-processed or used directly for rendering.
We will discuss geometry generation separately for voxel skeletons and for grid cell

skeletons. Voxel skeletons are more challenging because as volumetric objects they fail to
capture lower dimensions faithfully in some cases. Grid cell skeletons on the other hand
do represent all dimensions explicitly and geometry generation turns out to be straight
forward.

3.1 Geometry of Voxel Skeletons

We start with a voxel object in the grid point model built of one- and two-dimensional
parts and construct topologically simple, low-dimensional, piecewise linear geometry per
local neighborhood.
)e general idea is to retract a voxel configuration to geometry:

Figure 3.1: Retracting voxel objects to voxel skeletons to PL geometry.

)is can be seen as an extension of the retraction used to compute voxel skeletons.)e
retraction may either stop if a two-dimensional representation is reached, or it may
continue to a one-dimensional result.)e desired dimension may be chosen depending
on the needs of the application.
)e conversion to one- and two-dimensional geometry should gracefully handle

complex voxel configurations. As noted earlier, such configuration may be encountered
in voxel skeletons:



. Geometry of Voxel Skeletons

Figure 3.2: Complex voxel configurations.

)e interpretation of voxel skeletons may be unclear at junctions (le() and for some
configurations, thinning stops before all interior voxels are deleted yielding skeletons
containing voxels without background neighbor (right).)e desired dimension of the
geometry will be specified to enforce a certain geometric interpretation.
)e result shall be represented as piecewise linear geometry of dimension up to two,

embedded in three dimensions, that is a simplicial complex. Instead of giving a general
definition we restrict the discussion to the needed dimensions. A simplicial complex
C = (V, E, T) is a tuple of three sets describing vertices, edges, and triangles. V = {vi ∈
R3 | i = 1 . . . n} contains the vertices of the geometry. E = {eij = (vi, vj)} ⊂ V 2

describes edges connecting two vertices each. T = {tijk = (vi, vj, vk)} ⊂ V 3 holds
the triangles formed by three vertices each.)e edges of each triangle must also be
contained inE, whileE may contain edges that are not incident with a triangle. Examples
of simplicial complexes are triangle meshes and line sets with piecewise straight line
segments. Both map well to contemporary graphics hardware for rendering.
A local construction solely based on a neighborhood of a voxel shall be used. Similar to

the Marching Cubes algorithm (Lorensen and Cline, ), local constructions could be
stored in a look-up table and stitched together easily.)is makes computations efficient.
Restricting the construction to a local neighborhood has also amore fundamental reason.
)e principal location is already represented by the voxel skeleton.)us the geometric
representation should only locally deviate from the structure of the voxel skeleton.)is
can be ensured by a local construction.
To represent the topology of the voxel skeleton, the construction shall yield a

deformation retract of the voxel configuration. Artificial loops, handles or cavities must
be avoided. Again the voxel skeleton carries all principal information.)e geometric
representation must respect the topology of the voxel skeleton, which is ensured by a
retraction.
A natural interpretation is also expected to be smooth and the resulting geometry

should be a manifold at as many points as possible.)emanifold parts end in boundaries
or are stitched at junctions. Lines and surfacesmaymeet at junctions resulting in line-line,
line-surface, and surface-surface junctions.
)e method presented below classifies the manifold type of voxels in a first step

and generates geometry in a second step. Voxels are classified as -manifold (points),
-manifold, -boundary, -manifold, -boundary or junction.)e classification is based
on a cell complex in the -neighborhood of each voxel. Before executing the second
step the desired dimension of the final result needs to be chosen. Either one-dimensional
line sets can be enforced or a mixed d/d representation can be allowed. Geometry is
generated per dual cube and stitched together to form a global representation.



 Piecewise Linear Geometric Representation of Voxel Skeletons

Figure 3.4: Two dual cube configurations and their deformation retracts. Voxel configurations;
sub-voxels; sub-voxels contained in the dual cube; and the deformation retract are
illustrated from left to right. In the top row, two voxels share a common edge; in the
bottom row, four voxels share a common corner.

3.1.1 Manifold Type of Voxels Based on a Local Cell Complex

We will now construct a cell complex that is based on voxels as its -cells (vertices), while
postponing the explicit geometric representation to the next section. No further vertices
beyond the voxel locations are added at this point. Higher dimensional cells are described
purely combinatorial by sets of lower dimensional cells. For example -cells (edges) are
described as pairs of -cells and -cells (faces) are described as sets of -cells. Later, we
will handle junction voxels and add more vertices to build a simplicial complex.
)e construction is described in a dual cube formed by eight -adjacent voxels:

Figure 3.3: Dual cube.

All possible voxel configurations of a dual cube can be retracted by splitting voxels into
eight sub-voxels.)e sub-voxels are then collapsed to lower-dimensional cells. Figure .
illustrates two cases. By inspecting all  cases, one can verify that the following
construction yields a deformation retract of the sub-voxels in the dual cube for all cases.
)e resulting cell complex provides sufficient information to investigate dimension and



. Geometry of Voxel Skeletons

Figure 3.5: Local construction of a cell complex. Six 0-cells are connected by seven 1-cells yielding
an Euler number of ‰ = −1; thus at least two 2-cells are needed. Symmetry requires to
add three of them. Now the Euler number computes to ‰ = 2; thus a 3-cell is added. The
cell complex is a deformation retract of the original six voxels. Note, this is an illustration
of the combinatorial description of the cells. The details of the geometry have no further
meaning beyond illustrative purposes.

manifoldness at each voxel. By analyzing the combinations of voxels used for describing
the n-cells we can derive the dimension of the skeleton at each voxel and learn if it is
manifold or not.
Instead of retracting the voxels we build the result starting from the vertices and attach

higher dimensional cells as needed (see Figure .). First, a -cell is added for each object
voxel. -cells are attached until all -cells are connected.)e rules when to attach a -cell
are chosen to guarantee continuous transitions to neighboring dual cubes. Note, edges of
a dual cube are shared by overall four dual cubes; faces by two dual cubes. Hence rules
for adding a -cell edge or face of a dual cube must only depend on -cells located on the
same edge or face.
)e following rules are used to attach -cells:

Figure 3.6: Rules for adding 1-cells.

. For each -adjacent pair of neighbors, a -cell is attached.

. For two -adjacent neighbors on a face of the dual cube, which are not -adjacent,
a -cell is attached only if the two other vertices of the face are background voxels.

. For two -adjacent neighbors, which are not -adjacent, a -cell is attached only
if they are the only two object voxels in the dual cube.



 Piecewise Linear Geometric Representation of Voxel Skeletons

Figure 3.7: The 22 dual cell configurations and associated cell complexes. Cases 0–13 are
numbered as in the original Marching Cubes paper. Cases 14–21 must be distinguished
because color permutations, different from the Marching Cubes algorithm, are not a
symmetry operation.

)e -cells may form cycles and -cells are added filling the cycles to form a surface.
Starting with the shortest cycles, -cells are attached until all edges are boundaries of a
-cell. If several cycles have the same length, for symmetry considerations, a -cell is
attached for each of them.)e Euler characteristic ‰ of the resulting complex determines
if a -cell is needed. If the complex has ‰ = 1 it is homotopy equivalent to a point and no
-cell is added. A -cell is attached if ‰ = 2. Other cases do not occur.
Symmetry operations allow to group the configuration into the  classes presented

in Figure .. Banks and Linton () describe how to apply group theory to count
these classes. In the case of voxel skeletons, the corners of a cube can be colored with
two different colors (background, foreground) and spatial symmetry operations, but no



. Geometry of Voxel Skeletons

color symmetry operations, are allowed (see also Banks et al. () for an extended
version of the paper). In contrast to the Marching Cubes algorithm, permutations of the
colors would break symmetry.)e different classes are illustrated in Figure . by one
representative member of each group.
Four cases still contain three-dimensional parts and should be retracted further. Cases

, , and  contain volumes that can easily be collapsed.)is is possible because the
dual cube contains boundary surfaces at which the retraction may continue.)e volume
in case  can not be collapsed because no face incident with the background is available
in the dual cube to start the retraction from. We postpone this discussion and concentrate
on a combinatorial construction based purely on the original grid points and the shortest
edges required to maintain connectivity as described above. Cases , , and  are
further discussed in Section ...
)e per-dual-cube construction is the building block of a global construction, which

we now analyze in a -neighborhood. Eight dual cubes’ constructions can be glued
by identifying common voxels.)e higher dimensional cells can be labeled by their
incident -cells, which are directly associated with voxels.)e result forms a cell complex
surrounding a voxel in its -neighborhood. Some cases are illustrated below:

Figure 3.8: Examples of cell complexes in a 26-neighborhood.

)e central voxel can be classified based on the local neighborhood of the associated
-cell in the following way:

Figure 3.9: Manifold types of 0-cells in a cell complex.

• If the -cell is not incident with a higher dimensional cell, the voxel is -manifold.

• if the -cell is incident only with -cells and no higher dimensional cells:

– if it is incident with two -cells, the voxel is -manifold;
– if it is incident with one -cell, the voxel is a -boundary.

• If the -cell is incident with -cells but no -cell:

– if all incident -cells are incident with exactly two -cell, the voxel is
-manifold



 Piecewise Linear Geometric Representation of Voxel Skeletons

– if two incident -cells are incident with one -cell each and the remaining
-cells are incident with two -cells each, the voxel is a -boundary.

• Otherwise, the voxel is a junction, which is further classified if the -cell is incident
with at least one -cell that is not incident with a higher dimensional cell. In this
case the junction is called a -x-junction.

At this point we know for each voxel the dimension and manifoldness of a geometric
representation of the voxel skeleton. For example, we can decide that a voxel represents
a -manifold part, which will be converted to a line. Or we can decide, that a voxel
represents a -boundary that will be converted to a surface boundary in the simplicial
complex.
At some voxels the result may contradict our expectations. We may, for example, find

two-dimensional parts in voxel skeletons that we expected to be purely one-dimensional.
)is can be caused by locked configurations as described in Chapter . And we may find
clusters of junction voxels. For junction voxels the details of the geometric representation
are unclear at this point.

Implementation

Even in a larger configuration, the classification of each point is only based upon its
-neighborhood and can be efficiently encoded as a binary decision diagram. A
naive, potentially slow implementation of the above construction can be used to answer
questions like »is this voxel -manifold?« based on the voxel’s -neighborhood.)e
answers are fed to a library computing a binary decision diagram encoding the truth table
of the answers (see also Page ).)e binary decision diagram can then be converted to
C source code and included in the implementation to efficiently classify voxels.

3.1.2 Line Sets and Graphs

)is section’s goal is to enforce a one-dimensional geometric representation of a voxel
skeleton. For example based on prior knowledge about the object being analyzed one
could know that the result must be one-dimensional.)e following construction allows
to enforce such an interpretation.
)e classification of voxels allows to distinguish pure one-dimensional from other

parts. -cells ending on both ends in -manifold or -boundary voxels are represented
as edges connecting the centroids of the two voxels. Connected components of junction,
-manifold, and -boundary voxels form a single -cell. All -cells ending in any of the
connected component’s voxels are attached to this -cell, yielding a graph:

Figure 3.10: Interpretation of a complex junction configuration.



. Geometry of Voxel Skeletons

A geometric realization can either present junctions as higher dimensional geometry
and leave interpretation to the human viewer; or it may collapse voxels to a single point.
Attached -cells are connected to this point either by straight lines; or by lines along voxel
paths, which are found by choosing one voxel as the root, building a spanning tree of the
adjacency graph in the connected component, and retaining only branches running to
attached -cells:

Figure 3.11: Options for representing junctions.

Only the second approach, collapsing branching regions to a single point, is discussed in
more detail below.
But first all edges connecting two voxels are generated with help of a lookup-table.

)e configuration of object voxels in a dual cube determines the constructed -cells as
discussed in the previous section. A lookup table of size 28 can store all possible results.
In a single scan over all dual cubes this table is used to build a graph representation of the
object. -cells are the graph’s nodes; -cells form its edges.
Because faces, edges and corners are shared between two, four and eight dual cubes,

care must be taken to generate each edge exactly once. Assigning each point of space
unequivocally to a single dual cube provides a solution. One corner with its three incident
edges and faces together with the volume form a reduced dual cube:

Figure 3.12: Reduced dual cube.

)e other boundary elements of a dual cube are part of a neighboring reduced dual cube.
-cells are only stored in the lookup table if they are completely contained (except for
their endpoints) in the reduced dual cube. For instance, an edge located on the top face
of a dual cube would be rejected. It would be generated in the neighboring reduced dual
cube to the top. Connectivity to the neighboring dual cubes is established by the common
-cells. With each node of the constructed graph the type of the -cell is stored.
Non--manifold regions are now collapsed to a single point by computing the following

equivalence relation: Two nodes are equivalent if they are both non--manifold and
connected by an edge. Sets of equivalent nodes are replaced by a single node located
at their centroid. Equivalent nodes can be computed by propagating along edges to
non--manifold nodes. A scan over all nodes reveals all equivalence classes.

Symmetries could be identified to reduce the number of cases. But the size of the table is already small.



 Piecewise Linear Geometric Representation of Voxel Skeletons

Note, collapsing junction regions in the describe way may break homotopy equivalence
if the junction nodes form a surface enclosing a cavity.)is is a desired behaviour as we
decided to enforce a one-dimensional interpretation of the voxel configuration.
)e resulting graph can be further post-processed. Sequences of vertices incident with

exactly two edges (-manifold vertices) can be interpreted as the geometric realizations
of a single edge of a graph with fewer vertices:

Figure 3.13: Voxels, graph, simplified graph.

Geometry of edges can be smoothed by filtering the positions of consecutive vertices.
A gaussian weighted average over a number of neighboring vertices of the same edge
yields good results.)e number of vertices functions as a kernel size of a smoothing filter.
)e smoothness of the result can be controlled by tuning the kernel size and by applying
multiple filtering passes.
Any line rendering method is suitable for displaying the resulting geometry. Examples

of existing methods are rendering lines as truncated cones (Hahn et al., ), which may
be efficiently approximated on modern GPUs (Stoll et al., ); convolution surfaces
(Oeltze and Preim, ); or illuminated lines (Zöckler et al., ;Mallo et al., ). All
illustrations in this thesiswere rendered using truncated cones. See for example Figure .,
that displays renderings of line skeletons generated from voxel skeletons.)e close-up
view illustrates a junction that was collapsed to a single point.

3.1.3 Surfaces

)e next goal is to construct a triangulated surfaces from skeletons in grid point
model. We no longer collapse -manifold voxels to a single point but represent them
by surface patches. Starting from the characterization of voxels described on Page , all
two-dimensional structures are triangulated and attached at junctions connecting them
to other surface patches or lines.
)e triangulation is built for each dual cube and stitched along the dual cube’s faces.

-cells are triangulated by adding the centroid of its vertices and adding triangles formed
by the edges of the -cell and the centroid:

Figure 3.14: Triangulations of 2-cells.

Identifying common vertices on the shared faces of the dual cubes established
connectivity of the surface.)e configuration of the vertices of a face completely



. Geometry of Voxel Skeletons

determines the resulting geometry on that face. Hence continuous stitching is straight
forward. Identifying the vertices of the triangles across dual cubes allows to connect the
triangles to form a connected mesh.
Reduced dual cubes ensure that each triangle is generated exactly once, as it was the

case for line sets in the previous section. Triangles are only generated for -cells that are
completely contained (except for their boundary) in the reduced dual cube:

Figure 3.15: Rejecting triangles based on the reduced dual cube.

For example, a -cell consisting of the right face would be rejected. It would be
triangulated in the neighboring dual cube.
-cells can be classified according to their incident -cells as being manifold or not.

If all incident -cells are -manifold or -boundary the cell is all-manifold; otherwise
it is not-all-manifold.)is classification carries over to the triangles.)e type of the
eight voxels in a dual cell completely determines the result. Because voxels can take three
states (background; -manifold or -boundary; other) when highlighting manifold and
non-manifold parts, a lookup table of size 38 is required to store all configurations of
resulting all-manifold triangles and not-all-manifold triangles. A scan over all dual cubes
builds the complete surface by referencing the lookup table.
Cases , , and  may be triangulated in an optimized way to avoid enclosed

volumes.)is can be achieved by changing the way edges are introduced.)e modified
triangulations are presented below:

Figure 3.16: Improved triangulations of case 13, 14, 18.

Case  requires to deal with the vertex introduced on the face of the dual cube (in
the center of the top face in the illustration).)is vertex needs to be identified in
the neighboring dual cube to establish connectivity of the triangle mesh, which can be
achieved using a  ×  ×  sub-divided voxel grid to store identifiers of the generated
triangle vertices.)e original grid points are located at even indicies in the subdivided
grid.)e additional vertices have two odd coordinates.



 Piecewise Linear Geometric Representation of Voxel Skeletons

At this point we are able to convert voxel skeletons to a piecewise linear representation.
For example one of the voxel configurations used earlier is triangulated as follows:

Figure 3.17: Triangulation of a complex voxel configuration.

Note however, we failed to retract the solid configuration in case  to a lower
dimension.)e retraction fails in the dual cube because no boundary to the background
is available. One might try to resolve the case in a larger neighborhood. But solid
configurations can be infinitely large. So there will always be unresolved cases. Grid cells,
as discussed in the next section, provide a more promising solution.
)e classification of voxels discussed in Section .. could be modified and based on

the optimized triangulation.)is would change the classification of some junction voxels.
For example in case  vertices that have not been beforemaynowbe classified asmanifold
a(er collapsing the enclosed volume.)e original classification overestimates the number
of junction voxels but never falsely classifies voxels as manifold. Hence we can safely keep
the original classification.
Self-folding voxel configurations are an open problem.)e geometric realization

represents self-folding as surfaces with non-manifold parts:
Figure 3.18: Triangulation of a »self-folding« voxel configuration.

)e question remains open how to handle these cases more gracefully. A human viewer
would consider the non-manifold parts being artificially introduced by the discrete nature
of the representation and would probably expect a smooth manifold surface in the above
example.
Post-processing, such as smoothing and triangle decimation, can be applied to the

trianglemesh. See Bade et al. () for a comparison of smoothingmethods. Decimation
algorithms, like for example presented by Garland and Heckbert (), can be used
to reduce the triangle count. Vertices representing -x-junctions should be kept fixed
during post-processing to preserve the location of attaching points of -manifold parts.
Experiments revealed that the triangle mesh allows aggressive decimation of triangles
while preserving a good approximation of the overall structure.
Note, the interpretation of a grid point configuration as a cell complex introduces -cells

that are different from the standard (-, -, -) adjacency relations. Connections to
-neighbors and -neighbors are only conditionally added. Inmany cases, the resulting



. Geometry of Grid Cell Skeletons

connectivity graph is locally embeddable in two dimensions, which allows to construct a
surface in theses cases.)e graph is not one of the well known -, -, -adjacency
relations but its edges are object dependent.)us direct application of algorithms based
on a standard adjacency relations fails. For example, a(er classifying voxels into different
manifold types one could ask which -manifold voxels form a connected component
such that they are represented as a single, connected manifold part in the geometric
representation. One could hope to answer this question by applying region growing
with one of the well known adjacency relations. But this approach fails because a data
dependent adjacency relation would be needed, which would change with the local object
configuration. Processing would be achievable but a lot of annoying details would need to
be resolved.)e question remains how to build a local interpretation as a piecewise linear
surface with boundary of a -connected voxel skeleton while avoiding those difficulties.
)e heart of the problem is that a local sub-graph of the -adjacency relation is not
planar (it can not be embedded in a plane) even for configurations that would naturally be
interpreted locally as surfaces. Choosing the -adjacency relation for object voxels would
be another way to avoid the problem. But -adjacency for the foreground is the far more
common choice. Note, in the grid cell model similar problems do not arise.

3.2 Geometry of Grid Cell Skeletons

Converting grid cell skeletons to piecewise linear geometry is much simpler than
converting grid point configurations. Grid cell skeletons are already represented as a
cell complex. Hence the first step, prescribing an interpretation as a cell complex, is not
needed.
)e neighborhood of a cell is analyzed to reveal junctions andmanifold parts.)e rules

classifying -cells (Page ) are directly applicable. -cells can be classified similarly:

• If a -cell is not incident with any higher dimensional cell, the -cell is -manifold.

• If a -cell is incident only with -cells but no -cells:

if it is incident with exactly two -cells, the -cell is -manifold;

if it is incident with exactly one -cell, the -cell is -boundary.

• Otherwise, a -cell is a junction.

For -cells the following rules apply:

• If a -cell is not incident with a -cell, the -cell is -manifold.

• Otherwise, the -cell is a junction.

Note, -cells are not contained in grid cell skeletons, thus all -cells are -manifold. In
the same way as in the grid cell model, -manifold -cells can be further classified by
their incident -cells. If all incident -cells are -manifold or -boundary, the -cell is



 Piecewise Linear Geometric Representation of Voxel Skeletons

Figure 3.19: Simple piecewise linear geometric representation of a grid cell skeleton. The grid cell
skeleton is depicted on the left. Geometry, depicted on the right, is decomposed into
all-manifold and not-all-manifold parts, which can be rendered separately.

all-manifold, otherwise it is not-all-manifold; the same applies to -manifold cells and
incident -manifold -cells.
Simple piecewise linear geometry representing the grid cell skeleton is constructed

by representing -manifold -cells as straight line segments connecting the two incident
-cells and -manifold -cells as quads built by their four incident -cells. Each triangle
or line segment can be further classified as all-manifold or not-all-manifold.)is allows
highlighting different parts of the structure. Post-processing, such as smoothing and
triangle decimation, is applied as described in the previous subsection. See Section ,
in particular Figure . and Figures .–., for examples.
Detailed piecewise linear geometry uses more geometric primitives to represent the

organization of grid cell complexes in manifold parts attached to junctions. In contrast to
simple piecewise linear geometry, each -cell is represented by at least one all-manifold
line segment; each -cell by an all-manifold triangle:

Figure 3.20: Subdivision scheme for grid cells.

)e organization of the cell complex is captured in more detail at the cost of an increased
number of line segments and triangles. Distinct elements are used for representing



. Geometry of Grid Cell Skeletons

manifold parts and for representing their attachment to junctions. As -manifold -cells
are attached to two -cells, three distinct elements are needed; one for representing the
manifold part and one for each end attached to a -cell. -manifold -cells are attached
to four -cells and four -cells. Overall nine distinct elements are needed.)ree line
segments represent a -cell. Nine tiles represent a -cell. Vertices are located at the
positions of -cells and at one third and two thirds the distance to the next -cell in each
direction. Hence a  ×  ×  subdivision of the -cells’ positions generates all potential
vertex locations of above scheme.)is allows to establish continuity to neighboring cells
by associating vertices with integer positions in the subdivided grid. A table maps them
to vertices in the piecewise linear geometry.
)e classification of -, -, -cells canonically determines a classification of line

segments and tiles:
Figure 3.21: Classifying sub-divided grid cells.

Manifold parts, junctions and attaching of cells can be highlighted explicitly as illustrated
in Figure ..
)e grid cellmodel’s capability of explicitly representing all dimensionsmakes geometry

generation simpler compared to the grid point model. Grid cell skeletons explicitly are
pure one-dimensional, pure two-dimensional, ormixed-dimensional.)ree-dimensional
cells are never part of a grid cell skeleton. Hence no further retraction is needed during
geometry generation: -cells are straight forwardly represented as line segments; -cells
as quads.
Cells in the grid cell model are restricted to be aligned with the three principal axes,

whereas -neighbors in the grid point model have more directional freedom. But
post-processing the geometry is needed in both cases to achieve a smooth representation.
)erefore the restriction to principle directions is not a serious limitation. Simply more
smoothing might be needed in the grid cell case.
In rare cases, grid skeletons may »spiral« around a straight voxel line:

Figure 3.23: Voxel line, grid cell line, smoothed geometry.

)is can occur if cells have the same distance value to the boundary. In such cases the
result of thinning dependes on the details of the processing order.)is case is rarely
observed and can be resolved by smoothing the constructed geometry as illustrated at the
right.



 Piecewise Linear Geometric Representation of Voxel Skeletons

Figure 3.22: Detailed piecewise linear geometric representation of a grid cell skeleton. The grid
cell skeleton is depicted on the left. Geometry, depicted on the right, is decomposed
into all-manifold and not-all-manifold parts, which can be rendered separately. The
detailed representation is capable of illustrating junction detached from each other and
the topology of manifold parts.

Grid cell skeletons may contain self-folding parts, similar to voxel skeleton:
Figure 3.24: Self-folding grid cell skeleton.

One root of the problem is that four -cells can be attached to one -cell, with two pairs
of them forming manifolds. A different grid type with generic point locations could be
a way to resolve the problem of self-folding. For instance, the body centered cubic grid
could serve as a base for a grid cell model with only three -cells meeting at each -cell.

Summary

• A novel geometry generation scheme for representing voxel skeletons by piecewise
linear geometry was presented. Voxels in the grid point model are locally retracted



. Geometry of Grid Cell Skeletons

in each dual cube to a low-dimensional simplicial complex, that is triangle meshes
and piecewise straight lines.

•)inking specifically about voxel skeleton configurations instead of generic voxel
configurations helps to deal with the topological implications.

• One-dimensional results can be enforced, if required, by collapsing junctions to a
single point.

• Grid cells can be directly converted to geometry. A subdivided geometry can be
used to give a detailed picture representing manifold parts and their attachments to
each other separately.

• Smoothing and triangle decimation is applied to the generated geometry before it
is used for interactive rendering.



 Piecewise Linear Geometric Representation of Voxel Skeletons



4 Skeletons of Synthetic Examples

)is chapter presents results of skeletonization applied to synthetic test objects. Input test
objects with varying noise levels were constructed on a ³ regular grid. A combination
of three major structures—rods, plates and spheres—was used to build the test objects.
Initial shapes were manually drawn on a d voxel grid and smoothed by a gaussian filter.
A threshold selected the final object voxels. Two distorted versions of each shape were
generated in addition. Random noise of two different frequencies was added to the scalar
function before filtering and threshold selection.
Figure . presents one-dimensional voxel skeletons in the grid point model.)e input

object contains only rods. Smooth distance ordered thinning (Page ) was applied.
A(erwards geometry was generated as described in Section .. and smoothed by a
weighted averaging of neighboring vertices.)e inset depicts a voxel configuration which
would be initially interpreted as a local loop and collapsed to a single point during
geometry generation.)e end-point detection rule (Page ) is varied from retaining
no end-points to end-points of length , , and . Retaining end-points of length  makes
the skeleton highly sensitive to noise on the object surface; whereas all other cases result
in robust skeletons. No further pruning of spurious side branches is needed.
Figure . presents similar results for computations of one-dimensional skeletons in

the grid cell model.)inning in the grid cell model (Page ) was used followed by
generation of simple piecewise linear geometry (Page ) and smoothing.)e inset shows
the local configuration in the grid cell model corresponding to the configuration shown in
Figure . for the grid point model.)e one-dimensional structure is explicitly resolved.
Importance of local cell end-points (Page ) is  (no end-points retained), , , and . An
importance of  yields results practically unusable, because many spurious branches are
included in the skeleton. Higher values result in robust skeletons representing only the
major features of the object.)e results do not visually differ from the skeletons computed
in the grid point model (Figure .).
Figure . explores the influence of architectural elements on the skeletons computed

by distance ordered thinning. Results are only presented for the grid point model; grid
cell skeletons exhibit the same principal behaviour. Plate-like structures are represented
by the computed skeleton to some extent.)e topological features are reflected, while
details of the geometry, like for example the main location and direction of the plates,
are not.)e situation is similar for a sphere-like part. Cavities however are a topological
feature and thus always preserved by thinning.)e result is no longer one-dimensional
but contains a surface enclosing the cavity.
In Figure ., strong noise was added, which causes topological changes of the original

object. Cavities and loops may be introduced and are reflected by the skeleton because
thinning strictly preserves homotopy equivalence.)is limits thinning’s robustness to



 Skeletons of Synthetic Examples

noise.
)enext two examples illustrate the pure two-dimensional case.)eobject in Figure .

contains plate-like structures only. A grid cell skeleton is computed based on the geodesic
boundary distance (see Section ..) followed by generation of simple piecewise linear
geometry (Page ).)e top two results show raw versions of geometry for a threshold of
 and  on the chamfer-(, , )-distance along the boundary.)e results in the third
row were smoothed and not-all-manifold triangles are highlighted in red.)e number of
triangles is approximately ,.)e decimation algorithm by Garland and Heckbert
() was applied to reduce the triangle count to approximately , in the last row.)e
same processing is used in Figure . on an object containing a sphere like part. Spikes
originating from the center of the sphere are induced in the skeleton.)e skeleton fails to
effectively represent the sphere like part.
In Figure . an object combining rod-like and plate-like shapes was processed in the

grid cell model. Plate-like parts are extracted in a first step (second and third row with
threshold  and ) followed by thinning to extract the rod-like parts (fourth row).
)e resulting skeleton represents the different kinds of architectural elements.
Cavities are preserved by geodesic distance based skeletons as illustrated in Figure ..

)e inside boundary of the cavity can not be connected to the outside boundary by a path
on the surface. Hence the geodesic distance always detects cavities independently of the
chosen threshold.
Figure . compares thinning ordered by the distance to the boundary with thinning

ordered by the geodesic distance. Distance to the boundary pushes the skeleton to the
thickest parts of the object while the geodesic distance pushes the skeleton to the center
of plate-like structures.
More examples based on »real world« image data are presented in Chapter .



Figure 4.1: Skeletons of rod-like structure computed in the grid point model. From left to right,
noise of increasing intensity is added. From top to bottom, the importance of local
end-points is 0 (no end-points), 1, 2, and 5. The middle and top insets show close-up
views of the grid point configuration at a junction. The bottom inset displays the
generated geometry after collapsing the junction to a single point. This Figure is
referenced on Page 29, 33, 52, 61, 79.



 Skeletons of Synthetic Examples

Figure 4.2: Grid cell skeletons of rod-like structure. From left to right, noise of increasing intensity
is added. From top to bottom, the importance of local end-points is 0 (no end-points), 2,
4, and 6. The inset shows a close-up view of the grid cell configuration at a junction. This
Figure is referenced on Page 33, 61.



Figure 4.3: Influence of architecture on distance ordered thinning. The skeletons in the bottom
row were computed from the object in the top row by thinning in the grid point model.
The rightmost object contains a cavity inside the sphere. This Figure is referenced on
Page 29, 61.

Figure 4.4: Influence of strong noise on thinning. No end-point were retained but noise can create
loops and cavities, which are reflected by the skeleton, limiting thinning’s robustness to
noise. This Figure is referenced on Page 29, 61.



 Skeletons of Synthetic Examples

Figure 4.5: Grid cell skeletonsof plate-like structure. From left to right, noise of increasing intensity
is added. From top to bottom, the second and third row show pure two-dimensional
skeletons with a threshold of 100 and 200 on the chamfer-(3, 4, 5)-distance along the
boundary. In the fourth row, geometry is smoothed, and in the fifth row, the triangle
count is decimated to 2% of the original number of triangles. This Figure is referenced
on Page 39, 56, 62, 79.



Figure 4.6: Grid cell skeletons of a structure including a sphere-like part. From left to right, noise
of increasing intensity is added. From top to bottom, the second and third row show
pure two-dimensional skeletons computed using thresholds of 100 and 200 on the
chamfer-(3, 4, 5)-distance along the boundary. In the fourth row, geometry is smoothed,
and in the fifth row, the triangle count is decimated to 2% of the original number of
triangles. This Figure is referenced on Page 39, 62.



 Skeletons of Synthetic Examples

Figure 4.7: Grid cell skeletons of a mixed rod- and plate-like structure. From left to right,
noise of increasing intensity is added. From top to bottom, the second and third
row show pure two-dimensional skeletons computed using thresholds of 100 and 200
on the chamfer-(3, 4, 5)-distance along the boundary. The bottom row shows mixed
dimensional skeletons for threshold 200. This Figure is referenced on Page 39, 41, 56, 62.



Figure 4.8: The influence of cavities on a geodesic distance based skeleton. The skeletons were
computed using a threshold of 200, 400, and 1000 on the chamfer-(3, 4, 5)-distance along
the boundary. The cavity is a stable feature reflected by the skeleton independently of
the threshold. This Figure is referenced on Page 39, 62.

Figure 4.9: Comparison of thinning ordered by distance and by geodesic distance. The results
of distance ordered thinning are depicted on the left; the result of geodesic boundary
distance ordered thinning on the right. This Figure is referenced on Page 62.



 Skeletons of Synthetic Examples



5 External Memory Algorithms for
Computing Skeletons

)is chapter extends perviously presented algorithms to out-of-core processing. In the
consequence, massive voxel objects of any size that fit in secondary storage can be
processed with a limited amount of main memory.
External memory algorithms and data structures (Vitter, ) address the problem of

efficiently processing data that exceeds the size of main memory. Applying established
algorithms to such input data is not straight forward. Input data initially resides on disk.
Part of it needs to be loaded into main memory, processed, and results stored to disk,
before the next part is loaded.
A major difference to in-core processing is that data is transferred in blocks between

disk and main memory.)e effective bandwidth accessing consecutive locations versus
random seeks differs dramatically. Access costs are highly non-uniform.)e same is
true over the full memory hierarchy (disk–RAM–cache–CPU) as apparent fromTable ..
Disk access times are four orders of magnitude larger than access times to main memory
whereas bandwidth changes only one order of magnitude.)us the influence of access
time on the runtime of algorithms is most significant when disk access is required.
)is observation is captured in the external memory model used for analyzing

algorithms (Vitter, ).)e objective is to devise algorithms with optimal runtime,
optimal required space, and an optimal number of block transfers. Data of size N is
initially stored on disk, which is assumed to have infinite capacity.)e disk is organized
in blocks of size B. For computation, data needs to be transferred to a cache (the main
memory) of size M π N . Data is transferred between disk and cache as full blocks.)e
CPU has access to any storage element in the cache at uniform cost (uniform cost RAM).
But the CPU can not directly access data on disk; see Figure . for an illustration. For
example access to a single byte not currently in the cache requires transfer of a complete
block of size B. Scanning once through the data can be achieved with ÁN/BË block
transfers if data is scanned in the same order as it is stored on disk. But in the worst
case, a scan may require N block transfers if only one element from each block is used
and the block gets evicted from the cache before the next byte is required. Because B is
typically a large constant—for example  kByte in many operating systems—the benefits
of an optimal number of accesses are high.
Known algorithms need to be analyzed andmodified to run withminimal performance

loss due to out-of-core data storage.)efirst step is to understand the data access patterns.
)en, when possible, the algorithm should be redesigned tomaximize data access locality.
)is may require to devise a data storage layout consistent with the access pattern, thus
amortizing the cost of individual I/O operations over several memory access operations.



 External Memory Algorithms for Computing Skeletons

Table 5.1: Latencies and bandwidths in the memory hierarchy. Typical numbers for size, access
time, and bandwidth in 2001; adapted from Hennessy et al. (2003), p. 394.

Register Cache Main Memory Disk
Size <  kB <  MB <  GB >  GB

Access time [ns] .–. .– – ,,
Bandwidth [MB/s] ,–, –, – –

Managed by Compiler Hardware Operating System Operating System

Figure 5.1: Externalmemorymodel. Input data of size N is initially stored on disk, which is assumed
to have infinite capacity. The disk is organized in blocks of size B. For computation blocks
of data are transferred to a cache of size M π N . The CPU can only access data in the
cache.

Algorithms may be optimized for a specific cache size M or block size B. More recently,
cache-oblivious algorithms (Frigo et al., ) opened a new way of considering these
problems.)eir goal is to optimize for any kind of memory hierarchy containing caches,
without needing to know details of the hierarchy, such as cache or memory sizes. Silva
et al. () give a review of external memory algorithms in visualization. Algorithms
presented include many algorithms for geometry processing.)e following discussion
focuses on data stored on regular structured grids as all algorithms presented throughout
this thesis process data stored on such grids.
One way to deal with massive data in visualization is explicitly managing application’s

memory and I/O. Cox and Ellsworth () analyze application controlled demand
paging of data decomposed into small cubes stored one per page, which is o(en denoted as
chunking (see Sarawagi and Stonebraker, ).)ey conclude that many visualization
algorithms only need a small fraction of the data; using small pages and cubed storage
is favorable. As operating systems page size is o(en fixed, as their argument goes,
application support is needed. Law et al. () discuss how to organize a filtering pipeline
that allows efficient, multi-threaded processing of large structured data sets.)eir system



. Chamfer Distance Transformation

decomposes input data into blocks which are sent through the pipeline on demand.)ey
discuss handling of intermediate data in caches and handling of block boundaries for
filters with known kernel size.)ey conclude that explicit management of cache sizes
and domain decomposition is superior to relying on virtual memory. Bergeron et al.
() propose iterators, which integrate knowledge about the applications’ access pattern
to control pre-fetching of structured data.)ey argue this would lead to »significant
performance improvements while hiding details of out-of-core access«. Other systems
and APIs dealing with structured data are the Active Data Repository (Kurc et al., );
NetCDF (UNIDATA, ), especially an efficient implementation based on MPI-IO
()akur et al., ) as discussed by Li et al. (); and HDF (NCSA, ), on which
the implementations of algorithms presented below are based upon. All these formats
allow to store data in cubed chunks and to efficiently access sub volumes.
A different approach is to rely on virtual memory managed by the operating system but

reorganize data in a cache oblivious layout (Frigo et al., ).)is organization allows
efficient access independently of the details, such as page size. Pascucci and Frank ()
use this approach successfully for slicing of large structured grids. Yoon et al. ()
present an application to mesh layouts.
)e following discussion is most closely related to Law’s system in using explicit data

management: Blocks of data will be explicitly loaded, processed, and stored back to
disk. An implementation should be based on an file format that stores three-dimensional
chunks of data. As long as the dimensions of blocks loaded intomainmemory are large in
each direction compared to the chunks on disk, overhead caused by the file format is low.
HDF’s (NCSA, ) chunking capabilities provide a suitable implementation, which
was used as a basis for implementing the presented algorithms.
)e following discussion is limited to the grid pointmodel, but could easily be extended

to the grid cell model.

5.1 Chamfer Distance Transformation

)e discussion below presents an extension of the chamfer distance transformation
algorithm introduced in Section . to external memory. Eight block-wise scans are
required, compared to two raster scans in the standard algorithm.)e discussion is
presented in two dimensions first. An extension to three dimensions is straight forward.
Chamfer propagation takes the value at a pixel, adds weights to a neighboring pixel, and

propagates a value if the sum is smaller than the already stored value at the neighbor. In
the forward scan, from bottom le(to top right, values are propagated to the right and the
top including diagonal pixels:

Figure 5.2: Chamfer mask.

A(er visiting all pixels in scan-line order, influence of a pixel extends to an area with a
shape determined by the propagation mask and, in principle, is not limited in distance.



 External Memory Algorithms for Computing Skeletons

)e following illustration depicts the area influenced by one pixel during a forward scan:
Figure 5.3: Area of influence of a chamfer propagation.

Efficient out-of-core processing can be achieved by block-wise processing with a
carefully chosen processing order that visits blocks multiple times. Path propagation is
achieved by decomposing data in blocks with one pixel overlap:

Figure 5.4: Overlapping blocks.

Visiting these blocks in scan-line order , , ,  propagates all path to the right and top;
but diagonal paths to the top le(may be cut at block boundaries and results would differ
from the original algorithm:

Figure 5.5: Propagation interrupted by block boundaries.

Visiting blocks in each scan-line a second time in reverse order resolves this deficiency.
)us blocks in the example above would be processed in order , , , , , . Now all
paths are correctly propagated.)e same argument applies to the backward scan. Overall,
four scans over blocks with one pixel overlap compute a globally correct chamfer distance
transformation in two dimensions.
In three dimensions, eight scans, as described in Algorithm , are needed.)e

three-dimensional chamfer masks (see Figure .) propagate values to all voxels in the
top direction.)erefore blocks need to be visited row by row as in two dimensions
and each layer of blocks also row by row in reverse order.)e example layer would be
processed in the following order: , , , , , , , , .)e exact number of blocks
processed is 2 · nz · (2nx − 1) · (2ny − 1), with nx, ny, nz the number of blocks in each
dimension.
)e presented algorithm provides a solution to computing distance transformations of

massive input data. We used a simple chamfer approximation in our presentation. A



.)inning

Algorithm  External memory chamfer distance transformation.)e number of blocks
in each direction is denoted by nx, ny, nz .)e procedures ForwardPropagateBlock and
BackwardPropagateBlock are placeholders for standard chamfer scans.
: procedure EʀɴʟCʜʀTʀɴʀɪɴ
: for z = 1 . . . nz do
: for y = 1 . . . ny . . . 1 do
: for x = 1 . . . nx . . . 1 do
: ForwardPropagateBlock(x, y, z)
: end for
: end for
: end for
: for z = nz . . . 1 do
: for y = ny . . . 1 . . . ny do
: for x = nx . . . 1 . . . nx do
: BackwardPropagateBlock(x, y, z)
: end for
: end for
: end for
: end procedure

larger overlap between neighboring blocks can be used to apply larger chamfer masks,
which provide a better approximation of euclidean distances (Fouard and Malandain,
).)e block-wise processing scheme removes the limit on data size imposed by
available main memory by increasing the processing time. In practice the standard raster
scan algorithm could be used as long as data fits intomainmemory.)e external memory
variant would only be chosen for larger input data.

5.2 Thinning

)is section presents an external memory extension of distance ordered homotopic
thinning, as introduced in Section ...)e input is decomposed into blocks and each
block is processed separately. Voxels with a lower distance to the block boundary than to
the object boundary are kept fixed to ensure medialness of the resulting skeleton.)ey
will be processed in a neighboring block. Overlap is adjusted accordingly.
Few other authors discussed block-wise skeletonization. Vossepoel et al. () propose

to skeletonize blocks independently of each other. In a second step, tracing of pixel lines
and labeling of crossing points with the block boundary is used to connect all parts of
the skeleton. Compared to our algorithm processing is quite complex. It remains unclear
from their discussion if connecting the skeleton reliably succeeds in all cases. Pakura
et al. () process blocks without special precaution at the block boundaries and simply
ignore processing artifacts.)us, their skeletons may differ from the correct solution at
block boundaries.



 External Memory Algorithms for Computing Skeletons

Figure 5.6: Example of a block boundary during thinning. Left: desired result; Middle: skeleton
would be dislocated if left block was processed naively; Right: pixels are locked if their
distance to the object boundary is larger than to the block boundary.

Our extension of thinning to external memory does not in general compute the exactly
same result as globally applied SʜDOHT; but the desired properties—homotopy,
thinness, medialness—are preserved. Distance ordered thinning starts eroding voxels at
all object boundaries simultaneously. Although only a local neighborhood is investigated
before each removal, a block-wise decomposition for processing is not obvious because
global ordering of voxels is necessary to ensure medialness. Block boundaries destroy the
global ordering as becomes apparent shortly.
Applying thinning to overlapping sub-blocks can quite easily guarantee homotopy

equivalence, while it is harder to guarantee medialness. Homotopy equivalence at block
boundaries can be achieved by keeping the outmost layer of overlapping blocks fixed
during processing. Figure . depicts a situation which could occur at a block boundary.
Because one of the object’s boundaries is not included in the sub-block, erosion would
start only from one side of the object and would move past the medially located voxels to
the block boundary and the skeleton would not be located in the center of the object.
Locking voxels that are nearer to the block boundary than to the object boundary

resolves this issue. For those voxels medialness can not be established in the current
sub-block. To compute a global skeleton sub-blocks need to be arranged such that every
voxel is locatedmore distant to the block boundary than to the object boundary in at least
one sub-block. If an upper bound dmax on the distance transformation is known this is
easily achieved by sub-blocks with 2dmax overlap. See illustration below and Algorithm 
for details:

Figure 5.7: Block overlap for thinning.

Wepresented similar results in Fouard et al. ().)ere we proposed amore complex
processing scheme handling block boundaries in different directions explicitly.)e
decomposition described here is simpler and straight forward to implement. Sub-blocks
in both cases must be large enough—larger than 4dmax—to allow a decomposition with



.)inning

Algorithm  External thinning based on SʜDOHT as detailed in Algorithm . A
voxel object with a maximum distance transformation value dmax is processed in blocks
of size s with overlap 2dmax.
: procedure EʀɴʟTʜɪɴɴɪɴɢ
: for z = 0, s − 2dmax, 2 · (s − 2dmax), . . . do
: for y = 0, s − 2dmax, 2 · (s − 2dmax), . . . do
: for x = 0, s − 2dmax, 2 · (s − 2dmax), . . . do
: load subblock at x, y, z of size s3

: L √ {p|p voxel in sub-block at x, y, z of size s3 . . .
: . . . ∧ (d(p) > distance to upper block boundary . . .
: . . . ∨ p in block boundary layer)}
: apply SʜDOHT on sub-block with L kept fixed
: store sub-block
: end for
: end for
: end for
: end procedure

sufficient overlap. dmax is computed in one scan over the input distance transformation.
In many applications voxel objects are »thin«, so dmax is small and sufficiently large
sub-blocks fit intomainmemory. For all other cases further investigation of the algorithm
would be needed.
In principle erosion can require a propagation further than dmax to carry over several

sub-blocks boundaries.)is is likely if no end-points are fixed. Multiple scans over
intermediate results would be needed to erode the object to a single object in the following
example:

Figure 5.8: Example requiring multiple thinning scans.

)e center line would need to be eroded block by blockx to be able to finally retract it to
a single point. In practical cases with end-point detection, one scan is sufficient to shrink
the object to its center lines.
)e discussed algorithm is capable of computing globally correct voxel skeletons of

massive objects with a maximum thickness limited by the amount of main memory
available for processing.)e maximum thickness of a specific object can be evaluated
froma global distance transformation to determine the required amount ofmainmemory.
Larger amounts of memory help to reduce overhead. In practice one could use the
standard algorithm as long as data fits into main memory and only switch to the external



 External Memory Algorithms for Computing Skeletons

memory variant if needed.

5.3 Geodesic Boundary Distance

)e next algorithm extended to external memory is the measure based on the geodesic
distance presented in Section ...)e algorithm can be recast as an image filter with
limited size, which allows to easily decompose the output domain in non-overlapping
blocks. Each block is visited and part of the input domain enlarged by the kernel size s
in each direction is loaded.)e result in the output block does not depend on input data
further away.)us, one scan over the output blocks computes the full result:

Figure 5.9: Decomposition of output; margin on input.

)e required kernel size, which depends on the maximal distance to the boundary
and the importance value selecting the skeleton, is derived as illustrated in Figure ..
We assume an upper bound dmax on the distance transformation inside the object.)e
threshold t on the importance value selecting skeleton voxels is also known. For each
output voxel the two nearest object boundary voxels need to be included in the input
block.)ese are no further away than dmax.)e geodesic distance is computed between
the two nearest boundary voxels. Values beyond t can be cut. In the worst case a path
shorter than t could run straight to the input block boundary and back to the second
boundary voxel.)erefore, an additional border of t/2 is sufficient to hold all paths with
length below t. Hence points further away in the input than s = dmax + t/2 do not
influence an output voxel. s is the required kernel size. dmax and t must be small to allow
loading of sufficiently large sub-blocks of the input into main memory.
Overhead of the block decomposition is small.)e computation of the geodesic

distance dominates runtime. While the distance transformation yielding the nearest
object boundary voxel needs to be computed on the full sub-block, it is sufficient
to evaluate the geodesic distance for neighboring pairs of output voxels. Because
block decomposition does not change the number of output voxels, overhead is small.
Nonetheless, large blocks are favorable because some overhead of the block-wise
algorithm depends on the ratio of the kernel size to the block size.
)e main algorithm can easily be combined with post-processing of the voxel skeleton

and thinning.)resholding and removal of two-voxel-thick parts (see Page ) is applied
before the output block is stored. A limited extension of the kernel size by the size of the
masks used for removal tests is sufficient.)e input block size is increased accordingly. A
thinning step can follow to extract rod-like parts in which voxels identified as part of the
two-dimensional skeleton would be kept fixed.



. Geometric Representation of Voxel Skeletons

Figure 5.10: Margin for computing the geodesic distance basedmeasure. The required input size
to compute the two-dimensional skeleton is derived from a worst case configuration. A
border of at least the distance to the nearest object boundary and half of the maximum
geodesic distance, hence s = dmax+t/2, is always sufficient to compute correct results.

5.4 Geometric Representation of Voxel Skeletons

Classifying voxels and generating geometry per dual cube are local operations (see
Section .), which allows a straight-forward extension to block-wise processing.)e
only challenge is to establish continuity across block boundaries. One voxel overlap is
required and previously generated vertices need be identified in a neighboring block.
A simple solution for establishing connectivity across block boundaries is to store vertex

identifiers in a global table with storage for every block boundary slice. With block
size s and (cubed) input data of size N such a table requires N1/3/s slices of size N2/3

each. Hence the overall size is O(N/s). For large block-size s this is a practical amount
of identifiers to store in main memory; although the data structure does not scale to
larger size as it is linear in the input size. An improved data structure would only retain
identifiers at boundaries between already processed blocks and yet unvisited ones. It
would require only O(N2/3) storage but it is more awkward to maintain as it needs to
be dynamically adjusted during the block scan.
)e resulting geometry is assumed to fit into main memory. But it could as well be

streamed to disk for further processing with externalmemory algorithms and hierarchical
rendering techniques reviewed in Silva et al. (); or streaming geometry processing as
discussed by Isenburg and Lindstrom ().

5.5 Timings

)is section’s objective is to measure the influence of block-wise processing on the overall
runtime. Each method is measured three times: () in a standard implementation
running on a single large array residing completely in main memory; () in a block-wise
implementation with all data in main memory; () in a block-wise implementation with
out-of-core data storage.)e differences in runtime between () and () are related to the



 External Memory Algorithms for Computing Skeletons

Table 5.2: Timings for distance transformations and thinning. The table lists timings for chamfer
distance transformation, thinning, and geodesic distance computation for an input data
set of size 1280 × 1280 × 1280. The input data was processed in one large block (1); in
block-wise scans with data completely in main memory (2); and in block-wise processing
including disk I/O (3).

() Standard () Block-wise in-core () Out-of-core
Chamfer distance  s  s  s

)inning  s  s  s
Geodesic distance  s  s  s

overhead resulting from block-wise processing.)e differences between () and () are
related to disk I/O.
Two test data sets of size  ×  ×  were generated by replicating the data sets

used in Figure . and Figure . five times in each direction. Approximately . voxels
are set to object voxels in the objectmade of rod-like structures; approximately  voxels
are set to object voxels to form the plate-like structure.
)e overall size was chosen such that running all algorithms completely in main

memory is possible. All test were run on a machine with two Opteron  and 
GB of main memory running a Linux kernel. During the out-of-core measurement 
GByte of main memory were blocked by a call to the mmap system call with the flag
MAP_LOCKED to inhibit caching of I/O by the operating system; the source code from
http://www.dunkel.dk/thesis/blockmem.c was used.
Table . lists execution times of chamfer distance computation and thinning of the

object made of rod-like structures; and of the computation of geodesic distances along
the boundary (with a threshold of  on the chamfer-(, , )-distance) of the object
made of plate-like structures. Runtimes of block-wise processing in main memory are
larger than processing data in one block by a factor between one and two. Runtimes of
out-of-core processing aremainly limited by the I/O capabilities.)eCPUwas rarely used
at  in these cases. Optimizing I/O performance was not the goal of these timings.
Data were read from and written to a single disk. Figure . displays I/O rates (data rate
to and from disk) during processing measured with the Unix command iostat.
Computation of the chamfer distance transformation is I/O bound. It starts with a

scan over the input data (reading  Byte per voxel) to initialize the chamfer distance
transformation stored as short integer values (writing  bytes per voxel).)is is indicated
as (a) in the I/O-diagram. During (b) values are propagated, which requires approximately
 scans. During each scan,  Bytes are read and  Bytes are written. Hence read and write
rates are expected to be approximately the same.)e sustained average rate for both cases
is roughly  kB/s. An estimation for the overall runtime is given by the number of
voxels times eight scans times  Bytes per voxel divided by the average I/O rates.)is
computes to ³ ·  ·  /  ≈  seconds.)e measured runtime is smaller,
which can be understood by caching of the operating system.)e last blocks used during
a forward scan are used first during a backward scan. Apparently not all caching effects
were suppressed by blocking memory.



http://www.dunkel.dk/thesis/blockmem.c

. Timings

I/O Chamfer Map

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0
2
0
0
4
0
0
6
0
0
8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

1
8
0
0

2
0
0
0

2
2
0
0

2
4
0
0

2
6
0
0

2
8
0
0

3
0
0
0

3
2
0
0

3
4
0
0

3
6
0
0

3
8
0
0

4
0
0
0

4
2
0
0

4
4
0
0

4
6
0
0

time [s]

I
/

O
 r

a
te

 [
k
B

/
s
]

read

write

I/O Geodesic Distance

0

1000

2000

3000

4000

5000

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

4
0
0
0

4
5
0
0

5
0
0
0

5
5
0
0

6
0
0
0

6
5
0
0

7
0
0
0

7
5
0
0

8
0
0
0

8
5
0
0

9
0
0
0

9
5
0
0

1
0
0
0
0

1
0
5
0
0

1
1
0
0
0

1
1
5
0
0

time [s]

I
/

O
 r

a
te

 [
k
B

/
s
]

read

write

I/O Thinning

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0
1
0
0
2
0
0
3
0
0
4
0
0
5
0
0
6
0
0
7
0
0
8
0
0
9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

1
7
0
0

1
8
0
0

1
9
0
0

2
0
0
0

time [s]

I
/

O
 r

a
te

 [
k
B

/
s
]

read

write

c

d
e

a

b

f

Figure 5.11: I/O rates during processing. Read and write disk I/O rates were measured during
out-of-core processing of chamfer distance transformations, thinning, and geodesic
distance computations. Note the different scales. The numbers indicate different stages
of the algorithms, that are discussed in more detail in the main text.



 External Memory Algorithms for Computing Skeletons

)inning is I/O bound. It starts with a scan over the input distance transformation to
find the maximum distance value. In the diagram, indicated by (c), only read I/O takes
place.)e next step, indicated by (d), is to initialize output data (write  Byte per voxel)
by scanning through the input once (read one Byte per voxel). Read and write rates are
approximately equal. During (e) actual thinning takes place. Overall  Bytes ( Bytes
distance transformation,  Byte intermediate result) are read and  Byte of intermediate
result is written back. As apparent in the diagram the read rate is three times higher than
thewrite rate. A rough estimate of the runtime is given by dividing three times the number
of voxels by the average read rate.)is results to ³ ·  /  ≈  seconds, which
is in good concordance with themeasured runtime of approximately  seconds for the
actual thinning.
Computation of the geodesic distance is, in contrast with the other two algorithms,

bound by computations on the CPU.)e average I/O rates are lower than in the previous
measurements.)e read rate is higher than the write rate as a larger block of the input
domain is read but only a small sub-block contains valid results and is written to disk.)e
first spike, indicated at (f), is caused by initialization of boundaries of the result data set.
It is not related to the main computations.
In summary, block-wise processing (ignoring I/O) only slightly increases runtimes.

Chamfer distance computation and thinning tend to be I/O bound, while computation of
the geodesic distance tend to be CPU bound.

Summary

• When data exceeds the size of availablemainmemory, external memory algorithms
must be used for processing. Block-wise data transfer between disk and main
memory causes highly non-uniform costs for data access. Known algorithms need
to be analyzed and modified to run with minimal performance loss.

• Block-wise processing of data combined with a chunked data storage format are the
key to efficient out-of-core processing of three-dimensional voxel data. Algorithms
need to be adjusted to correctly handle block boundaries.

• An algorithms was presented to compute chamfer distance transformations in
approximately eight block-wise scans for any input.

•)inning and the geodesic distance based measure are computed with a data
dependent overlap at the block boundaries.)e maximum thickness of the object
must be small enough to allow processing with a limited amount of main memory.

• Skeletons are converted to piecewise linear geometry in one block-wise scan.

• Chamfer distance computation, thinning, and geometry generation tend to be I/O
bound. Computing the geodesic distance based measure tends to be CPU bound.

• Execution times are acceptable for batch processing but not for interactive use.



6 Applications

)is chapter presents two applications of the previously discussed skeletonization
methods. One-dimensional skeletons of micro-vascular networks are extracted and
analyzed in the first application.)e second example extracts two-dimensional skeletons
of bone micro-architecture.

6.1 Reconstruction and Visualization of Micro-Vascular
Networks

In Cassot et al. () we introduced a novel method for analyzing the morphology of
micro-vascular networks to support understanding of micro-circulation in the human
brain. A geometric representation of the network is reconstructed starting from images
acquired through confocal microscopy. Results can be visually inspected and form the
basis for further morphological and topological analysis.
For a discussion of the biomedical background please refer to Cassot et al. () and

references therein.)e background is only briefly summarized here: Many interesting
biological challenges are tightly linked to the anatomy of the micro-vascular architecture.
Examples are understanding the distribution of pressure and wall shear stress; transport
and exchange of oxygen; regulation of blood flow; angiogenesis and remodeling; the
blood flow response to physical or neural activity; and, subsequently, the interpretation of
hemodynamically based functional imaging methods. Only three-dimensional methods
are capable of providing reliable data on highly complex networks.
)e following presentation focuses on the contribution of techniques and algorithms

presented in this thesis. Some algorithms, which were developed in joint work, are also
presented in Fouard et al. (); Fouard (); and Fouard et al. ().
In a first step, a three-dimensional image of the micro-vascular network is acquired

in multiple blocks by confocal microscopy, pre-processed, and stitched to a single large
volume stored on disk. Approximately  µm thick sections of indian ink-injected
human brain tissue are scanned with a resolution of . × . ×  µm in multiple
blocks (roughly ), each  ×  ×  voxels large (z-direction is oversampled
with a slice distance of . µm). Each block is preprocessed: median filtering removes
salt-and-pepper noise; gauss filtering smoothes the boundaries of the vessels; the drop of
illumination in deeper slices is corrected for by scaling image values with a linear function
in z.)e positions of the blocks relative to each other are available from the imaging
device with a precision of  µm.)e blocks have an overlap of approximately  voxels at
each border, which allows to automatically align andmerge them to one large volume.)e



 Applications

Figure 6.1: Data acquisition froma thick sectionofhumanbrain tissue. (a) a complete slice of brain
tissue; (b, c) the collateral sulcus in the temporal lobe; (d) depth coded projection of the
zone reconstructed by confocal microscopy after aligning and merging sub-blocks.

imprecise location of the blocks is corrected by searching for a slightly shi(ed position that
minimizes a correlation function of the grey values in the  voxel overlap. A(erwards,
the blocks are sampled on one large structured grid, which is never loaded entirely into
main memory.)e resulting data sets have a size in the order of  ×  × .
Figure . illustrates an input specimen and results a(er the described processing steps.
Except for few cases, which are discussed below, a simple threshold on the image

data generates a voxel object representing the vessel network to which skeletonization
methods are applied. External memory variants of distance transformations, thinning,
and geometry generation as discussed in the previous chapters are used to extract a line
representation of the vessels. All methods were integrated into the visualization system
Amira (Stalling et al., ).)e local thickness of the vessels is estimated by evaluating
the distance transformation at each line vertex. Adjusted chamfer weights can be used
to compute distance transformations on anisotropic grids (see Fouard and Malandain,
). Doing so may save space (and time) compared to resampling on an isotropic grid
with identical voxel size in each direction. Postprocessing the inital graph results in a
representation as vessel segments connected at braching nodes. Filling with indian ink
is incomplete in some case and vessels are thus disconnected in the image data. Hence,
end-points are preserved during thinning.
)e resulting line sets contain vertices in the order of millions, which can be loaded

completely into main memory. Figure . displays the results for a sub-volume.
Rendering thin lines with thickness coded as color is possible at interactive frame-rates.
Displaying thickness by truncated cones achieves interactive frame-rates only for subsets
of the network.
)e network structure is best analyzed in two different parts: () main vessel trees

branching and () the net-like capillaries.)ose two can be extracted from the
reconstructed graph based on the diameter and manually identified root points of
the vessel trees; Figure . depicts an example of such trees. In addition, various
morphological measures, like density, orientation, and inter-capillary distance of the
vessels and the frequency and space distribution of these measures can be quantitatively



. Reconstruction and Visualization of Micro-Vascular Networks

Figure 6.2: Part of a reconstructed micro-vascular network. A color-coded projection of the
merged image data is displayed on the left and the corresponding skeleton on the right.

Figure 6.3: A vene tree and an artery tree extracted from a larger network of vessels. The vene
tree is colored in blue; the artery tree in red. The left image displays the extracted vessel
trees in the context of the surrounding network, which is removed on the right.

analyzed.
Interactive visualization was crucial in establishing the described methods. For

example, the resulting reconstruction was validated by visual comparisons with the
original image data. A projection of the image data side by side with the reconstructed
network and three-dimensional rendering together with iso-surfaces of the image data
proved particularly useful (see Figure .). Good visual matching was observed
throughout the network.
Some statistical errors in the reconstruction need to be dealt with. In few cases

(approximately ) segments end unconnected, which is caused by missing signal in the
input data. Incomplete filling of the vessels with ink was identified as the primary reason.
For statistical analysis the error introduced by incomplete reconstruction is considered
acceptable. Nonetheless, manual editing of the networks was explored as a second option.



 Applications

Figure 6.4: Comparison of the reconstructed network with the original image data. (a) projection
view of the image data; (b) depth-coded visualization of the reconstructed line-set; (c)
three-dimensional visualization of the line-set (white cylinders) and the original data
(yellow iso-surface).

)e system guides a user to end-points of unconnected segments and allows to select
and connect nearby points. Segments can also be deleted or moved. If a highly accurate
model of the network is needed, for example in simulations, the time needed for manual
validation and editing may be accepted to eliminate all errors.
)e results may also be improved by interacting at an early stage of the processing

pipeline. Main vessels are o(en only partially filled. As a consequence, their
representation in the voxel object is incomplete and diameters cannot be correctly
estimated. Amira’s image segmentation editor can be used to manually edit the binary
image and fill the missing parts of the vessels.)e network reconstruction now
successfully extracts the required information. Similarly, uninteresting structures, for
example the main vessel running in the center of the network, can be manually deleted.
)e introduced methods are a first step towards a comprehensive, computerized

analysis of massive micro-vascular networks in three dimensions and towards developing
a complete model of micro-circulation. We are now able to create computer assisted
visualizations of the vessel anatomy in huge vessel networks—a task that was manually
performed in the past (see Figure . for an example). In addition, the computer assisted
method supports a detailed quantitative analysis, which was not possible before. External
memory algorithms allow to analyze huge micro-vascular networks on commodity
machines usually available in research laboratories.

6.2 Visualization and Analysis of Bone
Micro-Architecture

)eapplications discussed next are related to a research project on bone structure with the
main objective of establishing a precise diagnostic method for quantifying alterations in
the structural composition of human trabecular bone. A survey over the project is given
in ESA MAP Team AO-- (). Details about novel quantification methods of



. Visualization and Analysis of Bone Micro-Architecture

Figure 6.5: Microscope views and a hand-drawn illustration of a vascular network. Two views
through a microscope (left) and a hand-drawn illustration (right) of the vessel anatomy
in the human brain, replicated from Duvernoy et al. (1981).

two-dimensional Computed Tomography (CT) and three-dimensional micro-CT (µCT)
images can be found in Saparin et al. () and Zaikin et al. (). Details on data
management and remote data access are presented in Prohaska et al. (); Prohaska
and Hutanu (); and Kähler et al. ().
)e following presentation restricts itself to the application of skeletonization methods

to µCT data sets acquired during the project.)e team collected a large number of µCT
data sets. Proximal tibial bone biopsies were µCT-scanned in a Scanco µCT  scanner at
a volume size of  µm ()omsen et al., ). Entire vertebral bodies were µCT-scanned
in a Scanco µCT  scanner before and a(er failure load testing at a voxel size of  µm.
)e typical size of an acquired image is  ×  ×  voxels at  Bytes, resulting in
roughly  GBytes of data per specimen. Almost  such data sets were acquired.
Input data was segmented to a cavity-free voxel object representing the calcified bone

tissue.)is was achieved by filtering (median, gauss) the input data and separating bone
from background by a simple threshold. In general, bone structure is assumed to be
free of cavities (Odgaard and Gundersen, ).)us a connected component labeling
algorithm was applied to detect cavities and relabel them to be part of the bone.

Visualization of Bone Architecture

)e skeletonization algorithms presented in this thesis can now be used to compute
skeletons. Skeleton renderings are superior to iso-surface renderings in illustrating the
prevailing architectural orientation of plates. A reason is that skeletons do not enclose a
volume and allow to look through the structure whereas the view is blocked in iso-surface
renderings. For example, Figure . displays extracted skeletons side by side with
iso-surfaces.)e depicted specimen is a tibial bone biopsy, which was scanned at a voxel
size of  µm resulting in an image of size  ×  × .)e cortical shell is located
at the top. Two orientations rotated  degrees to each other are displayed.)e bone
structure is organized in plates with a prevailing orientation.)is becomesmost apparent
on the le(-hand side, where the viewing direction is chosen to be parallel with the bone



 Applications

plates.
)e skeleton also tends to better preserve the structural architecture a(er triangle

decimation compared to the iso-surface. An iso-surface »wastes« triangles to enclose a
volume whereas skeletons require only one layer of triangles per plate.)e bottom row
of Figure . displays aggressively decimated triangle meshes, to approximately  of
the original triangle count.)e skeleton more closely resembles visually the rendering
generated with a high-resolution triangle mesh.
)e distance transformation inside the object and the geodesic distance along the

boundary provide useful measures for highlighting different structures.)e distance
transformation gives an estimation of the local thickness when evaluated at the skeleton
location. For example, Figure . displays the same biopsy used above, now colored by
the local thickness. In Figure . geometric primitives were filtered and only structures
with a low value of the distance transformation (bottom) respectively high value (top)
are retained. Filtering the skeleton provides an easy way to focus on various aspects of
the structure. An iso-surface is not capable of displaying thickness in the same straight
forward way because the distance transformation needs be evaluated at the center of the
object but the iso-surface is defined at the boundary.
A simple measure indicating plate-like structures can be defined based on the geodesic

distance. Some care is needed because the local thickness also contributes to the geodesic
distance, which can be corrected for by using the ratio of the geodesic distance to the
distance transformation:

Figure 6.6: Measuring deviation from the tubular case.

)e ratio g/d increases the more the object deviates from a tubular structure. Figure .
depicts this measure color-coded on the skeleton. In Figure . filtering was applied to
focus on plate-like parts (see top right).
)e opposite, filtering to highlight tube-like parts, does not work equally well.

Towards the boundary of plate-like structures the ratio of geodesic distance to distance
transformation behaves as if the structure was tubular. Because the ratio is evaluated on a
purely local basis it fails to distinguish between points at the boundary of a larger plate-like
structure and points in the center of a tubular structure.
To reduce the amount of geometric primitives further, the two-dimensional skeleton

can be abandoned and replaced by a one-dimensional skeleton. To do so, thinning is
guided by the geodesic distance as described in Section ...)e resulting line skeleton
is centered withing the plate-like structures.)e local thickness and the ratio with the
geodesic distance, can again be used to highlight different structures. Figure . and
Figure . depict the curve skeleton as circular sprites color-coded with the deviation
from a tubular structure.)e same structures can be revealed with the two-dimensional
and with the one-dimensional skeleton (compare Figure . and Figure .).



. Visualization and Analysis of Bone Micro-Architecture

Skeletons can also serve as a basis for a decomposition of the structure into rods
and plates. Using structural decomposition in bone structure analysis is proposed
in Bonnassie et al. () and Stauber and Müller (). Figure . displays an
example based on the methods presented in this thesis applied to a bone sub-volume.
A one-dimensional skeleton was computed in the grid-cell model and cut at its branching
points. Each edge was colored and these colors were propagated to the volume such that
every point is colored with the color of the nearest point on the curve skeleton.)e
coloring is evaluated on the skeleton to induce a decomposition into structural elements.

Analyzing Architectural Alterations

Another objective was to find structural alterations in bone micro-structure.)e analysis
is base on two µCT scans of human vertebral bodies acquired before and a(er compression
testing.
In a first step the two scans need to be placed in a common coordinate system.

)e visualization system Amira (Stalling et al., ) is used to manually select
matching reference points (landmarks) on an iso-surface representation of the bone
micro-architecture. Figure . depicts a low resolution volume rendering of a
µCT-scan, an iso-surface rendering, and selected landmarks. From the landmarks a rigid
transformation is computed and applied to one of the two data sets.
A(erwards, both images are segmented, skeletonized, and the distance of the original

skeleton to its counterpart a(er compression testing is computed. Figure . illustrates
the process. A thick slice of the vertebra is selected and rotated to provide a side view.
)e two-dimensional skeleton provides the overall context. Now the one-dimensional
skeleton of the original structure is integrated in the view. Skeleton points with a
high distance to the structure a(er compression testing are rendered as circular sprites.
All other skeleton points are suppressed.)e distance is computed by a distance
transformation seeded at the skeleton.
A sub-volume that shows lots of changes is inspected in more detail.)e mixed

dimensional skeleton is selected for display and part of the image data of the compressed
bone is loaded and displayed as an iso-surface (bottom center). At the right the original
structure is depicted. In the center of the image a micro-fracture occured. A(er
compression testing the structure in the center is missing.
Analyzing such changes in micro-architecture is ongoing research and will hopefully

provide insight in the mechanisms of bone fracture. For example)urner et al. ()
explore changes based on synchrotron CT images acquired under loading conditions.
)e techniques presented in this thesis provide advanced tools to analyze such structural
changes and are a basis for further bio-medical investigations.



 Applications

Summary

• Starting from massive image data acquired by confocal microscopy of human
brain tissue, skeletonization was applied to reconstruct large micro-vascular
networks as graphs of branching nodes connected by edges representing the vessels.
Information on geometric location and local thickness is associated with the edges.
)e networks are used for visualization and quantification of the micro-vascular
networks.

• Micro-bone architecture forms a network built of rod-like and plate-like parts.
Micro-CT scanners provide detailed three-dimensional images of this architecture.
Skeletonization was applied to construct one- and two-dimensional skeletons used
in visualization of architecture and analysis of structural alterations.



. Visualization and Analysis of Bone Micro-Architecture

Figure 6.7: Iso-surfaces and skeletons of a bone biopsy. The iso-surfaces is displayed on the left
in each pair; the skeletons on the right. In the bottom row the number of triangles was
decimated as indicated in the figure. All other images use the higher triangle count.



 Applications

Figure 6.8: Local thickness color-codedona skeleton. The local thicknessof the structure displayed
in the bottom left is color coded on the skeleton at the top right. Blue indicates low
values; red indicates high values.



. Visualization and Analysis of Bone Micro-Architecture

Figure 6.9: Skeleton filtered by local thickness. The structure is filtered for thin structures (bottom)
and thick structures (top).



 Applications

Figure 6.10: Deviation from tubular structure color-coded on a skeleton. The deviation from
tubular structure is color-coded on the skeleton. Blue indicates low deviation; red
indicates high deviation.



. Visualization and Analysis of Bone Micro-Architecture

Figure 6.11: Skeleton filtered by deviation from tubular structure. The structure is filtered
according to the deviation from a tubular structure. Parts with low deviation are
displayed in the bottom left; parts with hight deviation in the top right.



 Applications

Figure 6.12: Deviation from tubular structure color-coded on a skeleton. The one-dimensional
skeleton is rendered as circular sprites placed at the vertices of the skeleton.



. Visualization and Analysis of Bone Micro-Architecture

Figure 6.13: One-dimensional skeleton filtered by deviation from tubular structure. The skeleton
is filtered to display only tubular structures (bottom) and plate-like structures (top).



 Applications

Figure 6.14: Bone structure decomposed into structural elements. An iso-surface rendering,
the voxel object representing bone, a two-dimensional grid cell skeleton, and a
one-dimensional grid cell skeleton are displayed in the top row from left to right. The
bottom row displays geometric representations of skeletons. At the very right, the
one-dimensional skeleton is represented as a graph with colored edges. These colors
are propagated onto the two-dimensional skeleton (second from right) inducing a
decomposition into elements (left). Junctions are indicated in red.

Figure 6.15: Landmarks on a human vertebral body used for registration. A volume rendering of
a µCT-scan of a vertebral body, an iso-surface rendering, and selected landmarks are
depicted. The landmarks are used to align the image data set with a second scan after
compression testing.



. Visualization and Analysis of Bone Micro-Architecture

Figure 6.16: Search for micro-cracks in a human vertebral body. The two-dimensional skeleton
gives an overview (red spots indicate junctions in the skeleton). A slice is selected
and rotated to a side view. Locations with change are highlighted by circular sprites.
An interesting sub-volume is inspected in more detail. At the bottom the structure
after compression testing (blue) is displayed together with the skeleton of the original
structure. In the center of the image a micro-fracture occurred. The original structure is
displayed in red at the right.



 Applications



7 Conclusions

)is work presented skeletonization algorithms for analyzing and visualizing massive
voxel objects with complex, network-like architecture; even if their size exceeds the
amount of main memory and external memory algorithms are needed.)e presented
results help to visualize and analyze huge image data, which become abundant in science.
Such image data o(en contain well defined objects that can be segmented resulting in
voxel objects ofmassive size.)ose voxel objects are the input to the presented algorithms.
)e question »How to compute skeletons of massive voxel objects?« was solved for

computing voxel curve skeletons by external memory algorithms for chamfer distance
transformations and for distance ordered homotopic thinning, both requiring a constant
number of scans over the data. A theoretical analysis predicted approximately four times
the execution time of the standard algorithm for chamfer distance transformation and
approximately the same execution time as the standard algorithm for thinning when
ignoring I/O. Timing confirmed these predictions and revealed that the execution is
I/O-bound on a standard workstation.
Chapter  discussed how a constant number of block-wise scans over the data stored

in chuncked layout on disk is I/O-optimal (Vitter, ).)e applied block-wise
decomposition schemes are quite simple. Yet it was necessary to carefully analyze effects
of block boundaries and to adapt the original algorithms to compute globally correct
results when using a decomposition scheme with overlapping blocks. Many other image
processing algorithm that can be decomposed into block-wise processing should also
execute I/O-optimal when based on a chuncked storage layout.
As a general principle we can conclude that careful analysis of existing voxel based

algorithms is superior to naive block-wise processing ignoring boundary effects, as for
example proposed for thinning by Vossepoel et al. () or Pakura et al. ().)e
upfront cost of devising modified algorithms is rewarded by data independent, globally
correct results. In many cases the upfront cost should not be too high as a simple
block-wise decomposition should o(en be sufficient.
In practice, we are now able to compute distance transformations and thinning on

voxel objects of any size in reasonable time, as long as data fits on a disk. Because
computations are I/O-bound and take too long to be effective for interactive use, the
following recommendations should be followed in practice: ) use standard algorithms
as long as data fits into main memory and switch to external memory processing only if
needed; and ) choose all needed specifications based on a small sub-volume processed
in main memory and execute all external memory processing as a batch job. Chapter 
successfully applied the methods to visualization and analysis of vascular networks.
Future work should consider the end-to-end problem of computing the geometric

representation of the skeleton from the original image data avoiding I/O all together,



 Conclusions

except for one required scan over the input. Isenburg and Lindstrom () explore a
promising idea for geometry processing that may serve as a starting point.)eir idea of
spatial finalization in a stream processing pipeline could be transferred to processing of
voxel objects and provide a foundation for practical algorithms solving the end-to-end
problem for well formed input data requiring less I/O than the methods presented here.
Chapter  answered the question »How to render voxel skeletons?« by retracting voxels

to homotopy equivalent piecewise linear geometry, that is triangles and piecewise straight
lines, for rendering.)e fact that a certain voxel configuration represents a skeleton was
explicitly considered and justified the retraction of voxels to geometry. As a general
principle the type of structure a voxel configuration represents should be taken into
account when devising solutions. For voxel skeletons, a recommendation is to specifically
consider the topological implications instead of devising solutions for generic voxel
configurations.
Problems caused by naively tracing voxels based on the -adjacency relation are

avoided by respecting homotopy equivalence through the retraction of voxels. »Spurious
loops« at line junctions, for example, do not occur. Explicitly considering topology
explains heuristics used for post-processing of voxel skeletons, like for example collapsing
adjacent junction voxels to a single point.
Note however, two questions regarding the retraction scheme should be answered in the

future: ))e retraction scheme induces a data dependent adjacency relation, which may
differ from the commonly used -, -, or -adjacency relations.)e implications of this
fact needs further research. ) It was le(open how to resolve the »solid configuration«,
where all eight voxels of a dual cube belong to the skeleton. Obviously, this configuration
can not be locally retracted to a lower dimensional representation because there is no
interface surface to the background to start the retraction from. A solution may be to
construct geometry in a larger neighborhood.
)e question »how to render voxel skeletons?« is also related to the problem of »how

to represent one-dimensional and two-dimensional structures and junctions by voxels?«,
which was addressed by the discussion of thinning in the grid cell model. Section ..
revealed clear advantages of decomposing a voxel into its vertices, edges, faces and the
enclosed volume opposed to treating voxels as indecomposable points with an adjacency
relation as in the grid point model.)e main reason of this advantage is that the
decomposition forms a topological cell complex, which is able to resolve topological
configurations unambiguously.
An implication is that the grid cell model is superior to the grid point model for

algorithms that need detailed control of topology.)is is, for example, the case for
skeletonization. A counter example is the chamfer distance transformation computing
the length of the shortest path to the background. Here, the grid point model with the
-adjacency relation is better suited because the edges to -neighbors at each voxel
better approximate the euclidian distance than the six main directions parallel to the
coordinate axes of the grid cell model. Note also, the grid cell model needs eight time
the storage space of the grid cell model, which may limit its practical use if memory is
scarce. In conclusion, considering to transfer known algorithms from grid points to grid
cells may be beneficial if topology is at the heart of the algorithm. But not all algorithms



benefit, and some may be better based on the grid point model.
An interesting opportunity for future research is considering grid cells built from a

different grid type to reduce the number of cells meeting at a lower dimensional cell to the
minimal number induced by generic point locations.)e number of faces meeting at one
edge should be reduced from to  and the number of edgesmeeting at a point from to .
)e reduced number of cells should avoid degenerate cases as for example non-manifold
self intersections of surfaces.)e body centered cubic grid is a good candidate for starting
further investigations.
Section .. introduced a noise-insensitive measure based on the geodesic distance

along the boundary as a solution to the problem of computing skeletons stable under
variations of the object’s boundary through, for example, noise. Experiments confirmed
that the measure induces a family of skeletons graded by relevance. With increasing
relevance value only the most prominent plate-like parts of the object survive in the
skeleton, which is centered within the plates.)e skeletons are not necessarily homotopy
equivalent with the original object. A combination with thinning was presented, which
allows to establish topological guarantees and to compute line skeletons directly from
objects with plate-like parts.
)e geodesic distance based measure has some advantages compared to other methods

but is computational expensive. In contrast to angle based methods, like discussed
by Malandain and Fernández-Vidal (), the proposed measure is able to ignore
small variations of the boundary while retaining thin structures of the object that are
geometrically important. Resulting skeletons directly represent only the most important
structures while other methods o(en require pruning as a post-processing step.)e
quadratic worst case runtime, needed to compute the geodesic distance of all required
pairs of points, is a major drawback.
)e proposed measure seems to be well suited to define one-dimensional skeletons

directly fromobjects containing plate-like structures.)emain reason is that the geodesic
distance seems to avoid two-dimensional plateaus with the same value, which cause
difficulties in distance transformations.)inning can therefore be effectively guided
towards one-dimensional structures centered within plates. Recently, Dey and Sun
() discussed a very similar approach and proposed a definition of curve skeletons
based on the geodesic distance. Loosely spoken, the geodesic distance seems to encode
more information about the global shape of the object’s boundary than a distance
transformation does.)eoretical investigations of this experimentally observed property
should be conducted in the future.
)e geodesic distance based measure proved to be a useful tool for the visualization of

plate-like structures as discussed in Chapter . In practice the geodesic distance based
skeletonization is the recommended method if time for computing it can be afforded.
A combination with thinning is needed if guaranteed homotopy equivalence with the
original object is needed.)e resulting voxel skeleton locations are better centered in
plate-like structures than results of thinning guided by distance transformations.
Figure . summarizes the various methods and the decisions needed to select the

appropriatemethod for your problem. All methods start from a voxel object and not from
the original image data.)erefore the quality of the segmentation, that classifies the image



 Conclusions

data in object and background, is critical for the quality of the resulting skeleton. You
also need a priori knowledge about the architecture of the voxel object to select a suitable
skeletonization method. For a generic architecture the methods should be only applied
with care. You need to decide if the resulting skeletons shall be homotopy equivalent
with the object or if homotopy equivalence is not required. Depending on your a priori
knowledge and your decisions, the results will be a one-dimensional cell complex that
can be converted to a graph; a mixed one/two-dimensional cell complex, represented by
triangulated surfaces and lines; or a pure two-dimensional cell complex, represented by a
triangulated surface.



Input: Voxel object

Shape known to be free of cavities, but
unsure if voxel object has cavities?

cavities
forbidden

cavities
allowed

Fill cavities

Architecture of object? generic

only
tubular

mixed:
plates, rods

Geometry (end-points) needed
or topology (loops) sufficient?

loops sufficient
end-points

needed

Use distance ordered
homotopic thinning.

Use distance ordered
homotopic thinning

w/ end-point detection.

Voxel object was
free of cavities?

with
cavities

no
cavities

Result: 1d cell complex.
Convert to graph.

Result: 2d cell complex.
Convert to surface, lines.

Shall plate-like parts be represented
as surfaces or as lines?

surfaces

lines

Homotopy equivalence
of skeleton with object

demanded?

don't care
homotopy

equivalence
required Object contains

also tubular parts?

only plates

Use threshold on
geodesic distance.

Use threshold on geodesic
distance followed by

distance ordered thinning.

plates, rods

Use geodesic distance
guided thinning.

Result: pure 2d cell complex.
Convert to surface.

Use methods only
with great care.

voxel object
known to be

free of
cavities

Figure 7.1: Selecting an appropriate skeletonization method. Decisions required to select an
appropriate method for a specific combination of the type of architecture of the input
voxel object and the desired properties of the resulting skeleton are summarized in the
diagram.



 Conclusions



Bibliography

G. H. Abdel-Hamid and Y.-H. Yang. Multiresolution skeletonization: An electrostatic
field-based approach. In Proc. IEEE Int. Conf. Image Processing (ICIP-), pages
–. .

N. Ahuja and J.-H. Chuang. Shape representation using a generalized potential field
model. IEEE Trans. Pattern Analysis and Machine Intelligence, ():–, .

P. S. Aleksandrov. Combinatorial Topology, volume . Graylock Press, .

N. Amenta, S. Choi, and R. K. Kolluri.)e power crust. In Proc. th ACM Symp. Solid
Modeling and Applications (SMA ’), pages –. ACMPress, New York, NY, USA,
.

A. Amini, J. Jagadeesh, and B. McGinley.)ree dimensional thinning of octree encoded
objects. In Proc. Fi)eenth Southern Biomedical Engineering Conf. .

C. Arcelli and G. S. di Baja. A one-pass two-operation process to detect the skeletal pixels
on the -distance transform. IEEE Trans. Pattern Analysis and Machine Intelligence,
():–, .

D. Attali, J.-D. Boissonnat, and H. Edelsbrunner. Stability and computation of the medial
axis — a state-of-the-art report. In T. Möller, B. Hamann, and B. Russell, editors,
Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive
Data Exploration. Springer-Verlag, .

R. Ayala, E. Domínguez, A. R. Francés, and A. Quintero. Weak lighting functions and
strong -surfaces. *eoretical Computer Science, ():–, .

S. Azernikov andA. Fischer. Efficient surface reconstructionmethod for distributedCAD.
Computer-Aided Design, ():–, .

S. Azernikov, A. Miropolsky, and A. Fischer. Surface reconstruction of freeform objects
based on multiresolution volumetric method. In Proc. th ACM Symp. Solid Modeling
and Applications (SMA ’), pages –. .

R. Bade, J. Haase, and B. Preim. Comparison of fundamental mesh smoothing algorithms
for medical surface models. In Simulation und Visualisierung, pages –. .

D. C. Banks and S. A. Linton. Counting cases in marching cubes: Toward a generic
algorithm for producing substitopes. InProc. IEEEVisualization ’, pages –. .



Bibliography

D. C. Banks, S. A. Linton, and P. K. Stockmeyer. Counting cases in substitope algorithms.
IEEE Trans. Visualization and Computer Graphics, ():–, .

R. D. Bergeron, P. J. Rhodes, T. M. Sparr, and X. Tang. Out of core visualization using
iterator aware multidimensional prefetching. In Proc. SPIE Visual Data Analysis ’,
volume , pages –. .

T. M. Bernard and A. Manzanera. Improved low complexity fully parallel thinning
algorithm. In Proc. th Int. Conf. Image Analysis and Processing (ICIAP ’). .

G. Bertrand and G. Malandain. A new characterization of three-dimensional simple
points. Pattern Recognition Lett., ():–, .

I. Bitter, A. E. Kaufman, and M. Sato. Penalized-distance volumetric skeleton algorithm.
IEEE Trans. Visualization and Computer Graphics, ():–, .

I. Bitter, M. Sato, M. Bender, K. T. McDonnell, A. Kaufman, and M. Wan. CEASAR:
Accurate and robust algorithm for extraction a smooth centerline. In Proc. IEEE
Visualization ’, page . .

H. Blum. A transformation for extracting new descriptors of shape. InW.Walthen-Dunn,
editor,Models for the Perception of Speech and Visual Form, pages –. MIT Press,
Cambridge, MA, .

V. G. Boltianskij and V. A. Efremovich. Intuitive combinatory topology. Springer, .

A. Bonnassie, F. Peyrin, and D. Attali. A new method for analyzing local shape in
three-dimensional images based on medial axis transformation. IEEE Trans. Systems,
Man, and Cybernetics, Part B, ():–, .

G. Borgefors. Distance transformations in arbitrary dimensions. Computer Vision,
Graphics, and Image Processing, :–, .

G. Borgefors. Distance transformations in digital images. Computer Vision, Graphics, and
Image Processing, ():–, .

G. Borgefors, I. Nyström, and G. S. di Baja. Computing skeletons in three dimensions.
Pattern Recognition, :–, .

S. Bouix. Medial Surfaces. Ph.D. thesis, School of Computer Science, McGill University,
Montréal, .

S. Bouix and K. Siddiqi. Divergence-based medial surfaces. In Proc. th European Conf.
Computer Vision (ECCV ), volume  of Lecture Notes in Computer Science, page
. Dublin, Ireland, .

K. Brodlie, J. Brooke, M. Chen, D. Chrisnall, A. Fewings, C. Hughes, N. John, M. Jones,
M. Riding, and N. Roard. Visual supercomputing—technologies, applications and
challenges. In Eurographics, State of the Art Report. .



Bibliography

C. A. Burbeck and S. M. Pizer. Object representation by cores: Identifying and
representing primitive spatial regions. Technical Report TR-, University of North
Carolina at Chapel Hill, Chapel Hill, NC, USA, .

S. K. Card, J. D. Mackinlay, and B. Shneiderman. Readings in Information Visualization:
Using Vision to *ink. Morgan Kaufmann Publishers, San Francisco, .

F. Cassot, F. Lauwers, C. Fouard, S. Prohaska, and V. Lauwer-Cances. A novel
three-dimensional computer assisted method for a quantitative study of microvascular
networks of the human cerebral cortex. Microcirculation, :–, .

F. Chazal and A. Lieutier.)e ⁄-medial axis. Graphical Models, ():–, .

J.-H. Chuang, C.-H. Tsai, and M.-C. Ko. Skeletonization of three-dimensional object
using generalized potential field. IEEE Trans. Pattern Analysis andMachine Intelligence,
():–, .

J. C. Ciria, A. de Miguel, E. Domínguez, A. R. Francés, and A. Quintero. A maximum set
of (, )-connected digital surfaces. In Proc. Int. Work. Combinatorial Image Analysis
(IWCIA ), pages –. .

J. C. Ciria, A. de Miguel, E. Domínguez, A. R. Francés, and A. Quintero. Local
characterization of amaximum set of digital (, )-surfaces. InProc. Discrete Geometry
for Computer Imagery (DGCI ), pages –. .

H. Cohen.)e BuDDy library & boolean expressions. C/C++ Users Journal, .

N. Cornea, D. Silver, X. Yuan, and R. Balasubramanian. Computing hierarchical
curve-skeletons of d objects. *e Visual Computer, ():–, a.

N. D. Cornea, D. Silver, and P. Min. Curve-skeleton applications. In Proc. IEEE
Visualization ’, page . b.

L. Costa. Multidimensional scale space shape analysis. In Int. Work. Synthetic-Natural
HybridCoding and*ree-Dimensional (D) Imaging (IWSNHCDI ’), pages –.
Santorini, Greece, .

M. Couprie and G. Bertrand. Simplicity surfaces: a new definition of surfaces in z3. In
SPIE Vision Geometry V, volume , pages –. .

M. Couprie and R. Zrour. Discrete bisector function and Euclidean skeleton. In Proc.
Discrete Geometry for Computer Imagery (DGCI ), pages –. .

M. Cox and D. Ellsworth. Application-controlled demand paging for out-of-core
visualization. In Proc. IEEE Visualization ’. .

O. Cuisenaire. Distance Transformations: Fast Algorithms and Applications to Medical
Image Processing. Ph.D. thesis, Université catholique de Louvain, Laboratoire de
Telecommunications et Teledetection, . http://ltswww.epfl.ch/~cuisenai/papers/.



http://ltswww.epfl.ch/~cuisenai/papers/

Bibliography

E. S. Deutsch.)inning algorithms on rectangular, hexagonal, and triangular arrays.
Comm. ACM, ():–, .

T. K. Dey and J. Sun. Defining and computing curve-skeletons with medial geodesic
function. In Proc. Symp. Geometry Processing (SGP ’). .

H. M. Duvernoy, S. Selon, and J. L. Vannson. Cortical blood vessels of the human brain.
Brain Research Bulletin, ():–, .

ESA MAP Team AO--. Assessment of bone structure and its changes in
microgravity. In A. Wilson, editor, SP-: Microgravity Applications Programme:
Successful Teaming of Science and Industry, pages –. European Space Agency,
.

F. Fol-Leymarie. *ree-Dimensional Shape Representation via Shock Flows. Ph.D. thesis,
Brown University, Providence, Rhode Island, USA, .

C. Fouard. Extraction de paramètres morphométriques pour l’étude du réseau
micro-vasculaire cérébral. Ph.D. thesis, Université de Nice – Sophia-Antipolis, .
http://www.inria.fr/rrrt/tu-.html.

C. Fouard and G. Malandain. Systematized calculation of optimal coefficients of -d
chamfer norms. In I. Nyström, G. S. di Baja, and S. Svensson, editors, Proc. Discrete
Geometry for Computer Imagery (DGCI ), , pages –. LNCS ,
Napoly, Italy, .

C. Fouard andG.Malandain. -d chamfer distances and norms in anisotropic grids. Image
and Vision Computing, ():–, .

C. Fouard, G.Malandain, S. Prohaska, andM.Westerhoff. Blockwise processing applied to
brain micro-vascular network study. IEEE Trans. Medical Imaging, ():, .

C. Fouard, G. Malandain, S. Prohaska, M. Westerhoff, F. Cassot, C. Mazel, D. Asselot,
and J.-P. Marc-Vergnes. Skeletonization by blocks for large D datasets: Application to
brain microcirculation. In IEEE Int. Symp. Biomedical Imaging: From Nano to Macro
(ISBI ’). Arlington, Virginia, .

M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms
(extended abstract). InProc. thAnnual Symp. Foundations of Computer Science, pages
–. IEEE Computer Society Press, .

T. Fujimori, H. Suzuki, Y. Kobayashi, and K. Kase. Contouring medial surface of
thin-plate structures using local marching cubes. J. Computing and Information Science
in Engineering, ():–, .

N. Gagvani. Parameter-controlled volume thinning. Graphical Models and Image
Processing, ():–, .



http://www.inria.fr/rrrt/tu-1142.html

Bibliography

M. Garland and P. S. Heckbert. Surface simplification using quadric error metrics.
Computer Graphics, :–, .

Y. Ge and J. M. Fitzpatrick. On the generation of skeletons from discrete
Euclidean distance maps. IEEE Trans. Pattern Analysis and Machine Intelligence,
():–, .

P. Giblin and B. B. Kimia. A formal classification of d medial axis points and their local
geometry. IEEE Trans. Pattern Analysis and Machine Intelligence, ():–, .

P. J. Giblin and B. B. Kimia. Transitions of the d medial axis under a one-parameter
family of deformations. In Proc. th European Conf. Computer Vision (ECCV ),
pages –. Springer-Verlag, London, UK, .

R. B. Haber and D. A. McNabb. Visualization Idioms: A Conceptual Model for Scientific
Visualization Systems. IEEE Computer Society Press Tutorial, LosAlamitos, Calif.,
.

H. K. Hahn, B. Preim, D. Selle, and H.-O. Peitgen. Visualization and interaction
techniques for the exploration of vascular structures. In Proc. IEEE Visualization ’,
page . .

C. D. Hansen and C. R. Johnson. *e Visualization Handbook. Elsevier, .

A. Hatcher. Algebraic Topology. Cambridge University Press, .

J. L. Hennessy, D. A. Patterson, D. Goldberg, and K. Asanovic. Computer Architecture.
Morgan Kaufmann, .

M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii. Topology matching for fully
automatic similarity estimation of d shapes. In Proc. SIGGRAPH , pages –.
ACM Press, New York, NY, USA, .

M. Isenburg and P. Lindstrom. Streaming meshes. In Proc. IEEE Visualization ’. .

K. Jänich. Topology. Springer, .

C. Johnson, R. Moorhead, T. Munzner, H. Pfister, P. Rheingans, and T. S. Yoo, editors.
NIH-NSF Visualization Research Challenges Report. U.S. National Institutes of Health,
Bethesda, MD, U.S.A., .

P. P. Jonker. Morphological operations on D and D images: From shape primitive
detection to skeletonization. In G. Borgefors, I. Nystom, and G. S. di Baja, editors, Proc.
th Int. Conf. Discrete Geometry for Computer Imagery (DGCI ), volume  of
Lecture Notes in Computer Science, pages –. Springer, Berlin, Germany, .

P. P. Jonker. Skeletons in n dimensions using shape primitives. Pattern Recognition Lett.,
():–, .



Bibliography

P. P. Jonker. Discrete topology on n-dimensional square tessellated grids. Image andVision
Computing, ():–, .

P. P. Jonker and A. M. Vossepoel. Mathematical morphology in D images: comparing
D & D skeletonization algorithms. Summer School On Morphological Image and
Signal Processing ( -  September, Zakopane, Poland), Del(, Netherlands, .

R. Kähler, S. Prohaska, A. Hutanu, and H.-C. Hege. Visualization of time-dependent
remote adaptive mesh refinement data. In Proc. IEEE Visualization ’, pages –.
.

A. E. Kaufman, D. Cohen, and R. Yagel. Volume graphics. IEEE Computer, ():–,
.

B. Kégl and A. Krzyżak. Piecewise linear skeletonization using principal curves. IEEE
Trans. Pattern Analysis and Machine Intelligence, ():–, .

E. D. Khalimsky, R. D. Kopperman, and P. R. Meyer. Computer graphics and connected
topologies on finite ordered sets. Topology and its Applications, :–, .

G. Klette. Simple points in d and d binary images. InCAIP , volume  of Lecture
Notes in Computer Science, pages –. .

R. Klette and A. Rosenfeld. Digital Geometry. Morgen Kaufmann, San Francisco, .

T. Kong. On topology preservation in -d and -d thinning. Int. J. Pattern Recognition
and Artificial Intelligence, ():–, .

T. Y. Kong, R. Kopperman, and P. R. Meyer. A topological approach to digital topology.
American Mathematical Monthly, ():–, .

V. Kovalevsky. Algorithms and data structures for computer topology. In G. Bertrand,
A. Imiya, and R. Klette, editors, Digital and image geometry: advanced lectures, volume
 of Lecture Notes in Computer Science, pages –. Springer-Verlag New York,
Inc., New York, NY, USA, .

V. A. Kovalevsky. Finite topology as applied to image analysis. Computer Vision, Graphics,
and Image Processing, ():–, .

T. Kurc, Ü. Çatalyürek, C. Chang, A. Sussman, and J. Saltz. Visualization of large data sets
with the active data repository. IEEE Computer Graphics and Applications, ():–,
.

J.-O. Lachaud. Continuous analogs of digital boundaries: A topological approach to
iso-surfaces. Graphical Models, :–, .



Bibliography

J.-O. Lachaud. Coding cells of digital spaces: a framework towrite generic digital topology
algorithms. In A. Del Lungo, V. Di Gesù, and A. Kuba, editors, Proc. Int. Work.
Combinatorial Image Analysis (IWCIA ), Palermo, Italy, volume  of ENDM.
Elsevier, .

L. Lam, S.-W. Lee, and C. Y. Suen.)inning methodologies — A comprehensive survey.
IEEE Trans. Pattern Analysis and Machine Intelligence, ():, .

C. C. Law, W. J. Schroeder, K. M. Martin, and J. Temkin. A multi-threaded streaming
pipeline architecture for large structured data sets. In Proc. IEEE Visualization ’,
pages –. IEEE Computer Society Press, .

T.-C. Lee, R. L. Kashyap, and C.-N. Chu. Building skeleton models via -d medial
surface/axis thinning algorithms. CVGIP: Graphical Models and Image Processing,
():–, .

J. Li, W.-K. Liao, A. Choudhary, R. Ross, R.)akur, W. Gropp, R. Latham, A. Siegel,
B. Gallagher, and M. Zingale. Parallel netCDF: A scientific high-performance I/O
interface. In Proc.  ACM/IEEE Conference on Supercomputing (SC ’), page .
Phoenix, Arizona, .

S. Loncaric. A survey of shape anlaysis techniques. Pattern Recognition, ():–,
.

W. E. Lorensen and H. E. Cline. Marching cubes: a high resolution D surface
construction algorithm. In M. C. Stone, editor, Proc. SIGGRAPH ’, pages –.
Computer Graphics, Volume , Number , .

C. M. Ma. A D fully parallel thinning algorithm for generatin medial faces. Pattern
Recognition Lett., :–, .

C. M. Ma and M. Sonka. A fully parallel D thinning algorithm and its appllications.
Computer Vision and Image Understanding, ():, .

C.-M. Ma and S.-W. Wan. Parallel thinning algorithms on D (,) binary images.
Computer Vision and Image Understanding, :–, .

C.-M.Ma and S.-Y.Wan. Amedial-surface oriented -d two-subfield thinning algorithm.
Pattern Recognition Lett., ():–, .

C.-M. Ma, S.-Y. Wan, and J.-D. Lee.)ree-dimensional topology preserving
reduction on the -subfields. IEEE Trans. Pattern Analysis and Machine Intelligence,
():–, .

W.-C.Ma, F.-C.Wu, andM.Ouhyoung. Skeleton extraction of d objects with radial basis
functions. In Proc. Shape Modeling Int. (SMI ’), page . IEEE Computer Society,
Washington, DC, USA, .



Bibliography

S. Majumdar, M. Kothari, P. Augat, D. C. Newitt, T. M. Link, J. C. Lin, T. Lang, Y. Lu,
and H. K. Genant. High-resolution magnetic resonance imaging:)ree-dimensional
trabecular bone architecture and biomechanical properties. Bone, ():–, .

G. Malandain and G. Bertrand. Fast characterization of D simple points. In Proc. th
Int. Conf. Pattern Recognition (IAPR).)e Hague,)e Netherlands, .

G.Malandain and S. Fernández-Vidal. Euclidean skeletons. Image and Vision Computing,
:–, .

O. Mallo, R. Peikert, C. Sigg, and F. Sadlo. Illuminated lines revisited. In IEEE
Visualization, page . .

A. Manzanera, T. M. Bernard, F. Prêteux, and B. Loguet. Ultra-fast skeleton based on an
isotropic fully parallel algorithm. In Proc. th Int. Conf. Discrete Geometry for Computer
Imagery (DGCI ’), volume  of Leture Notes in Computer Science, pages –.
a. Http://www-sim.int-evry.fr/People/Manzanera.html.

A. Manzanera, T. M. Bernard, F. Prêteux, and B. Loguet. A unified
mathematical framework for a compact and fully parallel n-D skeletonization
procedure. In Proc. SPIE Conf.  on Vision Geometry VIII. b.
Http://www-sim.int-evry.fr/People/Manzanera.html.

A. Manzanera, T. M. Bernard, F. Prêteux, and B. Longuet. Medial faces from a concise
D thinning algorithm. In Proc th IEEE Int. Conf. Computer Vision, volume , pages
–. c. Http://www-sim.int-evry.fr/People/Manzanera.html.

V. Marion-Poty and S. Miguet. A new -D and -D thinning algorithm based on
successive border generations. Research Report -, Laboratoire de l’Informatique
du Parallélisme, .

B. H. McCormick, T. A. DeFanti, andM. D. Brown. Visualization in scientific computing.
NSF Landmark Report, .

D. G.Morgenthaler and A. Rosenfeld. Surfaces in three-dimensional images. Information
and Control, :–, .

NCSA. HDF - A new generation of HDF. . http://hdf.ncsa.uiuc.edu/HDF/.

I. Nyström, G. S. di Baja, and S. Svensson. Curve skeletonization by junction detectino
in surface skeletons. In C. A. et. al., editor, IWVF, volume  of Lecture Notes in
Computer Science, pages –. .

A. Odgaard and H. H. G. Gundersen. Quantification of connectivity in cancellous bone,
with special emphasis on -D reconstructions. Bone, :, .

S. Oeltze and B. Preim. Visualization of vasculature with convolution surfaces: method,
validation and evaluation. IEEE Trans. Medical Imaging, ():–, .



http://hdf.ncsa.uiuc.edu/HDF5/

Bibliography

R. L. Ogniewicz and O. Kübler. Hierachic Voronoi skeletons. Pattern Recognition,
():–, .

M. Pakura, O. Schmitt, and T. Aach. Segmentation and analysis of nerve fibers in
histological section of the cerebral human cortex. In Proc. th IEEE Southwest Symp.
Image Analysis and Interpretation (SSIAI ’), pages –. .

K. Palági and A. Kuba. A parallel D -subitaration thinning algorithm. Graphical
Models and image Processing, :–, .

V. Pascucci andR. J. Frank. Hierachical indexing for out-of-core access tomulti-resolution
data. In G. Farin, B. Hamann, and H. Hagen, editors, Hierarchical and Geometrical
Methods in Scientific Visualization, page . Springer, .

M. Peternell. Geometric properties of bisector surfaces. GraphicalModels, ():–,
.

S. M. Pizer, P. T. Fletcher, A.)all, M. Styner, G. Gerig, and S. C. Joshi. Object models in
multiscale intrinsic coordinates via m-reps. Image and Vision Computing, ():–,
a.

S. M. Pizer, K. Siddiqi, G. Székely, J. N. Damon, and S. W. Zucker. Multiscale medial loci
and their properties. Int. J. Computer Vision, (-):–, b.

S. Prohaska and H.-C. Hege. Fast visualization of plane-like structures in voxel data. In
Proc. IEEE Visualization ’, pages –. Boston, Massachusetts, .

S. Prohaska and A. Hutanu. Remote data access for interactive visualization. In Proc. th
Annual Mardi Gras Conf.: Frontiers of Grid Applications and Technologies, pages –.
.

S. Prohaska, A.Hutanu, R. Kähler, andH.-C.Hege. Interactive exploration of large remote
micro-CT scans. In Proc. IEEE Visualization ’, pages –. Austin, Texas, .

C. Pudney. Distance-ordered homotopic thinning: A skeletonization algorithm for D
digital images. Computer Vision and Image Understanding, :–, .

J. Reddy and G. Turkiyyah. Computation of d skeletons using a generalized Delaunay
triangulation technique. Computer-Aided Design, ():–, .

E. Remy and E.)iel. Computing d medial axis for chamfer distances. In Proc.
th Int. Conf. Discrete Geometry for Computer Imagery (DGCI ), pages –.
Springer-Verlag, London, UK, .

E. Remy and E.)iel. Medial axis for chamfer distances: computing look-up tables and
neighbuorhoods in d or d. Pattern Recognition Lett., ():–, .

L. Robert and G. Malandain. Fast binary image processing using binary decision
diagrams. Computer Vision and Image Understanding, ():–, .



Bibliography

P. Rüegsegger, B. Koller, and R. Müller. A microtomographic system for the
nondestructive evaluation of bone architecture. Calcified Tissue Int., :–, .

K. Saha, B. Chanda, and D. D. Majumder. Principles and algorithms for -d and -d
shrinking. Technical Report TR/KBCS//, N.C.K.B.C.S. Library, Indian Statistical
Inst., Calcutta, India, .

P. K. Saha and B. B. Chaudhuri. D digital topology under binary transformation with
applications. Computer Vision and Image Understanding, ():–, .

P.K. Saha, B. B.Chaudhuri, andD.D.Majumder. Anew shape preserving parallel thinning
algorithm for D digital images. Pattern Recognition, ():–, .

P. Saparin, J. S.)omsen, S. Prohaska, A. Zaikin, J. Kurths, H.-C. Hege, and W. Gowin.
Quantification of spatial structure of human proximal tibial bone biopsies using D
measures of complexity. Acta Astronautica, ():–, .

S. Sarawagi and M. Stonebraker. Efficient organization of large multidimensional arrays.
In Proc. th Int. Conf. Data Engineering, pages –. IEEE Computer Society,
Washington, DC, USA, .

M. Sato, I. Bitter, M. Bende, A. Kaufman, and M. Nakajima. TEASAR: Tree-structure
extraction algorithm for accurate and robust skeletons. In B. A. Barsky, Y. Shinagawa,
and W. Wang, editors, Proceedings of the th Pacific Graphics Conference on Computer
Graphics and Application (PACIFIC GRAPHICS-), pages –. IEEE, Los
Alamitos, CA, .

D. Shaked and A. M. Bruckstein. Pruning medial axes. Computer Vision and Image
Understanding, ():–, .

K. Siddiqi, S. Bouix, A. Tannenbaum, and S. W. Zucker.)e hamilton-jacobi skeleton. In
Proc. th IEEE Int. Conf. Computer Vision, volume , pages –. .

K. Siddiqi, A. Shokoufandeh, S. J. Dickinson, and S. W. Zucker. Shock graphs and shape
matching. In Proc. th Int. Conf. Computer Vision (ICCV ’), page . IEEEComputer
Society, Washington, DC, USA, .

C. T. Silva, Y.-J. Chiang, J. El-Sana, and P. Lindstrom. Out-of-core algorithms for scientific
visualization and computer graphics. Course notes IEEE Visualization ’, .

D. Stalling, M. Westerhoff, and H.-C. Hege. Amira: a highly interactive system for visual
data analysis. In C. D. Hansen and C. R. Johnson, editors,*eVisualization Handbook,
chapter , pages –. Elsevier, .

M. Stauber and R. Müller. Volumetric spatial decomposition of trabecular bone into rods
and plates—a new method for local bone morphometry. Bone, :–, .



Bibliography

C. Stoll, S. Gumhold, and H.-P. Seidel. Visualization with stylized line primitives. In Proc.
IEEE Visualization ’, page . .

S. Svensson and G. Borgefors. On reversible skeletonization using anchor-points from
distance transforms. Journal of Visual Communication and Image Representation,
:–, .

S. Svensson, I. Nyström, and G. S. di Baja. Curve skeletonization of surface-like objects in
d images guided by voxel classification. Pattern Recognition Lett., ():–,
.

S. Takahashi, Y. Takeshima, and I. Fujishiro. Topological volume skeletonization and its
application to transfer function design. Graphical Models, ():–, .

H. Talbot and L. Vincent. Euclidean skeletons and conditional bisectors. In SPIE Visual
Communications and Image Processing, volume , pages –. .

R.)akur,W.Gropp, andE. Lusk. Optimizing noncontiguous accesses inMPI-IO. Parallel
Computing, ():–, .

J. S.)omsen, A. Laib, B. Koller, S. Prohaska, L. Mosekilde, and W. Gowin. Stereological
measures of trabecular bone structure: comparison of Dmicro computed tomography
with D histological sections in human proximal tibial bone biopsies. J. Microscopy,
:, .

P.)urner, P. Wyss, R. Voide, M. Stauber, M. Stapanoni, U. Sennhauser, and R. Müller.
Time-lapsed investigation of three-dimensional failure and damage accumulation in
trabecular bone using synchrotron light. Bone, ():–, .

M. Tory and T. Möller. Rethinking visualization: A high-level taxonomy. In Proc. IEEE
Symp. Information Visualization (INFOVIS ’), pages –. .

UNIDATA. NetCDF—network common data format. . http://my.unidata.ucar.edu/
content/software/netcdf.

J. van Wijk.)e value of visualization. In Proc. IEEE Visualization ’, page . .

B. J. H. Verwer, P. W. Verbeek, and S. T. Dekker. An efficient uniform cost algorithm
applied to distance transforms. IEEE Trans. Pattern Analysis and Machine Intelligence,
:, .

L. Vincent. Efficient computation of various types of skeletons. In SPIE Medical imaging
V, volume , pages –. San Jose CA, .

J. S. Vitter. External memory algorithms and data structures: Dealing with massive data.
ACM Computing Surveys, ():–, .



http://my.unidata.ucar.edu/content/software/netcdf
http://my.unidata.ucar.edu/content/software/netcdf

Bibliography

A. M. Vossepoel, K. Shutte, and C. F. P. Delanght. Memory efficient skeletonization of
utility maps. In Proc. th Int. Conf. Document Analysis and Recognition, pages –.
Ulm (Germany), .

J. Wang, M. M. Oliveira, and A. E. Kaufman. Reconstructing manifold and non-manifold
surfaces from point clouds. In Proc. IEEE Visualization ’, pages –. .

S.-E. Yoon, P. Lindstrom, V. Pascucci, and D. Manocha. Cache-oblivious mesh layouts. In
Proc. SIGGRAPH ’. ACM Press, .

A. Zaikin, P. Saparin, J. Kurths, S. Prohaska, and W. Gowin. Modeling resorption in D
CT and D µ-CT bone images. Int. J. Bifurcation and Chaos, ():–, .

Y. Zhou, A. Kaufman, andA. Toga.)ree-dimensional skeleton and centerline generation
based on an approximatemaximumdistance field. Visual Computer, :–, .

M. Zöckler, D. Stalling, and H.-C. Hege. Interactive visualization of d-vector fields using
illuminated streamlines. In Proc. IEEE Visualization ’, pages –. San Fransisco,
.

A. Zomorodian. Computing and Comprehending Topology: Persistence and Hierarchical
Morse Complexes. Ph.D. thesis, University of Illinois, Urbana-Champaign, .



Index

-x-junction, 

adjacency set, 
adjacent, 
all-manifold, 
attachment set, 

background voxels, 
binary decision diagram, 
binary image, 
bone micro-architecture, 
boundary

-boundary, 
-boundary, , 

cell, 
cell complex, 

skeleton of, 
cell end-point

importance of, 
local, 

cell path, 
chamfer distance transformation, 
component, 
connected, 

deformation retract, 
deformation retraction, 
detailed piecewise linear geometry, 
distance transformation, 
dual cube, 

end-point
importance of, 
local, 

Euler characteristic, 
external memory, 

algorithms, 
chamfer distance transformation, 
data structures, 
thinning, 

external memory model, 

foreground voxels, 

geodesic distance, 
grid cell complex, 
grid cell model, 
grid cell skeleton, 
grid cell thinning, 
grid point model, 
grid points, 

homotopic voxel skeleton, 

incident, 

junction, , 

manifold
-manifold, 
-manifold, , 
-manifold, , 

medial axis, 
medialness, 
micro-vascular network, 

nearest background point transform., 
neighbor, 
neighborhood, 
not-all-manifold, 

object voxels, 

partial incidence order, 
path, 



Index

length of, 
weighted length of, 

reconstructability, 
reduced dual cube, 

Schlegel diagram, 
simple pair of cells, 
simple piecewise linear geometry, 
simple set, 
simple voxel, 
simplicial complex, 

thin voxel object, 
thinning, 
trabecular bone, 

voxel object, 
voxels, 



	Titlepage
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	List of Algorithms

	1 Introduction
	2 Voxel Skeletons
	2.1 Review of Methods for Computing Skeletons
	2.2 Review of Methods for Computing Skeletons
	2.2.1 Thinning and Boundary Propagation
	2.2.2 Medialness Function Based Methods
	2.2.3 Wavefront Propagation
	2.2.4 Geometric Methods

	2.3 Voxel and Grid Cell Skeletons
	2.3.1 One-Dimensional Skeletons:)inning
	2.3.2 Two-Dimensional Skeletons: Geodesic Boundary Distance
	2.3.3 Mixed Dimensional Skeletons

	3 Piecewise Linear Geometric Representation of Voxel Skeletons
	3.1 Geometry of Voxel Skeletons
	3.1.1 Manifold Type of Voxels Based on a Local Cell Complex
	3.1.2 Line Sets and Graphs
	3.1.3 Surfaces

	3.2 Geometry of Grid Cell Skeletons

	4 Skeletons of Synthetic Examples
	5 External Memory Algorithms for Computing Skeletons
	5.1 Chamfer Distance Transformation
	5.2 Thinning
	5.3 Geodesic Boundary Distance
	5.4 Geometric Representation of Voxel Skeletons
	5.5 Timings

	6 Applications
	6.1 Reconstruction and Visualization of Micro-Vascular Networks
	6.2 Visualization and Analysis of Bone Micro-Architecture

	7 Conclusions
	Bibliography

