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Abstract

Pulse thermography of concrete structures is used in civil engineering for
detecting voids, honeycombing and delamination. The physical situation is
readily modeled by Fourier’s law. Despite the simplicity of the PDE struc-
ture, quantitatively realistic numerical 3D simulation faces two major obsta-
cles. First, the short heating pulse induces a thin boundary layer at the heated
surface which encapsulates all information and therefore has to be resolved
faithfully. Even with adaptive mesh refinement techniques, obtaining useful
accuracies requires an unsatisfactorily fine discretization. Second, bulk mate-
rial parameters and boundary conditions are barely known exactly. We address
both issues by a semi-analytic reformulation of the heat transport problem and
by parameter identification. Numerical results are compared with measure-
ments of test specimens.
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1 Introduction

Pulse thermography is a non-destructive testing method, which is widely used for
the qualitative and quantitative defect detection in various structures. In pulse ther-
mography the cooling process of a component is measured with an infrared camera
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after heating (compare Fig. 1a and b), so that for every point on the component’s
surface a transient of the temperature is recorded. The transients differ for ar-
eas with inhomogeneities close to the surface if these have other thermal properties
than the surroundings (compare Fig. 2b). Therefore the evaluation of the transients
allows a qualitative detection of defects.

Quantitative results are available either in analytical form for ideal situations with
short pulse heating and homogeneous materials, or alternatively by numerical sim-
ulation. However, with available numerical algorithms, inhomogeneous building
materials, and long heating times required in civil engineering, the results turned
out to be rather inaccurate.

2 State of the Art

Direct comparisons of experimental data and numerical simulations performed in
the past for applications in civil engineering have shown that the predictive character
of simulation is more of a qualitative than a quantitative nature [12]. There are
simple analytical models for 1D and 2D problems available, which provide rough
estimates of the temperature distribution [1]. Modeling based on finite differences
was applied to 3D heat transfer with cylindrical coordinates [9]. Nowadays, the
finite element methods with correct treatment of the experimental conditions is
reported to be the most promising tool for modeling the heat transfer in 3D [4, 10,
2, 11]. Several commercial software packages are available with integrated CAD
systems. However, due to the highly multiscale complexity of the problem, reliable
quantitative results can only be obtained at very high computational cost.

The main contribution of the current paper is a method that combines analytical
solutions for idealized situations with numerical compuation of the difference be-
tween actual and idealized situation. This allows to compute accurate simulations
at moderate cost.

(a) (b)

Figure 1: Principle of the heating (a) and measuring (b) of a test specimen with
pulse thermography
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(a) (b)

Figure 2: Sketch of a test body (a), temperature profile after heating and recorded
temperature transients (b)

3 Mathematical model

We assume the heated surface is planar and covers a domain Ω0 ⊂ R2. Extending
Ω0 into R3, the concrete material is assumed to occupy a prismatic domain Ω =
Ω0 × [0, z], where z > 0 is the thickness of the material. Now the temperature
evolution is given by

ρcṪ = div(κ∇T ) in Ω (1)
κ∂nT = Q+ g(T ) on ∂Ω (2)

T = T0 for t = 0 (3)

For a description of the quantities we refer to Table 1.

According to the thermography setting with a time interval [0, th] of constant heat-
ing, we assume that Q(x, t) = Q0(x1,2)χ[0,th](t)δx3 . The Kronecker-δ factor restricts
the heating to the front face of Ω while the characteristic function χ restricts the
heat flux to the heating time interval. Q0 : Ω0 → R describes the spatial power den-
sity on the front face. The remaining heat flux across the boundary is a combination
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Quantity Symbol Unit

time t s
position x m
temperature T K
thermal conductivity κ W/(mK)
density ρ kg/m3

specific heat capacity c J/(kgK)
boundary heat flux g W/m2

transversal convective heat transfer coefficient htrans W/(m2K)
radiation coefficient Ctrans W/(m2K4)
heating Q0 W/m2

Table 1: Physical quantities appearing in the mathematical model of pulse ther-
mography.

of convective and radiative heat transfer:

g(T ) = g(T ;htrans, Text, Ctrans, Tamb) = htrans(Text − T ) + Ctrans(T 4
amb − T 4)

4 Treatment of boundary layers

If thermal diffusivity κ/(ρc) and heating time th are very small compared to the
front surface area |Ω0|, the solution T exhibits a very thin boundary layer, which
is the case for realistic material, geometries, and heating times. This boundary
layer has to be represented accurately in numerical computation, since it essentially
determines the solution. Too coarse a discretization leads to a too fast transport of
simulated heat from the boundary layer into the interior of the material.

The mesh width that is necessary in the boundary layer in order to obtain reason-
able accuracies can lead to problem sizes that are beyond reasonable computing
facilities. For example, discretizing the setup of Section 7.1 with trilinear elements
on uniform isotropic meshes and aiming at an absolute averaged temperature error
of 10−2K would require about 600 million degrees of freedom and a roughly esti-
mated computing time of around 1000 hours on a current PC. More sophisticated
meshing strategies, e.g., self-adaptive meshes or mesh grading towards the heated
surface can reduce the computational complexity tremendously, but still do not
obtain reasonable accuracies in real time.

The choice of an efficient meshing is complicated by the fact that as the tempera-
ture distribution evolves, it becomes increasingly smooth, and the boundary layer
vanishes. Repeated mesh adaptation or changes in the mesh grading, respectively,
is necessary to provide efficient discretizations as the simulated time proceeds.
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4.1 Semi-analytic approximation

A different approach that we pursue here is to capture the boundary layer with
an analytically obtained approximation, and computing only the remaining defect
numerically. The semi-analytical approximation is derived for a simplified situation
with homogeneous material, linear and translation-invariant boundary conditions,
and a half-space as domain. In this setting, the temperature increase u0 due to
heating satisfies a linear 1D PDE that can be addressed by analytical means and is
moreover linear in the heating intensity Q0, such that it can easily be scaled by a
given power distribution on the heating surface.

The simplified 1D model is given as

ρ0c0u̇0 = κ0u
′′
0 in R+ (4)

−κ0u
′
0 = χ[0,th] + ḡ′(T̄ )u0 on ∂R+ (5)

u0(x, 0) = 0. (6)

Since u0 is intended to capture the boundary layer at the front surface, the ho-
mogeneous material parameters ρ0 and κ0 are chosen as averages of those on the
front surface. In order to approximate the boundary conditions well, we average
the coefficients htrans, Text, Ctrans, and Tamb over Ω0, which yields the averaged heat
flux ḡ(T ) = g(T ; h̄trans, T̄ext, C̄trans, T̄amb). This is linearized around a temperature
T̄ that should be roughly the midpoint of the range covered by the front surface
temperature distribution.

We extend u0 to an approximate 3D solution u by multiplying with the heating
power distribution:

u(x) = Q0(x1,2)u0(x3) (7)

Note that due to this construction we have

∇u(x, t) =
[
u0(x3, t)∇Q0(x1,2, t)
Q0(x1,2, t)u′0(x3, t)

]
. (8)

Now we set T = u+ δu, such that (1) and (3) read

ρc(u̇+ ˙δu) = div(κ∇u) + div(κ∇δu)
= u0div(κ∇Q0) + ∂3(Q0κu

′
0) + div(κ∇δu)

= u0div(κ∇Q0) +Q0κ0u
′′
0 +Q0∂3((κ− κ0)u′0) + div(κ∇δu)

δu = T0 for t = 0

Moving the time derivative of u to the right hand side and using (8) and (4), we
have

ρc ˙δu = u0div(κ∇Q0) +Q0∂3((κ− κ0)u′0) + div(κ∇δu)− (ρc− ρ0c0)u̇
+Q0κ0u

′′
0 −Q0ρ0u̇0

= u0div(κ∇Q0) +Q0∂3((κ− κ0)u′0) + div(κ∇δu)− (ρc− ρ0c0)u̇. (9)
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We see that δu satisfies the same PDE as T , except for the additional source term

f = u0div(κ∇Q0) +Q0∂3((κ− κ0)u′0)− (ρc− ρ0c0)u̇. (10)

Using (5), we see that on the front face, the boundary condition (2) is

κ∂nδu = Q+ g(T )− κ∂nu
= Q+ g(T ) + κQ0u

′
0

= Q0χ[0,th] + g(T )−Q0

(
χ[0,th] + ḡ′(T̄ )u0

)
= g(Q0u0 + δu)− ḡ′(T̄ )Q0u0. (11)

Note that in particular the external heating Q is completely eliminated from the
boundary condition for δu, and that the first two moments of the boundary condi-
tion associated to u are small if the spatial variation of the boundary data is small.
On the back face of the boundary, (2) translates to

κ∂nδu = g(Q0u0 + δu)− κQ0u
′
0,

whereas on the side faces it reduces to

κ∂nδu = g(Q0u0 + δu)− κu0∂nQ0. (12)

4.2 Evaluation of the analytical approximation

For the actual computation of δu with a finite element method we need to evaluate
u0, u′0, and u̇0, and thus have only shifted the problem of representing the boundary
layer from 3D to 1D. In the following we will work out how to compute u0 and its
derivatives.

Using the fundamental solution

G(x, t) =
√
ρ0c0 exp(−ρ0c0x2

4κ0t
)

√
4πκ0t

, t > 0,

for the heat transfer equation, u0 is given by

u0(x, t) =
∫ t

τ=0

2
ρ0c0

(
χ[0,th](τ) + ḡ′(T̄ )u0(0, τ)

)
G(x, t− τ) dτ, (13)

see [6, Chap. 2.3]. Unfortunately, no closed analytical expression for (13) seems to
exist. Once again we may approximate u0 by an analytical expression and compute
the defect numerically. To this extend we substitute a rational expression for the
exponential and rewrite (13) as

ρ0c0
2
u0(x, t) =

∫ min(t,th)

τ=0
Ĝ(x, t− τ) dτ +

∫ min(t,th)

τ=0
(G(x, t− τ)− Ĝ(x, t− τ)) dτ

+
∫ t

τ=0
ḡ′(T̄ )u0(0, τ)G(x, t− τ) dτ (14)



7

0

500

1000

1500

2000 0

0.05

0.1

0.15

0.2−1400

−1200

−1000

−800

−600

−400

−200

0

0

500

1000

1500

2000 0

0.05

0.1

0.15

0.20

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Figure 3: Numerically computed correction δH (left) idealized solution u0 (right)
on the domain x ∈ [0, 0.2]m, t ∈ [0, 1800]s for the material paramters given in
Table 6 and boundary conditions in Table 2 with T̄ = 290K.

with

Ĝ(x, t) =
√

ρ0c0
4πκ0t

(
1 +

ρ0c0x
2

4κ0t

)−1

.

Now the first integral in (14) is given analytically as

H(x, t) =
ρ0c0x

2κ0
√
π

(
w
(
σ
√
t
)
− w

(
σ
√
t−min(t, th)

))
with

σ =
2
x

√
κ0

ρ0c0
and w(τ) = τ − arctan τ. (15)

Note that for τ → 0 the evaluation of w(τ) according to (15) is unstable and, using
double accuracy arithmetics, should be replaced by the Taylor series approximation
w(τ) ≈ τ3/3 for τ < 10−4.

Next we define

δH(x, t) =
∫ min(t,th)

τ=0
(G(x, t− τ)− Ĝ(x, t− τ)) dτ

+
∫ t

τ=0
ḡ′(T̄ )

2
ρ0c0

(H(0, τ) + δH(0, τ))G(x, t− τ) dτ, (16)

which needs to be treated numerically. Since δH is defined over a rectangular area
in R2, it is easily possible to numerically integrate and store δH and its derivatives
on a sufficiently fine cartesian grid. For x = 0, (16) is a Volterra equation of second
kind. For integration methods, in particular for handling the singular kernel G(0, ·)
in the Volterra equation, we refer to [6].
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5 Initial and boundary conditions

Efficient and accurate solution of the heat equation (1) - (3) is necessary, but not
sufficient to obtain quantitatively correct temperature distributions. Of vital im-
portance for the agreement of simulation and measurements is the estimation of
boundary conditions and the initial state T0 of the temperature distribution. Nei-
ther 3D temperature measurements of the specimen nor exact data about external
temperature Text and ambient radiation temperature Tamb are commonly available.

We assume that the specimen is in thermal equilibrium. For lack of better data, we
extend the front face temperature measurement normal to the front face, giving a
guess Tm0 of the complete boundary temperature. In principle, we could solve the
Dirichlet problem for T0 and compute Text from

Text = Tm0 + h−1
trans

(
κ∂nT0 − Ctrans(T 4

amb − T 4
0 )
)
. (17)

However, noise in Tm0 would be significantly amplified by this approach. Instead we
start with (17), where we compute ∂nT0 from the very coarse but smooth model

T0(x) ≈ Tbottom +
x2

H
(Ttop − Tbottom)

to account for the vertical temperature gradient in x2-direction that is clearly visible
in the initial measurements. Ttop and Tbottom are the averaged top and bottom face
temperatures, respectively, and H is the height of the specimen. With Text given
by (17), we solve

div(κ∇T0) = 0 in Ω

κ∂nT0 = htrans(Text − T0) + Ctrans(T 4
amb − T 4

0 ) on ∂Ω

for the stationary initial value T0 shown in Fig. 4.

6 Characterization of the IR heating unit

Since the nonuniformity of the heating is quite important [10], in this section we
derive an expression for the power distribution Q0 imposed by the IR heating unit
on the front surface.

First we consider the power distribution caused by an isotropic point source of
distance d to the front face. Assume the power emitted per steradian is P0. The
power contained in a narrow square pyramid with opening angle γ is then γ2P0.
Assume the center line of the pyramid forms an angle α with the normal of the
front face. The intersection of the pyramid with the front face has an area

A =
γ2d2

(cosα)3
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(a) simulation at t=0 (b) measurement at t=0

Figure 4: Initial temperature distribution T0 on the front face (a) and noisy mea-
surement (b) just before heating

over which the power γ2P0 is distributed. Thus, the power density on the front face
is given by

P (x) =
P0(cosα)3

d2
=

P0d

l(x, s)3
,

where l(s, x) is the distance between the source point s and a point x on the front
face.

The heating unit consists of several vertical cylindrical emitters heated to approxi-
mately 900K. The front surface of the specimen is heated approximately uniformly
by a periodic horizontal movement of the heating unit. Compared to the tempera-
ture dynamics, the horizontal movement has a high frequency, such that the periodic
temperature variation is quickly averaged out [7]. For this reason, we model the
heating unit as a superposition of rectangular area sources, one for each heated rod.
The points on the area sources are assumed to emit an isotropic radiation. Then
the power density induced by an area source covering the area R is given by

P (x) = P0d

∫
R
l(s, x)−3 ds

and for the whole heating unit with several heated emitters the power density is
simply the sum

P (x) = P0d
∑
i

∫
Ri

l(s, x)−3 ds.

The heating unit used in Section 7.1 consists of two vertically aligned groups of
Heraeus MMS 2400 infrared modules. Each module contains three parallel vertical
emitters with a horizontal distance of 6.7cm. The vertical distance between the
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modules is close to zero. The length of the emitters is 50 cm but we have to
consider that the emitters are not effective within 3cm of their ends. The horizontal
movement of the heating unit covers 1.04m. The back face of the emitters is covered
by a reflective coating, such that only a small amount of energy, approximately 9%,
is emitted backwards. Behind the emitters an aluminum sheet in 3 cm distance
reflects about 70% of this fraction to the front. The effect of the reflective aluminum
sheet is modeled as a second array of heating emitters in a distance of 6 cm behind
the primary emitters, with a relative power of 7%. The power distribution generated
on the front face of the specimen is shown in Fig. 5.

7 Numerical simulations of active thermography

In this section we compare the simulation result with measurements for a concrete
test specimen. The FE simulations have been performed with the adaptive finite
element code KARDOS [5].

7.1 Experimental setup

A concrete test specimen with defined defects was constructed having a size of
1 × 1 × 0.3m3 and containing two polystyrene and two porous concrete cuboids
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Figure 5: Power distribution Q0 on the specimen’s surface as induced by the IR
heating unit used in Section 7.1. The central groove is caused by the gap between
the emitters.
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Figure 6: Laboratory set-up with IR heating unit, IR camera and investigated
specimen.

with a size of 10 × 10 × 5cm3 with concrete covers of 6cm and 10cm (see Fig. 2,
left). A grain size distribution curve of A/B 16 and a water/cement ratio of 0.6
were realized for the concrete mixture. The air content in fresh concrete was about
(0.9 ± 0.2) Vol%. The compressive strength and density determined at 28 days
old cubes were (48.5 ± 2.0)N/mm2 and (2.33 ± 0.03)kg/dm3, respectively. The
investigations presented in the following were performed one year after concreting.
The experimental set-up for the performed measurements with pulse thermography
is shown in Fig. 6. It consists of a thermal heating unit (one to three IR-radiators
with 2400W power each) which are moved periodically in front of the investigated
specimen, a commercial infrared camera (Inframetrics SC1000, 256x256 pixels in a
wavelength range of 3 − 5µm) and a computer system, which enables digital data
recording in real time. The heating time was th = 900s and the observation time
was tobs = 7200s with a measured frame rate of 2Hz, averaged to computed 0.2Hz.
With Tm we denote the temperature measurements.

Quantity Value

Heat transfer coefficient htrans 6.2800e+00 W/(m2K)
Radiation constant Ctrans 5.6705e-08 W/(m2K4)
Power Q0 (spatially constant) 1.7000e+03 W/m2

Ambient temperature Tamb 2.9300e+02 K

Table 2: Specified boundary conditions
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7.2 Numerical simulation

Numerical simulations of the pulse thermography of concrete-test specimen PKII1
(see drawing in Fig. 2a) were carried out with both the straightforward purely
numerical and the presented semi-analytic method. The boundary conditions used
are given in Table 2, the material properties in Table 3. Two different coarse grids
have been used with each method, an isotropic mesh and a graded mesh with rather
flat tetrahedra at the front surface.

Error control is realized by adaptive mesh refinement until the estimated averaged
absolute error in each time step falls below a specified bound TOL. Resulting refined
meshes are shown in Fig. 7. As expected, the purely numerical method needs to
refine the mesh at the whole front face of the specimen in order to represent the
boundary layer. In the semi-analytic approach, the boundary layer is captured by
the idealized analytic solution, such that the FE solution needs to represent only
the actual deviation δu. This is largest where the idealized situation is violated by
the actual setup. These are the edges, where the translation invariance is violated,
and the interior defect cuboids, where the assumption of homogeneous material is
violated. Consequently, in Fig. 7 moderate refinement is visible at the edges of the
specimen.

Required degrees of freedom, computing time on a 2.6GHz Opteron processor, and
obtained maximal temperature after 100s of heating are reported for different tol-
erances in Tables 4 and 5. A gain of factor 20 both in degrees of freedom and
computing time is observed for the purely numerical method when switching from
an isotropic to an anisotropic coarse grid. The semi-analytic method achieves a re-
markable performance gain of factor 500–1000. For the semi-analytic method both
coarse meshes work comparatively well, the isotropic mesh even somewhat better.
This is to be expected since the deviation δu does not contain an anisotropic bound-
ary layer, such that the additional mesh vertices incurred by the anisotropic grading

Material Quantity Value

Concrete Density ρ 2,400.00 kg/m3

Specific heat capacity c 1,000.00 J/kgK
Heat conductivity κ 2.10 W/mK

Polystyrene Density ρ 500.00 kg/m3

Specific heat capacity c 1,000.00 J/kgK
Heat conductivity κ 0.04 W/mK

Gas concrete Density ρ 500.00 kg/m3

Specific heat capacity c 1,000.00 J/kgK
Heat conductivity κ 0.16 W/mK

Table 3: Material properties according to DIN 4108
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just increase the number of degrees of freedom without providing any accuracy im-
provement.

Two more points need to be noted. First, with simulated time progressing, the
boundary layer in the solution is smoothed out and vanishes eventually, such that
the efficiency gain decreases over time. Second, as can be seen from the Tmax

values in Tables 4 and 5, the local error bound TOL does not correspond exactly
to the global error. In particular the global error appears to be much smaller for
the semi-analytical method than it is for the purely numerical method with same
tolerance.

7.3 Parameter identification

The depth of a defect correlates strongly with the time at which the surface temper-
ature difference between a point above the defect and a point above bulk material

Figure 7: Adaptively refined anisotropic (top) and isotropic (bottom) coarse mesh
at t = 100s by purely numerical (left) and semi-analytical (right) method producing
the same accuracy in the solution.
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semi-analytical purely numerical

TOL Tmax [K] N CPU [s] Tmax [K] N CPU [s]

1e-2 306.894 445 2 307.199 224,140 702
5e-3 306.895 1,045 3 307.290 511,539 2,370
2e-3 306.921 2,337 11 307.324 2,415,306 11,230
1e-3 306.919 9,567 28 307.138 5,115,356 54,358
5e-4 306.921 18,869 67
2e-4 306.921 69,447 538
1e-4 306.921 239,911 2,372

Table 4: Semi-analytical and purely numerical computation for different tolerances,
starting on isotropic coarse mesh. Both methods use adaptive mesh refinement to
satisfy the accuracy requirement. Maximal temperature Tmax on the surface, the
number N of degrees of freedom, and the computing time are reported.

semi-analytical purely numerical

TOL Tmax [K] N CPU [s] Tmax [K] N CPU [s]

1e-2 306.920 6,917 15 307.009 9,817 24
5e-3 306.921 6,881 24 307.060 19,901 72
2e-3 306.920 9,824 48 307.150 100,644 382
1e-3 306.920 13,433 63 307.217 237,592 1,440
5e-4 306.921 17,723 143 307.177 602,206 6,641
2e-4 306.919 107,775 681 307.145 3,060,661 37,561
1e-4 306.919 317,654 3,730

Table 5: Semi-analytical and purely numerical computation for different tolerances,
starting on anisotropic mesh graded towards the front face. Both methods use
adaptive mesh refinement to satisfy the accuracy requirement. Maximal tempera-
ture Tmax on the surface, the number N of degrees of freedom, and the computing
time are reported.

is maximal [12, 7, 8]. Therefore a correct time of simulated surface temperature
differences is of interest. Fig. 8 shows the temperature difference between a point
above the top left defect and the center of the front face. The comparison shows
that the simulated temperature difference curve (Simulation I) exhibits a significant
delay compared to the measured one. Since the simulation results with error con-
trol are sufficiently accurate, it can be assumed that the used model parameters of
Tables 2 and 3 do not correspond to the reality.

In order to improve the agreement between simulation and measurement, the ge-
ometrically derived power distriubtion from Section 6 has been developed and a
preliminary identification was conducted for a set of relevant parameters. These
were the irradiation power P0, heat capacity c and conductivity κ of the concrete.
A square grid of nine points xi on the front face of the specimen was selected for
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Figure 8: Temperature difference between two front surface points above a defect
and above bulk material. Measured data and simulations for different material
parameters.

Quantity Identified value Given value Deviation

cconcrete 5.0411e+02 1.0000e+03 49.6%
κconcrete 3.4290e+00 2.1000e+00 -63.3%
P0 1.34634e+03 1.7000e+03 20.8%

Table 6: Identified parameters and boundary conditions

formulating the following least squares problem:

min
9∑
i=1

‖T (xi)− Tm(xi)‖2L2([th,th+tobs])

A damped Gauß-Newton method (cf. [3]) has been used for the solution. The
required gradients were gained by internal numerical differentiation.

A clear reduction about factor three of the mismatch has been achieved by identifi-
cation of the three selected parameters. This simulation (Simulation II) also led to a
clear reduction of the time offset in the temperature difference curves (see Fig. 8).

The identified parameters in Table 6 partly deviate significantly from the given
values, but are still in a physically sensible range. Nonetheless these values have to
be interpreted with care since no inhomogeneities are considered besides the given
defects and many model parameters are not adapted at all.

The results of the simulations carried out with the proposed analytic-numerical
hybrid method show a good correspondence with the measured values, see Fig. 9.
The observed differences at the investigated times are below 1K. Due to careful
estimation of the initial temperature distribution, geometrical modeling of the heat
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source, and identification of relevant material parameters, the simulated tempera-
ture evolution agrees very well with the measured one.

Summary and conclusions

A hybrid analytic-numerical procedure has been developed which permits quantita-
tively reliable simulations of pulse thermography at moderate computational cost.
The identification carried out for three relevant parameters and a measuring film led
to a significant reduction of the time error in the temperature difference curve max-
ima. In particular the careful treatment of initial and boundary conditions has a
large influence. The achieved simulation results are clearly better than comparable
results from literature [12, 7, 8]. Hence, increased reliability for quantitative predic-
tion of data is possible, which is also a prerequisite for the development of methods
for the quantitative identification of spatially distributed material parameters.

Acknowledgements. The authors would like to thank M. Zänker for contribut-
ing to Section 6 and C. Nowzohour for contributing to Section 4.
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