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Abstract

In this paper we are concerned with the application of interior point meth-
ods in function space to gradient constrained optimal control problems, gov-
erned by partial differential equations. We will derive existence of solutions
together with first order optimality conditions. Afterwards we show continuity
of the central path, together with convergence rates depending on the interior
point parameter.
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1 Introduction

In a large number of processes that are modeled using partial differential equations
bounds on the gradient of the state variable are of vital importance for the under-
lying model: large temperature gradients during cooling or heating processes may
lead to destruction of the object, that is being cooled or heated; in elasticity the
gradient of the deformation determines the change between elastic and plastic mate-
rial behavior. In any attempt to optimize such processes the gradient therefore has
to be regarded. However, not much attention was given to constraints of gradient
type, see [4–7,11,25]

Problems with constraints on the state (pointwise or regarding the gradient)
form a class of highly nonlinear and non-smooth problems. A popular approach for
their efficient solution are path-following methods, which solve a sequence of easier
to tackle problems. These methods are constructed in a way such that the sequence
of the solutions converges to the solution of the original problem. Among these
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methods one can distinguish three main lines of research. Lavrentiev regulariza-
tion methods due to Tröltzsch et al. [8,18,19,24], Moreau-Yoshida approxima-
tion methods due to Hintermüller and Kunisch [1, 2, 16,17] and interior point
methods [22,23]. While the first two candidates abandon feasibility to improve the
regularity of the dual variables, interior point methods yield feasible solutions and
aim towards smooth systems of equations.

Application of interior point methods to gradient bounds has been proposed
in [25] together with a posteriori error estimates with respect to the interior point
parameter and the discretization error.

In this paper we perform the analysis of the homotopy path generated by barrier
methods to problems with gradient bounds. We approach this problem on the base
of the analysis in [23], where pointwise state constraints are considered. Although
we can build up on techniques and results established there, it will turn out that
a number of interesting, additional issues arise in the case of gradient bounds. For
example, the topological framework has to be chosen differently with a C1-norm,
and in contrast to pointwise state constraints the gradient bounds considered here
are nonlinear.

Our paper is structured as follows. In Section 2 we establish an abstract theo-
retical framework for our analysis and illustrate the application of the framework to
some PDE constrained optimal control problems. In Section 3 we consider barrier
functionals for gradient bounds and characterize their subdifferentials. Then exis-
tence of minimizers and first order optimality conditions are established, together
with uniform bounds on the barrier gradients. Finally we consider the convergence
of the path of minimizers and derive an order of convergence for a typical case.

2 Gradient Constrained Optimal Control Problems

Let Ω be a bounded Lipschitz domain in R
d, ∅ 6= ΩC ⊆ Ω be an open subset,

and let ΩC be its closure. Define the space of states U as a closed subspace of
C1(ΩC) × L2(Ω \ ΩC), which is clearly a Banach space, and let W ⊂ U be a dense
subspace of U . Consider W = W 2,p(Ω) ⊂ U = C1(ΩC)×L2(Ω \ΩC) with p > d for
an example.

Further, consider two reflexive Banach spaces Q and Z, which will denote the
space of controls and the space for the adjoint state, respectively. We denote the
corresponding dual spaces by U∗, Q∗, and Z∗. Consider the following abstract linear
partial differential equation on Ω:

Au = Bq (2.1)

where we require the following properties:

Assumption 1. Assume that A : U ⊃ domA = W → Z∗ is densely defined and
possesses a bounded inverse. Further let B : Q→ Z∗ be a continuous operator.
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We will see later that continuous invertibility of A is equivalent to closedness and
bijectivity. The distinction between the state space U and the domain of definition
W of A allows us to consider our optimal control problem in a convenient topological
framework (the topology of U), while being able to model differential operators by
A, which are only defined on a dense subspace W .

To define an optimal control problem, we specify an objective functional J with
some basic regularity assumptions:

Assumption 2. Let J = J1 + J2. We assume that J1 : U → R and J2 : Q → R

are lower semi-continuous, convex and Gâteaux differentiable. In addition let J1

be bounded from below and J2 be strictly convex. Assume that the derivatives are
uniformly bounded on bounded sets. This means that there exists a continuous
g : R+ → R+ such that ‖J ′

1(u)‖U∗ ≤ g(‖u‖U ) and ‖J ′
2(q)‖Q∗ ≤ g(‖q‖Q).

We now consider the following minimization problem

min
Qad×W

J(q, u) = J1(u) + J2(q), (2.2a)

s.t. Au = Bq, (2.2b)

and |∇u(x)|2 ≤ ψ(x) on ΩC (2.2c)

where ψ ∈ C(ΩC) with ψ ≥ δ > 0 and Qad ⊂ Q closed and convex.

In order to ensure that there exists a solution we require that the following
assumption holds

Assumption 3. We assume that at least one of the following holds:

(1) Qad is bounded in Q.

(2) J2 is coercive on Q.

For the discussion of interior point methods for the gradient constraint we have
to require an additional property, which is of Slater type

Assumption 4. Assume there exists a feasible control q̆ ∈ Qad, such that the
corresponding state ŭ given by Aŭ = Bq̆ is strictly feasible, that is, |∇ŭ|2 < ψ.

Lemma 2.1. Let U be a Banach space. An operator A : U ⊃ W → Z∗ has a
continuous inverse if and only if A is closed and bijective.

If Assumption 1 holds, then there exists a continuous “control-to-state” mapping

S : Q→ U, S := A−1B.

Proof. For our first assertion, cf. [22]. By Assumption 1 both A−1 and B exist and
are continuous, and thus S := A−1B, too.
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Using the Assumptions 1–4 it follows by standard arguments (coercivity, weak
seq. compactness, convexity) that (2.2) admits a unique solution (q, u) ∈ Qad ×W .

For the discussion of the adjoint operator A∗ of A we exploit density of W in U
and reflexivity of Z. A∗ possesses a domain of definition domA∗, given by

domA∗ = {z ∈ Z | ∃ cz : 〈Au, z〉 ≤ cz‖u‖U ∀u ∈ domA = W}.

Because W is dense in U for each z ∈ domA∗ the linear functional 〈A · , z〉 has a
unique continuous extension to a functional on the whole space U . This defines a
linear operator A∗ : Z ⊃ domA∗ → U∗ and it holds

〈u,A∗z〉 = 〈Au, z〉 ∀u ∈ domA, z ∈ domA∗.

Lemma 2.2. The operator A∗ defined above has a continuous inverse, and it holds

(

A−1
)∗

= (A∗)−1 . (2.3)

Proof. Since Z∗ is complete and A is surjective, we can apply [14, Theorem II.3.13],
which states that A∗ has a bounded inverse under these conditions. Hence, both
(A−1)∗ and (A∗)−1 exist, and by [14, Theorem II.3.9] they are equal.

2.1 Examples

Let us apply our abstract framework to optimal control problems with PDEs. First
we consider two variants of modelling an elliptic partial differential operator of
second order: via the strong form and via the weak form. It will turn out that the
strong form yields a more convenient representation of A∗ and is thus preferable.

Example 2.1. [Second Order Elliptic PDE in Strong Form] Let ΩC = Ω ⊂ R
d,

U = C1(Ω) ∩H1
0 (Ω), p > d, and Z = Lp

′
(Ω) with 1

p + 1
p′ = 1. Consider A = −∆

as a mapping from domA = W = W 2,p(Ω) ∩H1
0 (Ω) to Lp(Ω). This means that A

is a differential operator in strong form. We can write this as integral equation in
the following form:

〈Au, z〉 =

∫

Ω
−∆uz dx ∀u ∈W, z ∈ Z.

Assume that the boundary of Ω ⊂ R
d is either of class C1,1 or that Ω ⊂ R

n

is convex and has a polygonal (or polyhedral) boundary for n ≤ 3. Then there
exists p with d < p < ∞ such that A is an isomorphism from W onto Z∗, see,
e.g., [13, Theorem 9.15] for the case of a C1,1 boundary or [15] for the polygonal
case. In particular, A has a continuous inverse from Z∗ onto W . By Sobolev
embedding W is continuously embedded into U and thus A−1 can also be defined as
a continuous mapping from Z∗ into U . Because W is dense in U the requirements
on A from Assumption 1 are fulfilled.

A simple choice for the control space is Qad = Q = Lp(Ω) = Z∗. Then B = Id is
a continuous operator. This corresponds to distributed control. As a second setting
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for the control we may consider Q = R
n and fi ∈ Lp(Ω), i = 1 . . . n. Then the

operator B defined by Bq =
∑n

i=1 fiqi satisfies Assumption 1 on B.

In the case of distributed control a simple cost functional might be

J(q, u) = J1(u) + J2(q) =
1

2
‖u− ud‖2

L2(Ω) +
1

p
‖q‖pLp(Ω).

with given ud ∈ L2, p > d. It is easily seen that J2 is coercive on Q. Thus
Assumption 3 is satisfied. By simple calculations Assumption 2 on J is verified.

Since the gradient bound ψ is assumed to be strictly positive, taking q̆ = 0 yields
the required Slater condition from Assumption 4.

The adjoint operator A∗ : Z ⊃ domA∗ → U∗ can be interpreted as a very weak
form of the Laplace operator, i.e.

〈u,A∗z〉 = 〈Au, z〉 =

∫

Ω
−∆uz dx ∀u ∈W, z ∈ domA∗.

Lemma 2.2 already yields the continuous invertibility of A∗.

Example 2.2. [Second Order Elliptic PDE in Weak Form] Let us discuss an al-
ternative approach to Example 2.1: the weak form of the “same” elliptic operator.
Usually one defines the differential operator A = −∆ : H1

0 (Ω) → H−1(Ω) by:

〈Au, z〉 =

∫

Ω
∇uT∇z dx ∀ z ∈ H1

0 (Ω).

Our aim is to redefine the spaces for this operator such that Assumption 1 holds.
To this end we have to restrict the image space from H−1(Ω) to Lp(Ω)∗. Then the
space W is given by

W =

{

u ∈ H1
0

∣

∣

∣

∫

Ω
∇uT∇z dx ≤ cu‖z‖Lp ∀ z ∈ H1

0 (Ω)

}

.

Observe that the integral in this expression is not defined for all z ∈ Lp, but only
for z ∈ H1(Ω). However, if u ∈ W then by definition of W it follows, that Au has
a unique continuous extension to an element of Lp(Ω)∗. It is given canonically by

〈Au, z〉 = lim
zk∈H

1

0
,

zk→z inLp

〈Au, zk〉. (2.4)

Under the same regularity assumptions as in Example 2.1 we obtain that W ⊂ C1(Ω)
and ‖u‖C1 ≤ c‖Au‖(Lp)∗, thus Assumption 1 is fulfilled.

In spite of the complicated representation of A via (2.4), we may represent the
equation Au = f conveniently in the form

∫

Ω
∇uT∇ϕdx =

∫

Ω
fϕdx ∀ϕ ∈ H1

0 (Ω) (2.5)
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via density.

However, since the linear functional Au is defined in Lp(Ω)∗ by continuous ex-
tension (2.4), the representation of the adjoint operator A∗ is quite cumbersome. It
is given by

〈u,A∗z〉 = lim
zk∈H

1

0
,

zk→z inLp

〈Au, zk〉 = lim
zk∈H

1

0
,

zk→z inLp

∫

Ω
∇uT∇zk dx.

and has to be used in the adjoint PDE. In contrast to the weak formulation of
the primal equation (2.5), where the limit formulation for the test functions can
be dropped by density, now the limit formulation applies to elements of the ansatz
space, and thus cannot be neglected. Continuous invertibility of A∗, which follows
from our abstract considerations only applies to its correct representation. A naive
formulation of the adjoint PDE would yield wrong results. This is the reason why we
prefer the strong formulation for optimal control problems of second order equations
with gradient bounds.

Example 2.3. [Fourth Order Elliptic PDE] As a different example we consider once
again ΩC = Ω but choose different spaces. Let U = {v ∈ C1(Ω) | v(x) = |∇v(x)| =

0 ∀x ∈ ∂Ω}, Z = W 2,p′

0 (Ω). We consider the biharmonic operator A = ∆2 as a

mapping from domA = W = W 2,p
0 (Ω) to Z∗ = W−2,p(Ω) with 1

p + 1
p′ = 1.

Assume that the domain Ω ⊂ R2 is convex with polygonal boundary, then it is
well known [3, Theorem 2] that A has a continuous inverse from Z∗ onto W . As it
has already been remarked for d < p <∞ the embedding from W into U exists and
is dense.

Note that in this case both dual and primal operator can be represented by

〈Au, z〉 = 〈u,A∗z〉 =

∫

Ω
∆u∆z dx ∀u ∈W 2,p

0 (Ω), z ∈W 2,p′

0 (Ω).

By the choice Q = L2(Ω) with B the embedding from L2 into W−2,p we see that
Assumption 1 is fulfilled.

3 Barrier Functional and its Subdifferentiability

In this section we are concerned with the analysis of barrier functionals for the
problem under consideration. We proceed as in [23]:

Definition 3.1. For r ≥ 1 and µ > 0 we define barrier functions l of order r by

l(v;µ; r) : R+ → R,

l(v;µ; r) :=

{

−µ ln(v) r = 1,
µr

(r−1)vr−1 r > 1.
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We extend their domain of definition to R by setting l(v;µ; r) = ∞ for x ≤ 0. We
denote the pointwise derivative of l(v;µ; r) by l′(v;µ; r) if v > 0. This yields

l′(v;µ; r) =
−µr

vr
.

With this we define a barrier functional b for the constraint v ≥ 0 by:

b( · ;µ; r) : C(ΩC) → R,

v 7→

∫

ΩC

l(v(x);µ; r) dx.

Its formal derivative b′(v, µ; r) ∈ C(ΩC)∗, is defined as

〈b′(v;µ; r), δv〉 :=

∫

ΩC

l′(v(x);µ; r)δv(x) dx

if the right hand side exists.

Obviously, if 0 < ε ≤ v ∈ C(ΩC), then b is differentiable with respect to v, and
b′ is the Fréchet derivative of b. If v(x) = 0, for some x ∈ C(ΩC), then the situation
is more involved, and techniques of sub-differential calculus have to be applied.

In contrast to the case of state constraints, we may not use ψ = 0 to ease
notation. This is due to the fact that in this case u = 0 would be the only admissible
state. Therefore we introduce the following shifted barrier functional.

Definition 3.2. We define the barrier functional for the constraint |∇u|2 ≤ ψ on
a compact set ΩC ⊆ Ω by

bψ( · ;µ; r) : C1(ΩC) → R,

u 7→ bψ(u;µ; r) := b(ψ − |∇u|2;µ; r). (3.1)

In several cases we are only interested in a barrier functional of a fixed given
order r, and sometimes even for only one fixed value of µ, in those cases we write
b(·;µ) or even b(·) if no confusion can occur.

Lemma 3.3. The barrier functional bψ defined in (3.1) is well defined, convex, and
lower-semicontinuous.

Proof. By [23, Lemma 3.2] the outer function b(·;µ; r) is well defined and lower
semi-continuous. Since the inner function ψ − |∇u|2 is well defined and continuous
on U , the composition of both functions is well defined and lower semi-continuous.

Moreover, we know that b(·;µ; r) is convex and monotonically decreasing. Fur-
ther, the mapping T (u) := ψ − |∇u|2 is pointwise concave. With these properties
we can proof convexity of bψ = b ◦ T by the following computation which holds for
every x in ΩC :

l
(

T (λu+(1−λ)ũ)
)

(x) ≤ l
(

λT (u)+(1−λ)T (ũ)
)

(x) ≤ λl
(

T (u)
)

(x)+(1−λ)l
(

T (ũ)
)

(x).

By monotonicity of the integral we obtain that bψ is convex.
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We approach subdifferentiability of bψ = b ◦ (ψ− |∇ · |2) via the following chain
rule.

Lemma 3.4. Let U , V be Banach spaces, f : V → R be a convex, lower-semicontinuous
function, and T : U → V a continuously differentiable mapping with first derivative
T ′. Assume that the composite mapping f ◦ T is also convex.

Let u be given and let T ′(u) be bounded. Assume that there is ŭ ∈ U , such that
f is bounded above in a neighbourhood of T (u) + T ′(u)ŭ. Then

∂(f ◦ T )(u) = (T ′(u))∗∂f(T (u)). (3.2)

Proof. This is a slight extension of the well known chain rule of convex analysis
(cf. [12, Prop. I.5.7]), which is, however, hard to find in the literature. We thus de-
rive this result from a more general theorem from non-smooth analysis due to Clarke
and Rockafellar (cf. [9, Thm. 2.9.9] or [20, Thm. 3]). Although the construction
of the corresponding generalized differential is rather complicated in general, it re-
duces to the convex subdifferential in the case of convex functions (cf. [21, Thm.
5]).

First of all, we may assume that f(T (u)) is finite. Otherwise, ∂(f ◦ T )(u) =
∂(f(T (u)) = ∅ holds trivially, because ∂g(u) := ∅ in case g(u) = +∞ for every
convex function g.

Otherwise we may argue as in [20, Cor. 1], which shows that the chain rule [20,
Thm. 3] can be applied to show our assertion under the additional assumption
that T is linear. However, inspection of its (short) proof shows that the same
argumentation is still true in the case that T is “strictly differentiable” at u and
f ◦T is convex, as long as ŭ exists that satisfies our assumptions. Now the Corollary
subsequent to [9, Prop. 2.2.1] asserts that “strict differentiability” is implied by
continuous differentiability, and our assertion follows.

Remark 3.1. Lemma 3.3 and Lemma 3.4 are also useful in the context of pointwise
state constraints of the form g(y(x), x) ≤ 0, if g is convex and differentiable in y.

With the help of this lemma we can now characterize the subdifferential for
barrier functionals with respect to gradient bounds in terms of the known subdif-
ferential of a barrier functional in C(ΩC), see [23].

Proposition 3.5. Assume that ψ ≥ δ > 0. Define

bψ : C1(ΩC) → R

u 7→ b(ψ − |∇u|2)

as in Definition 3.2. Then the subdifferential ∂bψ(u) has the following representa-
tion:

∂bψ(u) = (−2∇uT∇)∗∂b(ψ − |∇u|2). (3.3)

This means, m̃ ∈ ∂bψ(u), if and only if there is m ∈ ∂b(ψ − |∇u|2), such that

〈δu, m̃〉C1(ΩC),C1(ΩC)∗ = −2〈∇uT∇δu,m〉C(ΩC),C(ΩC)∗ ∀δu ∈ C1(ΩC).
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If u is strictly feasible, then m = b′(ψ − |∇u|2).

Proof. Let T : C1(ΩC) → C(ΩC) be defined by T (u) := ψ − |∇u|2. Obviously, the
mapping ψ− |∇u|2 : C1(ΩC) → C(ΩC) is continuously differentiable with bounded
derivative (T ′(u)δu)(x) = −2(∇u(x))T∇δu(x).

We are going to apply Lemma 3.4 to the function bψ : U → R, bψ(u) = b ◦ T .
By [23, Lemma 3.2], b is convex and lower semi-continuous and by Lemma 3.3 bψ is
convex, too. Setting ŭ := −0.5u, we have T ′(u)ŭ = |∇u|2, and ṽ := T (u)+T ′(u)ŭ =
ψ. Since ψ ≥ δ > 0, b is bounded from above in a C(ΩC)-neighbourhood of
ṽ. Hence, Lemma 3.4 can be applied and yields our representation formula (3.3).
Finally [23, Prop. 3.5] shows that ∂b(v) = {b′(v)} if v is strictly feasible.

The barrier functional bψ can also be analyzed on closed subspaces Ũ of C1(ΩC).
To this end let E : Ũ → C1(ΩC) be the continuous embedding operator. Then its
adjoint E∗ : C1(ΩC)∗ → Ũ∗ is the restriction operator for linear functionals. If ŭ in
Assumption 4 can be chosen from Ũ , then the chain-rule of convex analysis applied
to bψ ◦ E yields a characterization of the subdifferential of the restriction of bψ to
Ũ as restriction of the subdifferential:

∂(bψ ◦ E)(u) = E∗∂bψ(Eu).

Closed subspaces of C1(ΩC) may for example be spaces that incorporate Dirichlet
boundary conditions on ΩC ∩ Ω or finite dimensional subspaces.

4 Minimizers of Barrier Problems

With the preparations made in the previous sections we will now show that there
exists a unique solution for the barrier problem, and later on some first order nec-
essary conditions that are fulfilled by these.

Theorem 4.1. (Existence of Solutions to Barrier Problems)
Let Assumptions 1–4 be fulfilled. Then the Problem

min Jµ(q, u) := J(q, u) + bψ(u;µ),

s.t. Au = Bq
(4.1)

admits a unique minimizer (qµ, uµ). Moreover uµ is strictly feasible almost every-
where in ΩC .

Proof. By Assumption 4 Jµ(q̆, ŭ) < ∞. Further, Jµ is bounded from below by
Assumption 3, by the required lower bound for J1, and because bψ is bounded from
below, since ψ is bounded above.

Taking a minimizing sequence (qk, uk) = (qk, Sqk) (recall that S = A−1B is
continuous by Lemma 2.1), we obtain from Assumption 3 that w.l.o.g. qk converges
weakly to some qµ ∈ Qad. From Lemma 2.1 together with Assumption 1 we obtain
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that w.l.o.g. the sequence uk converges to uµ weakly in W where u fulfills equa-
tion (2.2b). From lower semi-continuity of J and bψ (cf. Lemma 3.3), we obtain that
the limit (qµ, uµ) solves (4.1) and since Jµ(qµ, uµ) < ∞ it follows that u is strictly
feasible almost everywhere in ΩC . Furthermore, the limit (qµ, uµ) is unique, since
J is strictly convex with respect to the control variable, and the mapping qµ 7→ uµ
is injective.

The next theorem shows that the regularity of the solutions doesn’t degenerate
as µ→ 0:

Theorem 4.2. Let Assumption 1–4 be fulfilled. Then for every µ0 > 0 the solutions
(qµ, uµ) ∈ Q×W of (4.1) are uniformly bounded on (0, µ0].

Proof. First note that due to Lemma 2.1 in combination with Assumption 1 it is
sufficient to show that qµ is uniformly bounded. To see this we note that, cf. [23],

Jµ(qµ, uµ) ≤ Jµ(qµ0
, uµ0

) ≤ Jµ0
(qµ0

, uµ0
).

From J(qµ, uµ) ≤ Jµ(qµ, uµ) together with Assumption 3 we obtain, that qµ is
bounded, which concludes the proof.

Usually, if W ⊂ C1(ΩC) the state satisfies the additional regularity W ⊂
C1,β(ΩC) ⊂ C1(ΩC). This means the gradients are even Hölder continuous of order
β. Then we obtain for a sufficiently high order r of the barrier method that the
state is in fact strictly feasible everywhere in ΩC , as the following theorem shows.

Theorem 4.3. Let ΩC ⊂ R
d be compact with Lipschitz boundary and for some

β ∈ (0, 1) let ψ ∈ C0,β(ΩC) be given. Let Assumptions 1–4 be satisfied. If the state
has the additional regularity uµ ∈ C1,β(ΩC), then for r − 1 > d

β the state uµ is
strictly feasible in ΩC .

Proof. By Theorem 4.1 we obtain 0 ≤ ψ−|∇uµ|
2 ∈ C0,β(ΩC). From [23, Lemma 6.1]

we obtain that therefore (ψ − |∇uµ|
2)−1 ∈ C(ΩC) which concludes the proof.

We are now prepared to derive first order necessary conditions for the minimizer
of the barrier problem (4.1).

Theorem 4.4. Let the Assumptions 1–4 be fulfilled. Then (qµ, uµ) ∈ Qad × U is
a solution to (4.1) if and only if there exist mµ ∈ ∂b(ψ − |∇uµ|

2) ⊂ C(ΩC)∗ and
zµ ∈ Z, q∗µ ∈ Q∗ such that the following holds:

Auµ = Bqµ in Z∗ (4.2a)

A∗zµ = J ′
1(uµ) + (−2(∇uµ)

T∇)∗mµ in U∗ (4.2b)

J ′
2(qµ) = −B∗zµ − q∗µ in Q∗ (4.2c)

〈q − qµ, q
∗
µ〉 ≤ 0 ∀ q ∈ Qad (4.2d)
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Proof. We consider the following minimization problem where we omit the depen-
dence on the parameter µ:

min
q∈Q

F (q) = χQad(q) + jµ(q) := χQad(q) + Jµ(q, Sq) (4.3)

where χQad is the indicator function for the admissible set of the controls, and S
is the control to state mapping defined by (2.2b). Clearly (qµ, uµ) = (qµ, Sqµ) is a
solution to (4.1) if and only if qµ is a solution to (4.3), which is in turn equivalent to
0 ∈ ∂F (qµ). In order to utilize this we will split the subdifferential by the sum-rule
of convex analysis:

∂F (qµ) = ∂(χQad)(qµ) + ∂jµ(qµ). (4.4)

For its application note that Assumption 4 asserts the existence of a point

q̆ ∈ domχQad ∩ dom jµ

such that jµ is continuous in q̆. In addition the function χQad is convex and lower
semicontinuous, thus it coincides with its “Γ-regularization” [12, Chapter I, Prop.
3.1]. We can therefore apply the sum-rule of convex analysis, cf. [12, Chapter I,
Prop. 5.6] to obtain (4.4).

Since j is continuous in qµ we obtain by the same argument that:

∂jµ(qµ) = ∂j(qµ) + ∂(bψ ◦ S)(qµ)

where we recall the definition bψ(u) = b(ψ − |∇u|2). Now we note that

j(q) = J ◦ (1, S)(q)

with the linear mapping

(1, S) : Q→ Q× U, q 7→ (q, Sq).

Together with Assumption 4 we are able to apply the linear chain rule and obtain

∂j(qµ) = (1, S∗)∂J(qµ, uµ),

∂(bψ ◦ S)(qµ) = S∗∂bψ(Sqµ).

Inserting the representation for the subdifferential of the barrier function bψ in
Proposition 3.5 our computations have shown so far that

0 ∈ ∂(χQad)(qµ) + (1, S∗)∂J(qµ, uµ) + S∗(−2(∇uµ)
T∇)∗∂b(ψ − |∇uµ|

2) (4.5)

is equivalent to (qµ, uµ) being a solution to (4.1). Since the cost functional is
differentiable we obtain, cf. [12, Chapter I, Prop. 5.3]:

∂J(qµ, uµ) = {J ′
1(uµ) + J ′

2(qµ)}.
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Equation (4.5) means there exist q∗µ ∈ ∂χQad(qµ), and mµ ∈ ∂b(ψ−|∇uµ|
2) such

that

0 = q∗µ + J ′
2(qµ) + S∗

(

J ′
1(uµ) + (−2(∇uµ)

T∇)∗mµ

)

∈ Q∗. (4.6)

Note that S∗ = (A−1B)∗ = B∗(A−1)∗ = B∗(A∗)−1, where A∗ : Z ⊃ domA∗ → U∗

is well defined with continuous inverse due to Lemma 2.2. Define

zµ = (A∗)−1
(

J ′
1(uµ) + (−2(∇uµ)

T∇)∗mµ

)

. (4.7)

Then zµ ∈ domA∗ ⊂ Z and satisfies (4.2b) by definition. Equation (4.2c) now
follows from (4.6). Further note that q∗µ fulfills, see, e.g. [12, Chapter I, Prop. 5.1]

sup
q∈Qad

〈q, q∗µ〉 = 〈qµ, q
∗
µ〉 (4.8)

which is equivalent to (4.2d).

Example 4.1. Let us apply our abstract results to Example 2.1 in the case of
distributed control (B = Id). Using the notation from there the first order optimality
conditions have the following form. Let (qµ, uµ) be a solution to (4.1), then there
exists zµ ∈ Z, mµ ∈ ∂b(ψ − |∇uµ|

2;µ) such that:

∫

Ω
−∆uµ ϕdx =

∫

Ω
qµϕdx ∀ϕ ∈ Z, (4.9a)

∫

Ω
−∆ϕzµ dx =

∫

Ω
(uµ − ud)ϕdx − 2

∫

Ω
(∇uµ)

T∇ϕdmµ ∀ϕ ∈W, (4.9b)

|qµ|
p−2qµ = −zµ a.e. in Ω. (4.9c)

For a discussion of the first two equations and in particular the representation of
A and A∗ we refer to Example 2.1. The barrier gradient mµ is an element of
∂b(uµ;µ; r), and a measure in general. If uµ is strictly feasible, which can usually
be guaranteed a priori by a proper choice of the order r, then mµ = b′(y;µ; r) and
thus a function, cf. [23, Prop. 3.5].

Equation 4.9c holds pointwise almost everywhere since it holds in Lp. The mul-
tiplier q∗µ does not appear due to the fact that Qad = Q.

After having studied the necessary optimality conditions we will now discuss the
behavior of the dual variables. The hard part is showing the boundedness of the
measure obtained form the subdifferential of the barrier functional.

Theorem 4.5. Let the assumptions of Theorem 4.4 be fulfilled. Then for each
µ0 > 0

sup
µ∈(0,µ0]

‖mµ‖C(ΩC)∗ ≤ C.
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Proof. Let (qµ, uµ) be the solution to (4.1) and (q̆, ŭ) be a Slater point, e.g., let
ψ − |∇ŭ|2 ≥ d > 0. Then, following [23], we multiply (4.2b) with δu = uµ − ŭ
and (4.2c) with δq = qµ − q̆ and obtain

0 = 〈δu,−A∗zµ + J ′
1(uµ) + (−2(∇uµ)

T∇)∗mµ〉 + 〈δq, J ′
2(qµ) +B∗zµ + q∗µ〉

= 〈δu, J ′
1(uµ) + (−2(∇uµ)

T∇)∗mµ〉 + 〈δq, J ′
2(qµ) + q∗µ〉 + 〈Aδu−Bδq,−zµ〉.

As (δq, δu) fulfills the state equation (2.2b) this simplifies to

0 = 〈δu, J ′
1(uµ)〉 + 〈δq, J ′

2(qµ)〉 − 2〈(∇uµ)
T∇δu,mµ〉 + 〈δq, q∗µ〉. (4.10)

From the uniform boundedness of the primal variable, see Theorem 4.2 together
with Assumption 2, we obtain that

|〈δu, J ′
1(uµ)〉 + 〈δq, J ′

2(qµ)〉| ≤ C

with a constant C independent of µ. Inserting this estimate into (4.10) yields

| − 2〈(∇uµ)
T∇δu,mµ〉 + 〈δq, q∗µ〉| ≤ C. (4.11)

We would like to split this into the sum of the absolute values. To do so we will show
that both terms have essentially the same sign. First, we now define the ‘almost’
active set

A = {x ∈ ΩC |ψ − |∇uµ|
2 ≤ 0.5d}.

This is motivated by the fact, see [23, Corollary 3.6], that

|〈(∇uµ)
T∇δu,mµ|ΩC\A〉| ≤ ‖mµ‖L1(ΩC\A)‖(∇uµ)

T∇δu‖L∞ ≤ C. (4.12)

Thus it remains to take a look at the behavior of 〈mµ|A, (∇uµ)
T∇δu〉. We will now

show that 0 < c ≤ (∇uµ)
T∇δu holds on A. For this we apply Young’s-inequality

and obtain
2|(∇uµ)

T∇ŭ| ≤ |∇uµ|
2 + |∇ŭ|2 ≤ |∇uµ|

2 + ψ − d

leading to the following pointwise estimate on A:

0.25d ≤ 0.5(|∇uµ|
2 − ψ) + 0.5d ≤ 0.5|∇uµ|

2 − 0.5|∇ŭ|2 ≤ (∇uµ)
T∇δu.

From [23, Prop. 3.5] we obtain that mµ ≤ 0 as a measure thus leading to
−2〈(∇uµ)

T∇δu,mµ|A〉 ≥ 0. Now we take a look on (4.2d) to see that 〈qµ− q̆, q
∗
µ〉 ≥

0. Together with (4.12) we obtain from (4.11) that

|〈(∇uµ)
T∇δu,mµ|A〉| ≤ C.

Finally we note that due to mµ ≤ 0 the following holds:

〈(∇uµ)
T∇δu,mµ|A〉 ≤ min

A

(

(∇uµ)
T∇δu

)

〈1,mµ|A〉 ≤ −
d

4
‖mµ‖C(A)∗ .

This implies

‖mµ‖C(A)∗ ≤
4

d
|〈(∇uµ)

T∇δu,mµ|A〉| ≤ C

and completes the proof.
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Corollary 4.6. Under the Assumptions 1–4 the following holds for every given
µ0 > 0:

sup
µ∈(0,µ0]

‖zµ‖Z ≤ C,

sup
µ∈(0,µ0]

‖q∗µ‖Q∗ ≤ C.

Proof. First we note that the right hand side of (4.2b) is bounded due to Assump-
tion 2, boundedness of uµ, mµ, and continuity of ((∇uµ)

T∇)∗ : C(ΩC)∗ → U∗.
The bound for zµ follows from the boundedness of the right hand side of (4.2b) and
continuity of (A∗)−1. The bound for q∗µ then follows from the bound on zµ and qµ
using (4.2c) and Assumption 2 and continuity of B∗.

5 Properties of the Central Path

We will now show convergence of the cost functional with rate µ. Before that we
require the following simple geometric lemma.

Lemma 5.1. Let x, y ∈ R
d with xT (x− y) < 0. Then |x| < |y|.

Proof. Choose α ∈ R and x̂ ∈ span(x)⊥ such that y = αx+ x̂. Then

xT (x− y) = (1 − α)|x|2 − xT x̂ = (1 − α)|x|2

hence xT (x− y) < 0 implies α > 1 thus

|x| < |αx| ≤ |y|.

Theorem 5.2. Let Assumptions 1–4 be fulfilled, and (qµ, uµ) be a solution of the
barrier problem (4.1) for µ > 0. Then the following holds for the minimizer (q, u)
of (2.2):

J(qµ, uµ) ≤ J(q, u) + Cµ. (5.1)

Proof. The proof follows the lines of [23, Lemma 5.1], however since we consider
nonlinear constraints on the gradient of the states we have to modify the argu-
mentation concerning the multiplier coming from the subdifferential of the barrier
functional.

From the proof of Theorem 4.4 together with the relation

∂b(ψ − |∇uµ|
2;µ) = µr∂b(ψ − |∇uµ|

2; 1),

cf. [12, Chaper I, (5.21)], we obtain that there exists m ∈ ∂b(ψ − |∇uµ|
2; 1) and

ϕ ∈ ∂χQad(qµ) + ∂j(qµ) = ∂(χQad + j)(qµ) such that:

ϕ− 2µrS∗((∇uµ)
T∇)∗m = 0.
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This shows that
2µrS∗((∇uµ)

T∇)∗m ∈ ∂(χQad + j)(qµ).

From convexity of χQad +j we obtain that for every l ∈ ∂(χQad +j)(qµ) the following
holds:

j(qµ) ≤ j(q) + 〈l, qµ − q〉.

Applied to 2µrS∗((∇uµ)
T∇)∗m we obtain:

J(qµ, uµ) ≤ J(q, u) + 2µr〈m, (∇uµ)
T∇(uµ − u)〉.

Since b is monotonically decreasing, the measure m is negative, cf. [23, Prop. 3.5].
Thus we can estimate further

2µr〈m, (∇uµ)
T∇(uµ − u)〉 ≤ 2µr〈m|ΩS

, (∇uµ)
T∇(uµ − u)〉

where we define ΩS := {x ∈ ΩC | (∇uµ)
T∇(uµ−u) < 0}. From Lemma 5.1 it follows

that |∇uµ(x)| < |∇u(x)| ≤ ψ(x) on ΩS and thus ΩS ⊂ {x ∈ ΩC | |∇uµ|
2 < ψ}.

Hence we obtain from [23, Prop. 3.5.]

2µr〈m|ΩS
,∇uµ∇(uµ − u)〉 = −2

∫

ΩS

µr

(ψ − |∇uµ|2)r
(∇uµ)

T∇(uµ − u) dx.

From (∇uµ)
T∇u ≤ |∇uµ| |∇u| ≤ ψ we see that

−(∇uµ)
T∇(uµ − u)

ψ − |∇uµ|2
=

(∇uµ)
T∇u− |∇uµ|

2

ψ − |∇uµ|2
≤ 1

and thus

2µr〈m|ΩS
, (∇uµ)

T∇(uµ − u)〉 ≤ 2µ

∫

ΩS

µr−1

(ψ − |∇uµ|2)r−1
dx. (5.2)

From Theorem 4.5 and boundedness of the domain ΩC we obtain for the function
f := µ/(ψ − |∇uµ|

2) that

‖f r−1‖
1/(r−1)

L1(ΩC)
= ‖f‖Lr−1(ΩC) ≤ C ‖f‖Lr(ΩC) = C ‖f r‖

1/r

L1(ΩC)
≤ C.

Thus the integral on the right hand side of (5.2) is bounded independent of µ.
Hence the assertion follows.

Theorem 5.3. Let µ > 0, (qµ, uµ) be a solution to the barrier problem (4.1) and
(q, u) be the solution to the minimization problem (2.2). Further assume that there
exist c > 0, p ≥ 2 and a norm ‖ · ‖ such that

c‖q1 − q2‖
p ≤ J2(q1) + J2(q2) − 2J2

(

q1 + q2
2

)

.

Then the following estimate holds:

‖qµ − q‖ = O(µ1/p). (5.3)
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Proof. By assumption and convexity of J1 the following proves the assertion

c‖qµ − q‖p ≤ J2(qµ) + J2(q) − 2J2

(

qµ + q

2

)

≤ J(qµ, uµ) + J(q, u) − 2J((qµ + q)/2, (uµ + u)/2)

≤ J(qµ, uµ) + J(q, u) − 2J(q, u) = O(µ).

Remark 5.1. By an analogous assumption on J1 a similar result for the state uµ
can be obtained. In addition, if ‖ · ‖ is stronger than ‖ · ‖Q the convergence of uµ in
U (with the same rate O(µ1/p)) follows by continuity of S.

Example 5.1. We finally return to Example 2.1. We apply the Clarkson inequal-
ity [10, Theorem 2 (3)] for Lp-spaces with p > 2, which yields

∥

∥

∥

∥

f − g

2

∥

∥

∥

∥

p

Lp

≤
1

2
‖f‖pLp +

1

2
‖g‖pLp −

∥

∥

∥

∥

f + g

2

∥

∥

∥

∥

p

Lp

from this we see that ‖q‖pLp matches the assumption of Theorem 5.3.

With the same techniques as in Theorem 5.2 it is possible to show for µ0 > µ > 0
that Jµ(qµ0

, uµ0
) ≤ Jµ(qµ, uµ) + C(µ0 − µ). Then continuity of the central path

follows via Theorem 5.3.
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