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Abstract

This work introduces a novel streamline seeding technique based on dual streamlines that are or-
thogonal to the vector field, instead of tangential. The greedy algorithm presented here produces
a net of orthogonal streamlines that is iteratively refined resulting in good domain coverage and
a high degree of continuity and uniformity. The algorithm is easy to implement and efficient,
and it naturally extends to curved surfaces.

In dieser Arbeit wird eine neue Strategie zur Platzierung von Stromlinien vorgestellt. Hierzu
werden zusétzliche duale Stromlinien verwendet, die —im Gegensatz zur iiblichen Definition—
orthogonal zum Vektorfeld verlaufen. Der vorgestellte Greedy-Algorithmus berechnet ein Netz
aus orthogonalen Stromlinien, welches iterativ verfeinert wird, was zu einer guten Abdeckung
der Domine und einer gleichméBigen Verteilung der Stromlinien fiihrt. Es handelt sich um
einen einfach zu implementierenden und effizienten Algorithmus, der direkt auf gekriimmten
Oberflachen anwendbar ist.
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1. Introduction

CFD-based flow visualization and analysis is nowadays a standard technique in many different
application areas from technical engineering to life science research. For visual analysis of flow
phenomena, among other aspects, tangent vector fields on 2D domains are especially important
for at least two reasons. First, analyzing velocity fields in planar slice cuts of a flow domain is
very common in practice, as these cuts provide a good overview and can be compared to experi-
mentally observable Particle Image Velocimetry (PIV) measurements. Second, flow phenomena
in near wall regions, i.e. close to fixed geometries that act as boundaries, are very important
and mainly motivated our research. For instance, the tangent vector field of the shear stress at
the curved boundary surface of a flow domain provides insight to important flow phenomena of
viscous fluids like vortex formation and flow separation.

Several approaches for the visualization of tangent vector data on 2D surfaces exist, ranging
from simple hedgehog plots to advanced feature extraction methods. Among them, streamline
based methods are widely accepted for depicting flow at a glance. In contrast to texture based
methods like line integral convolution (LIC), streamlines provide sparse visualizations that focus
on significant structures and can thus be combined with other visualization techniques, or used
to compare vector fields. Additionally, streamlines can be annotated with glyphs showing the
flow direction or can be scaled, for example by the velocity magnitude.

The key problem of streamline based methods, which we will refer to as the streamline place-
ment problem, consists of finding a good representative set of streamlines depicting the vector
field visually comprehensibly and completely. To evaluate the quality of our results and compare
them to other approaches, we refer to the following general criteria, proposed by Verma et al.

[ I:

Coverage: No important features of the vector field should be missed and the streamlines
should cover the whole domain.

Uniformity: The distribution of streamlines should be more or less uniform across the domain.

Continuity: Long continuous streamlines are preferred over short ones.

1.1. Motivation

The presented visualization technique was developed in the context of research on the advance
of patient-specific risk analysis for cerebral aneurysms. It is cooperatively worked on at ZIB,
the Biofluid Mechanics Lab, Charité Berlin and the HELIOS Klinikum Berlin-Buch. Research
is funded by the German Research Foundation.



CHAPTER 1. INTRODUCTION

Aneurysms are pathologically enlarged vessels. The main risk herein lies in rupture causing
internal hemorrhage with high mortality rates. The main measurand to assess rupture risk is wall
shear stress. Facilitating patient-specific risk analysis resolves into the following subtasks:

1. Reconstruct the wall geometry of an existing aneurysm from medical imaging (CT, MRI,
3DRA).

2. Conduct CFD-based simulation of flow behavior inside the reconstructed boundary geom-
etry.

3. Extract data on wall shear stress and other relevant near-wall-flow characteristics from the
simulation results.

4. Asses rupture risk and rupture location.

Although this technique is not fully matured, for different imaging and reconstruction techniques
have significant effects on the simulation result, it is a promising approach towards patient-
specific risk-analysis and treatment planning.

To gain an understanding of the structure of shear stress on an aneurysm, visualization of the
numerical simulation results is crucial. Streamline-based visualization is especially useful here,
since it allows simultaneous display of several flow characteristics and comparison of different
flow fields. A prominent example in this context is simultaneous display of wall shear stress and
pressure distribution (see Fig. 6.5).

1.2. Contributions

Our main contribution resides in the introduction of duality to the streamline placement problem.
We define a dual vector field that is orthogonal to the original one along with the respective
dual streamlines. Based on that, we present a primal-dual greedy algorithm that simultaneously
solves the streamline placement problem for both fields. Since seeds for new streamlines are
only placed along other streamlines, the search space for seed placement is reduced to a set of
curves, which allows efficient placement on planar and curved surfaces alike. The primal-dual
nature of our algorithm enables us to fully saturate the domain with streamlines, approximate and
optimize streamline density distribution and infer a simple, yet effective streamline termination
strategy.
Summarized, Dual Streamline Seeding comes with the following advantages:

e The algorithm has only a single parameter. It controls streamline density and is thus
indispensable.

e The approach naturally extends to curved surfaces without the need of surface parametriza-
tion.

e All distances used are based on arc length. Thus, we avoid explicit computation of
geodesic distances.

e Use of topology highlights important features, even at low density.



2. Basics

This section introduces the important concepts used in the following chapters. It is by no means
exhaustive, but merely lays the foundation for understanding the rest of this report. Details can
be found in the referenced works. If the reader is already familiar with vector field analysis and
streamlines, this chapter may be skipped.

2.1. Vector fields

Formally, an n-dimensional steady vector field V is defined as a function V: D — R" D C R"™.
Thus, it maps n-dimensional points to n-dimensional vectors. Many natural phenomena like
velocity/direction of particle motions or physical forces can be modelled in this fashion. In this
report, we focus on 3-dimensional tangent vector fields. In this special case, the domain of V
is restricted to a two-dimensional surface embedded in R? and the evaluation of the field at an
arbitrary point of the domain yields a vector tangential to that surface.

In the following, we will assume that the surface is parametrizable, i.e. each point on it can
unambiguously be described by a two-dimensional vector. In this case, the vector field can be
expressed relative to this parametrization and is thus two-dimensional as well.

V:D—R?*DCR? (2.1

Differentiating V yields the 2x2 Jacobi matrix J. Let V(u,v) = (V,,V,)T, then

v, IV,
J(u,v) = <£‘¥V 89‘2) . 2.2)

dv adv

The properties of this matrix are used for topology analysis, as described in Sec. 2.3.

2.2. Streamlines

A streamline — or tangent curve —is a mapping [ : I — D,I C R, such that the curve is tangential to
V for each ¢ € I. Since this direction is unambiguous, each point inside the domain where V # 0
is passed by exactly one streamline. Streamlines do neither intersect, nor meet at any point in
the field, but a streamline may form a closed path. More figuratively, a streamline describes the
course of an imaginary massless particle through the field. They are intuitively comprehensible
visualizations, for they bear resemblance to the way flows are traditionally depicted in drawings.

In general, streamlines cannot be described by a closed analytic expression but are given
implicitly as a system of ordinary differential equations. A streamline /(¢) = (u(t),v(t))" of a
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(a) Saddle: Ry < 0, (b) Node: Ry # 0, (c) Spiral: Ry =R, # (d) Center: Ry =R, #
R, >0,11=5L=0 R2;£O,11: =0 0,11:—129&0 0,11:—[2550

Figure 2.1.: Types of 1st order critical points in a two-dimensional vector field. Let the complex
eigenvalues of the Jacobian at the critical point be Ry + I1i, Ry + Ii with R < R».
Nodes and spirals can further be subdivided into sources (Rj,R; > 0) and sinks
(R1,Ry <0).

vector field V(u,v) = (V,,(u,v),V,(u,v))" is thus described by

e = V,(u,v)\ dl
- Vv(u,v)}dt_v(l(t)) 2.3)

with initial condition /(0) = xo € D, where xy is called the seed point of I.

The solution to the system of equations 2.3 is obtained by formal integration. This bidirec-
tional integration is called tracing and is usually done via numerical methods like Runge-Kutta-
Integration. Still, under certain premises, it is possible to solve the system of equations 2.3
directly, as will be discussed in Sec. 5. Both methods result in a series of sample points, whose
direct connection (a polyline) yields an approximated streamline.

2.3. Vector field topology

The idea of topology is to segment a vector field into areas of equivalent streamline behavior, i.e.
two streamlines seeded in the same area will converge to the same point in forward, as well as
in backward tracing direction [ ]. In the following, we will neglect boundary phenomena.

Key to this segmentation are points inside a vector field, where the field evaluates to 0.
Streamline behavior in the vicinity of these critical points can be classified according to the
eigenvalues of the Jacobi Matrix at these points. Fig. 2.1 illustrates the four resulting classes for
two-dimensional linear vector fields.

Streamlines emerge from saddle points in the direction of the eigenvectors (and their inverse)
of the Jacobian at the saddle point. These separatrices segment the vector field into areas of
equivalent flow behavior. The set of all critical points, closed streamlines and separatrices is
called the topology of the vector field. Fig. 2.2 exemplifies this for a simple analytic vector field.
The topology represents the basic structure, therefore, each transformation or visualization of a
vector field strives for preservation of the topology.
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Figure 2.2.: Topology of a vector field. The field is visualized via LIC, sep-
aratrices are drawn as black lines and critical points are depicted
by colored spheres, where color indicates the type of critical point.

yellow brown red blue

saddle | node(source) | spiral(source) | spiral(sink)

Color scheme:




3. Related Work

Good overviews of flow visualization techniques in general can be found in Laramee et al. [

and Post et al. [ ]. In the following, we focus on streamline based flow visualization on
2D surfaces. A number of techniques with different objectives have been developed. We present
them grouped into four categories: image based, direct, feature based and vector field dependent.
Our contribution is closely related to the direct approaches.

Image based approaches define an energy function for the streamlines in image space and
search for a minimum. Turk and Banks [ ] use a low-pass filtered image of the streamlines
to measure the deviation from a predefined saturation level across the image. Starting from an
initial streamline set, the energy is minimized by iteratively lengthening, shortening, deleting,
or moving streamlines in a global optimization process. Due to the large number of possible
operations in each step, the method is computationally expensive with exponential running time.
Still, visual appeal, uniformity and continuity of the streamlines is superior and serves as the
benchmark for our method. Mao et al. [ ] extend this approach to parametrizable curved
surfaces in 3D. For the computation of the local filter size, they make use of the deformation
tensor of the parameter space mapping. Schlemmer et al. [ ] introduce an image based
approach where the streamline density is steered by a user defined density function. They use a
greedy algorithm where new streamlines are added one by one.

Direct methods place new streamlines with a certain heuristic that is expected to provide good
overall seeding results without computing a global energy function. Jobard and Lefer [ ]
achieve good streamline uniformity, but streamline lengths, and thus continuity is unsatisfactory.
They start new streamlines at a separation distance apart from all previously computed stream-
lines until the domain is fully covered. The technique is extended to unsteady flows in [ ], its
application for multiresolution flow visualization is described in [ ] The method proposed by
Liuetal. [ ] improves continuity by prioritizing streamline elongation over new streamline
insertion. The seeding strategy presented by Mebarki et al. [ ] is closest to our approach.
In a greedy algorithm, they start new streamlines in the center of the biggest remaining voids,
and achieve good continuity and uniformity of the streamlines. Similarly, we search for the
largest uncovered areas approximately on dual streamlines and start new streamlines at the mid-
point of those segments. Mebarki et al. make heavy use of Delaunay triangulation, which makes
their approach hard to apply on curved surfaces in 3D.

Vermaet al. [ ] presented a feature based approach. By using fixed templates of equidis-
tant seeds in the vicinity of the critical points of the vector field, they guarantee good coverage
of the vector field topology. The template size is determined by a Voronoi decomposition of the
domain. Remaining voids are filled by a Poisson random seeding.

The last category, vector field dependent methods, focuses on coverage of important features
by defining similarity measures for streamlines and adding new streamlines at places with great
streamline differences. Chen et al. [ ] propose a metric based on the distance, shape

10



CHAPTER 3. RELATED WORK

and orientation of nearby streamlines, Li et al. [ ] propose a metric based on a distance
transformation of the streamlines.

Most of these seeding techniques are primarily developed for planar 2D domains. Their appli-
cation on curved surfaces embedded in 3D space is often not obvious, as distance and similarity
measures are harder to compute. We propose an algorithm that does not rely on planarity of
the domain. Thus, we form a bridge between methods for planar 2D domains and intrinsic 3D
methods, as suggested by Salzbrunn and Scheuermann [ ], Mattausch et al. [ 1, Ye
etal. [ ], and Li and Shen [ ].

11



4. Dual Streamline Seeding

Our algorithm takes as input a surface embedded in 3D, a tangent vector field v € R? and a
surface normal field n € R3. The two fields are often — but not necessarily — given as a discrete
set of tangent data vectors, a set of surface normals and an associated interpolation scheme, such
that v as well as n can be evaluated at each point on the surface. Furthermore, user-supplied
separation distance § defines the minimal distance from a seed to any existing streamline and
thus controls the resulting streamline density. Our algorithm outputs a set of streamlines, which
satisfy the quality criteria listed in Sect. 1.

For solving the streamline placement problem, we manage two types of streamlines simulta-
neously:

Primal Streamlines are curves inside the domain of v that are tangential to v at every point.
These streamlines form our result.

Dual Streamlines are curves inside the domain of v that are tangential to the dual field R(v) :=
v X n, 1.e. orthogonal to v at every point. They are auxiliary streamlines, i.e. they are not
visible in the resulting image.

Note, that repetition of the transformation R yields a vector field that is the inverse of the
original vector field: R(R(v)) = —v. Since streamlines are bidirectional, this inverted field is
equivalent to the original field in its streamline depiction. This motivates the use of the term
duality in this work.

Intersections between primal and dual streamlines subdivide the involved streamlines into
consecutive segments. These segments are key to our algorithm. We denote the set of primal
streamline segments as P and the set of dual segments as D. Each set is represented by a priority
queue ordered by the arc length of the segments. In the following, the term streamline refers to
primal and dual streamlines alike.

Given suitable starting sets for P, D (see Sect. 4.1), our greedy seeding algorithm works as
follows: In each iteration, the longest remaining segment is detected and a new bidirectional
streamline is started from its midpoint in orthogonal direction. Fig. 4.1 illustrates this process.
The algorithm terminates when no segment longer than 28 remains.

Considering both sets of streamlines at the same time and keeping track of mutual intersec-
tions yields a local measurement for streamline density. Since all seeds are placed on stream-
lines, we approximate overall density distribution by the density distribution of intersections
along the respective dual streamlines. We postulate:

Long streamline segments without intersection indicate voids in the dual streamline
set.

12



CHAPTER 4. DUAL STREAMLINE SEEDING

Figure 4.1.: Outline of algorithm behavior. Left: largest segment belongs to blue set (arrow),
a new streamline for the black set will be started at its midpoint. Middle: new
streamline has been inserted (shown as dotted line). Now, black set contains the
largest segment (arrow) whose midpoint will again serve as seed point for the next
streamline. Right: result of next streamline insertion. Newly inserted streamline is
drawn dotted.

This is the central justification for our approach, because it bears a directive for seed placement.
The next seed for a streamline in P should be placed at the center of the longest remaining
segment in D and vice versa. This procedure enables us to efficiently find voids based on a
one-dimensional distance metric (arc length) instead of Euclidean distance in image space or
geodesic distance. This makes our approach very suitable for curved surfaces, where other
measures are hard to apply correctly or are computationally expensive. Sect. 6 will demonstrate
that this local density approximation leads to evenly spaced streamlines throughout the domain.

4.1. Initialization

To start our iterative seeding process, we need a first set of streamlines as initialization. This
starting configuration should guarantee accessibility of all points inside the domain through a se-
ries of iterations, as described in Sect. 4.2, irrespective of the vector field structure. Furthermore,
initialization must not leave large voids inside the domain. Although this criterion is not crucial
for the success of the algorithm, a good starting configuration significantly reduces processing
time. A structure that matches all these requirements is vector field topology.

We thus compute an initial set of dual streamline segments D by extracting the topological
skeleton of R(v), see e.g. [ ]. This gives a reasonable starting coverage of the domain and
good coverage of all critical points. Fig. 4.2 shows the result of initialization on an artificial
vector field. Beware, that uniformity is not essential in the initialization procedure, since non-
uniformities in the initial dual streamline set will not effect uniformity of the resulting primal
streamlines.

In the rare case that this initialization fails to produce any starting curves, i.e. if v possesses no
topology, we initialize D by tracing a small number of randomly seeded dual streamlines. Actu-
ally, a single dual streamline would suffice at this point, but an unfavorable seed location would
slow down algorithm convergence. For all examined cases, the use of five of these streamlines
is sufficient. Fig. 4.3 gives an example for the results of this alternative initialization.

13



CHAPTER 4. DUAL STREAMLINE SEEDING

Figure 4.2.: Initial set of dual streamlines, i.e. dual topology shown as dotted lines. The vec-
tor field is shown via LIC. Although the initial density distribution is non-uniform,
a good starting coverage is achieved and uniformity of primal streamlines is not
affected.

J

i

———

K/

Figure 4.3.: Result of randomly seeded initial dual streamlines. Uniformity of the result does
not depend on a uniform distribution of initial dual streamlines.
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Figure 4.4.: Effects of different initializations. Left: P empty, Right: P initialized with topol-

ogy of the vector field. The latter option provides clearly visible separatrices and
guarantees conservation of perceptibility of topological structure at low densities.

After D has been initialized, P is initialized analogously with the topological skeleton of v,
which ensures clearly visible separatrices especially at very low densities. Note, that initializing
P includes intersection tests and streamline termination, as described in the following sections.
If the emphasis of topological structure is not desired, P can be initialized empty. Fig. 4.4
compares these two alternatives.

4.2. lteration

Each iteration consists of two major parts:

1. Extract the longest segment from P or D. The midpoint of this segment will serve as the
next seed.

2. Trace a new streamline in forward and backward direction and test for intersections.

For illustration, let s € D be the longest remaining segment. Now, starting from the midpoint
of s, a new primal streamline is traced in v. Intersections with segments in D split them into
smaller segments at the intersection point. The currently traced streamline is also divided into
segments at those intersection points. The newly traced segments are added to P.

If s € P, the process is analogous, resulting in new streamline segments for D tested for
intersection against all segments in P.

Avoiding clutter

Each streamline-based approach faces the problem of clutter, i.e. streamlines cluster at certain
points or along certain lines in the field. These clusters are distracting if they do not coincide

15



CHAPTER 4. DUAL STREAMLINE SEEDING

with topological features of the field and should thus be avoided.

Similar to the seed criteria, we use the arc length of intersected streamline segments as termi-
nation condition for tracing. Each time an intersection between the currently traced streamline
and another segment is encountered, the minimum of the two resulting segments’ length d is
determined. If d falls below a specified separation distance ey, tracing is stopped. Osepm is set
relative to &, a value of g worked well for all our examples.

Note, that d is measured in arc length. Thus, contrary to standard Euclidean distance metric
or similarity distance [ ], it is directly applicable on curved surfaces.

Besides, this streamline termination strategy yields a lower bound on the segment length. A
segment of length < § will terminate any intersecting streamline. It is also irrelevant for seed
placement, since only segments of length > 28 provide seeds. Thus, these segments do not need
to be further subdivided at intersection.

4.3. Termination

The algorithm terminates, if no voids are left in either of the two streamline images. According to
our main postulate, this corresponds to an upper bound on the length of all remaining streamline
segments. This upper bound is set to 28 and controls the density of the resulting streamline
image. More formally, the termination condition can be formulated as:

VpeP:||p||<26AVd € D:|[d|| <26.

16



5. Implementation

Our implementation is written in C++ as a module for the visualization framework AMIRA
[ ], developed at the Zuse Institute Berlin. Our data setting comprises of a triangulated
surface with 3D data vectors given at the vertices of the surface and normals given for each
triangle. To construct a tangent vector field, data vectors are projected to the respective triangle
plane. Inside a triangle, linear interpolation of the data vectors is employed.

There are three key aspects to an efficient implementation of Dual Seeding.

1. Streamline tracing
2. Representation of streamline segmentation
3. Intersection tests between segments

Sec. 5.1-5.3 will describe how our solutions to these individual problems are intertwined, fol-
lowed by an analysis of their efficiency in Sec. 5.4 and concluded by a discussion on remaining
issues in Sec. 5.5.

5.1. Tracing

We represent streamlines as polylines, where forward tracing extends a polyline at the end and
backward tracing extends it at front. Streamline tracing is based on local exact tracing techniques
described by Kipfer et al. [ ] and Nielson/Jung [ ]. This approach is based on solving
the analytic form of the streamline curve equation inside a triangle to exactly calculate the exit
point from the triangle. Thus, each integration step results in a line segment with endpoints
on the boundaries of a triangle or a critical point inside the triangle. The approximation of
a streamline through a polyline can be improved by calculating multiple vertices —and thus
multiple line segments— along the course of a streamline inside a triangle. The necessity of
this refinement depends on the average triangle size. In all examples presented in this report,
the direct connection of entry and exit points of a triangle results in a satisfying streamline
approximation. The decomposition of streamline segments into line segments that do not cross
triangle boundaries is essential for our implementation of intersection tests.

During tracing, we assign each new sample point the arc length to the seed point. Tracing
forward, a newly traced point is assigned the value of its predecessor plus euclidean distance
between the two. Analogously, in backward direction, the newly traced point is assigned the
value of its successor minus euclidean distance between the two. This way, the arc length of
a segment between two points of a polyline can easily be calculated as the difference of these
values.

17



CHAPTER 5. IMPLEMENTATION

[-27 4.81] [-27, 4.81]
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i

[1.2,4.81]

[-27.1.2] [-27.1.2] [1.2 4.81]

| [-2.7,-0.4] | | [0.4,1.2) | | [-2.7,-0.4] | | [0.4,1.2] | | [1.2,3.0] | | [3.0, 4.81] |

Figure 5.1.: Representation of streamline segmentation. Each node stores the interval of curve
parameter values of the corresponding segment. Arrows indicate pointers to the
largest contained subsegment at leaf level. Left: The streamline has been intersected
at curve parameter values 1.2 and -0.4. Right: After another intersection at 3.0,
another segment has become the largest one. Note, that an intersection affects only
nodes on the path to the root.

5.2. Segment trees

Given this setting, all segments can be ordered according to their arc length. This could be
done by inserting them into a priority queue, or by searching for the maximum on demand,
but we chose a different approach. Splits of segments occur quite frequently, thus, when they
include copying the segment vertices, this can soon become the bottleneck of the algorithm.
Therefore, we retain the original streamlines and indicate splits by a binary tree structure (the
segment tree), where a node represents a segment of the streamline. Each node keeps track of
its largest subsegment at leaf level, implemented as a pointer to the respective tree node. In
particular, the root node possesses a pointer to the largest overall segment of this streamline.
Fig. 5.1 illustrates a simple example configuration. This data structure is easy to update and
performs well in practice, although its efficiency depends on the presumption of fairly balanced
trees. Sect. 5.4 discusses efficiency aspects of this data structure. With each streamline keeping
track of its largest segment, global ordering of streamlines is done by a priority queue.

5.3. Intersection tests

To do intersection tests efficiently, we use an index structure that assigns to each triangle the line
segments passing through it, i.e. each index entry consists of a pointer to a streamline and the
index of the sample point entering the triangle. This way, we can efficiently determine which
line segments may intersect a newly traced line segment by querying the index at the current
triangle and only test line segments passing through the same triangle for intersection.

5.4. Performance of Data structures

One of the most time-critical operations is splitting a segment. It consists of a tree traversal with
complexity O(h) with h being the height of the segment tree, the actual split with complexity
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Figure 5.2.: Growth of depth of the segmentation tree in relation to number of splits. Splits were
done at random locations. A logarithmic growth can be observed.

O(1) and updating the pointers along the path to the root at a cost of O(h). Thus, asymptotic
worst-case running time is O(n) in the number of splits n, irrespective of the number of stream-
line vertices. Still, practice shows that our data structure exhibits logarithmic growth both for
real application as well as for random splits. Fig. 5.2 illustrates the results of five test series for
the growth of depth under random splits.

Using an index to restrict the search for potentially intersecting streamlines is a common
trade-off between memory consumption and running time. It allows us to detect all candidate
line segments in O(1) time at the cost of additional memory consumption of O(#triangles).
Under the assumption that our algorithm produces evenly spaced streamlines, this index will
also be evenly filled with its average load depending linearly on 6.

5.5. Known Implementation Issues

As of now, running time escalates for separation distances below approximately 0.5% of the
domain width. Whether this is due to the exponentially rising number of intersections, which
is inevitable, or mistakes in the implementation could not be fully resolved. Furthermore, in
Sec. 6.3, we observe that running time grows exponentially in the number of streamline vertices.
A linear growth should be feasible here. The source of this inefficiency is not resolved either.

In [ ], the authors propose to find the exit point of a triangle via Newton-iteration. This
procedure has proven to be unstable for two reasons:

1. No guarantee of convergence can be given.
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2. Even if the algorithm converges, there is no way to ensure that the detected exit point is
the first time the curve exits from the triangle.

To face the first mentioned problem, a fallback mechanism has been implemented. We em-
ploy a simple adaptive sampling procedure to approximate the exit point. Yet, this technique
exhibits slower convergence and equally suffers from the latter problem. In case of failure of
both methods, tracing is aborted. This case occurs very rarely, but still should be addressed in
further development work.

To extend the given discrete set of data vectors to a vector field, we employ triangle-wise linear
interpolation projecting the given data vectors to the plane of the respective triangle. This inter-
polation scheme suffers from continuity problems. Along triangle boundaries, the interpolated
values differ depending on the values of which of the two triangles are used for interpolation.
This can cause anomalies in streamline tracing and critical point detection and thereby influences
our implementation. The use of a more sophisticated interpolation scheme should be considered,
if these problems occur frequently.
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6. Results

In this section, we present the results of our technique and compare them — where applicable —
to other seeding methods on artificial vector fields and CFD data. We implemented the method

of Verma et al. [ ] and use an implementation of Mebarki et al. [ ], which is freely
available [ ]. For comparison to the techniques of Turk and Banks [ ] and Jobard and
Lefer [ 1, we use pictures from [ ] by courtesy of the authors. Where possible, we further

compare running times.

6.1. Planar Domains

In the following, we compare Dual Streamline Seeding to four other streamline placing algo-
rithms, representing three classes of seeding techniques:

e image-based optimization [ 1,
e direct seeding [ ]and [ 1, and

o feature-based seeding [ 1.

As discussed in Sect. 1, quality criteria for streamline placement are uniformity, continuity,
coverage. In the following examples, coverage of important flow features is given with all five
methods, thus, we will focus on continuity and uniformity. Sect. 7 contains further discussion
on coverage. Since there is no standard to compare continuity and uniformity quantitatively, we
compare the results visually.

Fig. 6.1 compares Dual Seeding to the flow-guided seeding strategy of Verma et al. with ad-
ditional Poisson-distributed seeds to fill the voids. Our algorithm gives better results in terms
of continuity and uniformity, especially with high densities. Without additional seeds, the ap-
proach of Verma et al. lacks coverage for regions without critical points. On the other hand, the
additional seeds further diminish continuity and uniformity.

Fig. 6.2 compares our technique to the listed image based and direct approaches. In terms
of continuity, our algorithm gives comparable results to the Farthest Point technique and the
method of Turk/Banks and better results than the algorithm of Jobard/Lefer. The latter tends to
produce short, separated streamlines along the same path of the flow where the viewer would
expect one continuous streamline as Fig. 6.3 demonstrates. This should be avoided to give an
impression of flow coherency in a steady flow. Our algorithm does not enforce overall uniformity
of streamline density as strictly as the other methods. Especially, clutter control is less regular
than with Euclidean distance measure, which is employed by the other approaches. On the other
hand, the resulting local deviation of density leads to a better accentuation of the critical points,
as discussed in Sect. 7.

21



CHAPTER 6. RESULTS

(a) Verma/Kao/Pang00 with additional seeds (b) Dual Seeding

Figure 6.1.: Comparison to feature-based technique by Verma et al. Separation distances: top
2% bottom 3.5% of domain width. Poisson-distributed seeds employed by Verma
et al. introduce significant discontinuities, whereas Dual Seeding results in long
continuous streamlines, while still capturing topological features.
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Figure 6.2.: Comparison of streamline placement techniques with decreasing densities. Separa-

i
tion distance from left to right: 0.84%, 1.68%, 3.36% of domain width. Pictures on
the first two rows were provided by the authors of [ 1.
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Figure 6.3.: Close-up of the result of Jobard/Lefer of Fig. 6.1. Cumulative discontinuities can be
observed especially near critical points.

Figure 6.4.: Swirling jet entering fluid at rest. Depicted is a planar slice of a 3D velocity field.
Separation distance is 0.5% (left) and 1.5% (right) of domain width. Areas of tur-
bulent and laminar flow are well distinguishable at both densities.

Fig. 6.4 demonstrates results for different separation distances on a planar cut of a 3D vector
field. It contains 12,524 data vectors and results from a simulation of a swirling jet entering fluid
at rest. Despite the topological complexity of the data set, regions of laminar and turbulent flow
can well be distinguished. Neither do the turbulent areas, which are densely covered by dual
streamlines, exhibit cluttering, nor are there any voids in areas of laminar flow.

6.2. Non-Planar Domains

Fig. 6.5 combines a color-coded visualization of pressure with our streamline seeding result and
extracted critical points of the wall shear stress. Both fields resulted from CFD simulation of
blood flow in a reconstructed aneurysm. The streamlines exhibit the same degree of continuity,
uniformity and coverage as the planar examples. Overall flow behavior as well as local topolog-
ical details are well observable. The structure of the pressure field is still well perceptible due to
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Figure 6.5.: Overlay of wall shear stress streamlines and color-coded pressure distribution on a
cerebral aneurysm. Critical points are highlighted by small spheres.

the sparsity of the streamlines.

We applied our method in Fig. 6.6 for the validation of a CFD solution with experimental data.
A transparent silicon model of a cerebral aneurysm was used for the experimental flow, particle
traces of the near-wall-flow were recorded in a gray-scale image with the wall PIV technique
by Kertzscher et al. [ ]. The same geometry and flow condition was used for the CFD
computation. The PIV image and streamlines of the wall shear stress of the CFD solution are
superimposed. Due to the sparsity of the streamline visualization, similarities and differences of
the two flow fields are well observable.

Another visualization of wall shear stress resulting from CFD simulation on a curved surface
is shown in Fig. 6.7. Flow separation can be observed at the back side of the propeller blades. Al-
though the field barely possesses topological features as starting points, the resulting streamline
image still exhibits complete coverage and a great degree of uniformity and continuity.
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Figure 6.6.: Comparison of experimental flow and CFD results of a cerebral aneurysm. Particle
traces of the near wall flow are shown in the background [ ], the wall-shear-
stress vector field of a roughly aligned CFD model is depicted with red streamlines.
The comparison shows a good agreement of the fields.

Figure 6.7.: Streamlines of the wall shear stress on a ship propeller. Left: Pressure side, Right:
Suction side. Flow separation can be observed at the tip of the blades at the suction
side.
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Separation || Verma et al. | Mebarki et al. Dual
distance [ ] [ ] Seeding
0.5% 587ms 578ms 154ms
1% 182ms 250ms 71ms
2% 58ms 125ms 39ms
5% 28ms 46ms 21ms

Table 6.1.: Comparison of running time including initialization. For the examined case, our
algorithm is faster by a factor of 2-3.

6.3. Timings and Scalability

Timings were measured on a standard AMD64 3GHz computer. We analyze running times in
three ways:

e comparison for fixed densities and a given vector field,
e growth of running time with increasing streamline density,

e growth of running time with increasing complexity of the input data.

Table 6.1 compares running times of our method to [ ] and [ ]. The three tech-
niques were applied to the vector field depicted in Fig. 6.2, which consists of 50x50 data vectors.
Our algorithm is faster than the methods proposed in [ Jand [ ] by a factor of 2-3.

In a second step, we applied the three mentioned methods to the same vector field with in-
creasing streamline densities. Dual Seeding exhibits a significantly slower growth than the other
two approaches, as Fig. 6.8 illustrates.

We further adapted scalability measure proposed by [ ], where running time is ana-
lyzed relative to the number of streamline vertices. For this, we created several versions of an
analytic vector field at different sampling densities. Fig. 6.9 illustrates the employed vector field
and the results. An exponential growth of running time is observable.
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Figure 6.8.: Running times in relation to streamline density, which is the inverse of the separation
distance. Dual Seeding exhibits a more moderate growth than the methods proposed
in [MADO5] and [VEPOO].
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Figure 6.9.: Running time growth with increasing number of streamline vertices.
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7. Discussion

This chapter discusses features, limitations and the development history of Dual Seeding.

7.1. Streamline termination and loop detection

Our streamline distance measurement is induced by the respective dual streamline set, and is thus
iteratively refined. This particularly impacts streamline termination, allowing early streamlines
to gather, which they usually do at critical points, while streamlines added later on are termi-
nated at farther distances. Thereby, our algorithm prioritizes feature coverage over uniformity.
In effect, critical points are more accentuated at low streamline density, as Fig. 7.1 demon-
strates. This accentuation improves the perceptibility of critical points compared to methods,
whose streamline termination strategy is based on Euclidean distance, like [ 1, 1 ],
[ ] and [ ]. Apart from this desirable deviation of density, some undesirable clut-
ter that does not provide additional information remains, as can be ovserved in Fig. 6.4 (left).
Since streamlines can only be terminated at intersection points, where inter-streamline distance
is again approximated, clutter is significantly reduced but not fully eliminated.

To ensure effective streamline termination, including loop detection, it is important to initial-
ize D first. During the initialization of D, P is empty, and thus, the streamline termination cri-

N
N

—

(a) Mebarki at al. (b) Dual Seeding

Figure 7.1.: Comparison at low streamline density. Our streamline termination algorithm is
less strict, allowing streamlines to gather at critical points, which improves their
perceptibility.
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Figure 7.2.: Seeding templates proposed by Verma et al.

terion never applies, resulting in very long lines that may clutter in the vicinity of critical points
or loop, as can be seen in Fig. 4.2. Therefore, the number of tracing steps has to be limited at
this stage. On the other hand, loops in primal streamlines are detected, as they would intersect
the same dual streamline twice. Thus, this initialization order ensures, that after initialization,
tracing always stops gracefully without the need for an artificial step limit.

7.2. Extensibility to 3D

Our method is especially tailored for seeding on arbitrarily shaped curved 2D surfaces and can-
not directly be extended to a 3D seeding technique. We rely on the symmetry of the streamline
duality. In 2D, the dual (or orthogonal) structure of a line is again a line and we can apply the
same method for the addition of subsequent new streamlines. In 3D, the dual structure of a 1D
streamline is a 2D surface; the symmetry of our method would be lost. Apart from the structural
difference, it is not desirable to seed streamlines in 3D with the same objectives as in 2D, as
mutual occlusion is the main problem to solve in 3D.

7.3. Emergence of the algorithm

By construction, our seed locations on the dual streamlines have similarities to the seeding tem-
plates of Verma et al. [ ] shown in Fig. 7.2. For each critical point, the seeding templates
run orthogonal to idealized (linear) flow fields, extending to the boundaries of a Voronoi cell
centered around the critical point. In fact, our algorithm emerged from this principal idea. This
section will discuss the adaptions to [ ] that finally resulted in Dual Seeding.

A direct application of [ ] on curved surface domains exhibits several drawbacks.

e Projecting the planar seeding templates to a curved surface distorts their carefully chosen
shape.

o Static templates do not adequately reflect local flow behavior.
e Coverage of spirals is unsatisfactory.

Thus, we first generalize the static templates to dynamic dual streamlines, running orthogonal
to the vector field. This extends the symmetrical templates and departs from the assumption of
planarity. Fig. 7.3 compares this dynamic seeding strategy to the static template.
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(a) Static seeding template (b) Orthogonal seeding

Figure 7.3.: Comparison of static vs. dynamic seeding strategy. The single spiral in the middle
of the field (red sphere) is solely depicted by streamlines, whose seeds are marked
by gray spheres. Static seeding along a straight line, as proposed by Mebarki et al.,
often fails to capture spirals thoroughly. Placing seeds with regard to the vector field
results in better coverage.

Figure 7.4.: Good domain coverage can be achieved by seeding along the dual topology of the
vector field. Yet, equidistant seeding leads to a non-uniform streamline distribution.

We further drop the explicit handling of each critical point. Instead, four dual streamlines
are started at the bisectors of each saddle point. Placing seeds only on these topology-guided
streamlines yields good domain coverage if they are not restricted to a single Voronoi cell. Still,
the regular seeding along these curves —as inherited from Verma’s method— results in a non-
uniform streamline distribution, as can be observed in Fig. 7.4. It further leads to exponential
running time behavior due to the quickly increasing number of seed points.

To limit the count of possible seed locations that have to be tracked, we employ a greedy
approach, where only the midpoints of streamline segments can serve as seeds. This way, the
complexity depends on the number of segments, instead of the number of streamline vertices.
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Figure 7.5.: Dual Streamline Seeding with a fixed (initial) set of dual streamlines. Critical points
are depicted with colored spheres, primal streamlines are shown as white lines, dual
streamlines are shown via brown dotted lines. Although coverage of the main flow
features is satisfactory, clutter avoidance and coverage in areas with a low count of
dual streamlines is not.

The introduction of segments and the need to keep track of segment intersections also allowed
to realize streamline termination as part of intersection testing. Although this preliminary algo-
rithm already yields good results, as Fig. 7.5 demonstrates, coverage and streamline termination
is unsatisfactory in areas that are sparsely covered by dual streamlines.

So, we finally meet this problem by allowing dual streamlines to be added in the course of
the algorithm by the same mechanism primal streamlines are seeded. Thereby, voids in the dual
field are filled as well, improving uniformity and coverage of the streamline result.

7.4. Discarded Optimizations

Concluding this chapter, we discuss two optimizations that were tried but abandoned. Our
method applies the same separation distance 6 to primal and dual streamlines. We experimented
with the use of two separation distances: 0, bounds the length of primal segments steering
density of dual streamlines and §; bounds the length of dual segments steering density of pri-
mal streamlines. This affects seed selection, streamline termination and algorithm termination.
Setting 8; < 8, (primal streamlines denser than dual streamlines) does not generally decrease
running time, as expected. The resulting lower count of dual streamlines does decrease effec-
tiveness of streamline termination though. Setting 6; > 9, (dual streamlines denser than primal
streamlines) results in a more uniform streamline termination, but with an immediate running
time penalty. Fig. 7.6 summarizes the results of one test series. Since no general improvement
could be observed, only a single parameter is used.
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(a) 0y = 0.5, processing time:1.24s (b) 6, = &4, processing time:0.96s

(¢) &y =28y, processing time:0.95s (d) 6, =46, processing time:1.02s

Figure 7.6.: Effects of separate ds for the two segment sets. Setting the separation distance
for the dual streamlines higher, decreases effectiveness of streamline termination
without generally improving running time.

We also experimented with alternative termination criteria. Instead of setting an upper bound
to the longest segment, one could also bound the average segment length or the length of the
median. Yet again, we could not observe a general improvement of streamline uniformity or
running time, therefore, we chose the most simple option.
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8. Conclusion and Future work

We have presented a novel seeding technique for tangent vector fields on curved surface do-
mains. Unlike other approaches, our method is not build upon Euclidean distance, Delaunay-
triangulation, Voronoi-decomposition, or other concepts, which are hard to apply efficiently on
curved surfaces.

Beside means of streamline tracing, only simple algorithmic concepts like priority queues and
binary trees are used, which makes our method easy to implement. At the same time, it is highly
efficient, comparable in placement quality and superior in processing time to state-of-the-art
methods.

The main contribution of this work resides in the introduction of dual streamlines. By analyz-
ing and selectively refining the resulting net of orthogonal streamlines we explore the domain
and control streamline density efficiently.

This approach yields a new measurement for density distribution, i.e. long streamline seg-
ments indicate cavities in the dual field. As further work, instead of complying to the greedy
paradigm, one could also use that measurement as a basis to apply optimization approaches,
such as the one employed by Turk and Banks. This could improve overall uniformity at the cost
of simplicity and efficiency.

We also presented main features of our implementation. Although it is efficient in a wide
range of densities and domain complexities, it still exhibits inefficiencies at very high densities
or very complex input data. The source of these drawbacks still has to be resolved.

34



A. Acknowledgments

This work was supported be the German Research Foundation (DFG Grant HE 2948/5-1 and
Emmy-Noether Research group) and the European Commission FP6 Project VIRTUE.

Thanks to L. Goubergrits and J. Pothke, Biofluid Mechanics Lab, Charité Berlin and A. Spuler,
HELIOS Klinikum Berlin-Buch for the aneurysm dataset and fruitful discussions. We further
thank B. Jobard, Laboratoire d’Informatique de I’Université de Pau et des Pays de I’ Adour for
providing some of the comparative vector field figures and W. Kollmann, University of Califor-
nia Davis for the provision of the swirling jet dataset.

The INSEAN E779A propeller geometry in Fig. 6.7 has been provided by INSEAN, CFD
simulation has been performed by HSVA.

35



Bibliography

[CCKO7]

[HH&9]

[JL97]

[JLOO]

[JLO1]

[KBGAOS]

[KRGO3]

[LHD"04]

[LHSO08]

[LIGO6]

[LSO7]

[MADO5]

Yuan Chen, Jonathan D. Cohen, and Julian H. Krolik. Similarity-guided stream-
line placement with error evaluation. In IEEE Transactions on Visualization and
Computer Graphics, volume 13, pages 1448—1455, 2007.

J. Helman and L. Hesselink. Representation and display of vector field topology in
fluid flow data sets. Computer, 22(8):27-36, Aug 1989.

Bruno Jobard and Wilfrid Lefer. Creating evenly-spaced streamlines of arbitrary
density. In W. Lefer and M. Grave, editors, Visualization in Scientific Comput-
ing '97. Proceedings of the Eurographics Workshop in Boulogne-sur-Mer, France,
pages 43-56, Wien, New York, 1997. Springer Verlag.

Bruno Jobard and Wilfrid Lefer. Unsteady flow visualization by animating evenly-
spaced streamlines. Comput. Graph. Forum, 19(3), 2000.

Bruno Jobard and Wilfrid Lefer. Multiresolution flow visualization. In WSCG
(Posters), pages 34-35, 2001.

U. Kertzscher, A. Berthe, L. Goubergrits, and K. Affeld. Particle image velocimetry
of a flow at a vaulted wall. Proceedings of the Institution of Mechanical Engineers,
Part H: Journal of Engineering in Medicine, 222(4):465-473, 2008.

Peter Kipfer, Frank Reck, and Giinther Greiner. Local exact particle tracing on
unstructured grids. Computer Graphics Forum, 22:133-142, 2003.

Robert S. Laramee, Helwig Hauser, Helmut Doleisch, Benjamin Vrolijk, Frits H.
Post, and Daniel Weiskopf. The state of the art in flow visualization: Dense and
texture-based techniques. Computer Graphics Forum, 23(2):203-221, 2004.

Liya Li, Hsien-His Hsieh, and Han-Wei Shen. Illustrative streamline placement and
visualization. In Proc. of IEEE Pacific Visualization, pages 79-86, 2008.

Zhanping Liu, Robert J. Moorhead II, and Joe Groner. An advanced evenly-spaced
streamline placement algorithm. In IEEE Transactions on Visualization and Com-
puter Graphics, volume 12, pages 965-972, 2006.

Liya Li and Han-Wei Shen. Image-based streamline generation and rendering.
IEEE Transactions on Visualization and Computer Graphics, 13(3):630-640, 2007.

Abdelkrim Mebarki, Pierre Alliez, and Olivier Devillers. Farthest point seeding for
efficient placement of streamlines. In Proc. of IEEE Visualization, pages 479-486,
2005.

36



Bibliography

[Meb]

[MHHIOg]

[MTHGO3]

[NJ99]

[PVH'03]

[SHH"07]

[SS08]

[SWHO5]

[TB96]

[VKPOO]

[YKPO5]

Abdelkrim Mebarki. http://www-sop.inria.fr/geometrica/team/Abdelkrim.
Mebarki/Streamlines.html.

Xiaoyang Mao, Yuji Hatanaka, Hidenori Higashida, and Atsumi Imamiya. Image-
guided streamline placement on curvilinear grid surfaces. In VIS "98: Proceedings
of the conference on Visualization 98, pages 135-142, Los Alamitos, CA, USA,
1998. IEEE Computer Society Press.

Oliver Mattausch, Thomas TheuBl, Helwig Hauser, and Eduard Gréller. Strategies
for interactive exploration of 3d flow using evenly-spaced illuminated streamlines.
In SCCG ’03: Proceedings of the 19th spring conference on Computer graphics,
pages 213-222, New York, NY, USA, 2003. ACM.

Nielson and Jung. Tools for computing tangent curves for linearly varying vec-
torfields over tetrahedral domains. Transactions on Visualization and Computer
Graphics, 5:360-372, 1999.

Frits H. Post, Benjamin Vrolijk, Helwig Hauser, Robert S. Laramee, and Helmut
Doleisch. The state of the art in flow visualisation: Feature extraction and tracking.
Computer Graphics Forum, 22(4):775-792, 2003.

Michael Schlemmer, Ingrid Hotz, Bernd Hamann, Florian Morr, and Hans Hagen.
Priority streamlines: A context-based visualization of flow fields. In Ken Museth,
Torsten Moller, and Anders Ynnerman, editors, Eurographics/ IEEE-VGTC Sym-
posium on Visualization, pages 227-234, 2007.

Tobias Salzbrunn and Gerik Scheuermann. Flow structure based 3d streamline
placement. In Hans-Christian Hege, Konrad Polthier, and Gerik Scheuermann, ed-
itors, Topology-Based Methods in Visualization II. Springer, to appear 2008.

Detlev Stalling, Malte Westerhoff, and Hans-Christian Hege. Amira: A highly
interactive system for visual data analysis. In Charles D. Hansen and Christopher R.
Johnson, editors, The Visualization Handbook, pages 749-767. Elsevier, 2005.

Greg Turk and David Banks. Image-guided streamline placement. In SIGGRAPH

'96: Proceedings of the 23rd annual conference on Computer graphics and inter-
active techniques, pages 453-460, New York, NY, USA, 1996. ACM.

Vivek Verma, David Kao, and Alex Pang. A flow-guided streamline seeding strat-
egy. In Proc. of IEEE Visualization, pages 163—170, 2000.

Ye, Kao, and Pang. Strategy for seeding 3d streamlines. Visualization, 5:60, 2005.

37


http://www-sop.inria.fr/geometrica/team/Abdelkrim.Mebarki/Streamlines.html
http://www-sop.inria.fr/geometrica/team/Abdelkrim.Mebarki/Streamlines.html

	Introduction
	Motivation
	Contributions

	Basics
	Vector fields
	Streamlines
	Vector field topology

	Related Work
	Dual Streamline Seeding
	Initialization
	Iteration
	Termination

	Implementation
	Tracing
	Segment trees
	Intersection tests
	Performance of Data structures
	Known Implementation Issues

	Results
	Planar Domains
	Non-Planar Domains
	Timings and Scalability

	Discussion
	Streamline termination and loop detection
	Extensibility to 3D
	Emergence of the algorithm
	Discarded Optimizations

	Conclusion and Future work
	Acknowledgments

