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Buoyancy-reversal in cloud-top mixing layers

J.P. Mellado, B. Stevens, H. Schmidt, and N. Peters

January 12, 2009

Abstract

A theoretical and numerical small-scale study of the evaporative cool-
ing phenomenon that might appear in the stratocumulus-topped boundary
layers is presented. An ideal configuration of a cloud-top mixing layer is
considered as defined by two nonturbulent horizontal layers, stably strati-
fied and with buoyancy reversal within a certain range of mixture fractions
due to the evaporative cooling. Linear stability analysis of the shear-free
configuration is employed to provide a new interpretation of the buoyancy
reversal parameter, namely, in terms of a time-scale ratio between the un-
stable and the stable modes of the system. An incompressible high-order
numerical algorithm to perform direct numerical simulation of the con-
figuration is described and two-dimensional simulations of single-mode
perturbations are discussed. These simulations confirm the role of the
different parameters identified in the linear stability analysis and show
that convoluted flow patterns can be generated by the evaporative cool-
ing even for the low levels of buoyancy reversal found in stratocumulus
clouds. They also show that there is no enhancement of entrainment of
upper layer fluid in the shear-free configuration, and mixing enhancement
by the evaporative cooling is restricted to the lower layer.

Keywords: stratocumulus; free convection; free turbulent flows

1 Introduction

The importance of the physical phenomena occurring at the stratocumulus top
of the planetary boundary layer is as well recognized as poorly understood [cf.
Stevens (2002) and discussion therein]. This region normally separates a lower
layer of turbulent flow from an upper layer of subsiding air that is approximately
laminar, giving rise to turbulent entrainment, external intermittency and a tur-
bulent/nonturbulent transition region, the so-called turbulence interface. This
problem by itself, without any consideration of the cloud physics, is still a mat-
ter of basic research in the field of free turbulent flows, in spite of its importance
and long-standing recognition (Corrsin and Kistler, 1955; Fernando, 1991; Di-
motakis, 2005; Hunt et al., 2006). When the idiosyncrasies of the cloud, in this
case stratocumulus, are added to it, the difficulty of the problem is almost over-
whelming. However, accurate models of related quantities, like an entrainment
rate or the subgrid scale terms in large eddy simulations, are necessary due to
the role that these stratocumulus-top regions, of the order of meters or tens of
meters, play in larger scale dynamics. In addition to the physical complexity of
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the problem, the range of scales it embodies confounds brute force attempts to
numerically explore the interplay between turbulent processes at the cloud top
and those within the turbulent layer as a whole. Stevens (2002) reviews these
issues and, as a part of the conclusion, advocates for the study of smaller-scale
similar/related simplified more-specific problems that would allow us to gain in-
sight into the more general and more complex system. The authors adopt this
approach in this paper and study in detail one aspect of the cloud-top mixing,
namely, the role of latent heat effects.

Latent heat effects are expected to be important because of the evaporative
cooling caused by the mixing between the lower cooler and supersaturated layer
and the upper warmer and unsaturated layer, which in some cases can lead
to buoyancy reversal. The possibility of a resulting instability, the so-called
cloud-top entrainment instability, which could ultimately break the cloud deck,
remains an important and largely unresolved question (Randall, 1980; Deardorff,
1980; Kuo and Schubert, 1988; Grabowski, 1995; Wunsch, 2003; Yamaguchi and
Randall, 2008).

Among the great number of studies focused on buoyancy reversal in cloud-
topped layers, the series of papers by Shy and Breidenthal (1990), Siems et al.

(1990) and Siems and Bretherton (1992) merit special attention. Shy and Brei-
denthal (1990) explored the effects of buoyancy reversal in a laboratory system
(tank) consisting of methanol, ethylene glycol, salt and water, and characterized
by two parameters: D, which measures the ratio of the maximum density of the
mixture to the density difference of the unmixed fluids; and χm, the mixture
fraction at which that maximum density occurs. Siems et al. (1990) present
two-dimensional numerical simulations of this two-layer configuration without
explicit subgrid scale modeling using a second-order algorithm. The evolution
of the system is then described in terms of the stream-function and the mixture
fraction χ for the case of discrete initial perturbations in the form of a buoyancy
anomaly. Although this low-order scheme is too dissipative and leads to an al-
most laminar structure of the reversing system for the case D = 0.05, which is
representative of real stratocumulus, their study was the first to recognize the
applicability of direct numerical simulation (DNS) to this problem, as only DNS
attempts to explicitly represent mixing processes and hence the scales at which
latent heating effects are realized. These numerical studies were extended by
Siems and Bretherton (1992) who tried to span the range between the laboratory
scale, comparing with Shy and Breidenthal (1990) by using single-vortex initial
conditions, and the atmospheric scale, using multiple-vortices initialization. A
principal finding of these studies is the identification of a critical buoyancy re-
versal parameter D of order unity beyond which a qualitative change of the flow
(a runaway in the entrainment of dry fluid from the upper layer or a sustained
increase of kinetic energy despite the viscous dissipation) becomes evident. Ac-
tual cloud-top conditions typically have D ≪ 1, which leads them to conclude
that buoyancy reversal alone is not likely to destabilized the cloud layer as a
whole.

In this study we build on the results of this previous work by exploring two
open questions. First, although the parameter D can be easily introduced based
on dimensional analysis, does it lend itself to a deeper physical interpretation?
This is the topic of section 3, where a linear stability analysis is presented and
used to interpret the buoyancy reversal parameter D in terms of a ratio between
the growth rates of the unstable and stable modes. Second, to what extent is
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the argument, that small values of D do not destabilize the system as a whole,
an artifact of the stabilizing influence of the low-order numerics used by Siems
et al. (1990) and Siems and Bretherton (1992)? To answer this question, a high-
order numerical algorithm based on sixth-order compact schemes in space and
a fourth-order five-step Runge-Kutta in time is described in section 4. Two-
dimensional simulations are discussed in section 5 to extend the previous linear
study into the nonlinear regime, showing the complicated pattern of mixing
introduced by the buoyancy reversal—even for values D ≃ 0.05. At the same
time, these simulations are used to validate the numerical algorithm and to
further study the flow for the geophysically interesting case of 0 < D ≪ 1; in
particular, statistics related to the mixture fraction and the energy budget are
presented and discussed.

2 Formulation

The geometry considered is a two-layer system with the upper nonturbulent
layer warmer and unsaturated and the lower one, also nonturbulent, cooler and
supersaturated, gravity acting downwards. It is distinguished from (and simpler
than) the cloud-top mixed layers (Lilly, 1968), in which the bottom layer is
turbulent. It is therefore an idealized problem and will be referred to as cloud-
top mixing layer, being shear-driven if Kelvin-Helmholtz instability dominates,
buoyancy-driven if buoyancy reversal instability dominates, or a mixture of both.
Only the shear-free configuration will be discussed in this paper.

Assuming that the liquid water phase can be represented as a continuum
with the same diffusivity as the vapor, for low Mach number conditions the
transport equations for the total water content and the enthalpy reduce to the
advection-diffusion equation. Given equal thermal and mass diffusivities and
with appropriate boundary and initial conditions the calculation of both can
be represented in terms of the evolution of a single conserved scalar field, the
mixture fraction χ(x, t) satisfying the same advection-diffusion equation. In a
two-layer system as we have here, the mixture fraction can be chosen to indicate
the relative amount of mass of the fluid particle that originates from the upper
layer. If thermodynamic equilibrium is assumed, the value of χ at each point
and time determines completely the thermodynamic state of the fluid particle,
in particular it provides the density as ρ(x, t) = ρe(χ(x, t)) for a function ρe(χ)
to be given.

In the Boussinesq limit with constant transport coefficients the governing
equations are then

∂v

∂t
+ ∇·(v ⊗ v) = −∇p + ν∇2v + bk

∇·v = 0

∂χ

∂t
+ ∇·(vχ) = κ∇2χ

(1)

where the buoyancy is

b =
ρ0 − ρ

ρ0
g . (2)

In the equations above, p is a modified pressure divided by the reference density,
the kinematic viscosity is ν, κ is the scalar diffusivity and g represents the
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magnitude of the gravity force, which is assumed constant and acting downwards
along the vertical direction Oz, i.e. g = −gk. Flow variables from the upper
layer, where χ = 1 will be denoted by the subscript 1, and subscript 0 will
correspond to the lower layer, where χ = 0. The parameter b1 = g(ρ0 − ρ1)/ρ0

quantifies the strength of the stable inversion. Positively buoyant means b > 0
and the volumetric force is then directed upward along k.

The function be(χ), or equivalently ρe(χ), remains to be characterized to
obtain the volumetric force from the relation b(x, t) = be(χ(x, t)). The first
parameter entering is the density difference across the layer ρ0 − ρ1, which is
equivalent to a buoyancy value b1 already introduced above. If the density were
a linear function of the scalar, i.e. ρ = ρ0 +χ(ρ1−ρ0), then be(χ) = b1χ. When
a phase change occurs and buoyancy reversal is present, linear thermodynamic
analysis for a small density difference ρ0−ρ1 shows that this function can be well
approximated by a piecewise-linear profile, characterized by a maximum density
ρm at a particular mixture fraction value χm that is fixed by the initial data.
This maximum density is introduced in the problem through the nondimensional
buoyancy reversal parameter (Shy and Breidenthal, 1990)

D =
ρm − ρ0

ρ0 − ρ1
= −bm

b1
. (3)

Figure 1 shows the function be(χ)/b1 for the cases described in Table 1 (to be
discussed later in section 5), along with the exact equilibrium solution given
by a polynomial fit to the vapor pressure function (Flatau et al., 1992). The
approximate piecewise-linear behavior is clearly revealed in that figure.

0.0 0.2 0.4 0.6 0.8 1.0
χ

0.0

0.2

0.4

0.6

0.8

be  / 
b 1

A0
A1

A2
A3

Figure 1: Nondimensional buoyancy mixing function for data in Table 1: dashed,
exact thermodynamic equilibrium; solid, approximation Eq. (4).

The discontinuity in the derivative observed in those curves at χm, which
corresponds to just saturation conditions, needs to be smoothed if the high-order
schemes normally employed in DNS and later described are to be used, since
they are not monotone and the derivative of the momentum equation is needed
for the pressure equation. Therefore, the buoyancy function is approximated as

be(χ)

b1
= − D

χm
χ +

(

1 + D

1 − χm
+

D

χm

)

δs ln

[

exp

(

χ − χm

δs

)

+ 1

]

, (4)
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which corresponds to the profile of the derivative dbe/dχ following a hyperbolic
tangent between two different levels and centered at χm (see also Fig. 1). Mix-
ture fractions smaller than (χm +D)/(1+D) are negatively buoyant. Numerical
studies performed to calculate the influence of δs on growth rates are presented
in section 5 and show that a smoothing parameter defined by δs = χm/16 leads
to deviations of less than 2%.

The equations are to be solved in a rectangular domain assuming periodicity
in the horizontal directions Ox and Oy. The boundary conditions imposed at
the top and the bottom are zero normal velocity and zero normal derivative
of the horizontal velocities and the scalar field χ. The Neumann boundary
conditions for the Poisson equation for the pressure at the top and the bottom
are then (Gresho, 1991)

∂p

∂z
= ν

∂2w

∂z2
+ b , (5)

where the boundary conditions on the velocity have been already applied and
w is the vertical velocity. Additionally, one reference value of p (irrelevant for
the flow) has to be given at one point.

If there is a velocity-scale U0 externally imposed (e.g. from a mean shear
or from a turbulent state in one of the layers) with a length-scale L0, then
dimensional analysis shows that the general solution can be written in the form

v(x, t)

U0
= f(

x

L0
,
tU0

L0
; Re, Pr, Ri, χm, D,

a

L0
,

δ

L0
)

χ(x, t) = g(
x

L0
,
tU0

L0
; Re, Pr, Ri, χm, D,

a

L0
,

δ

L0
)

(6)

where the reference Reynolds and Richardson numbers are Re = L0U0/ν and
Ri = b1L0/U2

0 , respectively, and the Prandtl number is Pr = ν/κ. An ampli-
tude a of the initial perturbation of the interface has been assumed along with
a initial thickness δ of the initial mean scalar profile of χ.

If there is no velocity-scale externally imposed, then b1 and L0 can be used
to write

v(x, t)√
L0b1

= f(
x

L0
, t

√

b1

L0
; Gr, Pr, χm, D,

a

L0
,

δ

L0
)

χ(x, t) = g(
x

L0
, t

√

b1

L0
; Gr, Pr, χm, D,

a

L0
,

δ

L0
)

(7)

as the general solution to the nondimensional equations

∂v

∂t
+ ∇·(v ⊗ v) = −∇p +

1

Gr1/2
∇2v + bk

∇·v = 0

∂χ

∂t
+ ∇·(vχ) =

1

Gr1/2 Pr
∇2χ

(8)

which introduces the reference Grashof number (common in free convection
flows, e.g. Tritton (1988)) as Gr = L3

0b1/ν2. Other combinations of these
nondimensional groups might be preferable for different particular configura-
tions, as will be done in section 5.

The unperturbed initial condition is assumed to correspond to the enthalpy
and total specific humidity following an error function profile, which is a solution
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of the purely diffusive equations. This is imposed in the current formulation by
prescribing the mixture fraction at the initial time as

χi(z) =
1

2

[

1 + erf
( z

2δ

)]

. (9)

The origin of the coordinate system is taken at the interface and the thickness of
this interface in terms of χ is parameterized by δ. Evaporative cooling (Eq. (4)
and Fig. 1) implies then a three layer structure in the density field, with a middle
heavier layer of an approximate thickness of order δ(χm+D)/(1+D). The effect
of a perturbation of magnitude a to this configuration is further explored in the
following sections.

3 Linear stability analysis

This section discusses the linear stability analysis of a three-layer density field
without mean shear. The initial perturbation a is assumed to be small enough,
i.e. a/[δ(χm+D)/(1+D)] ≪ 1; stronger perturbations falling outside this linear
regime will be considered in section 5 via numerical simulations. The basic
configuration is depicted in Fig. 2. It represents an idealized buoyancy reversal
system, substituting the smooth density variation by a stepwise profile. The
analysis is done assuming constant density in each of the layers and irrotational
flow. This problem, for the case of a two-layer system, is described in many
text books (e.g. Turner (1973)) and the general multilayer case has been also
discussed in the literature (Yang and Zhang, 1993). A three-layer system like
the one here has received less attention; experimental investigations are reported
by Jacobs and Dalziel (2005) but with a different stratification (ρ1 > ρ0 instead
of the case ρ1 < ρ0 of interest here). It is therefore of interest to study this
three-layer basic problem in detail.

φm, ρm

z = 0

z = h

φ0, ρ0 = (1 − ǫ0)ρm

z

φ1, ρ1 = (1 − ǫ1)ρm

η0

η1

ρ1

ρ0

g

Figure 2: Vertical density profile (left) and three-layer idealized configuration
(right) representing the buoyancy reversal state by a density ρm greater than
ρ0 and ρ1.

Let us denote with φj the velocity potential in each of the layers, which
satisfies the Laplace equation, and with η0 and η1 the displacement of each
interface with respect to the reference position, separated by a distance h (see
Fig. 2). The boundary conditions for the linearized problem consist of the
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kinematic condition,

∂φ0

∂z
=

∂φm

∂z
=

∂η0

∂z
, at z = 0 ,

∂φ1

∂z
=

∂φm

∂z
=

∂η1

∂z
, at z = h ,

and the dynamic condition of continuity of pressure at the interfaces,

∂

∂t
(ρmφm − ρ0φ0) + (ρm − ρ0)gη0 = 0 , at z = 0 ,

∂

∂t
(ρ1φ1 − ρmφm) + (ρ1 − ρm)gη1 = 0 , at z = h ,

having used the linearized Bernoulli equation in each of the three layers ρj∂φj/∂t+
pj + ρjgz = Gj , with suitable functions Gj(t).

Solutions are sought in the form

φj = fj(z) exp(ikx + σt) , j = 1, 2, 3 . (10)

The boundary condition on the normal velocity at the interfaces implies that
η0 = A0 exp(ikx + σt) and similarly for η1, along with relations between f ′(z)
at those interfaces. Solving the Laplace equations for φj we obtain





f0

fm

f1



 = e−kz





0
am

a1



 + ekz





b0

bm

b1





where the integration constants can be expressed in terms of A0σ/k and A1σ/k.
Substituting these results in the boundary conditions for the pressure, we obtain
a homogeneous linear system for the variables A0 and A1, with the characteristic
polynomial

ρ2
m =

[

sinh(kh)

(

gk

σ2
(ρm − ρ0) − ρ0

)

− ρm cosh(kh)

]

×
[

sinh(kh)

(

gk

σ2
(ρ1 − ρm) − ρ1

)

− ρm cosh(kh)

]

.

The eigenvalue is defined as the square of the growth rate, σ2. There are two
eigenvalues and therefore two normal modes for each given wavenumber k (Yang
and Zhang, 1993).

Let us now introduce the ratios ǫ0 and ǫ1, such that

ρ1 = ρm(1 − ǫ1) ,

ρ0 = ρm(1 − ǫ0) .
(11)

Then, the characteristic polynomial becomes

1 = e2kh − ekh sinh(kh)

[

ǫ0 + ǫ1 +
gk

σ2
(ǫ0 − ǫ1)

]

+ ǫ0ǫ1 sinh2(kh)

[

1 −
(

gk

σ2

)2
]

. (12)
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For the case ǫ0ǫ1 6= 0, the quadratic equation leads to

σ2

gk
=

ǫ0ǫ1
(ǫ1 − ǫ0)

1 − e−2kh

1 ±
√

∆
,

∆ = 1 + 4
ǫ0ǫ1

(ǫ1 − ǫ0)2
(1 − e−2kh)

× [(1 − ǫ0
2

)(1 − ǫ1
2

) − ǫ0ǫ1
4

e−2kh]

In the Boussinesq limit O(ǫ0), O(ǫ1) ≪ 1 and the previous equation simplifies
to

σ2

gk
=

ǫ0ǫ1
(ǫ1 − ǫ0)

1 − e−2kh

1 ±
√

1 + 4 ǫ0ǫ1
(ǫ1−ǫ0)2

(1 − e−2kh)
. (13)

0.0 0.2 0.4 0.6 0.8 1.0
∈ 0/∈ 1

0.2

0.4

0.6

0.8

|σ
u2 | /

 |σ
s2 |

kh→∞

10
-2

10
-1

10
0

Figure 3: Ratio between the unstable and stable mode growth rates as a function
of the density difference ratio and the nondimensional wavenumber kh in the
Boussinesq limit O(ǫ0), O(ǫ1) ≪ 1.

In our particular case, 0 < ǫ0 < ǫ1, and there is always one unstable solution
σu, corresponding to the positive sign in front of the square root, and one
stable solution σs, corresponding to the negative sign. The physical system has
therefore two time-scales, |σu|−1 and |σs|−1. Depending on the ratio |σu|/|σs|
the system will have fewer or higher number of oscillations before the unstable
mode is appreciated. The ratio between the unstable and stable eigenvalue is
always less that 1, increasing with ǫ0/ǫ1 as shown in Fig. 3. The dependence on
the thickness of the unstable middle layer h occurs through the nondimensional
wavenumber kh. For small values of kh, the unstable growth rate tends to zero
whereas the stable solution tends to σ2 = −(ǫ1 − ǫ0)gk/2 ≃ −b1k/2, this result
corresponding to the oscillation of a two-layer system formed by layers 0 and
1. For large values of kh, both growth rates tend to that corresponding to two
independent two-layer systems, one stable with eigenvalue −ǫ1gk/2, the other
one unstable with eigenvalue ǫ0gk/2.

In case of ǫ0 ≪ ǫ1, as we expect to have, the solutions to Eq. (13) are

σ2
u ∼ ǫ0gk(1 − e−2kh)/2 ,

σ2
s ∼ −ǫ1gk/2 ,

(14)
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which corresponds to an oscillation period much smaller than the timescale of
the exponential growth of the unstable mode. The solution for σs corresponds
to a stable two-layer configuration; the interface η1 does not feel the small
density difference at z = 0. The solution for σu corresponds to an unstable
two-layer system with a wall at a height z = h; this no-penetration condition
is consistent with the fact that the upper interface η1 oscillates fast compared
with characteristic time of the unstable layer, and only the mean position z = h
is felt by the interface η0.

Equation 13 corresponds to the functional dependence anticipated by Eq. (7)
which we derived from dimensional analysis. This can be made explicit by noting
that the former equation can be written in terms of the ratio ǫ0/ǫ1, the buoyancy
reversal parameter Eq. (3) is

D =
ǫ0/ǫ1

1 − ǫ0/ǫ1
(15)

and b1 = g(ǫ1 − ǫ0)/(1 − ǫ0) ≃ g(ǫ1 − ǫ0) in the Boussinesq limit, leading to

σ2

kb1
=

1

4

[

−1 ±
√

1 + 4D(1 + D)(1 − e−2kh)

]

(16)

with h playing the role of the thickness δ and k the inverse of a characteristic
length L0. The stable solution corresponds again to the minus sign and the
unstable to the plus sign. This result is valid for any value of D.

Equation 16 allows to compare the results obtained in the linear analysis
with the discussion presented in Shy and Breidenthal (1990) and Siems and
Bretherton (1992) about the role of the buoyancy reversal parameter D. In
the first place, the instability condition 0 < ǫ0 < ǫ1 translates with the new
notation into D > 0, which corresponds to the buoyancy reversal instability
criteria introduced by Shy and Breidenthal (1990). Our analysis shows that
this instability reflects one of two modes of the system, the second one being
stable. Second, the critical value D ≃ 1 is reported in Siems and Bretherton
(1992) to characterize the transition between buoyancy reversal instability and
a strong buoyancy reversal instability, which can lead ultimately to cloud-top
entrainment instability. However, the present linear analysis does not support
such a scenario and Fig. 3 depicts a rather smooth variation of the unstable
growth rate with D. If the value D = 1 is substituted in Eq. (16) then the growth
rate of the unstable mode is only a factor

√
2 smaller than the corresponding

stable one, hence D ≃ 1 should be simply interpreted as the condition for both
modes to have comparable growth rates. This result suggest that to the extent
D ≃ 1 represents a transition in the experiments of Shy and Breidenthal (1990),
it does so because of nonlinear interactions related to the manner in which they
perturb the interface in the experiment. Finally, Eq. (16) shows the influence
of the thickness h of the buoyancy reversal layer. For values small compare
to the wavelength of the perturbation, the growth rates increase with kh, but
asymptote to a constant after kh is of order one.

Last, the case D ≪ 1 (previous limit ǫ0 ≪ ǫ1) is of special interest because
it occurs often in normal conditions at the top of the cloud deck. In this limit

σ2
u ∼ kb1D(1 − e−2kh)/2 ,

σ2
s ∼ −kb1/2 ,

(17)
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and the ratio of growth rates depends on the square of this buoyancy reversal
parameter

|σu|
|σs|

∼
√

D(1 − e−2kh) . (18)

In brief, the linear stability analysis shows that the system is characterized
by two modes, the stable one with a period of oscillation given by Eq. (16)
(negative sign), depending on the strength of the stable stratification as b1k and
with corrections depending on D and the nondimensional wavenumber kh, and
the unstable mode with a growth rate smaller than the stable one (see Fig. 3)
and whose exact value is given by Eq. (16) (positive sign). Two time-scales
appear thus naturally from the equations, and a clear physical interpretation
of the parameter D for the case D ≪ 1 typical of the stratocumulus top is
obtained. The period of oscillation can be written as 2

√
π
√

λ/b1 if a wavelength
λ = 2π/k is introduced, and the characteristic time of the unstable mode scales
as D−1/2 times this oscillation period, according to Eq. (18), with a prefactor
depending on the nondimensional layer thickness h/λ. For D = 0.1 the ratio of
the growth rates is 0.3 and it increases monotonically with the thickness h, but
asymptotically after kh ≃ O(1).

4 Numerical algorithm

An incompressible code for solving the set of equations presented in section 2
has been derived from a previously existing finite-differences compressible code
(Mellado et al., 2008). The algorithm follows Wilson et al. (1998), in particular,
it uses a fourth-order low-storage Runge-Kutta scheme for the time advance-
ment (Williamson, 1980) and a sixth-order compact Padé schemes for the spatial
derivatives (Lele, 1992) over a uniform grid, which provide the finite-difference
approximation to the derivative of a scalar field p, e.g. along the Oz direction,
by solving the linear systems A1δzp = B1p and A2δzzp = B2p, for the first-
and second-order derivative, δzp and δzzp, respectively. The matrices Ai are
tridiagonal and the matrices Bi are pentadiagonal and the 0.1% error in the
phase speed occurs at about 6 points per wavelength. The scheme is one-sided
at the nonperiodic boundaries (top and bottom).

The discrete Poisson equation for the pressure is written using Fourier de-
composition inside the horizontal planes, which leads to

δzδz p̂ij − λ2p̂ij = ĝij , (19)

where p̂ij is the vector formed by the horizontal Fourier modes i = 0, . . . , Nx/2−
1 and j = −Ny/2 + 1, . . . , Ny/2 − 1 (modes Nx/2 and Ny/2 are set to zero) at
each z-position , and

λ2 = [f(2πi/Nx)/(∆x)]2 + [f(2πj/Ny)/(∆y)]2 . (20)

The transfer function f(ω) of the first-order finite-difference operator needed in
the equation above is (Lele, 1992)

f(ω) =
(14/9) sin(ω) + (1/18) sin(2ω)

1 + (2/3) cos(ω)
. (21)
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The Neumann boundary conditions are obtained by Fourier transforming Eq. (5).
For the case λ = 0 one of the Neumann boundary conditions has to be substi-
tuted by a Dirichlet one, and p̂00 = 0 is used.

The difficulty resides in solving the sequence of discrete equations Eq. (19),
since each one is a linear system with a full matrix of size Nz×Nz. The problem
can be simplified by introducing an approximation to the operator δzδz which
leads to a system easier to solve. For instance, using the second-order finite-
difference operator δzz , we have

δzzp̂ij − λ2p̂ij = ĝij − Rp̂ , (22)

with Rp = δzδzp − δzzp = (A−1
1 B1A

−1
1 B1 − A−1

2 B2)p, R being a full matrix.
Cook and Dimotakis (2001) solve an approximation to this equation by neglect-
ing the term Rp̂ in their Rayleigh-Taylor turbulence simulations and solving
the resulting pentadiagonal linear system, and the same approach is followed
here. The error introduced by this step in solving the Poisson equation, due
to the different truncation error between δzδz and δzz , is easily analyzed in the
case of periodic boundary conditions with help of the corresponding transfer
functions. It is then observed that the error increases monotonically with the
wavenumber and is of the order of 0.1% with 6 points per wavelength, which is
consistent with the properties of the schemes used to calculate the derivatives
of the equations. However, this step involves a nonzero dilatation error whose
level depends on the resolution; the effects of this error will be discussed later
in section 5.

Finally, the buoyancy term in the momentum equation is prescribed in terms
of the deviation be(χ(x, t)) − be(χi(z)), with χi from Eq. (9). It is well-known
that any function f(z) can be subtracted from b(x, t) with an appropriate re-
definition of the scalar field p, and our particular choice reduces the gradient
of p at the upper boundary to almost zero, which contributes to well-behaved
boundary conditions.

5 Two-dimensional simulations

A series of single-mode two-dimensional simulations are now presented with the
purpose of illustrating the buoyancy reversal instability within the nonlinear
regime as a complement to the linear analysis discussed in the previous section.
These simulations also serve to validate the incompressible code for later use in
the three-dimensional turbulence studies. The linear stability analysis identi-
fies the possible significance of each of the parameters involved in the problem,
namely, a time-scale related to b1, a second time-scale which can be further
related to D, and a thickness h of the middle heavy layer. However, several
assumptions underlying our linear analysis are not satisfied in reality: there is
diffusion of the baroclinically produced vorticity, the shape of the initial density
profile varies smoothly and there are finite amplitude effects. Therefore, it is
necessary to investigate with two-dimensional simulations whether the conclu-
sions derived previously hold in reality.

No mean shear is considered and the initial perturbation is set by displacing
sinusoidally the isosurface χ = 0.5 from the hydrostatic equilibrium over a
wavelength λ with an amplitude a/2. This initial condition is different from
the disk anomaly used by Siems et al. (1990) and the single vortex employed by

11



Table 1: Simulation series A. Buoyancy reversal parameter D defined by Eq. (15)
and b1 = (ǫ1− ǫ0)/(1− ǫ0)g ≃ (ǫ1− ǫ0)g. Equation 11 defines ǫ0 and ǫ1 in terms
of the densities. Pressure level 940 hPa and upper layer at 19.1 ◦C and qt,1=1.50
g kg−1.

qt,0 T0 ǫ1 − ǫ0 ǫ0 D χm

(g kg−1) (◦C) (10−2) (10−3)

A0 8.0 10.5 2.54 - - -
A1 9.0 10.6 2.54 0.79 0.031 0.09
A2 10.0 10.8 2.54 1.89 0.074 0.22
A3 12.0 11.3 2.54 3.37 0.133 0.39

Siems and Bretherton (1992) but follows the common initialization employed
in Rayleigh-Taylor configurations (Cook and Dimotakis, 2001; Mellado et al.,
2005), the initial mechanical energy being introduced only through potential
energy. The Prandtl number is unity.

5.1 Mixture fraction

A first series of simulations is performed to obtained a qualitative description
of the flow and to study resolution requirements for the numerical algorithm
presented in the previous section. The geometrical parameters used are δ/λ =
0.025, where δ is the thickness of the initial error function profile Eq. (9), and
the amplitude of the sinusoidal displacement (a/2)/λ = 0.1. The reference box
size in the vertical direction is 2λ; different sizes were also investigated (but
not shown) to ensure that there are no finite-domain-size effects on the results
presented here. The cases considered are described in Table 1, where A1 is
the reference case and corresponds to field experimental data from DYCOMS-
II (Stevens et al., 2003). The thermodynamic state of the upper layer is kept
fixed at T1 = 19.1 ◦C and qt,1 = 1.5 g kg−1, and the lower state is modified to
increase the effect of buoyancy reversal as shown in Fig. 1. The case A0 does
not retain evaporation, so that only the oscillating stable mode is present, and
cases A2 and A3 consider an increasing buoyancy reversal imposed by means of
a higher water content in the lower layer, keeping constant the density difference
ρ0−ρ1 so that the period of the stable mode 2

√
π
√

λ/b1 remains the same. The
Boussinesq formulation only needs the values χm and D from this table.

Linear stability analysis has identified two time-scales in the problem. In
this study we start from the stable case A0 and add increasingly the unstable
mode, then it is reasonable to take

√

λ/b1 as the reference time-scale for the
nondimensionalization. The relevant length-scale is the thickness of the layer,
a, which leads to a viscous time-scale a2/ν. The reference Grashof number of
the problem, defined in terms of the ratio between the two previous time-scales,
is Gr = a4b1/(ν2λ), and a value Gr = 6.4 × 105 is used in this first series of
simulations. The mesh of size 512×1024 is uniform and with equal grid spacing
in every direction. It is noted that high resolution is needed to retain accurately
the structure of the buoyancy field represented in Fig. 1 within the viscous
superlayer formed between nonturbulent outer regions and the turbulent zone
that will develop in the center. In this respect, 6 points per vorticity thickness
is normally used for a sixth-order compact scheme. The vorticity thickness of

12



Figure 4: Negative buoyancy field for case A0 (top row), case A1 (middle row)
and case A3 (bottom row) showing the evolution (left to right) starting from the
initial condition and showing a frame every cycle of linear stable mode. Grashof
number Gr = 6.4 × 105.

a function f varying monotonously across a difference ∆f between two levels is
defined in terms of the maximum derivative by ∆f/f ′

max. For the case of the
error function profile Eq. (9) used here this vorticity thickness is 3.54δ and the
resolution is then about 45 points per vorticity thickness of the initial mixture
fraction field χ. However, the peak of the density field occurs within a fraction
χm of the mixture fraction variation and the resolution of this buoyancy reversal
layer can be as low as 10% of the complete viscous superlayer (see Table 1).

Figure 4 shows qualitatively the evolution of the negative buoyancy field (i.e.
b(x, t) < 0) every 2

√
π
√

λ/b1 time units. The stable case A0 is represented by
be(χ(x, t)) < 0 using the function be(χ) corresponding to case A1 in order to
compare the flow structure of both. The box height shown is only the lower 3/4
of the domain employed in the simulation. The results obtained in the linear
stability analysis are reproduced here: superimposed on a standing gravity wave
a falling finger, downdraft or spike, starts to form at the lowest point of the
oscillation. This finger develops a mushroom shape typical of the Rayleigh-
Taylor instability for small density differences (Sharp, 1984; Ramaprabhu and
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Andrews, 2004). On top of this process, viscosity tries to eliminate the motion
while diffusion spreads the buoyancy reversal by mixing the ambient moist air
with the less moist air inside the falling finger.

The nonhomogeneous local mixing produced by the baroclinic production of
vorticity at the oscillating inversion layer leads to the development of downdrafts
at wavelengths smaller than the initial condition, which in turn enhances mixing
at the core of the cloud-top mixing layer as compared to the nonevaporative
case. This rearrangement of the buoyancy field is increasingly promoted as the
buoyancy reversal is augmented either by larger values of D or χm, as noted
by comparing cases A0, A1 and A3 in Fig. 4. The time evolution presents a
pulsating behavior imposed by the stable mode, having the big initial central
falling structure followed by a smaller one that appears in the last frame of
Fig. 4. A certain amount of heavy fluid is pumped periodically into the lower
layer, the falling finger pinches-off from the oscillating cetral layer and the feed
of fluid from this central layer is stopped. More detailed study of the influence
of each of these parameters is presented later. It is observed that buoyancy
reversal enhances mixing in the lower layer, but there is no strong instability in
the sense of a runaway behavior with a continuous tongue of falling upper fluid.
This behavior agrees with the laboratory experiments by Shy and Breidenthal
(1990) and with the numerical simulations of Siems et al. (1990) and Siems and
Bretherton (1992), who refers to it as a evaporative enhancement of entrainment
and is characteristic of small buoyancy reversal parameters D < 1.

The instability process in now quantified with help of the mixture fraction χ.
Mean profiles χ̄(z, t) for the case A3 are shown in Fig. 5 and the perturbation
growing into the lower layer and depicted in Fig. 4 is easily observed in these
mean profiles. This perturbation can be located by the point where the field χ
departs from the constant value of the corresponding layer. For example, for
the falling finger, we can take χ̄ and scan from the lowest boundary upward
until the mean profile reaches a given threshold; the distance from this point to
the center plane defines a height of the falling finger. Normally, a threshold of
1% of the difference between the two layers is used in turbulent Rayleigh-Taylor
cases, but mixing in this problem is mainly reduced to the small fraction of χ
affected by buoyancy reversal; the inset in Fig. 5 shows that χ̄ varies below 0.1
in the mixing region that forms in the lower layer. The threshold value 0.001 is
therefore used.

The height of the falling finger as defined above is shown in Fig. 6 as a
function of time. The first thing to note is the superposition of the oscillating
mode with the unstable mode. The effect of the buoyancy reversal parameters
presented in Table 1 is also clearly exposed. As buoyancy reversal is increased
from case A0 to A3, the middle unstable layer is relatively heavier (increasing
D) and thicker (increasing χm), and therefore the growth rate of the unstable
mode increases in comparison with the stable oscillation, the distance hb growing
faster during the first 10-15 nondimensional time units. These results agree
with those obtained in the linear stability analysis of section 3. The stable case
A0 only oscillates, with a period about 10% larger than that predicted by the
linear theory and there is a mean growth observed in the figure corresponding
to diffusion effects.

The same technique can be used to measure the thickness of the mixing
region growing into the upper layer, ht(t), and the result is shown in Fig. 7.
The strong difference with the evolution of the lower thickness hb(t) of Fig. 6
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Figure 5: Vertical profile of the mean mixture fraction χ̄ for the case A3 every
cycle of linear stable mode (same times as shown in Fig. 4): solid, dashed,
dot-dashed, dot-dot-dashed and dot-dash-dashed, respectively.
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Figure 6: Temporal evolution of the penetration length hb of the downdrafts for
the different cases of Table 1: solid, A0; dashed, A1; dot-dashed, A2; dot-dot-
dashed, A3.

is consistent with the mean profiles χ̄ shown in Fig. 5 and the contour plots in
Fig. 4, meaning that the upper layer is disturbed only through the oscillating
mode, the baroclinically produced vorticity and the diffusion, showing only a
steady mild growth of the mean level. This asymmetry in the vertical direc-
tion is a major difference with the conventional Rayleigh-Taylor configuration.
It merits emphasizing that all cases present the same behavior, and a strong
buoyancy reversal like in case A3 does not differ qualitatively from the stable
case A0. This means that all the turbulent mixing promoted by the buoyancy
reversal is restricted to the lower layer, it is capped and constrained by the
strong inversion and there is no enhancement of turbulent entrainment of the
upper laminar layer into the mixing region, the mixing region mainly thickens
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downwards. This result suggests that the pure buoyancy-driven top-cloud mix-
ing layer seems to be more similar to the upper boundary of a Rayleigh-Bérnard
convection configuration with this upper boundary free to move and the heat
flux towards the lower layer dependent on that motion.
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Figure 7: Temporal evolution of the upper perturbation thickness ht for the
different cases of Table 1: solid, A0; dashed, A1; dot-dashed, A2; dot-dot-
dashed, A3.

An entrainment velocity with respect to the lower layer can be defined as
the temporal derivative of hb(t). However, detailed quantitative results are
influenced by the dominating stable periodic motion, the lack of multi-mode in-
teraction and the two-dimensionality of the problem, thus we defer this analysis
to three-dimensional simulations.

5.2 Resolution requirements

The smallest scales in these two-dimensional configurations correspond to the
thickness of the diffusive layers, partially represented in Fig. 4, which scale as
(Gr1/2 Pr)−1/2, but the particular resolution required in a simulation depends
on the particular numerical algorithm. As already mentioned before, there is
a nonzero dilatation caused by the different truncation error between the first-
and the second-order finite-differences entering in the solution of the Poisson
equation and this quantity can be used to monitor the accuracy of the simula-
tion. Figure 8 shows the temporal evolution of the ratio between the L2-norms
of the dilatation and the vorticity over the whole domain for the different cases.

The case without evaporative cooling A0 has a relative error 10−8 and it is
therefore very well resolved (the minimum would be round-off error, 10−16 using
a double precision floating-point system). The presence of buoyancy reversal
introduces a dynamically active scale smaller than that observed in the mixture
fraction field due to the mapping be(χ), as already discussed, and the effect
is observed clearly in Fig. 8 because the dilatation error is increased in three
orders of magnitude in comparison with the passive scalar case A0. With the
resolution 512 × 1024 for the Grashof number Gr = 6.4 × 105 considered here
the dilatation error in the cases with buoyancy reversal remains between 10−6
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and 10−4 times the vorticity magnitude, which might be enough for small-scale
analysis in the flow, like probability density functions of derivative fields. When
half the resolution is employed, i.e. a mesh 256 × 512, then the dilatation
error increases one order of magnitude; however, differences in the enstrophy
fluctuation profile remain below 1% (penetration length hb(t) curves shown in
Fig. 6 are indistinguishable), which suggests that this mesh size is sufficient
for the study of large-scale statistics like entrainment rate, Reynolds stresses
profiles or budgets of the corresponding transport equations.
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Figure 8: Temporal evolution of the dilatation error measured by the ratio
between the L2-norms of the dilatation and vorticity. Same legend as in Fig. 6
for thick lines. Thin lines correspond to case A3 with: (a) half resolution, (b)
no smoothing (δs = 0) in the buoyancy function be(χ).

As conclusion from the previous results we can increase the reference Grashof
number for the reference grid 512 × 1024 by a factor of 16, according to the
scaling based on (Gr1/2 Pr)−1/2, and the dilatation error would be about 10−3

times the vorticity magnitude having still enough resolution to investigate large-
scale quantities. Figure 9 corresponds to case A1 from Fig. 4 but with this
new high Grashof number Gr = 107 plotted over a longer time. The large
scale pattern is the same, but the formation of a layer of stronger mixing just
bellow the inversion layer is more clearly exposed, in addition to the richer
small-scale details allowed by a larger Grashof number. This result can be
compared with the case D = 0.05 in Siems et al. (1990). Note that we define
the Reynolds number based on b1 whereas they base it on Db1; the case shown
in Fig. 9 would have then an equivalent value

√
DRe ≃ 6 × 102, a factor of 3

smaller than the one they use, 2× 103. However, they report an almost laminar
field, quite different from the convoluted picture of Fig. 9 and confirms the
necessity of more resolution and high-order schemes to capture the details of the
mixing process occurring at the cloud-tops. High Grashof number simulations
are further discussed below.

The effect of the smoothing parameter δs employed in the definition of be(χ)
in Eq. (4) has been also investigated and the dilatation curve for case A3 with
the reference fine grid but with δs = 0 instead the reference value δs = χm/16 is
included in Fig. 8. The effect is an increase in the dilatation error of one order
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Figure 9: Evolution of the negative buoyancy field for case A1 like in Fig. 4 but
during a longer interval. Grashof number Gr = 107.

of magnitude. On the other hand, the penetration length is higher by about 2%
at the final time, which is a measure of the error introduced by the smoothing
with δs due to the small reduction in the minimum peak of the curve be(χ) in
Fig. 1.

5.3 Energy budget

The last statistics to be considered are those related to the energy budget. First,
the potential energy is discussed in terms of the buoyancy function b, since the
transport equations are normally written in terms of this variable. From the
definition b(x, t) = be(χ(x, t)) and the advection-diffusion transport equation
for χ, we obtain the transport equation

∂b

∂t
+ ∇·(vb) = κ∇2b + S , (23)

which shows that b is not conserved. If this result is interpreted in terms of the
density using Eq. (2), it simply states that mass is not conserved, a well-known
defect of the Boussinesq approximation (Lilly, 1996). The source term is

S = −d2be

dχ2
κ|∇χ|2 = −Z

2

d2be

dχ2
, (24)

where Z = 2κ|∇χ|2 is the so-called scalar dissipation rate and has dimensions
of time−1. When a piecewise-linear approximation is chosen to describe be(χ),
its second derivative is proportional to a delta-function δ(χ(x, t) − χm). This
case is formally equal to the Burke-Schumann solution of infinitely-fast reacting
flows (Burke and Schumann, 1928; Peters, 2000), the buoyancy b playing the
role of one reactive scalar with the “flame” sitting at the surface χ(x, t) = χm
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[this “flame front” description has been already used qualitatively by Siems
et al. (1990)]. The evaporative cooling or heat absorption (S is negative for this
configuration) is concentrated on this phase change or evaporation surface. For
the approximation Eq. (4) employed here [already used in DNS of reacting flows
by Pantano et al. (2003)] the curvature of the buoyancy function is

d2be

dχ2
= b1

(

1 + D

1 − χm
+

D

χm

)

1

4δs

[

cosh

(

χ − χm

2δs

)]

−2

.

In the expression above, the term inside the first parentheses is the difference
in the slopes of the piecewise-linear profile, which gives the strength of the
evaporative cooling, and the rest can be interpreted as a delta-sequence that
converges to the delta-function as δs → 0. A compromise in the value of δs,
small enough to mimic a localized heat absorption zone but large enough to be
resolved by the grid, has already been discussed.

Multiplying Eq. (23) by the vertical coordinate z we obtain

∂(bz)

∂t
+ ∇·(vbz) = bw + κz∇2b + zS , (25)

and taking the mean over horizontal planes leads to

∂(b̄z)

∂t
+

∂(bwz)

∂z
= B + κ

[

∂

∂z
z

∂b̄

∂z
− ∂b̄

∂z

]

+ zS̄ , (26)

where the turbulent buoyancy flux is given by B(z, t) = w′b′ and the condition
w̄ = 0 satisfied in our configuration has been used. The evolution equation for
the total integrated potential energy is then

d

dt

(

−
∫

∞

−∞

zb̄dz

)

= −
∫

∞

−∞

Bdz + κb1 −
∫

∞

−∞

zS̄dz . (27)

The first line in the equation above corresponds to the balance we would
obtain in the exact formulation of the problem from the mass conservation
equation: the integrated potential energy changes only through the total buoy-
ancy flux. In contrast, in the current Boussinesq limit we obtain two additional
sources. Note that the balance in Eq. (27) is independent of the reference used
to measure vertical distances, but the time change of the integrated potential
energy or the contribution from S individually do depend on that arbitrary
reference. Last, the integral of b̄ as it is in the left-hand side does not con-
verge since b̄ = b1 far above in the upper layer. However, the equation can
be written in terms of b̄ − f(z) for any constant function f(z), and we can
choose f(z) = be(χi(z)), χi from Eq. (9), without loss of generality in order to
regularize the problem.

The turbulent buoyancy flux represents the transfer of energy between the
turbulent kinetic energy and the potential energy, and it is easy to show that
the total mechanical energy evolves according to the equation

d

dt

[∫

∞

−∞

(|v′|2/2 − zb̄)dz

]

= −
∫

∞

−∞

ǭdz + κb1 −
∫

∞

−∞

zS̄dz , (28)

where ǫ is the turbulent dissipation rate [ǫ = ν v′i,j(v
′

i,j + v′j,i) in Cartesian coor-
dinates using index notation]. The apostrophe indicates turbulent fluctuations.
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Table 2: Simulation series B. Grashof number Gr = 107.
D χm δ/λ (a/2)/λ

B0 - - 0.025 0.10
B1 0.031 0.09 0.025 0.10
B2 0.062 0.09 0.025 0.10
B3 0.031 0.18 0.025 0.10
B4 0.031 0.09 0.050 0.10
B5 0.031 0.09 0.025 0.05

The term κb1 represents a linear diffusion source of potential energy which is
always present, linear meaning that it contains the contribution from the lin-
ear part of the buoyancy function be(χ) varying between 0 and b1 [see Eq. (4)
and Fig. 1]. The source term S contains the nonlinear contribution, since it is
proportional to the curvature of the buoyancy function, by definition Eq. (24).
Note that the linear source term κb1 is always present, even in a one-dimensional
purely diffusion case without buoyancy reversal, and represents a constant linear
growth in time.

A new series of simulations with a Grashof number Gr = 107, series B de-
scribed in Table 2, has been performed in order to study the energy equation.
The different cases are defined by varying each of the nondimensional param-
eters identified through the paper instead of modifying the water content and
temperature as was done in series A, Table 1. The reference case is B1 and
corresponds again to the experimental data taken from DYCOMS-II (Stevens
et al., 2003), i.e. it is the same as case A1 with a higher Grashof number (see
Fig. 9). The vertical size of the domain has been extended to 2.5λ in order to
allow longer simulations.

Figure 10 shows the balance of the integrated energy Eq. (28). It has been
integrated in time to observe the accumulation of numerical errors,

[∫

∞

−∞

(|v′|2/2 − zb̄)dz

]t

0

= κb1t −
∫ t

0

∫

∞

−∞

zS̄dzdτ −
∫ t

0

∫

∞

−∞

ǭdzdτ , (29)

where the terms are, from left to right, the mechanical energy, the linear source
of potential energy, the nonlinear source due to S, and the energy dissipation.

The results show that the linear source κb1 contributes positively to the over-
all balance, in particular increasing the potential energy through the diffusion
of heavy fluid from the bottom to the top, and the rate of this contribution is
constant in time and independent of the buoyancy reversal parameters D and
χm, and of the geometry of the initial condition δ and a. The other two terms
contribute negatively: the nonlinear source term tends to reduce the potential
energy because of the generation of negatively buoyant (heavy) parcels in the
lower layer, and the turbulent dissipation because it represents the removal of
turbulent kinetic energy by definition. The last curve in Fig. 10 depicts the
difference between the left-hand side and the right-hand side of Eq. (29), which
quantifies the numerical errors introduced by the algorithm. It is observed that
they are indeed negligible, decreasing to less than 1% of the turbulent dissipa-
tion, and validates once more the numerical scheme used in the study.

The source term S is further investigated. First, the accumulated integral
value of the this source is computed, which from Eq. (23) is related to the
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Figure 10: Energy budget according to Eq. (29): solid, mechanical energy;
dashed, linear source; dot-dashed, nonlinear source; dot-dot-dashed, energy
dissipation. The accumulated numerical error is represented by the dot-dash-
dashed line.

evolution of the integrated buoyancy

[∫

∞

−∞

b̄dz

]t

0

= −
∫ t

0

∫

∞

−∞

S̄dzdτ . (30)

This term is shown in Fig. 11 for the different cases of Table 2, normalized by
the strength of the evaporative cooling b1[(1+D)/(1−χm)+D/χm]. With this
normalization and from Eq. (24), this term is approximately proportional to the
accumulated integral value of the scalar dissipation rate Z conditioned on the
evaporation surface χ(x, t) = χm, and therefore very related to the turbulent
mixing generated by the motion. In fact, the curves shown in Fig. 11 show an
increase in the accumulated buoyancy as more forcing is imposed, by increasing
D or χm or a. The parameter δ is also consistent with this interpretation
because the higher δ for a given a, the smoother the initial buoyancy profile and
the smaller the initial potential energy set in the problem.

Last, it is also interesting to calculate where in the domain the evaporative
cooling is most concentrated, which is related to the source term of the energy
equation. It has been observed in Fig. 10 that the nonlinear source term S de-
creases the integrated potential energy, but this interpretation really depends on
the vertical reference position taken to calculate the potential energy, although
the balance between them, which is equal to the remaining terms in Eq. (27),
is of course independent of that reference. A useful quantity for that purpose is
the instantaneous centroid of the function S(x, t)

zs(t) =

∫

∞

−∞
zS̄dz

∫

∞

−∞
S̄dz

. (31)

This location can be used as reference for the definition of the potential energy,
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Figure 11: Normalized integrated buoyancy [see Eq. (30) and text] for different
cases: solid, reference, B1; dashed, double D, B2; dot-dashed, double χm, B3;
dot-dot-dashed, double δ, B4; dot-dash-dashed, half a, B5.

if desired, which allows Eq. (27) to be written as

d

dt

[

−
∫

∞

−∞

(z − zs(t))b̄dz

]

= −
∫

∞

−∞

Bdz + κb1 +
dzc

dt

∫

∞

−∞

b̄dz (32)

introducing a velocity dzc/dt. The energy equation Eq. (28) can be correspond-
ingly rewritten, if desired.
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Figure 12: Centroid of the function S(x, t) according to definition Eq. (31).
Same legend as in Fig. 11.

The evolution of zc(t) is therefore of interest and it is shown in Fig. 12 for the
different cases. The first thing to note is that it is relatively constant in time,
meaning that it presents oscillations but the mean remains constant. Hence,
the mean position of the evaporative cooling source remains located between 1δ
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and 3δ below the reference position of the stable mode, and the decrease in the
nonlinear source term of the energy equation in Fig. 10 is mainly determined
by the evolution of the source term S itself shown in Fig. 11. After these
parcels of relatively heavy mixture have been generated, mixing homogenizes the
field b, mixing that can be generated either by the oscillating mode, dominant
in the two-dimensional single-mode cases considered in this paper, or by the
downdrafts of the heavy mixtures themselves. The influence of δ in the problem
has been determined, but the role of the other parameters cannot be really
deduced from Fig. 12 for the current configuration.

5.4 Discussion

The objective of this section has been the validation of the incompressible code,
extension of the linear stability analysis and the explanation of the flow charac-
teristics based on the mixture fraction and energy statistics. However, it is em-
phasized that the detailed quantitative analysis has necessarily to be discussed
with three-dimensional broadband turbulent simulations because the mixing is
different. There are several questions that appear naturally after the results
presented in this paper. For instance, how does the energy budget of Fig. 10
evolve in reality? Inviscid scaling arguments would suggest that the linear term
would decrease compared to the other two as the Grashof number is increased.
Is there any relation between the evolution of the integrated source of buoyancy
S, with dimensions of velocity, with that of dhb/dt in Fig. 11? What is the
role and evolution of the stable mode in the actual problem? The extension
of this study to three-dimensional situations will answer these questions and
will help to gain further useful knowledge of the cloud-top configuration before
introducing more phenomena like mean shear or turbulent layers.

6 Conclusions

The buoyancy-driven cloud-top mixing layer has been investigated in this paper.
Linear stability analysis of a simplified model consisting of three uniform inviscid
layers with different densities has been presented. It identifies the two time-
scales of the system |σu|−1 and |σs|−1, shows the condition of buoyancy reversal
instability (D > 0) and provides an interpretation of the buoyancy reversal
parameter D as a measure of the ratio between those two time-scales. For small
values of D the growth rate of the unstable mode scales as

√
D times that of the

stable one. The effect of the second buoyancy reversal parameter χm is retained
through the dependence of the solution on the thickness of the intermediate
layer, which can be estimated by δ(χm+D)/(1+D) if δ represents an appropriate
thickness of the interface defined in terms of the mixture fraction field. The
unstable growth rate increases with respect to the stable one monotonically
with this thickness towards an asymptotic value.

The nonlinear regime has been illustrated through single-mode two-dimensional
simulations, a study that has also been used to explore the consistency and con-
vergence of the numerical methods employed. Spatial derivatives are based
on sixth-order compact schemes, time advancement employs a forth-order low-
storage Runge-Kutta algorithm and the Poisson equation is solved by Fourier
transforming the equation in the horizontal periodic planes and then solving
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the resulting sequence of one-dimensional equations along the vertical direction
using again sixth-order compact schemes. The truncation error introduced by
substituting the two first-order finite-difference operators by one second-order
finite-difference, observed in the dilatation, has been used to show resolution re-
quirements. The balance of the terms in the evolution equation of the integrated
energy has also confirmed the accuracy of the numerical scheme, achieving a
Grashof number Gr = 107 with a grid size 512 × 1024.

The two-dimensional simulations agree with previous work on the topic in
that a runaway instability of the system does not become evident, but show
that a significant increase in the resolution of small-scale mixing is required, in
special for the cases with small values of D. Statistics of the mixture fraction
and energy budget show that there is no enhancement of entrainment of up-
per fluid by evaporative cooling for the low levels of buoyancy reversal typical
of stratocumulus tops, and these heat absorption effects are mainly restricted
to the lower layer. How buoyancy reversal modifies an already existing turbu-
lent entrainment caused for instance by an imposed shear or a lower turbulent
layer remains an open question, but buoyancy reversal alone seems to be un-
able to break the cloud, it simply homogenizes the lower layer faster. It has
also been shown that the associated buoyancy source term is mainly localized
below the stable stratification at a distance comparable to the initial thick-
ness of the mixture fraction field, and the motion generated by the downdrafts
mixes these negatively buoyant parcels with the environmental fluid of the lower
layer. Three-dimensional simulations are still of interest to obtain more detailed
quantitative results before considering the shear-driven case.
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