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Abstract

We introduce an optimization model for the line planning problem
in a public transportation system that aims at minimizing operational
costs while ensuring a given level of quality of service in terms of available
transport capacity. We discuss the computational complexity of the model
for tree network topologies and line structures that arise in a real-world
application at the Trolebus Integrated System in Quito. Computational
results for this system are reported.

Keywords: line planning, computational complexity, public transport optimiza-
tion

1 Introduction

Line planning constitutes one important step within the strategic planning pro-
cess of a public transportation system. The task is to design line routes and their
frequencies in a street or track network in such a way that a given transportation
demand is covered and a certain objective function is optimized. The demand is
usually expressed in terms of so-called origin-destination matrices that specify
the number of passengers willing to travel between each (ordered) pair of sec-
tors of the city during a given time horizon. Possible objectives are to maximize
the quality of service for the passengers (in terms of average travel times and
average number of transfers), as well as to minimize the global operational costs
for the system.

This paper addresses some issues that arise in the context of line planning
in the largest urban transportation system of the city of Quito, the Trolebus
Integrated System (TIS). The TIS carries around 250,000 passengers daily. It
consists of one main corridor and a system of feeder lines. The main corridor
operates in a reserved street track independently of the rest of traffic and is
served by high capacity bus units; the feeder lines transport passengers between
three strategically located transshipment terminals and nearby neighborhoods.

Transportation demand in Quito has increased permanently during the last
few years, having a negative impact on the quality of service, with overcrowded
buses and long waiting times being commonly experienced by the users. At
the same time, operational costs have grown. With the aim of contributing
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to the solution of this problem, we have been working on optimization mod-
els that could be applied to improve line planning in the TIS and in similar
transportation systems.

Models for line planning have been extensively studied in previous works.
Most of the models focus on maximizing the total revenue or minimizing travel
time. For more detail, see for instance, [9] and [5]. Based on a “system-split”
of the demand, [4] and [6] both propose cut-and-branch approaches to select
lines from a previously generated pool of potential lines. In [8] it is shown that
real-world railway problems can be solved within reasonable time and quality by
means of improved models and algorithms. [2] propose a model based in a multi-
commodity flow formulation for minimizing the travel time of the passengers and
the total operating costs. [10] introduce penalties for minimizing the number
of transfers and propose a Dantzig-Wolfe decomposition scheme for solving the
LP-relaxation of their model.

It is well-known that models for line planning in general networks usually
lead to NP-hard optimization problems. However, considering the simple net-
work structure underlying the TIS (a single path for the main corridor, one “star”
for each feeder-line system) one could expect to obtain polynomially solvable
problems at least in some particular cases. In a previous work [11], we studied
the computational complexity of a model for line planning on the main corridor,
and explored how it is affected by factors such as the presence/absence of fixed
costs, the number of transportation modes, the structure of the line system, etc.
Surprisingly, the model remains NP-hard in almost every setting.

Here, we focus our attention on the system of feeder lines (SFL), which
has a tree topology. In Section 2, we introduce our notation and formulate an
integer programming model for line planning. The computational complexity
of this model under several possible configurations of the system is addressed in
Section 3. Section 4 reports computational results obtained when applying the
model to a set of real-world instances provided by the Trolebus operator.

2 A Demand Covering Model

We consider a bus transportation network as a digraph G = (V, A), where each
bus station is represented by one node v € V and arcs represent direct links
between stations, i.e., (i,j) € A if and only if some bus may visit station j
directly after station i.

The fleet of buses is heterogeneous, as it contains the trolleybuses and several
others types of buses used for the feeding lines. We call a specific type of bus
a transportation mode and define M to be the set of all transportation modes
in the system. Among other technical characteristics, any transportation mode
m € M has a specific unit capacity K.

For each m € M, certain stations are given, where buses of mode m may
start or end a service route. These stations V,,, C V are referred to as terminals
for mode m. A closed line for a mode m is a circuit containing at least one node
from V,,,. Similarly, an open line for m is a direct path linking two terminals in
Vin. We do not consider all possible lines in our model (as there are too many),
but work with a preselected line pool L. For aline ¢ € L, ¢, € R is the cost of
each single trip through ¢ and Ky is a fixed cost component.

Transportation demand data is expressed in terms of an origin-destination



Figure 1: Current structure of each subsystem of the FLS

matrix D € ZKXV where each element d,,,, indicates the number of passengers
traveling from station u to station v within a time horizon T. Each of these
passengers must be routed along a directed (u,v)-path. Due to the network
topology underlying the TIS, this path is unique and hence the value of the
aggregated demand g, on each arc a of the network can be computed in a
straightforward way.

In [11] we proposed the following Demand Covering Model (DCM) for line
planning in the TIS. It asks for a set of lines from L, together with frequencies
for them, such that the accumulated transportation capacity provided by all
lines on each arc a € A is at least g,, while at the same time the total costs are
minimized:

min Z Z (ce fo + Koye) (1)

meMeeLm

s.t. Z Z KEm fo = Ga, Vae A (2)
meMLeLm
0< fe<fi"™ VieLl (3)
fe€Zy,yo €{0,1} VieLl (4)

Here, f; is an integer variable representing the frequency assigned to line £ € L,
and yy is a binary variable that indicates whether a line is chosen in the solution
(ye = 1) or not (y, = 0). DCM is NP-hard even in transportation networks
whose topology is a simple path, if any of the following conditions holds: there
is more than one transportation mode, fixed costs are nonzero, open lines are
considered, express lines that skip certain stations are allowed, or the number
of terminals is not limited, see [11]. Otherwise, the problem can be solved in
polynomial time.

Of these conditions only two, namely, two transportation modes and fixed
costs, apply to the SFL. The SFL in Quito consists of three independent sub-
systems, each of them containing only one terminal ¢ that represents the cor-
responding transshipment station, and closed lines starting from it. Moreover,
the system does not include express lines. As a consequence, the problem may
be simplified by replacing each pair of opposite arcs a,a’ € A by an undirected
edge e with demand g, equal to max{g,, g, }, and by considering lines as undi-
rected paths (or in general subtrees) that contain ¢ as a node. Currently, the
network topology is even more simple, as ¢ is the only node with degree greater
than two. We denote such a network as a star. Figure 1 depicts an example.



3 Computational Complexity

Since we already know that DCM is NP-hard if either multiple modes or fixed
costs are considered, we assume in the following |[M| = 1 and K, = 0 for all
¢ € L. Then the binary variables y, are no longer required in the model, i.e.,
we fix them to one, the right-hand sides in the frequency bound constraints (3)
change to f;***, and the demand covering constraints (2) can be rescaled to
have only 0/1 coefficients on their left-hand sides.

As stated above, at present the transportation network underlying the SFL
has the topology of a star, with every line being a path that has the terminal
on one of its ends. We call such a line structure an 1-NB-path, as it covers
only one neighbourhood of the city. The system operator is evaluating the
possibility of allowing lines to cover multiple neighbourhoods in the future, and
this is the motivation for considering two additional line structures: 2-NB-paths,
which are paths having the terminal as an intermediate node (i.e., covering two
neighbourhoods) and subtrees containing the terminal (corresponding to lines
that cover more than two neighbourhoods).

In case only 1-NB-paths are present, DCM can be easily solved by consider-
ing each branch of the star (i.e., each neighbourhood) separately and assigning
frequencies to the corresponding lines in a greedy manner. For a given branch,
assume any line £ whose set of arcs is contained in the set of arcs of another line ¢’
and has ¢ < ¢4 has been deleted from the line pool. Let £’ := {{1,{s,...,{;} be
the remaining line pool, with the elements sorted decreasingly by their lengths,
ie, d(ly) > d(lz) > ...>d({), where d({) := |¢]. As a first step, ¢; is assigned
the minimum frequency required to cover the demand on the edges that cannot
be covered by £5. Then the transportation demand is recomputed on each edge
to subtract the demand covered by ¢;. Now the frequency for /5 is determined
by the demand on the edges that cannot be covered by /¢35, and the process
continues in the same way. We obtain the following result.

Proposition 1 DCM for 1-NB-paths is solvable in polynomial time on the star.

If the lines have the 2-NB-path structure, one can construct counterexamples
in which the greedy scheme described above does not find an optimal solution.
In this case, however, it is possible to reduce the problem to an equivalent one
on a star of the form K, using a “line splitting” technique, which in turn can
be reduced to an equivalent weighted b-matching problem (all of these transfor-
mations work in polynomial time).

Proposition 2 DCM for 2-NB-paths is solvable in polynomial time on the star.

Finally, any instance of EXACT COVER by 3-sets 7] can be transformed
in polynomial time into an equivalent instance of DCM on the star, where the
line pool contains subtrees that cover three branches.

Proposition 3 DCM for subtrees is NP-hard on the star.

At present, since the transhipment terminals are located at strategic posi-
tions in the street network and (each subsystem of) the SFL covers a relatively
small area of the city, lines assigned to different neighbourhoods split away very
soon after leaving the terminal, and assuming a star topology is justified. How-
ever, as the system is expanded, new longer lines reaching further sectors are



introduced and the possibility increases that several lines share an important
part of their paths. This has motivated us to consider the complexity of DCM
on general trees. If the line structure is restricted to 1-NB-paths, the constraint
matrix is totally unimodular.

Proposition 4 DCM for 1-NB-paths is solvable in polynomial time on trees.

On the other hand, Proposition 3 trivially implies that DCM on trees is NP-
hard if the line pool contains subtrees. We have not yet been able to determine
the complexity of the problem for the 2-NB-path line structure.

4 Computational results

We have carried out computational tests of our model on real-world instances
provided by the TIS operator. The IPs were solved using SCIP [1], with default
settings and SoPlex as the underlying LP-solver [12]. In all cases, an optimality
gap of 5% was allowed, and a time limit of 10000 seconds was specified. All
experiments were performed on a 3.0 GHz Pentium 4 PC with 512 MB RAM
running Suse Linux 10.0.

Currently, the vehicle fleet used for serving the feeder lines is heterogeneous,
consisting of 89 buses of two different types, with transportation capacities
k1 = 90 and k2 = 110. The transportation network has 479 nodes located along
the three subsystems of the SFL. As stated in the previous sections, each of
these subsystems has the topology of a star. No fixed costs are considered.

The test instances consisted of data from one-hour time slices along a sam-
pled day. Traveling times between stations were taken from historical data. The
transfer time for a change from line ¢; to line ¢ was computed a posteriori as

%. Traffic volumes were computed using the method described in [3].
Jeg

Table 1 reports, for reference purposes, some operational parameters re-
garding the line plan currently implemented by the TIS operator: cost, average
number of transfers per passenger, average travel times, and the accumulated
frequency. The total number of passengers transported Y dy, is also shown for
each instance.

We solved DCM in two scenarios which differ in the line structure considered:
only 1-NB-paths or allowing 2-NB-paths. In the first scenario, a total of 84
lines were considered in the line pool (for all three feeder subsystems), while
in the second scenario 470 new lines were added. Table 2 reports the results
(aggregated for all three feeder subsystems). Besides the operational parameters
described above, we report the number |L| of lines used in the solution, the
required CPU time and the integrality gap (only for the second scenario). In
both scenarios, the cost was reduced in comparison to the currently implemented
solution by about 18% (only 1-NB-paths) and 32% (with 2-NB-paths). On the
other hand, these savings are tied to larger travel times for the passengers, which
slightly increased in all instances. Finally, observing the CPU times and gap
values, it seems that DCM is considerably harder to solve if 2-NB-paths are
included in L.



Table 1: Current operational parameters of the SFL

Feeding Lines

T Cost  # Tr. Travel Time 3, .f¢c > duv
06:00-07:00 3806.8 0.478 49.66 59 7190
07:00-08:00 4144.6  0.457 46.32 65 8317
08:00-09:00 3330.4 0.456 44.94 53 7337
09:00-10:00 3251.0 0.506 44.74 52 7130
12:00-13:00 2873.6  0.452 41.16 46 6698
13:00-14:00 3323.6 0.504 45.18 52 7358
16:00-17:00 3473.6  0.500 46.77 54 6919
17:00-18:00 3455.8 0.415 42.89 53 6318
18:00-19:00 3050.0 0.394 43.29 48 5966
19:00-20:00 3050.2 0.548 52.47 49 5934
20:00-21:00 2597.6 0.661 56.09 41 5118

Table 2: Solving DCM on the SFL under two scenarios

only 1-NB-paths 2-NB-paths allowed

T Cost  # Tr. >,c.fc |L| T.Time CPU Cost # Tr. > ,c.fe |L| T.Time CPU Gap
06:00-07:00 3142.4 0.501 59 44 53.08 0.01 2562.4  0.496 30 28 56.03 10000 6.96
07:00-08:00 3434.0 0.454 65 43 49.23  0.04 2794.0 0.454 33 32 54.31 10000 7.03
08:00-09:00 2740.8 0.481 53 42 48.60  0.02 2220.8 0.449 27 26 51.24 10000 6.21
09:00-10:00 2698.8 0.501 52 39 49.04 0.01 2198.8  0.499 27 24 51.76 0.23 3.25
12:00-13:00 2341.2 0.444 46 37 44.78 0.03 1881.2  0.425 23 22 47.80 0.66 4.68
13:00-14:00 2707.6  0.496 52 35 46.81  0.01 2207.6  0.494 27 24 49.80 10000 8.29
16:00-17:00 2804.6  0.496 53 37 48.88  0.01 2289.0 0.473 27 24 51.40 1.54 4.75
17:00-18:00 2837.8  0.409 54 41 46.20  0.01 2309.0 0.405 28 28 49.29 10000 7.42
18:00-19:00 2464.6 0.386 47 39 45.83  0.01 2002.4 0.383 24 24 48.37 1.38 4.33
19:00-20:00 2579.4 0.531 49 38 55.79  0.02 2110.6  0.521 26 24 58.02 1.38 4.33
20:00-21:00 2279.0 0.631 43 35 63.84 0.04 1872.2  0.622 22 22 68.34 0.23 3.01

Average  2443.6 0.549 46.2  36.1 55.42  0.020 1997.5 0.532 23.8 228 58.43 3692.0 4.99
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