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On the Line Planning Problem in Tree NetworksLuis M. Torres∗† Ramiro Torres† Ralf Borndörfer‡ Mar
 E. Pfets
h§Abstra
tWe introdu
e an optimization model for the line planning problemin a publi
 transportation system that aims at minimizing operational
osts while ensuring a given level of quality of servi
e in terms of availabletransport 
apa
ity. We dis
uss the 
omputational 
omplexity of the modelfor tree network topologies and line stru
tures that arise in a real-worldappli
ation at the Trolebus Integrated System in Quito. Computationalresults for this system are reported.Keywords: line planning, 
omputational 
omplexity, publi
 transport optimiza-tion1 Introdu
tionLine planning 
onstitutes one important step within the strategi
 planning pro-
ess of a publi
 transportation system. The task is to design line routes and theirfrequen
ies in a street or tra
k network in su
h a way that a given transportationdemand is 
overed and a 
ertain obje
tive fun
tion is optimized. The demand isusually expressed in terms of so-
alled origin-destination matri
es that spe
ifythe number of passengers willing to travel between ea
h (ordered) pair of se
-tors of the 
ity during a given time horizon. Possible obje
tives are to maximizethe quality of servi
e for the passengers (in terms of average travel times andaverage number of transfers), as well as to minimize the global operational 
ostsfor the system.This paper addresses some issues that arise in the 
ontext of line planningin the largest urban transportation system of the 
ity of Quito, the TrolebusIntegrated System (TIS). The TIS 
arries around 250, 000 passengers daily. It
onsists of one main 
orridor and a system of feeder lines. The main 
orridoroperates in a reserved street tra
k independently of the rest of tra�
 and isserved by high 
apa
ity bus units; the feeder lines transport passengers betweenthree strategi
ally lo
ated transshipment terminals and nearby neighborhoods.Transportation demand in Quito has in
reased permanently during the lastfew years, having a negative impa
t on the quality of servi
e, with over
rowdedbuses and long waiting times being 
ommonly experien
ed by the users. Atthe same time, operational 
osts have grown. With the aim of 
ontributing
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to the solution of this problem, we have been working on optimization mod-els that 
ould be applied to improve line planning in the TIS and in similartransportation systems.Models for line planning have been extensively studied in previous works.Most of the models fo
us on maximizing the total revenue or minimizing traveltime. For more detail, see for instan
e, [9℄ and [5℄. Based on a �system-split�of the demand, [4℄ and [6℄ both propose 
ut-and-bran
h approa
hes to sele
tlines from a previously generated pool of potential lines. In [8℄ it is shown thatreal-world railway problems 
an be solved within reasonable time and quality bymeans of improved models and algorithms. [2℄ propose a model based in a multi-
ommodity �ow formulation for minimizing the travel time of the passengers andthe total operating 
osts. [10℄ introdu
e penalties for minimizing the numberof transfers and propose a Dantzig-Wolfe de
omposition s
heme for solving theLP-relaxation of their model.It is well-known that models for line planning in general networks usuallylead to NP-hard optimization problems. However, 
onsidering the simple net-work stru
ture underlying the TIS (a single path for the main 
orridor, one �star�for ea
h feeder-line system) one 
ould expe
t to obtain polynomially solvableproblems at least in some parti
ular 
ases. In a previous work [11℄, we studiedthe 
omputational 
omplexity of a model for line planning on the main 
orridor,and explored how it is a�e
ted by fa
tors su
h as the presen
e/absen
e of �xed
osts, the number of transportation modes, the stru
ture of the line system, et
.Surprisingly, the model remains NP-hard in almost every setting.Here, we fo
us our attention on the system of feeder lines (SFL), whi
hhas a tree topology. In Se
tion 2, we introdu
e our notation and formulate aninteger programming model for line planning. The 
omputational 
omplexityof this model under several possible 
on�gurations of the system is addressed inSe
tion 3. Se
tion 4 reports 
omputational results obtained when applying themodel to a set of real-world instan
es provided by the Trolebus operator.2 A Demand Covering ModelWe 
onsider a bus transportation network as a digraph G = (V, A), where ea
hbus station is represented by one node v ∈ V and ar
s represent dire
t linksbetween stations, i.e., (i, j) ∈ A if and only if some bus may visit station jdire
tly after station i.The �eet of buses is heterogeneous, as it 
ontains the trolleybuses and severalothers types of buses used for the feeding lines. We 
all a spe
i�
 type of busa transportation mode and de�ne M to be the set of all transportation modesin the system. Among other te
hni
al 
hara
teristi
s, any transportation mode
m ∈ M has a spe
i�
 unit 
apa
ity κm.For ea
h m ∈ M, 
ertain stations are given, where buses of mode m maystart or end a servi
e route. These stations Vm ⊂ V are referred to as terminalsfor mode m. A 
losed line for a mode m is a 
ir
uit 
ontaining at least one nodefrom Vm. Similarly, an open line for m is a dire
t path linking two terminals in
Vm. We do not 
onsider all possible lines in our model (as there are too many),but work with a presele
ted line pool L. For a line ℓ ∈ L, cℓ ∈ R+ is the 
ost ofea
h single trip through ℓ and Kℓ is a �xed 
ost 
omponent.Transportation demand data is expressed in terms of an origin-destination2
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ture of ea
h subsystem of the FLSmatrix D ∈ Z
V ×V
+ where ea
h element duv indi
ates the number of passengerstraveling from station u to station v within a time horizon T . Ea
h of thesepassengers must be routed along a dire
ted (u, v)-path. Due to the networktopology underlying the TIS, this path is unique and hen
e the value of theaggregated demand ga on ea
h ar
 a of the network 
an be 
omputed in astraightforward way.In [11℄ we proposed the following Demand Covering Model (DCM) for lineplanning in the TIS. It asks for a set of lines from L, together with frequen
iesfor them, su
h that the a

umulated transportation 
apa
ity provided by alllines on ea
h ar
 a ∈ A is at least ga, while at the same time the total 
osts areminimized:

min
∑

m∈M

∑

ℓ∈Lm

(cℓ fℓ + Kℓ yℓ) (1)
s.t.

∑

m∈M

∑

ℓ∈Lm
a

κm fℓ ≥ ga, ∀ a ∈ A (2)
0 ≤ fℓ ≤ fmax

ℓ yℓ ∀ ℓ ∈ L (3)
fℓ ∈ Z+, yℓ ∈ {0, 1} ∀ ℓ ∈ L (4)Here, fℓ is an integer variable representing the frequen
y assigned to line ℓ ∈ L,and yℓ is a binary variable that indi
ates whether a line is 
hosen in the solution(yℓ = 1) or not (yℓ = 0). DCM is NP-hard even in transportation networkswhose topology is a simple path, if any of the following 
onditions holds: thereis more than one transportation mode, �xed 
osts are nonzero, open lines are
onsidered, express lines that skip 
ertain stations are allowed, or the numberof terminals is not limited, see [11℄. Otherwise, the problem 
an be solved inpolynomial time.Of these 
onditions only two, namely, two transportation modes and �xed
osts, apply to the SFL. The SFL in Quito 
onsists of three independent sub-systems, ea
h of them 
ontaining only one terminal t that represents the 
or-responding transshipment station, and 
losed lines starting from it. Moreover,the system does not in
lude express lines. As a 
onsequen
e, the problem maybe simpli�ed by repla
ing ea
h pair of opposite ar
s a, a′ ∈ A by an undire
tededge e with demand ge equal to max {ga, g′a}, and by 
onsidering lines as undi-re
ted paths (or in general subtrees) that 
ontain t as a node. Currently, thenetwork topology is even more simple, as t is the only node with degree greaterthan two. We denote su
h a network as a star. Figure 1 depi
ts an example.3



3 Computational ComplexitySin
e we already know that DCM is NP-hard if either multiple modes or �xed
osts are 
onsidered, we assume in the following |M| = 1 and Kℓ = 0 for all
ℓ ∈ L. Then the binary variables yℓ are no longer required in the model, i.e.,we �x them to one, the right-hand sides in the frequen
y bound 
onstraints (3)
hange to fmax

ℓ , and the demand 
overing 
onstraints (2) 
an be res
aled tohave only 0/1 
oe�
ients on their left-hand sides.As stated above, at present the transportation network underlying the SFLhas the topology of a star, with every line being a path that has the terminalon one of its ends. We 
all su
h a line stru
ture an 1-NB-path, as it 
oversonly one neighbourhood of the 
ity. The system operator is evaluating thepossibility of allowing lines to 
over multiple neighbourhoods in the future, andthis is the motivation for 
onsidering two additional line stru
tures: 2-NB-paths,whi
h are paths having the terminal as an intermediate node (i.e., 
overing twoneighbourhoods) and subtrees 
ontaining the terminal (
orresponding to linesthat 
over more than two neighbourhoods).In 
ase only 1-NB-paths are present, DCM 
an be easily solved by 
onsider-ing ea
h bran
h of the star (i.e., ea
h neighbourhood) separately and assigningfrequen
ies to the 
orresponding lines in a greedy manner. For a given bran
h,assume any line ℓ whose set of ar
s is 
ontained in the set of ar
s of another line ℓ′and has cℓ′ ≤ cℓ has been deleted from the line pool. Let L′ := {ℓ1, ℓ2, . . . , ℓk} bethe remaining line pool, with the elements sorted de
reasingly by their lengths,i.e., d(ℓ1) > d(ℓ2) > . . . > d(ℓk), where d(ℓ) := |ℓ|. As a �rst step, ℓ1 is assignedthe minimum frequen
y required to 
over the demand on the edges that 
annotbe 
overed by ℓ2. Then the transportation demand is re
omputed on ea
h edgeto subtra
t the demand 
overed by ℓ1. Now the frequen
y for ℓ2 is determinedby the demand on the edges that 
annot be 
overed by ℓ3, and the pro
ess
ontinues in the same way. We obtain the following result.Proposition 1 DCM for 1-NB-paths is solvable in polynomial time on the star.If the lines have the 2-NB-path stru
ture, one 
an 
onstru
t 
ounterexamplesin whi
h the greedy s
heme des
ribed above does not �nd an optimal solution.In this 
ase, however, it is possible to redu
e the problem to an equivalent oneon a star of the form K1,r using a �line splitting� te
hnique, whi
h in turn 
anbe redu
ed to an equivalent weighted b-mat
hing problem (all of these transfor-mations work in polynomial time).Proposition 2 DCM for 2-NB-paths is solvable in polynomial time on the star.Finally, any instan
e of EXACT COVER by 3-sets [7℄ 
an be transformedin polynomial time into an equivalent instan
e of DCM on the star, where theline pool 
ontains subtrees that 
over three bran
hes.Proposition 3 DCM for subtrees is NP-hard on the star.At present, sin
e the transhipment terminals are lo
ated at strategi
 posi-tions in the street network and (ea
h subsystem of) the SFL 
overs a relativelysmall area of the 
ity, lines assigned to di�erent neighbourhoods split away verysoon after leaving the terminal, and assuming a star topology is justi�ed. How-ever, as the system is expanded, new longer lines rea
hing further se
tors are4



introdu
ed and the possibility in
reases that several lines share an importantpart of their paths. This has motivated us to 
onsider the 
omplexity of DCMon general trees. If the line stru
ture is restri
ted to 1-NB-paths, the 
onstraintmatrix is totally unimodular.Proposition 4 DCM for 1-NB-paths is solvable in polynomial time on trees.On the other hand, Proposition 3 trivially implies that DCM on trees is NP-hard if the line pool 
ontains subtrees. We have not yet been able to determinethe 
omplexity of the problem for the 2-NB-path line stru
ture.4 Computational resultsWe have 
arried out 
omputational tests of our model on real-world instan
esprovided by the TIS operator. The IPs were solved using SCIP [1℄, with defaultsettings and SoPlex as the underlying LP-solver [12℄. In all 
ases, an optimalitygap of 5% was allowed, and a time limit of 10000 se
onds was spe
i�ed. Allexperiments were performed on a 3.0 GHz Pentium 4 PC with 512 MB RAMrunning Suse Linux 10.0.Currently, the vehi
le �eet used for serving the feeder lines is heterogeneous,
onsisting of 89 buses of two di�erent types, with transportation 
apa
ities
κ1 = 90 and κ2 = 110. The transportation network has 479 nodes lo
ated alongthe three subsystems of the SFL. As stated in the previous se
tions, ea
h ofthese subsystems has the topology of a star. No �xed 
osts are 
onsidered.The test instan
es 
onsisted of data from one-hour time sli
es along a sam-pled day. Traveling times between stations were taken from histori
al data. Thetransfer time for a 
hange from line ℓ1 to line ℓ2 was 
omputed a posteriori as

T
2fℓ2

. Tra�
 volumes were 
omputed using the method des
ribed in [3℄.Table 1 reports, for referen
e purposes, some operational parameters re-garding the line plan 
urrently implemented by the TIS operator: 
ost, averagenumber of transfers per passenger, average travel times, and the a

umulatedfrequen
y. The total number of passengers transported ∑
duv is also shown forea
h instan
e.We solved DCM in two s
enarios whi
h di�er in the line stru
ture 
onsidered:only 1-NB-paths or allowing 2-NB-paths. In the �rst s
enario, a total of 84lines were 
onsidered in the line pool (for all three feeder subsystems), whilein the se
ond s
enario 470 new lines were added. Table 2 reports the results(aggregated for all three feeder subsystems). Besides the operational parametersdes
ribed above, we report the number |L| of lines used in the solution, therequired CPU time and the integrality gap (only for the se
ond s
enario). Inboth s
enarios, the 
ost was redu
ed in 
omparison to the 
urrently implementedsolution by about 18% (only 1-NB-paths) and 32% (with 2-NB-paths). On theother hand, these savings are tied to larger travel times for the passengers, whi
hslightly in
reased in all instan
es. Finally, observing the CPU times and gapvalues, it seems that DCM is 
onsiderably harder to solve if 2-NB-paths arein
luded in L.
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Table 1: Current operational parameters of the SFLFeeding LinesT Cost # Tr. Travel Time ∑
ℓ∈L

fℓ

∑
duv06:00-07:00 3806.8 0.478 49.66 59 719007:00-08:00 4144.6 0.457 46.32 65 831708:00-09:00 3330.4 0.456 44.94 53 733709:00-10:00 3251.0 0.506 44.74 52 713012:00-13:00 2873.6 0.452 41.16 46 669813:00-14:00 3323.6 0.504 45.18 52 735816:00-17:00 3473.6 0.500 46.77 54 691917:00-18:00 3455.8 0.415 42.89 53 631818:00-19:00 3050.0 0.394 43.29 48 596619:00-20:00 3050.2 0.548 52.47 49 593420:00-21:00 2597.6 0.661 56.09 41 5118Table 2: Solving DCM on the SFL under two s
enariosonly 1-NB-paths 2-NB-paths allowedT Cost # Tr. ∑

l∈L
fℓ |L| T. Time CPU Cost # Tr. ∑

l∈L
fℓ |L| T. Time CPU Gap06:00-07:00 3142.4 0.501 59 44 53.08 0.01 2562.4 0.496 30 28 56.03 10000 6.9607:00-08:00 3434.0 0.454 65 43 49.23 0.04 2794.0 0.454 33 32 54.31 10000 7.0308:00-09:00 2740.8 0.481 53 42 48.60 0.02 2220.8 0.449 27 26 51.24 10000 6.2109:00-10:00 2698.8 0.501 52 39 49.04 0.01 2198.8 0.499 27 24 51.76 0.23 3.2512:00-13:00 2341.2 0.444 46 37 44.78 0.03 1881.2 0.425 23 22 47.80 0.66 4.6813:00-14:00 2707.6 0.496 52 35 46.81 0.01 2207.6 0.494 27 24 49.80 10000 8.2916:00-17:00 2804.6 0.496 53 37 48.88 0.01 2289.0 0.473 27 24 51.40 1.54 4.7517:00-18:00 2837.8 0.409 54 41 46.20 0.01 2309.0 0.405 28 28 49.29 10000 7.4218:00-19:00 2464.6 0.386 47 39 45.83 0.01 2002.4 0.383 24 24 48.37 1.38 4.3319:00-20:00 2579.4 0.531 49 38 55.79 0.02 2110.6 0.521 26 24 58.02 1.38 4.3320:00-21:00 2279.0 0.631 43 35 63.84 0.04 1872.2 0.622 22 22 68.34 0.23 3.01Average 2443.6 0.549 46.2 36.1 55.42 0.020 1997.5 0.532 23.8 22.8 58.43 3692.0 4.99
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