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Abstract. We study performance and scaling of the Berlin Quantum Chromody-

namics Program (BQCD) on the SGI Altix 4700 at Leibniz Supercomputing Centre

(LRZ). We employ different communication methods (MPI, MPI with two OpenMP

threads per process, as well as the shmem library) and run the MPI version on the

two types of nodes of that machine. For comparison with other machines we made

performance measurements on an IBM p690 cluster and a Cray XT4.

1. Introduction

The SGI Altix 4700 at Leibniz Supercomputing Centre (LRZ) is one of the most powerful

computers in Germany. It has 9728 cores, 39 TByte of main memory, and delivers a

peak performance of 62.3 Tflop/s. A prominent feature of an Altix is its ccNUMA

architecture. The machine at LRZ has two other special features. It has two types

of nodes and a two-dimensional torus network connecting the nodes. There are 13 so-

called high-bandwidth nodes in which two cores are connected to one memory channel

and there are six high-density nodes in which four cores are connected to one memory

channel, i.e. in the high-density nodes the memory bandwidth per core is halved. Each

node has 512 cores out of which two (or four) are reserved for the operating system on

the high-bandwidth (or high-density) nodes.

The torus network is sketched in Figure 1. The network of the machine has a

hierarchical structure. Within a node the bisection bandwidth per blade is 2 × 0.8

GByte/s (one blade comprises eight cores in the high-bandwidth nodes and 16 cores in

the high-density nodes). Between two ’vertical’ nodes it is 2 × 0.4 GByte/s (bisection

indicated by cut a in Figure 1), between ’horizontal’ nodes it is 2×0.2 GByte/s (bisection

indicated by cut b in Figure 1), and for the whole system it is further reduced to 2×0.1

GByte/s.

In this paper we try to get some deeper understanding of the machine. One

aspect is to use different parallelisation strategies on the ccNUMA architecture. The

second aspect is the influence of the different types of nodes. In addition we compare

the Altix 4700 with two other supercomputers, an IBM p690 cluster and a Cray

‖ Send offprint request to: M. Allalen, allalen@lrz.de
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Figure 1. Two-dimensional torus network of the SGI Altix 4700 nodes at LRZ.

Bisections of two nodes with different network bandwidths are indicated by cut a and

cut b (see text).

XT4. In all cases we are interested in achieving high scalability. In our study

we use the Berlin Quantum Chromodynamics Program (BQCD). BQCD has various

communication methods implemented: MPI, OpenMP, a combination of both, as well as

shmem (single sided communication) in the hopping matrix multiplication (see Sect. 3).

BQCD is used in benchmarks for supercomputer procurements at our centres.

The benchmark version implicitly measures two important aspects of supercomputer

applications: effective network- and memory and bandwidth. In addition QCD is an

application that scales very well and reliable performance measurements on large number

of cores can be obtained within minutes. Production versions of BQCD and other QCD

programs are highly tuned including assembler parts in the kernel [1, 2]. Here we employ

the high level Fortran90 version as an example of a typical supercomputer application.

In the following we start by giving a short overview of numerical simulations of

QCD and a short introduction to the computational aspects of QCD simulations. Then

we present and discuss our results.

2. Overview of numerical simulations of QCD

QCD is the theory of strongly interacting elementary particles. The theory describes

particle properties like masses and decay constants from first principles. The starting

point of QCD is an infinite-dimensional integral. To deal with the theory on the

computer space-time continuum is replaced by a four-dimensional regular finite lattice

with (anti-) periodic boundary conditions. After this discretisation, the integral is finite-

dimensional but still rather high-dimensional. The high-dimensional integral is solved

by Monte-Carlo methods. BQCD is a program that simulates QCD with the Hybrid

Monte-Carlo algorithm [3].
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Figure 2. Nearest neighbour stencil underlying the hopping matrix. The central

point is i, where i is a short cut for a point given by four coordinates (x, y, z, t). On

the right-hand side the corresponding Cartesian coordinate system and the variables

involved are indicated for one dimension. U is called the gauge field which is defined

on the links of the lattice. The field ψ is defined on the lattice sites. The index µ

stands for a direction and µ̂ is a unit vector in µ-direction.

The basic building blocks of QCD are called quarks (matter particles) and gluons

(particles mediating the interaction of quarks). The quark fields cannot be represented

directly on a computer. In the computations they appear as large sparse matrices which

describe systems of linear equations. QCD programs spend most of their execution

time in solving these systems of linear equations. In the solver and an overall QCD

program the multiplication of the so-called hopping matrix with a vector is the dominant

operation. The hopping matrix multiplication is communication intensive.

3. Computational aspects

To go a little bit more into detail let us describe the structure of the hopping matrix

and the systems of linear equations.

QCD is defined on a four-dimensional Cartesian lattice. The lattice has three spatial

and one time direction. Its size is denoted by L3

s × Lt. On the links of the lattice the

field U is defined which represents the gluons. U is a function of the four directions

µ = 1, 2, 3, 4 and the lattice sites denoted by i (see right-hand side of Figure 2). Uµ(i)

is a 3 × 3 complex matrix. The U field is part of the hopping matrix. It is constant in

the solver. On the sites of the lattice the field ψ is defined which represents the quarks.

ψ(i) is a 4 × 3 complex matrix. These kinds of fields are the vectors in our systems of

linear equations. In our Fortran program U and ψ have the following data structure:

complex(8) u(3, 3, Ls, Ls, Ls, Lt)

complex(8) psi(4, 3, Ls, Ls, Ls, Lt)

In practice the four dimensions (Ls, Ls, Ls, Lt) are collapsed to a single one and

there is one array u for each of the four dimensions. In a pseudo code notation the

matrix multiplication reads:

psi_out := hopping_matrix[u] * psi_in
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The entries of the hopping matrix are given by a four-dimensional nearest neighbour

stencil as indicated in Figure 2, i.e. the hopping matrix has nine entries per row. The

entries are the Uµ(i) matrices.

At the single CPU level QCD programs benefit from the fact that the basic

operations involve the small complex matrices Uµ(i) and ψ(i). One can perform at

the order of ten floating point operations per memory access. As a rule of thumb,

the resulting performance is about 20–25% of peak when programming in Fortran or

C. The single CPU performance can be considerably improved by employing low level

programming techniques like assembler or multimedia streaming functions.

QCD programs are parallelised by domain decomposition. The nearest neighbour

structure of the hopping matrix implies that the boundary values (surfaces) of psi_in

have to be exchanged between neighbouring processes in every iteration of the solver.

In production runs where one aims at sustained performance in the Tflop/s range the

domains become so small that their surface to volume ratio is at the order of one or

even larger. In Table 1 we give that ratio for the lattices and numbers of processes

we consider here. The ratio depends on the actual decomposition. For example, if

the lattice is decomposed into sub-lattices of size l3s × lt the surface to volume ratio is

(2× l3s +6× l2s × lt)/(l
3

s × lt). In general the four dimensions of the local lattice can have

different extension lx, ly, lz, and lt.

Table 1. Surface to volume ratios

number of processes 64 128 256 512 1024 2048 3072 4096

243 × 48 lattice 0.833 1.000 1.167 1.333

483 × 96 lattice 0.417 0.500 0.583 0.667 0.833 1.000 1.083 1.167

Decomposing the lattice for a large number of processes has two effects. First, at

some stage a domain might completely fit into the data cache. Second, the data

from the relatively large surface of the small domains has to be communicated to eight

nearest neighbour processes. The communication becomes dominant for large numbers

of processes. It requires an excellent network. For lattice sizes that are used in actual

simulations the network is the challenge. In our examples we mainly use the 483 × 96

lattice which is relatively large for today’s supercomputers. For the comparison with

other machines we use the 243 × 48 lattice which is 16 times smaller but which has

similar surface to volume ratios as the 483 × 96 lattice and thus similar communication

requirements as that lattice but on fewer processes (see Table 1).

4. Results

All results we present are for the entire conjugate gradient (cg) solver of BQCD.

This is essentially the overall performance of the program in practical simulations.

The performance measurement is based on manually instrumented code and manually
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Figure 3. Strong scaling of BQCD for the 483 × 96 lattice on SGI Altix 4700 using

different communication setups (see text).

counted operations in the source code. In all tables we give four results. First, we

give the overall performance including communication overhead in Gflop/s. The overall

performance is plotted in Figures 3, 4 and 5. Second, we give the compute performance

per core, i.e. the performance that was measured in program regions outside MPI (or

shmem) functions. This quantity indicates whether one is in a memory bound region,

where the quantity would be constant, or one can profit from data caching, where

the quantity would grow. Third, we give the effective MPI (or shmem) bandwidth

per process. In an ideal network this quantity should be constant for any number

of processes. Fourth, we give the MPI overhead, i.e. the fraction of time spent in

communication routines. Typically the overhead grows with increasing numbers of

processes because the surface to volume ratio increases.

We study strong scaling of simulations on the 483 × 96 lattice. On the Altix we

look into four setups, namely running with

1. MPI on high-bandwidth nodes,

2. MPI on high-density nodes,

3. MPI plus two OpenMP threads per process on high-bandwidth nodes,

4. shmem on high-bandwidth nodes,

followed by

5. a comparison with the other platforms.
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4.1. MPI on high-bandwidth nodes

Results for this setup are given in Table 2. The overall performance scales very well up

to 2048 cores and becomes worse for higher numbers of cores.

Table 2. Performance on high-bandwidth nodes

number of cores 64 128 256 512 1024 2048 3072 4096

overall performance [Gflop/s] 52 100 194 406 758 1568 1707 2213

compute perf. per core [Mflop/s] 954 947 977 1106 1171 1607 1450 1535

MPI perf. per proc. [MByte/s] 464 450 379 350 306 262 178 171

MPI overhead [%] 14 17 22 28 37 52 62 65

The main reason for the good scaling is the utilisation of the data cache. The compute

performance increases from about 950 up to 1600 Mflop/s per core. At the same time

the MPI overhead stems not only from the increasing surface to volume ratio but also

from decreasing effective MPI bandwidth. This effect is quite pronounced. Up to 2048

cores this can be compensated by data caching. In that case the communication loss is

already 52%.

4.2. MPI on high-density nodes

Results for this setup are given in Table 3. Again the overall performance scales very well

up to 2048 cores which in this case is the largest job possible in the system configuration.

Table 3. Performance on high-density nodes

number of cores 64 128 256 512 1024 2048

overall performance [Gflop/s] 33 65 129 306 574 1136

compute performance per core [Mflop/s] 611 611 643 839 925 1130

MPI performance per process [MByte/s] 305 313 262 262 218 192

MPI overhead [%] 14 16 22 29 39 51

Up to 256 cores the compute performance per core is roughly constant. This is the

memory bound region. In these cases the compute performance is about 65% of the

performance obtained on high-bandwidth nodes which shows a clear dependency on the

memory bandwidth. For higher numbers of cores the data caches come into play and the

compute performance grows up to 79% of the value from high-bandwidth nodes. The

overall performance behaves similarly. In the high-density partition the MPI bandwidth

varies less than in the high-bandwidth partition. On 2048 cores the MPI bandwidth

is 63% of the bandwidth measured on 64 cores. For the high-bandwidth partition the

corresponding value is 56%.
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4.3. MPI plus two OpenMP threads on high-bandwidth nodes

On a shared memory system or a system with shared memory properties it is tempting

to reduce the communication overhead by working with more than one thread per MPI

process. By doing this the domains per MPI process become larger and as a consequence

less data has to be communicated for a given problem size. Therefore we tried to use

two OpenMP threads per MPI process. The idea is that the two threads work on the

two cores of the same (dual core) Itanium processor of the Altix. Results for this setup

are given in Table 4. In this setup we find good scaling up to even 3072 cores.

Table 4. Performance on high-bandwidth nodes for MPI plus 2 OpenMP threads

number of cores 64 128 256 512 1024 2048 3072

overall performance [Gflop/s] 32 59 119 254 529 1054 1586

compute performance per core [Mflop/s] 543 540 559 685 704 893 1121

MPI performance per process [MByte/s] 905 520 516 387 544 373 315

MPI overhead [%] 7 14 17 28 27 47 54

However, the absolute performance is slightly lower than the performance in the high-

density case. The MPI bandwidth per core is higher than in the high-bandwidth case

but the compute performance per core is significantly lower. This effect can already be

observed in small test cases where we put an 83 ×16 lattice on two cores using two MPI

processes or two OpenMP threads. Using threads the performance was only 78% of the

MPI case. To get that reasonable OpenMP performance it is important to pin threads

to processor cores and control page allocation. On the Altix this can be accomplished by

employing the omplace command. In our tests OpenMP performance is roughly halved

when omplace is not employed.

4.4. shmem on high-bandwidth nodes

The last setup we have tried on the Altix is replacing the MPI_Sendrecv in the hopping

matrix multiplication by single sided communication functions from the shmem library

(we used shmem_put). Results for this setup are given in Table 5.

Table 5. Performance on high-bandwidth nodes using shmem

number of cores 64 128 256 512 1024 2048

overall performance [Gflop/s] 51 93 161 225 409 706

compute performance per core [Mflop/s] 988 1062 1094 1122 1141 1247

shmem performance per process [MByte/s] 301 187 131 67 76 63

shmem overhead [%] 20 31 42 61 65 72

Up to 256 cores the overall performance is comparable to the MPI setup. For higher

numbers of cores the scaling becomes worse. While the first three setups scale practically
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Figure 4. Performance comparison of three platforms (24 × 48 lattice).

linearly up to 2048 cores, the parallel efficiency on 2048 cores with shmem is only 0.43

(related to 64 cores). The striking observation for this setup is that the effective MPI

bandwidth is much lower than in the other cases. We think that this effect is due to the

latencies of the shmem communication that add up in many function calls. In contrast

to MPI the shmem library does not contain a function for transferring block-strided

data. There are only functions for contiguous blocks or strided data with block size one.

In Fortran90 notation the array sections corresponding to surfaces are:

psi(:, :, :, :, :, 1) psi(:, :, :, :, :, l_t)

psi(:, :, :, :, 1, :) psi(:, :, :, :, l_z, :)

psi(:, :, :, 1, :, :) psi(:, :, :, l_y, :, :)

psi(:, :, 1, :, :, :) psi(:, :, l_x, :, :, :)

Only the array sections defined in the first line consist of one contiguous block each

while all other array sections are block-strided. Hence shmem has to be called much

more often than MPI and latencies add up.

4.5. Comparison with other platforms

For comparison we repeated some measurements using pure MPI communication on

an IBM p690 cluster and a Cray XT4. On those platforms resource usage was limited

to 512 cores. To challenge MPI communication we measured on a 243 × 48 lattice in

addition to the 483 × 96 lattice (cf. Table 1). Simulating on the large lattice requires

approximately 160 GByte of main memory. On the XT4 this was not available on 64
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Figure 5. Performance comparison of three platforms (48 × 96 lattice).

and 128 cores. Results are compiled in Table 6. The overall performance is plotted in

Figures 4 and 5.

On both lattices the Altix delivers the best overall performance except for the large

lattice on 128 cores where the p690 performs slightly better.

On the Altix the performance figures from the small lattice behave similar to the

ones from the large lattice (see Sect. 4.1). The role of the data cache is even more

pronounced on the small lattice where the compute performance reaches up to 2.6

Gflop/s per core. On both lattices the MPI bandwidth decreases in a similar way

when the number of cores is increased.

From Figures 4 and 5 one can see directly that scaling to 512 cores is not good on

the p690. On the p690 we find a sweet spot for both lattices where the MPI performance

is much better than in the other cases. On the small lattice the compute performance is

significantly increased at the same time. The effect is super-linear scaling from 64 to 256

cores. In order to try to explain the drop in performance on 512 cores we have to come

back to network latencies. We explained the poor shmem performance by latencies that

add up. On the p690 we also see the effect that the MPI performance decreases when

using the maximal number of cores. In addition we see that the compute performance

decreases too. This effect can be explained by latencies as well because the global

sum is not excluded in the measurement of the compute performance. Large network

latencies lead to relatively slow global reduction functions what introduces additional

communication overhead. The effect can also be noticed for the small lattice on the

Altix. But there it is quite small.

The behaviour of the XT4 is much more constant in comparison to the other
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Table 6. Comparison of performance results from three platforms. The columns

contain the same kind of information as the rows in the other performance tables.

number overall comp. perf. MPI perf. MPI

of perf. per core per proc. overhead

lattice platform cores [Gflop/s] [Mflop/s] [MByte/s] [%]

64 34 621 631 14

Cray XT4 256 132 666 517 22

512 291 721 693 21

64 23 737 115 51

243 × 48 IBM p690 256 197 1279 441 40

512 246 955 247 50

64 57 1202 541 26

SGI Altix 4700 128 124 1687 424 43

256 245 2641 321 64

512 445 2443 330 64

Cray XT4 256 141 639 455 14

512 282 627 601 12

64 46 911 281 21

483 × 96 IBM p690 128 104 971 503 16

512 189 530 177 30

64 52 954 464 14

SGI Altix 4700 128 100 947 450 17

256 194 977 379 22

512 406 1106 350 28

platforms. Both the compute performance per core and the MPI bandwidth vary much

less. The machine has the smallest MPI overhead which also is quite constant. From

this one would expect very high scalability what would have been interesting to check.

5. Conclusion

In this article we have used the BQCD simulation program to compare three

communication modes and two node types on the SGI Altix at LRZ. In all cases we

observed very good scaling up to 2048 cores except for shmem communication which

scaled well up to 256 cores. According to our measurements pure MPI communication

is the method of choice. Combining MPI with OpenMP or replacing it by shmem gave

substantially lower performance. On high-density nodes 65–79% of the high-bandwidth

performance was achieved. In a strictly memory bound situation on would expect this

value to be about 50%.

A surprise to us was the discovery that data caches play such an important role



Performance of QCD simulations on the SGI Altix 4700 11

on the Altix. The cache size is 9 MByte per dual core chip. In our measurements

better cache utilisation compensates decreasing network bandwidth when increasing

the number of cores. The discussion of shmem as one communication method available

on the Altix and the comparison with other machines led us to consider the effect of

network latencies. Although network latencies were not measured directly we could

in some cases indirectly see their effect on the effective network bandwidth and the

duration of global reduction operations.

It is interesting to see the interplay of network bandwidth, network latency, and

the memory hierarchy when studying strong scaling of a real world application on the

Altix 4700 and other machines.
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