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Abstract

We consider a system with Poisson arrivals and i.i.d. service times
and where the requests are served according to the state-dependent (Co-
hen’s generalized) processor sharing discipline, where each request in
the system receives a service capacity which depends on the actual num-
ber of requests in the system. For this system we derive asymptotically
tight upper bounds for the moments of the conditional sojourn time of
a request with given required service time. The bounds generalize cor-
responding results, recently given for the single-server processor sharing
system by Cheung et al. and for the state-dependent processor sharing
system with exponential service times by the authors. Analogous results
hold for the waiting times.

Mathematics Subject Classification (MSC 2000): 60K25, 68M20,
90B22, 60E15, 60G10.

Keywords: Poisson arrivals; general service times; state-dependent pro-
cessor sharing; Cohen’s generalized processor sharing; conditional so-
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1 Introduction

Processor sharing (PS) systems have been widely used in the last decades
for modeling and analyzing computer and communication systems, cf. e.g.
[Kle], [CMT], [KY], [Ya3], [PG], [ZTK], [BBJ], [GRZ], [BB], and the ref-
erences therein. In this paper we deal with insensitivity bounds for the
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moments of sojourn times of the following PS service system, denoted by
M/GI/SDPS: At a node requests arrive according to a Poisson process
of intensity λ with i.i.d. service times, which are independent of the ar-
rival process and have the distribution function (df.) B(x) := P (S ≤ x),
where S denotes a generic service time with finite mean mS := ES. The re-
quests are served according to the following state-dependent processor shar-
ing (SDPS) discipline (Cohen’s generalized processor sharing discipline1), cf.
[Coh], [BBJ]: If there are n ∈ N := {1, 2, . . .} requests in the node then each
of them receives a positive service capacity ϕ(n), i.e., each of the n requests
receives during an interval of length ∆τ the amount ϕ(n)∆τ of service. In
case of ϕ1(n) = 1/n, n ∈ N, we obtain the well known M/GI/1 − PS sys-
tem (single-server system with egalitarian processor sharing discipline), cf.
[CMT], [Ya2], [YY1]. In case of ϕ1,k(n) = 1/(n + k), n ∈ N, we have a
single-server PS system with k ∈ N permanent requests in the system, cf.
[VB], in case of ϕm(n) = min(m/n, 1), n ∈ N, an M/GI/m − PS system,
i.e. an m-server PS system, where all requests are served in a PS mode, but
each request receives at most the capacity of one processor, cf. [Coh] p. 283,
[Bra], [GRZ], in case of ϕm,k(n) = min(m/(n + k), 1), n ∈ N, an m-server
PS system with k ∈ N permanent requests. In case of ϕ(n) = 1, n ∈ N, the
system corresponds to an M/GI/∞ system.

Networks with nodes working under the SDPS discipline are investigated
in [Coh], [BP], [Zac], [BB]. In particular, for the M/GI/SDPS system some
basic results are known, cf. [Coh], which we will use and therefore shortly
review in the following. Let N(t) be the number of requests in the system at
time t and R∗(t) := (R∗

1(t), . . . , R
∗
N(t)(t)) be the vector of the residual service

times of the N(t) requests in the system at time t, ordered randomly. The
vector process (N(t); R∗(t)), t ∈ R, is a Markov process. The M/GI/SDPS
system is stable, i.e., there exists a unique stationary process (N(t); R∗(t)),
t ∈ R, if and only if

∞
∑

n=0

n
∏

ℓ=1

̺χ(ℓ)

ℓ
< ∞, (1.1)

where χ(n) := 1/ϕ(n), n ∈ N, and ̺ := λmS denotes the offered load,
cf. [Coh] (7.18). We assume in the following that the system is stable and
in steady state, i.e., that (1.1) is fulfilled and (N(t); R∗(t)), t ∈ R, is a

1The SDPS discipline seems to go back to Cohen, cf. [Coh], which he denoted as
generalized processor sharing discipline. But nowadays this term is used for other classes
of models such as Weighted Fair Queueing systems, being the reason that it is now called
SDPS discipline, cf. e.g. [BBJ].
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stationary Markov process. Then the stationary occupancy distribution
p(n) := P (N(t) = n), n ∈ Z+, and P (N(t) = n; R∗

1(t)≤ r1, . . . , R
∗
n(t)≤ rn),

n ∈ Z+, r1, . . . , rn ∈ R+, i.e. the stationary distribution of (N(t); R∗(t)) on
{N(t) = n}, are given by

p(n) =

( ∞
∑

m=0

m
∏

ℓ=1

̺χ(ℓ)

ℓ

)−1 n
∏

ℓ=1

̺χ(ℓ)

ℓ
, (1.2)

P (N(t)=n; R∗
1(t)≤r1, . . . , R

∗
n(t)≤rn) = p(n)

n
∏

ℓ=1

BR(rℓ), (1.3)

where

BR(x) :=
1

mS

∫ x

0
(1−B(t)) dt, x ∈ R+, (1.4)

denotes the stationary residual service time distribution having the density
bR(x) = (1 − B(x))/mS , x ∈ R+, cf. [Coh] (7.19) for the case of phase-type
distributed service times, [Zac] for the general case. For the sojourn time V
of an arbitrary arriving request with required service time S, from Little’s
law and (1.2) we find that

EV =
1

λ

∞
∑

n=1

np(n) = mS

∞
∑

n=0

χ(n+1)p(n). (1.5)

For the conditional sojourn time V (τ) of a request with required service
time τ ∈ R+ (abbr. τ -request) it is stated that

EV (τ) =
τ

mS
EV, (1.6)

cf. [Coh] (7.27). It seems that in case of the general M/GI/SDPS system
for V and V (τ) besides (1.5), (1.6) only asymptotic results are known for
heavy tailed service times, cf. [GRZ]. However, for special cases several
analytical results and numerical algorithms are known. We mention only
a few references. For the M/GI/1 − PS system and special cases, cf. e.g.
[CMT], [KY], [Ya2], [Ya3], [YY1]. The M/M/2 − PS system is treated in
[Tol] and the M/M/m−PS system in [Bra]. For the general M/M/SDPS
system cf. [BB].

The aim of this paper is to derive for the M/GI/SDPS system insen-
sitive asymptotically tight upper bounds for the moments of V (τ). These
bounds generalize corresponding results, recently given for the M/GI/1−PS
system by [CBB] and for the M/M/SDPS system by the authors [BB]. Cor-
responding results can be given for the waiting times, too.

3



The paper is organized as follows. In Section 2 we first derive a lin-
ear system of partial differential equations (PDEs) for the Laplace-Stieltjes
transforms (LSTs) of the sojourn time of a request under the condition that
the residual service times of the other requests in the system are given, too.
Then we derive preliminary results (Lemma 2.1), needed later. Although
an explicite solution of the PDEs can be given only for special cases, the
LSTs for the sojourn time V (n, τ) of a τ -request, finding n requests at its
arrival in the system, as well as for V (τ) and for V , can be given in terms
of the solution of the PDEs (Theorem 2.1, Corollary 2.1). In Section 3 for
the general M/GI/SDPS system we derive the announced asymptotically
tight upper bounds for the moments of V (τ) and an asymptotical result for
the moments of V (n, τ) (Theorem 3.1) by using Hölder’s inequality and the
results of Section 2. Further, relations are given for the moments of sojourn
times (Theorem 3.2, Theorem 3.3, Remark 3.2), which reduce the numerical
complexity for computing sojourn time characteristics for special cases as
e.g. given in [BB]. All results proved in the paper have a correspondence to
results for waiting times. In Section 4 we summarize a few of them.

2 Sojourn times and preliminary results

As mentioned above, we assume in the following that the system is stable,
i.e., that (1.1) is fulfilled, and in steady state. In particular mS is finite.
Moreover, for technical reasons – if not stated otherwise – we make in the
following the assumption:

(A1) B(x) has a continuous density and B(x) < 1 for x ∈ R+.

For notational convenience let b(x) := dB(x)/dx be the density of B(x),
B̄(x) := 1 − B(x), B̄R(x) := 1 − BR(x), cf. (1.4), and β(x) := b(x)/B̄(x),
βR(x) := bR(x)/B̄R(x) be the complementary distributions and hazard rates
of the service time df. and the stationary residual service time df., respec-
tively. Further we will use several vector notations. If not stated otherwise,
let r := (r1, . . . , rℓ) ∈ R

ℓ
+ where ℓ = m or ℓ = n, respectively, and

Ωℓ := {r ∈ R
ℓ
+ : 0 < r1 < . . . < rℓ}. (2.1)

For x, y ∈ R
ℓ let x ≤ y if and only if xi ≤ yi for i = 1, . . . , ℓ.

Besides the randomly ordered residual service times R∗
1(t), . . . , R

∗
N(t)(t)

we need them ordered increasingly: Let 0 ≤ R1(t) ≤ . . . ≤ RN(t)(t) be the
residual service times of the N(t) requests at time t, ordered increasingly,
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and let R(t) := (R1(t), . . . , RN(t)(t)) be the corresponding vector. In view
of the SDPS discipline, this implies that the requests are ordered according
to their departure times, too. For n ∈ N, r ∈ Ωn, let

p(n; r) :=
∂n

∂r1 . . . ∂rn
P (N(t) = n; R(t) ≤ r)

be the density of R(t) on {N(t) = n}, and on the boundary of Ωn let p(n; r)
be defined by continuous continuation. The support of p(n; r) is the closure
Ω̄n of Ωn. Denoting by Sn the set of all permutations of the set {1, . . . , n},
from (1.3), (1.4) for n ∈ N, r ∈ Ωn for the densities we obtain that

p(n; r) =
∑

π∈Sn

∂n

∂r1 . . . ∂rn
P (N(t)=n; R∗

1(t)≤rπ(1), . . . , R
∗
n(t)≤rπ(n))

= n! p(n)
n

∏

ℓ=1

bR(rℓ). (2.2)

By continuous continuation it follows that (2.2) holds for n ∈ N, r ∈ Ω̄n,
too.

2.1 Partial differential equations for LSTs of sojourn times

Let Vℓ(t), ℓ = 1, . . . , N(t), be the sojourn time of the request with resid-
ual service time Rℓ(t) from time t on until its departure (finish of service),
i.e., its prospective sojourn time from time t on. Since the Rℓ(t) are or-
dered increasingly, the SDPS discipline implies that the Vℓ(t) are ordered
increasingly, too, i.e., 0 ≤ V1(t) ≤ . . . ≤ VN(t)(t). Further, V1(t) = 0 if and
only if R1(t) = 0. In view of (A1) and the distributional and independence
assumptions, for 0 < m ≤ n, r ∈ Ω̄n the LSTs

hn,m(s; r) := E[e−sVm(t)|N(t) = n, R(t) = r] (2.3)

of Vm(t) conditioned that at time t there are n requests in the system with
residual service times Rℓ(t) = rℓ, ℓ = 1, . . . , n, are well defined for s ∈ R+.
Note that for 0 < m ≤ n, r ∈ Ω̄n it holds hn,m(0; r) = 1. In the following let
s ∈ R+ be fixed. As the prospective sojourn time of a request with residual
service time zero is zero, from (2.3) we conclude for 0 < n, r ∈ Ω̄n where
r1 = 0 that

hn,1(s; 0, r2, . . . , rn) = 1. (2.4)
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Since a request with residual service time zero leaves the system immediately,
for 1 < m ≤ n, r ∈ Ω̄n where r1 = 0 it follows that

hn,m(s; 0, r2, . . . , rn) = hn−1,m−1(s; r2, . . . , rn). (2.5)

Now let 0 < m ≤ n, r ∈ Ωn and consider the time interval [0, h]. In view
of r1 > 0, for h sufficiently small there will be no departure of any of the
n requests which are in the system at t = 0. If there is a request arrival
during [0, h], then there may occur two cases for the sampled service time
τ > 0, which is just its residual service time: τ ∈ (0, rm) or τ ∈ [rm,∞).
Taking into account the dynamics of the M/GI/SDPS system during [0, h],
we obtain that

hn,m(s; r) = (1−λh)E[e−s(Vm(h)+h)|N(h) = n, R(h) = r−ϕ(n)h1n]

+ λh
m

∑

ℓ=1

∫ rℓ

rℓ−1

b(τ)E[e−s(Vm+1(h)+h)|N(h) = n+1,

R(h) = r(ℓ)(r, τ) − ϕ(n+1)h1n+1]dτ

+ λh
n+1
∑

ℓ=m+1

∫ rℓ

rℓ−1

b(τ)E[e−s(Vm(h)+h)|N(h) = n+1,

R(h) = r(ℓ)(r, τ) − ϕ(n+1)h1n+1]dτ + o(h),

where r0 := 0, rn+1 := ∞, 1n := (1, . . . , 1) ∈ R
n and

r(ℓ)(r, τ) := (r1, . . . , rℓ−1, τ, rℓ, . . . , rn), ℓ = 1, . . . , n+1,

for r ∈ R
n, τ ∈ R. Subtracting on both sides hn,m(s; r−ϕ(n)h1n), dividing

by h and taking the limit h ↓ 0 provides the following linear system of PDEs
for 0 < m ≤ n, r ∈ Ωn:

ϕ(n)
∂

∂ξ
hn,m(s; r+ξ1n)

∣

∣

∣

ξ=0

= −(λ+s)hn,m(s; r) + λ
m

∑

ℓ=1

∫ rℓ

rℓ−1

b(τ)hn+1,m+1(s; r
(ℓ)(r, τ))dτ

+ λ

n+1
∑

ℓ=m+1

∫ rℓ

rℓ−1

b(τ)hn+1,m(s; r(ℓ)(r, τ))dτ. (2.6)

The following observation will be crucial and simplifies the analysis of the
model considerably in the following: In view of the SDPS discipline, for
0 < m ≤ n, r ∈ Ω̄n the conditional sojourn time Vm(t) given that N(t) = n,
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R(t) = r depends only on r1, . . . , rm and the total number n of requests in
the system since the requests with residual service times rm+1, . . . , rn have
residual service times of an amount greater or equal to rm and are thus in
the system at least as long as the request with service time rm. Therefore

fn,m(s; r1, . . . , rm) := hn,m(s; r1, . . . , rn), 0 < m ≤ n, r ∈ Ω̄n, (2.7)

is well defined. From (2.4)–(2.7) we obtain the following linear system of
PDEs for 0 < m ≤ n, r ∈ Ωm:

ϕ(n)
∂

∂ξ
fn,m(s; r+ξ1m)

∣

∣

∣

ξ=0

= −(λ+s)fn,m(s; r) + λ
m

∑

ℓ=1

∫ rℓ

rℓ−1

b(τ)fn+1,m+1(s; r
(ℓ)(r, τ))dτ

+ λB̄(rm)fn+1,m(s; r) (2.8)

with the initial conditions

fn,1(s; 0) = 1, (2.9)

fn,m(s; 0, r2, . . . , rm) = fn−1,m−1(s; r2, . . . , rm), 1 < m ≤ n, (2.10)

for 0 ≤ r2 ≤ . . . ≤ rm. In view of hn,m(0; r) = 1 for r ∈ Ω̄n, from (2.7) we
find that fn,m(0; r) = 1 for 0 < m ≤ n, r ∈ Ω̄m.

It seems that for general ϕ(n), n ∈ N, there is no explicite solution of
(2.8)–(2.10). However, for ϕ1,k(n) = 1/(n + k), n ∈ N, k ∈ (−1,∞), a
solution can be given by adopting results of [KY], [Ya3], leading to the well
known results for M/GI/1 − PS systems. Note that for k ∈ Z+ we have a
single-server PS system with k permanent requests.

Example 2.1 Let ϕ1,k(n) = 1/(n + k), n ∈ N, k ∈ (−1,∞), and s ∈ R+.
We try, cf. [KY], [Ya1], the substitution

fn,m(s; r1, . . . , rm) = δ(s, rm)n+k
m−1
∏

i=1

1

δ(s, rm − ri)

for 0 < m ≤ n, 0 ≤ r1 ≤ . . . ≤ rm, where δ(s, τ) is a continuously differen-
tiable function in τ ∈ R+ with initial condition δ(s, 0) = 1. The substitution
satisfies (2.9) and (2.10). Inserting the substitution into (2.8) and using
that ϕ1,k(n) = 1/(n+k), n ∈ N, one finds after some algebra that the linear
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system of PDEs (2.8) is fulfilled if δ(s, τ) satisfies the following differential
equation

0 =
∂δ(s, τ)

∂τ
+

(

s+λ−λ

∫ τ

0

δ(s, τ)

δ(s, τ−y)
b(y)dy−λδ(s, τ)B̄(τ)

)

δ(s, τ)

with initial condition δ(s, 0) = 1, which has a uniquely determined solu-
tion, cf. [Ya1]. The product form solution for the fn,m(s; r1, . . . , rm), given
above, has been proved for M/GI/1 − PS systems for the first time by a
decomposition of the sojourn time in [KY], [Ya1] and for the single-server
PS model with permanent requests in [YY2]. The differential equation for
δ(s, τ), given above, can be solved for particular cases explicitely. In the gen-
eral case, the Laplace transform for e−(s+λ)τ/δ(s, τ) can be given explicitely,
cf. [KY], [Ya1].

For notational convenience, in the following we suppress the time param-
eter t for steady state r.v.s, i.e., we use Vm, N , R = (R1, . . . , RN ) instead of
Vm(t), N(t), R(t) = (R1(t), . . . , RN(t)(t)).

In view of (2.2) and (2.3), for 0 < m ≤ n, r ∈ Ωn, the LSTs

vn,m(s; r) :=
∂n

∂r1 . . . ∂rn
E[e−sVmI{N = n, R ≤ r}] (2.11)

of Vm on {N = n, R1 ∈ dr1, . . . , Rn ∈ drn} are well defined for s ∈ R+, and
in view of (2.2) and (2.7) given by

vn,m(s; r) = un,m(s; r1, . . . , rm)
n

∏

ℓ=m+1

bR(rℓ), (2.12)

where

un,m(s; r1, . . . , rm) := n! p(n)
(

m
∏

ℓ=1

bR(rℓ)
)

fn,m(s; r1, . . . , rm). (2.13)

For 0 < m ≤ n, let un,m(s; r) and hence vn,m(s; r) be defined on the bound-
ary of Ωn by continuous continuation. Note that for 0 < m ≤ n, r ∈ Ωn

from (2.11)–(2.13) it follows that

un,m(s; r1, . . . , rm)

=
∂m

∂r1 . . . ∂rm
E[e−sVmI{N = n, R1 ≤ r1, . . . , Rm ≤ rm}

|Rm+1 = rm+1, . . . , Rn = rn], (2.14)
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and thus the conditional LST on the r.h.s. of (2.14) is independent of
rm+1, . . . , rn. From fn,m(0; r) = 1 and (2.13) we obtain the boundary con-
dition

un,m(0; r) = n! p(n)

m
∏

ℓ=1

bR(rℓ), 0 < m ≤ n, r ∈ Ω̄m. (2.15)

In the following let s ∈ R+ be fixed. Taking the derivative of un,m(s; r+ξ1m)
with respect to ξ by taking into account (2.13), (1.2) and (1.4), one finds
after some algebra that (2.8) is equivalent to the following linear system of
PDEs for 0 < m ≤ n, r ∈ Ωm:

ϕ(n)
∂

∂ξ
un,m(s; r+ξ1m)

∣

∣

∣

ξ=0
= −(λ+s+ϕ(n)β(r))un,m(s; r)

+ ϕ(n+1)
m

∑

ℓ=1

∫ rℓ

rℓ−1

β(τ)un+1,m+1(s; r
(ℓ)(r, τ))dτ

+ ϕ(n+1)bR(rm)un+1,m(s; r), (2.16)

where β(r) :=
∑m

ℓ=1 β(rℓ). In view of (2.13), (1.2) and bR(0) = 1/mS , the
initial conditions (2.9) and (2.10) yield the initial conditions

un,1(s; 0) = n! p(n)m−1
S , (2.17)

un,m(s; 0, r2, . . . , rm) =
λ

ϕ(n)
un−1,m−1(s; r2, . . . , rm) (2.18)

for 1 < m ≤ n, 0 ≤ r2 ≤ . . . ≤ rm.

2.2 Preliminary results

For deriving later expressions for the LSTs of V (n, τ) and V (τ), we consider
the LSTs

gn,m(s, x) :=
∂

∂x
E[e−sVmI{N = n, Rm ≤ x}] (2.19)

for x, s ∈ R+, 0 < m ≤ n. From (2.12) and bR(x) = B̄(x)/mS by integrating
vn,m(s; r) over 0 ≤ r1 ≤ . . . ≤ rm−1 ≤ x ≤ rm+1 ≤ . . . ≤ rn with respect to
dr1 . . .drm−1drm+1 . . .drn we obtain that

gn,m(s, x) = ḡn,m(s, x) dn−m(x), (2.20)
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where

ḡn,m(s, x) :=

∫

0≤r1≤...≤rm−1≤x
un,m(s; r1, . . . , rm−1, x) dr1 . . .drm−1,

(2.21)

dℓ(x) :=
1

ℓ!

(

∫ ∞

x
bR(η)dη

)ℓ
=

1

ℓ!
B̄R(x)ℓ. (2.22)

Note that in case of n = m = 1 the r.h.s. of (2.19) is just v1,1(s; x) and in
case of 1 = m ≤ n the r.h.s. of (2.21) is just un,1(s; x). From (2.21), (2.15),
(2.17) we find for 0 < m ≤ n that

ḡn,m(0, x) = n! p(n)bR(x)
1

(m−1)!
BR(x)m−1, x ∈ R+, (2.23)

ḡn,m(s, 0) = I{m = 1}n! p(n)m−1
S , s ∈ R+, (2.24)

and thus from (2.20) and (2.22) for 0 < m ≤ n the boundary condition

gn,m(s, 0) = I{m = 1}n p(n)m−1
S , s ∈ R+. (2.25)

Because of (2.20), (2.22) and (2.23), we obtain for 0 < m ≤ n, x ∈ R+ that

g(0)
n,m(x) := gn,m(0, x) (2.26)

= n p(n) bR(x)

(

n−1

m−1

)

BR(x)m−1B̄R(x)n−m, (2.27)

and thus by taking into account (1.2), (1.4), it follows that

n
∑

m=1

g(0)
n,m(x) = n p(n) bR(x) =

λB̄(x)

ϕ(n)
p(n−1). (2.28)

For deriving later expressions and estimates for the moments of V (n, τ),
V (τ), we need some preliminary results for the gn,m(s, x) and its derivatives
with respect to s. For s ∈ (0,∞), 0 < m ≤ n, x ∈ R+, k ∈ Z+, let

g(k)
n,m(s, x) := (−1)k ∂k

∂sk
gn,m(s, x) (2.29)

=
∂

∂x
E[V k

m e−sVmI{N = n, Rm ≤ x}], (2.30)

where the last equality follows in view of (2.19). Note that

g(k)
n,m(s, x) = lim

h↓0
E[V k

m e−sVmI{N =n, x<Rm≤x+h}]/h ≥ 0.
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From (2.20) and (2.24) we find that

g(k)
n,m(s, 0) = 0, k ∈ N. (2.31)

Taking into account vke−sv ≤ k!s−k for v ∈ R+, from (2.30) and (2.26) we
obtain for s ∈ (0,∞), x ∈ R+ that

g(k)
n,m(s, x) ≤ k!s−kg(0)

n,m(x), 0 < m ≤ n, k ∈ Z+. (2.32)

Lemma 2.1 Let EN < ∞. For s ∈ (0,∞) and k ∈ Z+, it holds that

∑

0<m≤n

ϕ(n)
∂

∂x
g(k)
n,m(s, x) = −

∑

0<m≤n

(ϕ(n)β(x)+s)g(k)
n,m(s, x)

+ k
∑

0<m≤n

g(k−1)
n,m (s, x). (2.33)

Proof First we will prove (2.33) for k = 0. Let s ∈ [0,∞) be fixed.
Replacing in (2.16) the variables ri by ri + η for i = 1, . . . , m in the argu-
ments, integrating over [−r1, 0] with respect to η and applying (2.17), (2.18),
one finds that the system of PDEs (2.16) with the initial conditions (2.17),
(2.18) is equivalent to the following linear system of integral equations for
0 < m ≤ n, r ∈ Ω̄m:

ϕ(n)un,m(s; r) = I{m=1}ϕ(n)n! p(n)m−1
S

+ I{m>1}λun−1,m−1(s; r2−r1, . . . , rm−r1)

−

∫ 0

−r1

(λ+s+ϕ(n)β(r+η1m)) un,m(s; r+η1m)dη

+ ϕ(n+1)

m
∑

ℓ=1

∫ 0

−r1

∫ rℓ

rℓ−1

β(τ +η)un+1,m+1(s; r
(ℓ)(r+η1m, τ +η))

dτdη

+ ϕ(n+1)

∫ 0

−r1

bR(rm+η)un+1,m(s; r+η1m)dη. (2.34)

Integrating both sides of (2.34) over 0 ≤ r1 ≤ . . . ≤ rm−1 ≤ x with respect
to dr1 . . .drm−1 for fixed x = rm, using Fubini’s theorem and taking into
account (2.21), we obtain after some algebra for 0 < m ≤ n, x ∈ R+ that

ϕ(n)ḡn,m(s, x) = I{m=1}ϕ(n)n! p(n)m−1
S

+ I{m>1}λ

∫ x

0
ḡn−1,m−1(s, η)dη − (λ+s)

∫ x

0
ḡn,m(s, η)dη

11



− ϕ(n)
m−1
∑

ℓ=1

∫ x

0
Jn,m,ℓ(s, η)dη − ϕ(n)

∫ x

0
β(η)ḡn,m(s, η)dη

+ ϕ(n+1)
m

∑

ℓ=1

∫ x

0
Jn+1,m+1,ℓ(s, η)dη

+ ϕ(n+1)

∫ x

0
bR(η)ḡn+1,m(s, η) dη, (2.35)

where

Jn,m,ℓ(s, x) :=

∫

0≤r1≤...≤rm−1≤x
β(rℓ)un,m(s; r1, . . . , rm−1, x)

dr1 . . .drm−1 (2.36)

for 0 < ℓ < m ≤ n and x ∈ R+. In view of ddℓ(x)/dx = −bR(x)dℓ−1(x) for
ℓ ∈ N, cf. (2.22), (1.4), from (2.35) and (2.20) after some algebra we find the
following system of differential equations for the gn,m(s, x) for 0 < m ≤ n,
x ∈ R+:

ϕ(n)
∂

∂x
gn,m(s, x) = I{m>1}λgn−1,m−1(s, x) − (λ+s+ϕ(n)β(x)

+ ϕ(n)(n−m)βR(x))gn,m(s, x) − ϕ(n)
m−1
∑

ℓ=1

Jn,m,ℓ(s, x) dn−m(x)

+ ϕ(n+1)
m

∑

ℓ=1

Jn+1,m+1,ℓ(s, x) dn−m(x)

+ ϕ(n+1)(n+1−m)βR(x) gn+1,m(s, x). (2.37)

Now let x∗ ∈ R+ be arbitrary but fixed and β∗ := sup{β(x) : 0 ≤ x ≤ x∗},
which is finite in view of (A1). Then from (2.36) and (2.20) we find that for
0 < ℓ < m ≤ n, 0 ≤ x ≤ x∗ it holds

Jn,m,ℓ(s, x) dn−m(x) ≤ β∗gn,m(s, x). (2.38)

Because of (2.32) for k = 0, (2.28), (2.38) and EN < ∞, summing up
(2.37) over 0 < m ≤ n ≤ n′, taking the limit n′ → ∞ provides after some
algebra that most of the summands cancel each other, and we obtain (2.33)
for x ∈ [0, x∗]. Since x∗ was chosen arbitrarily, (2.33) is valid for x ∈ R+,
finishing the proof for k = 0.

For proving (2.33) for k ∈ N, we start from (2.33) for k = 0. In view of
|gn,m(s, x)| ≤ gn,m(0, x) for ℜs ≥ 0, we may take the kth derivative on both
sides of (2.33) with respect to s for ℜs > 0 item by item due to Weierstrass’s
theorem, cf. [Ahl], which provides (2.33) for s ∈ (0,∞), k ∈ N. ¤
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Remark 2.1 Note that (2.35)–(2.37) and (2.33) for k = 0 are valid for
s ∈ [0,∞).

2.3 LSTs of sojourn times

Consider the M/GI/SDPS system in steady state. For τ ∈ R+, let V (n, τ)
be the sojourn time of a tagged arriving request with required service time
τ (τ -request) finding n requests at its arrival in the system. By V (τ) we
denote the sojourn time of a tagged arriving τ -request.

Theorem 2.1 For the M/GI/SDPS system let the stability condition (1.1)
and (A1) be satisfied. Then for s ∈ R+ and τ ∈ R+ the LSTs of V (n, τ),
n ∈ Z+, and V (τ) are given by

E[e−sV (n,τ)] =
ϕ(n+1)

λ(τ)p(n)

n+1
∑

m=1

gn+1,m(s, τ), (2.39)

E[e−sV (τ)] =
1

λ(τ)

∞
∑

n=1

ϕ(n)
n

∑

m=1

gn,m(s, τ), (2.40)

respectively, where

λ(x) := λB̄(x), x ∈ R+, (2.41)

and the gn,m(s, x), 0 < m ≤ n, x ∈ R+, are given by (2.20)–(2.22).

Proof Consider a tagged arriving τ -request finding n requests at its ar-
rival. From the PASTA property and conditioning with respect to the vector
R = r ∈ Ω̄n of residual service times one obtains from (2.2), (2.3), (2.7) and
(2.13) that

E[e−sV (n,τ)] =
1

p(n)

n+1
∑

m=1

∫

0≤r1≤...≤rm−1≤τ≤rm≤...≤rn

p(n; r)

hn+1,m(s; r(m)(r, τ))dr1 . . .drn

=
1

(n+1)p(n+1)bR(τ)

n+1
∑

m=1
∫

0≤r1≤...≤rm−1≤τ
un+1,m(s; r1, . . . , rm−1, τ)dr1 . . .drm−1

∫

τ≤rm≤...≤rn

n
∏

ℓ=m

bR(rℓ)drm . . .drn. (2.42)
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From (2.42) the assertion (2.39) follows easily in view of bR(τ) = B̄(τ)/mS ,
(1.2), (2.41), integration with respect to drm . . .drn and (2.20)–(2.22). The
assertion (2.40) follows directly from (2.39) and

E[e−sV (τ)] =
∞

∑

n=0

p(n)E[e−sV (n,τ)].

¤

From (2.40), (2.41), β(τ) = b(τ)/B̄(τ) and

E[e−sV ] =

∫

R+

E[e−sV (τ)] b(τ)dτ (2.43)

we obtain immediately the following representation for the LST of V .

Corollary 2.1 Let the stability condition (1.1) for the M/GI/SDPS sys-
tem with (A1) be satisfied. Then for s ∈ R+ the LST of V is given by

E[e−sV ] =
1

λ

∞
∑

n=1

ϕ(n)

n
∑

m=1

∫

R+

β(τ)gn,m(s, τ)dτ. (2.44)

3 Bounds for the moments of V (τ )

Theorem 3.1 Let the stability condition (1.1) for the M/GI/SDPS system
with a general service time df. B(x) be satisfied. Then the kth moment of
V (τ), τ ∈ R+, is finite if

∞
∑

n=0

χ(n+1)kp(n) < ∞. (3.1)

For k ∈ Z+, it holds that

τk
(

∞
∑

n=0

χ(n+1)p(n)
)k

≤ E[V k(τ)] ≤ τk
∞

∑

n=0

χ(n+1)kp(n), τ ∈ R+,

(3.2)

lim
τ↓0

E[V k(τ)]

τk
=

∞
∑

n=0

χ(n+1)kp(n). (3.3)

If additionally (3.1) is satisfied, then it holds that

lim
τ↓0

E[V k(n, τ)]

τk
= χ(n+1)k, n ∈ Z+. (3.4)
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Proof The lower bound in (3.2) follows directly from (1.6), (1.5) and
Hölder’s inequality2. For proving the other assertions first we assume that
B(x) satisfies (A1), i.e. that B(x) has a continuous density and B(x) < 1
for x ∈ R+. Then for s ∈ (0,∞), k ∈ Z+ from Theorem 2.1 and (2.29) we
obtain that

λ(x)E[V k(x)e−sV (x)] =
∑

0<m≤n

ϕ(n)g(k)
n,m(s, x), x ∈ R+. (3.5)

In view of (2.30), for k ∈ N, applying Hölder’s inequality to the difference
quotient E[V k

me−sVmI{N = n, x < Rm ≤ x + h}]/h and taking the limit
h ↓ 0 we find that

g(k)
n,m(s, x) ≤

( ∂

∂x
E[e−sVmI{N =n, Rm≤x}]

)1/(k+1)

( ∂

∂x
E[V k+1

m e−sVmI{N =n, Rm≤x}]
)k/(k+1)

≤ (g(0)
n,m(x))1/(k+1)(g(k+1)

n,m (s, x))k/(k+1),

where the last inequality follows from (2.30) and (2.32) for k = 0. Using the
above inequality, applying Hölder’s inequality to the series and taking into
account (2.28), (3.5) provides

1

λ(x)

∑

0<m≤n

g(k)
n,m(s, x)

≤
∑

0<m≤n

(

χ(n)k+1 ϕ(n)

λ(x)
g(0)
n,m(x)

)
1

k+1
(ϕ(n)

λ(x)
g(k+1)
n,m (s, x)

)
k

k+1

≤
(

∑

0<m≤n

χ(n)k+1 ϕ(n)

λ(x)
g(0)
n,m(x)

)
1

k+1
(

∑

0<m≤n

ϕ(n)

λ(x)
g(k+1)
n,m (s, x)

)
k

k+1

=
(

∞
∑

n=0

χ(n+1)k+1p(n)
)

1

k+1
(

E[V k+1(x)e−sV (x)]
)

k

k+1

. (3.6)

Taking the derivative on both sides of (3.5) with respect to x, taking into
account λ(x) = λB̄(x), applying Lemma 2.1, β(x) = b(x)/B̄(x) and again
(3.5), we obtain for s ∈ (0,∞), k ∈ N that

λ(x)
∂

∂x
E[V k(x)e−sV (x)] =

∑

0<m≤n

(kg(k−1)
n,m (s, x)−sg(k)

n,m(s, x)),

x ∈ R+. (3.7)

2In case of k = 2 the lower bound in (3.2) is equivalent to the fact that the variance of
V (τ) is greater or equal to zero as we have equality in (3.2) for k = 1.
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In view of g
(k)
n,m(s, x) ≥ 0, in case of k > 1, (3.7) and (3.6) where k is replaced

by k − 1 imply

∂

∂x
E[V k(x)e−sV (x)]

≤ k
(

∞
∑

n=0

χ(n+1)kp(n)
)1/k

(E[V k(x)e−sV (x)])(k−1)/k,

which is equivalent to

∂

∂x
(E[V k(x)e−sV (x)])1/k ≤

( ∞
∑

n=0

χ(n+1)kp(n)

)1/k

. (3.8)

Note that (3.8) is valid for k = 1, too, in view of (3.7), (2.32), (2.28) and
(2.41). For k ∈ N, because of E[V k(0)e−sV (0)] = 0, integrating (3.8) over
[0, τ ] and taking the kth power yields that

E[V k(τ)e−sV (τ)] ≤ τk
∞

∑

n=0

χ(n+1)kp(n), τ ∈ R+. (3.9)

The limit s ↓ 0 provides the upper bound in (3.2). Thus (3.1) implies that
E[V k(τ)] is finite for τ ∈ R+.

For proving (3.3) we derive a lower bound for E[V k(n, τ)]. Let

u(k)
n,m(s; r) := (−1)k ∂k

∂sk
un,m(s; r) (3.10)

for s ∈ (0,∞), 0 < m ≤ n, r ∈ Ω̄m, k ∈ Z+. Since 0 ≤ vke−sv ≤ k! s−k for
v ∈ R+, from (2.14) and (2.15) we obtain that

0 ≤ u(k)
n,m(s; r) ≤ k! s−k un,m(0; r) = k! s−k n! p(n)

m
∏

ℓ=1

bR(rℓ). (3.11)

Further, from (2.17) and (2.18) we find that

u
(k)
n,1(s; 0) = I{k=0}n! p(n)m−1

S , (3.12)

u(k)
n,m(s; 0, r2, . . . , rm) =

λ

ϕ(n)
u

(k)
n−1,m−1(s; r2, . . . , rm) (3.13)

for 1 < m ≤ n, 0 ≤ r2 ≤ . . . ≤ rm. Taking the kth derivative on both sides
of (2.16) with respect to s, multiplying the resulting equation by (−1)k,
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replacing then the variables ri by ri + η, i = 1, . . . , m, multiplying both
sides by

Cn(r; η) := exp
(

∫ η

0
cn(r+ξ1m)dξ

)

, (3.14)

where

cn(r) := (λ+s)/ϕ(n) + β(r), r ∈ Ω̄m, (3.15)

integrating then over [−r1, 0] with respect to η, applying partial integration
to the resulting l.h.s. and applying (3.13), one obtains the following linear
system of integral equations for 0 < m ≤ n, r ∈ Ω̄m, s ∈ (0,∞), k ∈ N:

ϕ(n)u(k)
n,m(s; r) = I{m>1}λ u

(k)
n−1,m−1(s; r2−r1, . . . , rm−r1)Cn(r;−r1)

+

∫ 0

−r1

(

ϕ(n+1)
(

m
∑

ℓ=1

∫ rℓ

rℓ−1

β(τ +η)

u
(k)
n+1,m+1(s; r

(ℓ)(r+η1m, τ +η))dτ

+ bR(rm+η)u
(k)
n+1,m(s; r+η1m)

)

+ku(k−1)
n,m (s; r+η1m)

)

Cn(r; η)dη.

(3.16)

For s ↓ 0 from (3.16) and (3.11) we find that for

u(k)
n,m(r) := lim

s↓0
u(k)

n,m(s; r), 0 < m ≤ n, r ∈ Ω̄m, k ∈ N, (3.17)

it holds

ϕ(n)u(k)
n,m(r) ≥ k

∫ 0

−r1

u(k−1)
n,m (r+η1m)Cn(r; η)dη. (3.18)

For 0 < m ≤ n, k ∈ N, let

ḡ(k)
n,m(x) :=

∫

0≤r1≤...≤rm−1≤x
u(k)

n,m(r1, . . . , rm−1, x)dr1 . . .drm−1

= (−1)k lim
s↓0

∂k

∂sk
ḡn,m(s, x), (3.19)

cf. (2.21), (3.10) and (3.17). Now let x∗ ∈ R+ be arbitrary but fixed,
β∗ := sup{β(x) : 0 ≤ x ≤ x∗} and

an(x) := exp
(

−
( λ

ϕ(n)
+ nβ∗

)

x
)

, x ∈ R+. (3.20)
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Integrating (3.18) over 0≤r1≤ . . .≤rm−1≤x with respect to dr1 . . .drm−1,
taking into account

Cn(r;−η) ≥ an(x), 0 ≤ η ≤ r1 ≤ . . . ≤ rm−1 ≤ rm = x ≤ x∗,

and using Fubini’s theorem, for 0 < m ≤ n, k ∈ N we obtain that

ϕ(n) ḡ(k)
n,m(x) ≥ k an(x)

∫ x

0
ḡ(k−1)
n,m (η)dη, 0 ≤ x ≤ x∗. (3.21)

For 0 < m ≤ n, k ∈ Z+, x ∈ R+, let

g(k)
n,m(x) := lim

s↓0
g(k)
n,m(s, x) =

∂

∂x
E[V k

m I{N =n, Rm≤x}], (3.22)

cf. (2.26), (2.29), (2.30). Note that from (2.20), (2.29), (3.19), (3.22) it
follows

g(k)
n,m(x) = ḡ(k)

n,m(x) dn−m(x). (3.23)

Now we will show by induction that for k ∈ Z+, n ∈ N, x ∈ [0, x∗] it holds

ϕ(n)
n

∑

m=1

g(k)
n,m(x) ≥ λ(x)xk p(n−1)

(an(x) B̄R(x)n−1

ϕ(n)

)k
. (3.24)

For k = 0 the assertion (3.24) follows directly from (2.28) and (2.41). As-
sume that (3.24) is true for k ∈ Z+. For k+1 from (3.23), (3.21), (2.22), the
induction assumption for k and by taking into account that B̄R(η), an(η),
λ(η) are decreasing in η, B̄R(η) ≤ 1 and B̄R(0) = 1 we find that

ϕ(n)

n
∑

m=1

g(k+1)
n,m (x) ≥ (k+1) an(x)

n
∑

m=1

∫ x

0
ḡ(k)
n,m(η)dn−m(x)dη

≥ (k+1) an(x)

∫ x

0

n
∑

m=1

ḡ(k)
n,m(η)dn−m(η)B̄R(x)n−mdη

≥ (k+1) an(x) B̄R(x)n−1

∫ x

0

1

ϕ(n)
λ(η) ηk p(n−1)

(an(η) B̄R(η)n−1

ϕ(n)

)k
dη

≥ λ(x)xk+1 p(n−1)
(an(x) B̄R(x)n−1

ϕ(n)

)k+1
,
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finishing the induction step, i.e., (3.24) is proved. Now, from Theorem 2.1,
(2.29), (3.22) and (3.24) we obtain for k ∈ N that

E[V k(n, τ)] ≥ τk
(an+1(τ) B̄R(τ)n

ϕ(n+1)

)k
, τ ∈ R+, n ∈ Z+. (3.25)

In view of limτ↓0 an+1(τ) = limτ↓0 B̄R(τ) = 1, cf. (3.20), thus we find that

lim inf
τ↓0

E[V k(n, τ)]

τk
≥ χ(n+1)k, n ∈ Z+. (3.26)

Multiplying both sides of (3.25) by p(n), summing up over n ∈ Z+ and
taking into account (3.2), we obtain (3.3). For fixed n ∈ Z+, from (3.26),
(3.3) it follows that

lim sup
τ↓0

E[V k(n, τ)]

τk
p(n) +

∑

j∈Z+\{n}

χ(j+1)kp(j)

≤ lim sup
τ↓0

E[V k(n, τ)]

τk
p(n) +

∑

j∈Z+\{n}

lim inf
τ↓0

E[V k(j, τ)]

τk
p(j)

≤ lim sup
τ↓0

∑

j∈Z+

E[V k(j, τ)]

τk
p(j) = lim sup

τ↓0

E[V k(τ)]

τk

=
∑

j∈Z+

χ(j+1)kp(j),

which provides (3.4) in view of (3.26) if (3.1) is fulfilled.
The case of a general df. B(x) with finite mean mS is obtained by taking

the limit in distribution of a sequence of service time distributions Bν(x),
ν = 1, 2, . . ., where the Bν(x) have the given mean mS , fulfill (A1) and
converge weakly to B(x). Since the assertions of the theorem hold for the
Bν(x), by arguments of continuity we obtain the assertions for B(x) in view
of (1.1) and (1.2). ¤

Remark 3.1 The results of Theorem 3.1 are insensitivity results with re-
spect to the service time distribution for given mS. Note that in case of
k = 1 from Cohen’s result (1.6) indeed we know that even equality holds on
the r.h.s. of (3.2), cf. also the discussion after the proof of Theorem 3.2 be-
low. In case of k > 1 the r.h.s. of (3.2) provides an upper bound for E[V k(τ)]
and for small positive values of τ a good approximation for E[V k(τ)] because
of (3.3).
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For the M/M/SDPS system and waiting times Theorem 3.1 has been
proved recently by the authors in [BB] Theorem 2.1. For the M/GI/1−PS
system, i.e. for ϕ1(n) = 1/n, n ∈ N, Theorem 3.1 has been proved in [CBB]
Theorem 5.11 and Theorem 4.1 by using stochastic ordering theory and
particular results known for M/GI/1− PS systems. Analogously to [CBB]
for the M/GI/1−PS system, the r.h.s. of (3.2) can be interpreted as follows:
consider a tagged τ -request finding at its arrival n requests in the system. If
during the service of the τ -request no arrival and no departure occurs, then
V̂ (τ) = τ χ(n + 1) is the sojourn time of the τ -request, and its kth moment
is V̂ k(τ) = τk χ(n + 1)k. Thus, if τ is small, then V̂ (τ) = τ χ(N + 1) is
approximately the sojourn time of a τ -request, and therefore V̂ (τ) is called
in [CBB] the instantaneous sojourn time as τ ↓ 0. Note that the r.h.s.
of (3.2) is just the kth moment of the instantaneous sojourn time V̂ (τ),
i.e., E[V̂ k(τ)] is for all τ ∈ R+ an upper bound for E[V k(τ)], and thus
Theorem 3.1 generalizes the result of [CBB] to the general M/GI/SDPS
system. In case of a stable M/GI/1 − PS system, the assumption (3.1) is
satisfied for all k ∈ N, in view of p(n) = (1 − ̺)̺n, n ∈ Z+, and ̺ < 1, and
hence all moments of V (τ) are finite. However, for a stable M/GI/SDPS
system (3.1) is not fulfilled in general, e.g. in case of ϕ(n) := (n+k +1)/n2,
n ∈ N and ̺ := 1 for k ∈ N.

Theorem 3.2 For the M/GI/SDPS system let the stability condition (1.1)
and (A1) be satisfied, and let k ∈ N such that (3.1) is fulfilled. Then the kth
moment of V (τ) is finite, and it holds that

E[V k(τ)] = k
∞

∑

n=1

n
∑

m=1

∫ τ

0

g
(k−1)
n,m (x)

λ(x)
dx, τ ∈ R+, (3.27)

where the g
(k−1)
n,m (x) are given by (2.27), (2.29) and (3.22).

Proof In case of k > 1, (3.6) where k is replaced by k−1, (3.9) and taking
the limit s ↓ 0 provide

1

λ(x)

∑

0<m≤n

g(k−1)
n,m (x) ≤ xk−1

∞
∑

n=0

χ(n+1)kp(n), x > 0. (3.28)

Note that (3.28) holds for k = 1, too, in view of (2.28). Taking into account
xe−x ≤ 1 for x ∈ R+, from (2.30) we find that

sg(k)
n,m(s, x) = lim

h↓0
E[V k−1

m (sVme−sVm)I{N =n, x<Rm ≤ x+h}]/h

≤ g(k−1)
n,m (x).
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Moreover, from (2.40) and (3.2) we obtain that

ϕ(n)g(k)
n,m(s, x) ≤ λ(x)E[V k(x)] ≤ λ(x)xk

∞
∑

n=0

χ(n+1)kp(n),

which implies lims↓0 sg
(k)
n,m(s, x) = 0. Due to (3.28) and Lebesgue’s theorem,

thus it follows that

lim
s↓0

1

λ(x)

∑

0<m≤n

sg(k)
n,m(s, x) = 0, x > 0. (3.29)

Because of (3.28) and (3.29), taking the limit s ↓ 0 in (3.7) provides

d

dx
E[V k(x)] =

k

λ(x)

∞
∑

n=1

n
∑

m=1

g(k−1)
n,m (x), x > 0. (3.30)

In view of E[V k(0)] = 0, integrating on [0, τ ] yields (3.27). ¤

Note that, because of (2.28), for k = 1 from (3.27) it follows

E[V (τ)] = τ
∞

∑

n=0

χ(n+1) p(n), τ ∈ R+,

corresponding to Cohen’s general result (1.6), cf. (1.5). From (3.27) and

E[V k] =

∫ ∞

0
E[V k(τ)] b(τ) dτ

via Fubini’s theorem and Theorem 3.1 we obtain the following results for
the unconditional sojourn time V .

Theorem 3.3 For the M/GI/SDPS system let the stability condition (1.1)
and (A1) be satisfied, and let k ∈ N such that (3.1) is fulfilled and that
E[Sk] < ∞. Then the kth moment of V is finite, and it holds that

E[V k] =
k

λ

∞
∑

n=1

n
∑

m=1

∫ ∞

0
g(k−1)
n,m (x) dx, (3.31)

where the g
(k−1)
n,m (x) are given by (2.27), (2.29) and (3.22).

Remark 3.2 The equations (3.27) and (3.31) are useful for a numerical
computation of sojourn time characteristics for particular M/GI/SDPS
systems, because they allow a reduction of the numerical complexity (from k
to k−1), cf. [BB] for the M/M/SDPS system.
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4 Waiting times

The waiting time in an M/GI/SDPS system is defined as the difference
of the sojourn and required service time of a request, cf. [Ya2] p. 107. Let
W := V − S and W (τ) := V (τ) − τ be the waiting time of an arbitrary
arriving request and an arriving τ -request, respectively. In order to ensure
that the waiting times are non-negative we assume in the following that
0 < ϕ(n) ≤ 1, n ∈ N, and that there exists an n ∈ N such that ϕ(n) < 11.
We have immediately that EW = EV − ES, var(W (τ)) = var(V (τ)), and
from (1.6) that EW (τ) = (τ/ES)EW . For the variances var(V ), var(W ) or
equivalently for the squared coefficients of variation2 c2

V := var(V )/(EV )2,
c2
W := var(W )/(EW )2 it holds that

(EV )2(c2
V −c2

S) = (EW )2(c2
W −c2

S) =

∫

R+

var(W (τ)) dB(τ) ≥ 0, (4.1)

cf. [BB] (4.4), which implies

var(V ) = var(W ) + var(S) + 2c2
SEWES. (4.2)

Note that due to the SDPS discipline waiting and service times are not inde-
pendent in contrast to the FCFS discipline, cf. (4.2). Moreover, from (4.1)
it follows that c2

S ≤ c2
V ≤ c2

W . Note that in (4.1) the sojourn and waiting
times occur symmetrically, reflecting the fact that results for sojourn times
have a correspondence to results for waiting times and vice versa. Below we
will shortly summarize some corresponding results for waiting times for the
M/GI/SDPS system. The proofs are analogous to the arguments given in
Sections 2 and 3, where one has only to take into account that the waiting
time increases by (1 − ϕ(n))h during an interval [0, h] if n requests are in
the system and if there is no arrival and no departure. Thus in the corre-
sponding equation leading to (2.6) the term e−s(Vm(h)+h) has to be replaced
by e−s(Wm(h)+(1−ϕ(n))h) and in (2.6) the term λ + s has to be replaced by
λ + s(1 − ϕ(n)). Paralleling the proof of Theorem 3.1 one finds

Theorem 4.1 Let the stability condition (1.1) for the M/GI/SDPS system
with a general service time df. B(x) be satisfied. Then the kth moment of
W (τ), τ ∈ R+, is finite if

∞
∑

n=0

(χ(n+1)−1)kp(n) < ∞. (4.3)

1In case of ϕ(n) = 1, n ∈ N, the system corresponds to an M/GI/∞ system, where no
waiting occurs.

2For a r.v. X the squared coefficient of variation is denoted by c2
X := var(X)/(EX)2.
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For k ∈ Z+, it holds that

τk
(

∞
∑

n=0

(χ(n+1)−1)p(n)
)k

≤ E[W k(τ)] ≤ τk
∞

∑

n=0

(χ(n+1)−1)kp(n),

τ ∈ R+,

lim
τ↓0

E[W k(τ)]

τk
=

∞
∑

n=0

(χ(n+1)−1)kp(n).

If additionally (4.3) is satisfied, then it holds that

lim
τ↓0

E[W k(n, τ)]

τk
= (χ(n+1)−1)k, n ∈ Z+.
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