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The Steiner Connectivity Problem§

Ralf Borndörfer∗ Marika Neumann∗ Marc E. Pfetsch∗∗

Abstract

The Steiner connectivity problem is a generalization of the Steiner tree problem.
It consists in finding a minimum cost set of simple paths to connect a subset of
nodes in an undirected graph. We show that polyhedral and algorithmic results on
the Steiner tree problem carry over to the Steiner connectivity problem; namely, the
Steiner cut and the Steiner partition inequalities, as well as the associated polynomial
time separation algorithms, can be generalized. Similar to the Steiner tree case, a
directed formulation, which is stronger than the natural undirected one, plays a
central role.

1 Introduction

The Steiner connectivity problem (SCP) can be described as follows. We are given
an undirected graph G = (V,E), a set of terminal nodes T ⊆ V , and a set of (simple)
paths P in G. The paths have nonnegative costs c ∈ RP

+. The problem is to find a
set of paths P′ ⊆ P of minimal cost

∑
p∈P′ cp that connect the terminals, i.e., such

that for each pair of distinct terminal nodes t1, t2 ∈ T there exists a path from t1
to t2 in G that is completely covered by paths of P′. We can assume w.l.o.g. that
every edge is covered by a path, i.e., for every e ∈ E there is a p ∈ P such that e ∈ p;
in particular, G has no loops. Figure 1 gives an example of a Steiner connectivity
problem and a feasible solution.

The SCP is a generalization of the Steiner tree problem (STP), in which all paths
contain exactly one edge. Similar to the STP with nonnegative costs, see [13, 15, 16]
for an overview, there exists always an optimal solution of the SCP that is minimally
connected, i.e., if we remove any path from the solution, there exist at least two
terminals which are not connected. However, in contrast to the STP, an optimal
solution of the Steiner connectivity problem does not necessarily form a tree, see
again Figure 1.

The SCP is a special case of the line planning problem, see [3] and the references
therein for a detailed description. The line planning problem can be defined as
follows. We are given a public transportation network G = (V,E), a set of (simple)
line paths P, and a passenger demand matrix (duv) ∈ NV×V , which gives the number
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Figure 1: Example of a Steiner connectivity problem. Left: A graph with four terminal nodes
(T = {a, d, e, f}) and six paths

`
P = {p1 = (a, b, c, d), p2 = (e, f, g), p3 = (a, e), p4 = (e, f, c), p5 =

(g, d), p6 = (f, g, c, d)}
´
. Right: A feasible solution with three paths (P′ = {p3, p4, p6}).

of passengers who want to travel between different stations in the network. The
edges of G have nonnegative travel times τ ∈ RE+, the paths have nonnegative costs
c ∈ RP

+ and capacities κ ∈ RP
+. The problem is to find a set of line paths P′ ⊆ P

with associated frequencies fp ∈ R+, p ∈ P′, and a passenger routing, such that
the overall capacities

∑
p∈P′,e∈p fp · κp on the edges e ∈ E suffice to transport all

passengers. There are two possible objectives: to minimize the travel time, or to
minimize the cost of the line paths.

The connection between the line planning problem and the SCP is that the line
paths P′ usually connect all stations with positive supply and/or demand. More
precisely, let (T, F ) be the demand graph of the line planning problem, where T =
{v ∈ V |

∑
u(duv + dvu) > 0} is the set of nodes with positive supply or demand,

and F =
{
{u, v} | duv + dvu > 0

}
a set of demand edges. Then the following holds:

If the demand graph is connected, then the set of line paths P′ of a solution of the
line planning problem is a solution of the SCP associated with the graph G, terminal
set T , and costs c. In other words, if we neglect travel times of the passengers, as
well as capacities and frequencies of the lines, the line planning problem with con-
nected demand graph reduces to the Steiner connectivity problem. In this way, the
SCP captures the connectivity aspect of the line planning problem. This connection
motivates studying the SCP.

A natural question is whether one can transfer structural results and algorithms
from the Steiner tree problem to the Steiner connectivity problem. It will turn out
that this can indeed be done in many cases. In particular, an important result (see
Chopra and Rao [4]) in the STP literature states that the undirected IP formulation
of the STP, including all so-called Steiner partition inequalities, is dominated by a
certain family of directed formulations. Using this connection, a super class of the
Steiner partition inequalities can be separated in polynomial time. We will show
that similar results hold for the SCP as well. Namely, a directed formulation of the
Steiner connectivity problem, which can be interpreted as an extended formulation,
produces a strong relaxation of the Steiner connectivity problem via projection to the
original space of variables; see, e.g., Vanderbeck and Wolsey [19] for a discussion of
extended formulations. The directed formulation that we use, however, is constructed
differently than in the STP case and must be strengthened by so-called flow-balance
constraints to obtain an analogous result. Subtle differences also come up in the
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complexity analysis. For instance, the SCP is also solvable in polynomial time for a
fixed number of terminals, but it is NP-hard in the case T = V .

The article is structured as follows. It starts with a combinatorial discussion of the
Steiner connectivity problem in Section 2. We show that the SCP is equivalent to
a suitably constructed directed Steiner tree problem. This relation yields polyno-
mial time algorithms for the SCP in some cases. In Section 3, we give three integer
programming formulations for the SCP based on the transformation in Section 2,
namely, an undirected cut formulation, a directed cut formulation, and a contracted
directed cut formulation. We compare these formulations and their LP relaxations.
An analysis of the polytope associated with the undirected cut formulation follows
in Section 4. We state necessary and sufficient conditions for the Steiner partition
inequalities to be facet defining. We also derive a polynomial time separation algo-
rithm for a super class of the Steiner partition inequalities. This algorithm is based
on the directed cut formulation of the SCP. This shows that directed models pro-
vide tight formulations for the SCP, similar as for the STP. These theoretical results
are illustrated by computations for large scale real-world transportation networks in
Section 5.

2 Relation to Directed Steiner Trees & Complexity

We show in this section the equivalence of the SCP and a suitably constructed
directed Steiner tree problem. The directed Steiner tree problem (DSTP) is the
following: Given a directed graph and a set of terminal nodes T , we have to find a
minimum cost set B of arcs that connect a root node r ∈ T to each other terminal
t ∈ T\{r}, i.e., there exists a directed path from r to t in B. If the costs of the arcs
are nonnegative, which we assume, there exists a solution that is a directed tree (an
arborescence).

Consider an SCP with undirected graph G = (V,E), a set of paths P, terminals
T ⊆ V , and nonnegative costs c ∈ RP

+. Define a digraph D′ = (V ′, A′), which we
call Steiner connectivity digraph. Its node set is

V ′ := T ∪ {vp, wp | p ∈ P}.

We choose some terminal node r ∈ T as root node and define the following arcs
a ∈ A′ and costs c′a:

a = (r, vp), c′a := 0, ∀ p ∈ P with r ∈ p,
a = (vp, wp), c′a := cp, ∀ p ∈ P,
a = (wp̃, vp), c′a := 0, ∀ p, p̃ ∈ P, p 6= p̃, p and p̃ have

a node v ∈ V in common,
a = (wp, t), c′a := 0, ∀ p ∈ P, ∀ t ∈ T\{r} with t ∈ p.

Figure 2 illustrates our construction. Note that choosing different root nodes re-
sults in different Steiner connectivity digraphs and hence different associated DSTPs.
However, we will show in Proposition 2.2 that the solutions of an SCP and any as-
sociated DSTP are all equivalent, independent of the choice of the root node. For

3



a = rb

c

10

5

10

5
a = r

c

b10

5

5

10

Figure 2: A Steiner connectivity problem and its associated directed Steiner tree problem. Left:
Graph G with four paths and three terminal nodes. The numbers on the paths indicate costs. Right:
Associated Steiner connectivity digraph D′. The numbers on the arcs are the costs; the default
value is zero.

ease of notation, we will therefore omit the root node whenever the results are in-
dependent of r. Polyhedral results can depend on the choice of the root node, see
Remark 3.9 below. In such cases we will include the root node in the notation.

A DSTP associated with an SCP has the following properties.

Lemma 2.1. 1. The only arc with target node wp is (vp, wp), for all p ∈ P.
2. The only arc with source node vp is (vp, wp), for all p ∈ P.
3. Each simple directed (r, t)-path, t ∈ T\{r}, has the general form (r, vp1 , wp1 , . . . ,

vpk , wpk , t), k ≥ 1.

Proposition 2.2. The following holds for an SCP and an associated DSTP: For each
solution of one problem there exists a solution of the other problem with the same
objective value. In particular, the optimal objective value of an associated DSTP is
independent of the choice of the root node.

Proof. Assume P̃ is a solution of SCP. Then let

Ã := A′ \ {(vp, wp) | p /∈ P̃}.

The arcs in Ã connect the root r with each terminal t ∈ T \ {r} via a directed path.
Moreover,

∑
a∈Ã c

′
a =

∑
p∈P̃ c

′
vpwp =

∑
p∈P̃ cp.

For the converse, assume that Ã is a solution of the DSTP. We show that

P̃ := {p ∈ P | (vp, wp) ∈ Ã}

is a solution of the corresponding SCP with the same cost. To this purpose, consider
the root node r and some terminal t ∈ T\{r}; these nodes are connected by a
simple directed path in D′ using only arcs in Ã. Each such path has the form
(r, vp1 , wp1 , . . . , vpk , wpk , t), k ≥ 1 (see Lemma 2.1), with (vpi , wpi) ∈ Ã, i = 1, . . . , k,
that is, pi ∈ P̃, i = 1, . . . , k. Due to the construction of D′, p1 contains r, pi and
pi+1, i = 1, . . . , k − 1, have at least one node in common, and pk contains t. Hence,
we can find a path from r to t in G that is covered by p1, . . . , pk ∈ P̃. Since the paths
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are undirected, every two terminals t1, t2 ∈ T , t1, t2 6= r, can be connected via r, i.e.,
P̃ connects T . Furthermore,

∑
p∈P̃ cp =

∑
p∈P̃ c

′
vpwp =

∑
a∈Ã c

′
a.

These arguments hold for every root node.

Since the Steiner connectivity problem is a generalization of the Steiner tree problem,
it is strongly NP-hard in general. The relation to the associated DSTP, however,
exhibits a number of polynomially solvable cases.

Corollary 2.3. SCP is solvable in polynomial time for |T | = k, k constant.

Proof. This follows from the complexity results for the directed Steiner tree problem,
see Feldman and Ruhl [7].

Note that the case |T | = 2 can be solved by a directed shortest path computation in
the Steiner connectivity digraph.

In contrast to the STP, however, we can show the following.

Proposition 2.4. SCP is strongly NP-hard for T = V , even for unit costs.

Proof. We reduce the set covering problem to the Steiner connectivity problem. In
a set covering problem we are given a finite set S and a setM⊆ 2S . The problem is
to find a subsetM′ ⊆M of minimal cardinality |M′|, such that for all s ∈ S there
exists an M ∈M′ with s ∈M .

Given a set covering instance, we define a Steiner connectivity instance in a graph
G = (V,E) as follows: The nodes are V = S ∪{v} = T with v being one extra node.
Let us write V = {s0, s1, s2, . . .}, where v = s0. All nodes are terminals. We first
assume that G is a complete graph and later remove all edges that are not covered
by paths after their construction. For each set M ∈ M order the elements in M
arbitrarily and construct a path beginning in node v and passing through all nodes
of M in the given order. The cost of each such path is 1.

It is easy to see that a coverM′ with at most k elements exists if and only if a set
of paths exists that connects all nodes with cost at most k, k ≥ 0.

Corollary 2.5. SCP is strongly NP-hard for |T | = |V | − k, k constant.

Proof. We add k isolated nodes to the graph G in the proof of Proposition 2.4.

Proposition 2.6. Unless P = NP , there exists no polynomial time α-approximation
algorithm for SCP with α = γ · log |V |, γ ≤ 1.

Proof. The transformation in Proposition 2.4 is approximation preserving, since
there exists a cost preserving bijection between the solutions of a set covering instance
and its corresponding Steiner connectivity instance. It has been shown that the set
covering problem is not approximable in the sense that there exists no polynomial
time approximation algorithm with approximation factor smaller than logarithmic
(in the number of nodes) unless P = NP , see Feige [6].

5



3 Integer Programming Formulations

We propose in this section three integer programming formulations for the SCP.
The first one (SCPcut) is the natural cut formulation, the second one (SCPrarc+) is a
directed cut formulation based on the equivalence between the SCP and its associated
DSTP, the third one (SCPrcon) is also a directed cut formulation, but in a smaller
space. It will turn out that (SCPrarc+) and (SCPrcon) are equivalent and dominate
(SCPcut).

The section uses the following notation. For a vector x ∈ Rn and an index set I ⊆
{1, . . . , n}, let x|I = xI be the restriction of x onto the subspace indexed by I. Let
PLP (F ) be the polyhedron associated with the LP relaxation of an IP formulation F .
Then PLP (F )|I is the orthogonal projection of PLP (F ) on the subspace of variables
indexed by I.

3.1 Cut Formulation

The cut formulation is as follows:

(SCPcut) min
∑
p∈P

cp xp

(i) s.t.
∑

p∈Pδ(W )

xp ≥ 1 ∀ ∅ 6= W ∩ T 6= T, W ⊆ V

xp ∈ {0, 1} ∀ p ∈ P.

Here, xp is a 0/1-variable that indicates whether path p is chosen (xp = 1) or not
(xp = 0). Furthermore, Pδ(W ) := {p ∈ P | δ(W ) ∩ p 6= ∅} is the set of all paths
that cross the cut δ(W ) = {e ∈ E | |e ∩W | = 1} at least one time. If δ(W ) is an
(s, t)-cut for some terminal nodes s, t ∈ T , i.e., if s /∈ W, t ∈ W , we call Pδ(W ) an
(s, t)-Steiner path cut or shortly a Steiner path cut ; a Steiner path cut Pδ(W ) with
|Pδ(W )| = 1 is a Steiner path bridge. For given x, the capacity of a Steiner path cut
Pδ(W ) is

∑
p∈Pδ(W )

xp, and we denote the inequalities (SCPcut)(i) as Steiner path cut
constraints; they state that the capacity of each Steiner path cut must be at least
one. It is easy to see that (SCPcut) is a valid formulation for the SCP.

If each path has length 1, i.e., contains only one edge, the sets δ(W ) and Pδ(W )

are equal. In this case the Steiner connectivity problem reduces to a Steiner tree
problem, and the Steiner path cut constraints reduce to the so-called Steiner cut
constraints.

Replacing the Steiner path cut constraints by the inequalities∑
e∈δ(W )

∑
p:e∈p

xp ≥ 1 ∀ ∅ 6= W ∩ T 6= T, W ⊆ V
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produces the integer program

(SCPwcut) min
∑
p∈P

cp xp

(i) s.t.
∑

e∈δ(W )

∑
p:e∈p

xp ≥ 1 ∀ ∅ 6= W ∩ T 6= T, W ⊆ V

xp ∈ {0, 1} ∀ p ∈ P.

This weak cut formulation is also a correct IP formulation of the SCP. Note that
the left hand side of a weak Steiner path cut constraint (SCPwcut) (i) counts how
often each path crosses the cut δ(W ). These inequalities can be seen as a direct
generalization of the Steiner cut constraints for the STP. However, they are clearly
dominated by the Steiner path cut constraints.

Some Steiner path cut constraints are themselves dominated by others. In fact, the
non-dominated ones correspond to minimal disconnecting sets. A set P′ ⊆ P is a
disconnecting set if there exist two terminal nodes which are not connected via P\P′.

Lemma 3.1. Minimal disconnecting sets are minimal Steiner path cuts (w.r.t. in-
clusion) and vice versa.

Proof. “⇒”: Let P′ ⊆ P be a minimal disconnecting set, and let s, t ∈ T be two
terminal nodes that are disconnected. Define W to be the nodes reachable from t
via P \ P′. Note that s /∈ W and t ∈ W , and hence Pδ(W ) is an (s, t)-Steiner path
cut. We claim that Pδ(W ) = P′.

◦ Assume p ∈ Pδ(W ) \ P′. Hence, p connects some node u in V \W to some node
v ∈W . By definition of W , P\P′ connects v and t, and since p ∈ P\P′ connects
u and v, P \ P′ connects u and t. It follows that u ∈W , a contradiction. Hence,
Pδ(W ) ⊆ P′.
◦ Conversely, assume p ∈ P′ \ Pδ(W ). Since Pδ(W ) ⊆ P′ is a disconnecting set for s

and t, it follows that P′ is not minimal, another contradiction.

Finally, Pδ(W ) is minimal w.r.t. inclusion, because otherwise P′ = Pδ(W ) would not
be minimally disconnecting.

“⇐”: Let W ⊆ V with ∅ 6= W ∩ T 6= T , such that Pδ(W ) is minimal w.r.t. inclusion.
Then Pδ(W ) is a disconnecting set, because no terminal in W is connected to a
terminal in V \W via P\Pδ(W ). We claim that Pδ(W ) is also a minimal disconnecting
set. Suppose not; then there is some smaller disconnecting set P′ ( Pδ(W ), which we
can assume to be minimal. By the forward direction of the proof, P′ = Pδ(W ′) for
some set W ′ ⊆ V , ∅ 6= W ′ ∩ T 6= T . It follows that Pδ(W ′) = P′ ( Pδ(W ), i.e., Pδ(W )

was not minimal w.r.t. inclusion, a contradiction.

The number of the Steiner path cut constraints can be exponential in the size of the
input. However, the associated separation problem, i.e., to decide whether a given
point x̂ is feasible for the LP relaxation of (SCPcut) or to find a violated Steiner
path cut constraint, can be solved in polynomial time. Namely, this problem can
be formulated as a family of max flow/min cut problems in the Steiner connectivity
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Figure 3: Left: Graph G with four paths (p1 = (s, d), p2 = (c, t), p3 = (d, c, a, b, t), p4 = (s, a))
with value 0.5 and two terminal nodes s and t. Right: Corresponding directed graph D′. Here,
each arc has capacity 0.5. The minimum directed (s, t)-cut has value 0.5 and corresponds to the
Steiner path cut P′ = {p3} in G.

digraph D′ = (V ′, A′) that was defined in Section 2. Consider some nonnegative
vector x̂ ≥ 0. We define the following standard arc capacities κ = κ(x̂) for D′:

a = (r, vp), κa := x̂p, ∀ p ∈ P with r ∈ p,
a = (vp, wp), κa := x̂p, ∀ p ∈ P,
a = (wp̃, vp), κa := min{x̂p, x̂p̃}, ∀ p, p̃ ∈ P, p 6= p̃, p and p̃ have

a node v ∈ V in common,
a = (wp, t), κa := x̂p, ∀ p ∈ P, ∀ t ∈ T \ {r} with t ∈ p.

Figure 3 illustrates this construction. The following holds.

Lemma 3.2. Let t ∈ T\{r} be a terminal node. If the Steiner connectivity digraph D′

has standard capacities κ = κ(x̂), there exists a directed (r, t)-cut with minimum
capacity in D′ such that all arcs over this cut are of the form (vp, wp), p ∈ P.

Proof. Let δ−(W ) be a directed (r, t)-cut with W ⊆ V \ {r}. We show that we can
convert this cut into the required form such that the resulting cut δ−(W̃ ) has weight
not larger than δ−(W ). Thus, if δ−(W ) has minimum capacity, then δ−(W̃ ) has
minimum capacity as well.

◦ Assume (r, vp) ∈ δ−(W ), i.e., vp ∈ W . We set W̃ = W \ {vp} ∪ {wp} and get
δ−(W̃ ) ⊆ δ−(W ) \ {(r, vp)} ∪ {(vp, wp)}, because (vp, wp) is the only arc with
source node vp and target node wp, recall statements 1 and 2 of Lemma 2.1.
Furthermore, (vp, wp) ∈ δ−(W̃ ) and κrvp = κvpwp . Hence, δ−(W̃ ) has capacity
not larger than δ−(W ).
◦ If (wp, t) ∈ δ−(W ), we set W̃ = W \ {vp} ∪ {wp} and argue as above.
◦ Assume (wp̃, vp) ∈ δ−(W ), p 6= p̃, and x̂p ≤ x̂p̃. In this case, we set W̃ =
W \{vp}∪{wp} and get δ−(W̃ ) ⊆ δ−(W )\{(wp̃, vp)}∪{(vp, wp)}, again because
of statements 1 and 2 of Lemma 2.1. Furthermore, (vp, wp) ∈ δ−(W̃ ) and κvpwp =
κwp̃vp . Hence, δ

−(W̃ ) has capacity not larger than δ−(W ).
◦ Assume (wp̃, vp) ∈ δ−(W ), p 6= p̃, and x̂p̃ ≤ x̂p. In this case we set W̃ =
W \ {vp̃} ∪ {wp̃} and argue similarly.

In all cases, the set W changes in such a way that nodes wp enter W and nodes vp
leave W . Hence all steps can be repeated until the cut has the desired form.
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We call a cut of the form stated in Lemma 3.2 a standard cut ; then Lemma 3.2 can
be rephrased as stating that there exists a minimum capacity directed (r, t)-cut in a
Steiner connectivity digraph with standard capacities which is a standard cut.

Proposition 3.3. Let κ ∈ RA′+ and x̂ ∈ RP
+ be capacities for D′ and G, respectively,

such that κa = x̂p for all a = (vp, wp) ∈ A′, p ∈ P. Then there is a one-to-
one correspondence between minimal directed (r, t)-standard cuts in D′ (w.r.t. root
node r) and minimal (r, t)-Steiner path cuts in G, and the capacities are equal.

Proof. “⇒”: Consider a directed (r, t)-standard cut δ−(W ′) in D′. We first show
that δ−(W ′) gives rise to an (r, t)-disconnecting set

P′ = {p ∈ P | (vp, wp) ∈ δ−(W ′)}

in G. Assume there exists a path from r to t in G that is covered by paths in P\P′
(i.e., P′ is not a disconnecting set). Let p1, . . . , pk be the paths that are used in this
order when traversing the path. Then (r, vp1 , wp1 , . . . , vpk , wpk , t) is a path from r to t
in D′ that uses only arcs in A′ \ δ−(W ′). This is a contradiction to the assumption
that δ−(W ′) is a directed (r, t)-standard cut in D′.

Now let δ−(W ′) be minimal and suppose P′ is not. Then there exists a smaller (r, t)-
disconnecting set P′′ ⊂ P′. Consider for some path p ∈ P′ \ P′′ the arc (vp, wp) ∈
δ−(W ′). As δ−(W ′) is a minimal disconnecting set in D′, there is an (r, t)-path
(r, vp1 , wp1 , . . . , vpk , wpk , t) in A′ \ δ−(W ′) ∪ {p}. But then p1, . . . , pk is a set of
paths in P \ P′ ∪ {p} ⊆ P \ P′′ that connect r and t in G, i.e., P′′ is not an (r, t)-
disconnecting set. This is a contradiction. Therefore P′ is minimally disconnecting
and, by Lemma 3.1, P′ is a minimal (r, t)-Steiner path cut.

“⇐”: Let P′ be an (r, t)-Steiner path cut. Then P′ is an (r, t)-disconnecting set in G.
Define

W ′ = {t} ∪ {wp | p ∈ P′} ∪W ′′,

where W ′′ is the set of nodes from which t can be reached using arcs in the set
A′ \ {(vp, wp)|p ∈ P′}. Then we show that δ−(W ′) is a directed (r, t)-standard cut
in D′, namely,

δ−(W ′) = {(vp, wp) | p ∈ P′}.

It is clear that δ−(W ′) ⊇ {(vp, wp) | p ∈ P′}, because the only node that can be
reached from vp is wp. To show equality, consider the following cases:

◦ Assume (r, vp) ∈ δ−(W ′) for some p ∈ P. If p ∈ P′, then vp /∈W ′, a contradiction.
If p /∈ P′ then t can be reached from vp via arcs in A′ \ {(vp, wp)|p ∈ P′}. Hence,
there is an (r, t)-path covered by p ∈ P \ P′, a contradiction.
◦ Assume (wp, t) ∈ δ−(W ′) for some p ∈ P. For both cases p ∈ P′ and p /∈ P′ we

have wp ∈W ′, a contradiction.
◦ Assume (vp, wp) ∈ δ−(W ′) for some p ∈ P \ P′. Then wp ∈ W ′, i.e., t can be

reached from wp via arcs in A′ \ {(vp, wp)|p ∈ P′}, but vp /∈W ′, a contradiction.
◦ Assume (wp̃, vp) ∈ δ−(W ′) for some p, p̃ ∈ P. Then wp̃ /∈ W ′ and vp ∈ W ′. This

implies that t can be reached from vp via arcs in A′\{(vp, wp)|p ∈ P′}. But then t
can also be reached from wp̃ via arcs in A′ \ {(vp, wp)|p ∈ P′}, a contradiction.
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Now assume that P′ is a minimal (r, t)-Steiner path cut (i.e., a minimal (r, t)-dis-
connecting set via Lemma 3.1) and δ−(W ′) is not, i.e., there exists a standard cut
δ−(W ′′) ⊂ δ−(W ′) = {(vp, wp) | p ∈ P′}. Then by the forward argument of the proof
there exists a disconnecting set P′′ ( P′, a contradiction.

“⇔”: It is easy to see that in both cases P′ and δ−(W ′) have the same capacity, and
that the constructions in the two directions of the proof pair the same cuts.

Remark 3.4. Note that Proposition 3.3 holds for all capacities such that κa = x̂p
for all a = (vp, wp) ∈ A′, p ∈ P, not only for standard capacities.

Theorem 3.5. The separation problem for Steiner path cut constraints can be solved
in polynomial time.

Proof. Computing for every two terminals s, t ∈ T a minimum (s, t)-cut in D′ with
respect to standard capacities, using s as root node, can be done in polynomial time.
If and only if the value of this cut is smaller than 1, we can find a violated Steiner
path cut constraint by transforming this cut into a standard cut via Lemma 3.2 and
then apply Proposition 3.3. This can also be done in polynomial time.

3.2 Directed Cut Formulation

Our second formulation of the SCP is the well-known directed cut formulation for
the associated DSTP [4]:

(SCParc) min
∑
a∈A′

c′a ya

(i) s.t.
∑

a∈δ−(W ′)

ya ≥ 1 ∀W ′ ⊆ V ′\{r}, W ′ ∩ T 6= ∅

ya ∈ {0, 1} ∀ a ∈ A′.

Note that the solutions of (SCParc) are supersets of directed Steiner trees for the
terminal set T . The separation problem for the directed Steiner cut constraints
(SCParc) (i) consists of solving |T |−1 min-cut problems, i.e., for each t ∈ T\{r} one
has to find a minimum (r, t)-cut in D′. This can be done in polynomial time.

(SCParc) can be interpreted as an extended formulation of (SCPcut) by identifying
arcs (vp, wp) and paths p ∈ P. We define

A′P = {(vp, wp) ∈ A′ | p ∈ P}

and write y|P = y|A′P to simplify the notation. Then, Proposition 2.2 states that if y
is an integer solution of (SCParc), its projection on the subspace of “path-arcs” gives
rise to a solution x = y|P of (SCPcut) via xp = yvpwp , p ∈ P, and vice versa. This
relation also holds for the LP relaxations of (SCPcut) and (SCParc).

Lemma 3.6. PLP (SCPcut) = PLP (SCParc)|P.

Proof. “⊇”: Let ŷ ∈ PLP (SCParc), i.e., ŷ satisfies all directed (r, t)-Steiner cuts for
some root r and every terminal t ∈ T\{r}. By Proposition 3.3 and Remark 3.4, the
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vector x̂ = ŷ|P satisfies all (r, t)-Steiner path cuts for every terminal t ∈ T\{r}. Since
any (s, t)-Steiner path cut is either an (r, s)- or an (r, t)-Steiner path cut, ŷ|P also
satisfies the (s, t)-Steiner path cuts for all s, t ∈ T \{r}, i.e., ŷ|P = x̂ ∈ PLP (SCPcut).

“⊆”: Let x̂ ∈ PLP (SCPcut), in particular, x̂ satisfies the (s, t)-Steiner path cuts for all
s, t ∈ T and hence all (r, t)-Steiner path cuts for some fixed root r. We define ŷ ∈ RA′

by setting ŷ = κ(x̂) according to the standard capacity definition, i.e., in particular,
ŷ|P = x̂. By Proposition 3.3, the vector ŷ satisfies all directed (r, t)-standard cuts,
and by Lemma 3.2, all directed (r, t)-cuts, i.e., ŷ ∈ PLP (SCParc).

Corollary 3.7. The optimal objective values of the LP relaxations of (SCParc) and
(SCPcut) are equal. In particular, the objective value of the LP relaxation of (SCParc)
is independent of the choice of the root node r.

Proof. This follows from Lemma 3.6, since c′|P = c and c′|A′\A′P = 0.

In contrast to the Steiner tree problem, where the directed formulation dominates the
undirected formulation immediately, the undirected and the directed cut formulation
for the SCP are equivalent in terms of quality and tractability. However, it is known
that directed cut formulations for the STP can easily be strengthened by a small
number of inequalities that one can write down explicitly. It will turn out that
in our case such a strengthening dominates a large class of facet defining Steiner
partition inequalities for the undirected formulation of the SCP, see Section 4.

The construction is as follows. Since we assume nonnegative costs, there is always an
optimal solution of the associated DSTP that is a directed tree. Each non-terminal
node that is contained in such a cost minimal directed Steiner tree has at least one
outgoing arc and at most one incoming arc. Therefore, the so-called flow balance
inequalities can be added to (SCParc):∑

a∈δ−(v)

ya ≤
∑

a∈δ+(v)

ya ∀ v ∈ V ′\T.

These inequalities have been studied by Polzin [13, 14] in the context of the Steiner
tree problem. Because of the special form of the Steiner connectivity digraph and
the objective function, it suffices to consider the flow balance constraints only for the
nodes vp, p ∈ P. Appending these flow balance constraints produces the following
strengthened directed cut formulation for the SCP:

(SCPrarc+) min
∑
a∈A′

c′a ya

s.t.
∑

a∈δ−(W ′)

ya ≥ 1 ∀W ′ ⊆ V ′\{r}, W ′ ∩ T 6= ∅

yvpwp ≥
∑

a∈δ−(vp)

ya ∀ (vp, wp) ∈ A′ (p ∈ P)

ya ∈ {0, 1} ∀ a ∈ A′.

The solutions of (SCPrarc+) are branchings that contain a directed Steiner tree for
terminal set T plus possible additional arcs that enter the terminals T \ {r}. Since
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Figure 4: An SCP instance showing that choosing different roots leads to different solutions of the
LP relaxation of (SCPrarc+). Choosing node a as root allows to set all path values to 0.5 in the LP
relaxation of (SCPaarc+). This solution is not possible for the LP relaxation of (SCPbarc+), when b
is chosen as root.

(SCParc) always has an optimal solution that is a directed Steiner tree, the optimal
objective values of (SCPrarc+) and (SCParc) are equal.

Corollary 3.8. PLP (SCPcut) = PLP (SCParc)|P ⊇ PLP (SCPrarc+)|P.

Remark 3.9. The objective value of the LP relaxation of (SCPrarc+) is not indepen-
dent of the choice of the root node, see Figure 4.

3.3 Contracted Directed Cut Formulation

A third formulation of the SCP arises from the directed cut formulation by contract-
ing the “path-arcs” (vp, wp), p ∈ P, i.e., we consider a contracted Steiner connectivity
digraph D′′ = (V ′′, A′′) = D′/{(vp, wp) | p ∈ P}. Let vp be the node that arises from
contracting the arc (vp, wp), i.e., V ′′ = V ′ \ {wp | p ∈ P} = T ∪ {vp | p ∈ P}. Analo-
gously, we identify arcs in A′′ and A′, i.e., A′′ = A′\A′P (here (wp, v) ∈ A′ corresponds
to (vp, v) ∈ A′′). Furthermore, let c′′a = cp for a = (u, vp) ∈ A′, p ∈ P, and 0 oth-
erwise, i.e., the path costs are shifted to the ingoing arcs of a node vp. D′′ can be
interpreted as a “terminal and path intersection digraph” more directly than D′. The
strengthened contracted directed cut formulation reads as follows:

(SCPrcon+) min
∑
a∈A′′

c′′a ya

(i) s.t.
∑

a∈δ−(W ′′)

ya ≥ 1 ∀W ′′ ⊆ V ′′\{r}, W ′′ ∩ T 6= ∅

(ii) 1 ≥
∑

a∈δ−(vp)

ya ∀ vp ∈ V ′′ (p ∈ P)

ya ∈ {0, 1} ∀ a ∈ A′′.

The constraints (SCPrcon+) (ii) are the contracted flow balance constraints. The so-
lutions of (SCPrcon+) are branchings that contain a directed Steiner tree for terminal
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set T plus possible additional arcs that enter the terminals T \ {r}. The optimal
objective values of (SCPrarc+) and (SCPrcon+) are equal.

Lemma 3.10. PLP (SCPrcon+) = PLP (SCPrarc+)|A′′ .

Proof. “⊇”: Let y′ ∈ PLP (SCPrarc+) and y′′ = y′|A′′ . Then y′ satisfies all directed
(r, t)-Steiner cuts for root r and each terminal t ∈ T\{r}. Consider a directed (r, t)-
Steiner cut δ−(W ′′) in D′′. Let

W ′ := W ′′ ∪ {wp|vp ∈W ′′, p ∈ P}.

Then W ′ ⊆ V ′ \ {r} and t ∈W ′ ∩ T , i.e., δ−(W ′) ⊆ A′ is an (r, t)-Steiner cut in D′.
Moreover, identifying A′′ and A′ \A′P, we have δ−(W ′) = δ−(W ′′). It follows that∑

a∈δ−(W ′)
a∈A′

y′a ≥ 1 ⇒
∑

a∈δ−(W ′′)
a∈A′′

y′′a ≥ 1,

i.e., y′′ = y′|A′′ satisfies the directed (r, t)-Steiner cut inequality for δ−(W ′′). Now
consider δ−(vp) for p ∈ P. Again identifying A′′ and A′ \A′P, we have

1 ≥ y′vpwp ≥
∑

a∈δ−(vp)
a∈A′

y′a ⇒ 1 ≥
∑

a∈δ−(vp)
a∈A′′

y′′a ,

i.e., y′′ = y′|A′′ satisfies the contracted flow balance constraint for δ−(vp). It follows
that y′′ = y′|A′′ ∈ PLP (SCPrcon+).

“⊆”: Let y′′ ∈ PLP (SCPrcon+). Then y′′ satisfies all directed (r, t)-Steiner cuts for
root r and all t ∈ T \ {r} in D′′ as well as the contracted flow balance constraints
for all nodes vp ∈ V ′′. We define y ∈ RA′ as

y′|A′′ := y′′, y′p :=
∑

a∈δ−(vp)

y′′a , p ∈ P,

and show that y′ ∈ PLP (SCPrarc+). By definition of y′, the flow balance constraints
at the nodes vp are satisfied, since by the contracted flow balance constraints, y′p ≤ 1
for every p ∈ P. It remains to show that

∑
a∈δ−(W ′) y

′
a ≥ 1 for all (r, t)-Steiner

cuts. Let B = δ−(W ′) be an (r, t)-Steiner cut in D′. We distinguish two cases:
(vp, wp) /∈ δ−(W ′) for all p ∈ P or there exists a p ∈ P such that (vp, wp) ∈ δ−(W ′).

◦ Let (vp, wp) /∈ δ−(W ′) for all p ∈ P, i.e., we have either vp, wp ∈W ′ or vp, wp /∈W ′
for each p ∈ P. Let

W ′′ := W ′ \ {wp|p ∈ P}.

Then W ′′ ⊆ V ′′ \ {r} and t ∈ W ′′ ∩ T , i.e., δ−(W ′′) ⊆ A′′ is an (r, t)-Steiner
cut in D′′ and, analogous to the forward direction, δ−(W ′′) = δ−(W ′), again
identifying A′′ and A′ \A′P. It follows∑

a∈δ−(W ′′)
a∈A′′

y′′a ≥ 1 ⇒
∑

a∈δ−(W ′)
a∈A′

y′a ≥ 1.
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◦ Now let p ∈ P such that (vp, wp) ∈ δ−(W ′), i.e., wp ∈ W ′ and vp /∈ W ′. In this
case, we set Ŵ ′ = W ′ ∪ {vp} and get a new (r, t)-Steiner cut with δ−(Ŵ ′) ⊆
δ−(W ′) ∪ {(u, vp) |u ∈ V ′} \ {(vp, wp)}. Using y′vpwp =

∑
a∈δ−(vp) y

′
a, we get∑

a∈δ−(W ′)

y′a ≥
∑

a∈δ−(Ŵ ′)

y′a.

Note that this operation moved vp into Ŵ ′. Iterating over all p ∈ P with (vp, wp) ∈
δ−(W ′), the situation is reduced to the first case.

This shows the claim.

Corollary 3.11. The optimal objective values of the LP relaxations of (SCPrcon+)
and of (SCPrarc+) are equal.

Proof. The proof of Lemma 3.10 shows the following. If y′′ is a solution of (SCPrcon+)
then there exists a solution y′ of (SCPrarc+) that satisfies all flow balance constraints
with equality and y′|A′′ = y′′. Moreover,∑

a∈A′′
c′′a y

′′
a =

∑
p∈P

∑
a∈δ−(vp)

c′′a y
′′
a =

∑
p∈P

c′vpwp y
′
vpwp =

∑
a∈A′

c′a y
′
a.

This shows that the optimal objective value of the LP relaxation of (SCPrarc+) is not
larger than the optimal objective value of the LP relaxation of (SCPrcon+).

Conversely, if y′ is a solution of (SCPrarc+), by Lemma 3.10, y′′ = y′|A′′ is a feasible
solution of (SCPrcon+) that satisfies∑

a∈A′
c′a y

′
a =

∑
p∈P

c′vpwp y
′
vpwp ≥

∑
p∈P

∑
a∈δ−(vp)

c′′a y
′′
a =

∑
a∈A′′

c′′a y
′′
a .

This shows the reverse inequality.

Remark 3.12. Dropping the contracted flow balance constraints from formulation
(SCPrcon+) to obtain a contracted directed cut formulation (SCPrcon), one can show
similarly that PLP (SCPrcon) = PLP (SCPrarc)|A′′ and that the objective values of the
associated LPs are equal.

We have seen that (SCPrarc+) is a common extended formulation of (SCPcut) and
(SCPrcon) and, albeit slightly larger than (SCPrcon), (SCPrarc+) is easier to relate to
(SCPcut). For this reason, the succeeding sections will investigate the latter relation.

4 Polyhedral Analysis

In this section, we investigate the polytope that is associated with the cut formulation
of the Steiner connectivity problem. We analyze a class of facet defining Steiner
partition inequalities, and discuss the corresponding separation problem. Let

PSCP := conv
{
x ∈ {0, 1}P |x satisfies all Steiner path cut constraints

}
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be the Steiner connectivity polytope. We assume that the Steiner connectivity poly-
tope is non-empty, i.e., the graph G is connected, and each edge is covered by at
least one path of P.

In the two-terminal case, a complete description can be given.

Proposition 4.1. The polytope associated with (SCPcut) is integral for |T | = 2.

Proof. This follows from Lemma 3.6 and the fact that the polytope associated with
(SCParc) is integral for two terminal nodes (see, e.g., Cornuéjols [5]).

In general, (SCPcut) is a special set covering problem. Therefore, the results of Balas
and Ng [2] imply:

Lemma 4.2. PSCP is full dimensional if and only if there exists no Steiner path
bridge.

Lemma 4.3. The polytope associated with a Steiner connectivity problem without
Steiner path bridges has the following properties:

1. The inequality xp ≥ 0 defines a facet of PSCP if and only if |Pδ(W )| ≥ 3 for all W
with p ∈ Pδ(W ) and ∅ 6= W ∩ T 6= T .

2. All inequalities xp ≤ 1 define facets of PSCP.
3. All facet defining inequalities αTx ≥ α0 for PSCP have α ≥ 0 if α0 > 0.
4. A Steiner path cut inequality for ∅ 6= W ∩ T 6= T is facet defining if and only if

the following two properties are satisfied:
(a) There exists no W ′, ∅ 6= W ′ ∩ T 6= T , such that Pδ(W ′) ( Pδ(W ), i.e., Pδ(W )

is not dominated.
(b) For every two W1,W2, ∅ 6= Wi ∩ T 6= T , with |Pδ(Wi)\Pδ(W )| = 1, i = 1, 2

and Pδ(W1)\Pδ(W ) = Pδ(W2)\Pδ(W ), we have

|Pδ(W1) ∩ Pδ(W2) ∩ Pδ(W )| ≥ 1.

5. The only nontrivial facet defining inequalities for PSCP with integer coefficients
and righthand side equal to 1 are Steiner path cut constraints.

In the following, we assume PSCP to be full dimensional.

4.1 Steiner Partition Inequalities

Lemma 4.3 characterizes completely which inequalities of the IP formulation (SCPcut)
define facets of the Steiner connectivity polytope. We investigate in this section in-
equalities arising from node partitions as one important example of an additional
class of facets.

Let P = (V1, . . . , Vk) be a Steiner partition of the node set V , i.e., P partitions V
and Vi ∩ T 6= ∅ for i = 1, . . . , k and k ≥ 2. Let GP = (VP , EP ) be the graph that
arises from contracting each node set Vi ⊆ V to a single node Vi ∈ VP (let us denote
by Vi a node set in a partition of G as well as a node in the shrunk graph GP ). Note
that GP can have parallel edges but no loops; loops are contracted. Consider a path
p ∈ P: p gives rise to a contracted (not necessarily simple) path in GP , which we
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Figure 5: The Steiner partition inequality 2x1 + x2 + x3 + x4 ≥ 2 is facet defining (node sets of
the Steiner partition encircled).

also denote by p. We say that p contains Vi, in formulas Vi ∈ p, if p contains a node
of Vi (even if a path p ∈ P contains only a single node of GP ). Furthermore, let PP
denote the set of paths p ∈ P that contain at least two distinct shrunk nodes in GP ,
in formulas

PP = {p ∈ P | ∃Vi, Vj ∈ VP , Vi 6= Vj , Vi ∈ p, Vj ∈ p},

and P := P\PP its complement. Finally, G[Vi] is the graph induced by the nodes Vi.

Lemma 4.4. The Steiner partition inequality∑
p∈PP

ap xp ≥ k − 1, (1)

ap := |{V ∈ VP : V ∈ p}| − 1

is valid for the Steiner connectivity polytope PSCP.

Note that the inequality can also be stated as
∑

p∈P ap xp ≥ k − 1, because ap = 0
for p /∈ PP . If k = 2, the partition inequality is a Steiner path cut constraint. An
example of a (facet defining) Steiner partition inequality can be seen in Figure 5.

Proof of Lemma 4.4. We have to show that each 0/1-solution x∗ of the Steiner con-
nectivity problem satisfies ∑

p∈PP

ap x
∗
p ≥ k − 1.

The coefficient ap, p ∈ P, counts the number of shrunk nodes that p contains minus
one, i.e., ap is the maximum number of edges that p can contribute to a spanning
tree in GP . Note that the number ap is in general smaller than the number of times
that p crosses the multi-cut induced by the Steiner partition.

Consider the solution x∗ on the shrunk graph GP . Since each node set Vi, i =
1, . . . , k, contains a terminal node, the shrunk graph GP has to be connected by the
solution x∗, i.e., the (paths of the) support of x∗ must contain a spanning tree in GP .
This means that the support of x∗ contains at least k − 1 edges in GP .

The following two propositions give sufficient and necessary conditions for a Steiner
partition inequality to be facet defining for the SCP. The sufficient conditions are
analogous to those for the Steiner tree polytope, see Grötschel and Monma [10].
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Proposition 4.5. A Steiner partition inequality is facet defining if the following
properties are satisfied.

1. G[Vi] is connected by P, i = 1, . . . , k.
2. G[Vi] contains no Steiner path bridge in P, i.e., there is no Steiner path cut

Pδ(W ) ⊆ P with |Pδ(W )| = 1 for W ⊆ Vi, ∅ 6= W ∩ T 6= T ∩ Vi, i = 1, . . . , k.
3. Each path contains at most two nodes in GP , i.e., ap ∈ {0, 1} for all p ∈ P.
4. GP is 2-node-path-connected, i.e., if we remove any node with all adjacent paths,

the resulting graph is connected. (An edge is removed if it is no longer covered by
paths.)

Proof. Let P = (V1, . . . , Vk) be a Steiner partition in G and consider the correspond-
ing partition inequality aTx =

∑
p∈PP

apxp ≥ k − 1. Assume that properties 1 to 4
are satisfied. Let bTx = β be an equation such that

Fa = {x ∈ PSCP | aTx = k − 1} ⊆ Fb = {x ∈ PSCP | bTx = β}

and such that Fb is a facet of PSCP.

We first show that bp = 0 for all p ∈ P. Since p ∈ P, p is completely contained in
G[Vj ] for some j ∈ {1, . . . , k}. Let P′ ⊆ PP be a minimal set of paths connecting GP ,
i.e., for each two nodes in GP there exists a path that is completely covered by paths
in P′ and if we remove any path of P′ then there are at least two nodes in GP
that are not connected. Since all paths contain at most two different nodes of GP
(property 3), we have |P′| = k − 1. Set M = P′ ∪ P and M ′ = M \ {p}. Since each
G[Vi], i = 1, . . . , k, is connected by paths of P (property 1) and p is not a Steiner
path bridge for G[Vj ] (property 2), χM , χM ′ ∈ PSCP and aTχM = aTχM

′
= k − 1,

where χM is the incidence vector of M . Thus, bTχM = bTχM
′ which implies bp = 0.

Let p, q ∈ PP , p 6= q. Consider the graph ĜP = (VP ,PP ) in which p is an edge
between Vi and Vj if it contains Vi and Vj (recall that p ∈ PP contains exactly two
nodes, see property 3). Since GP is 2-node-path-connected, ĜP is 2-node-connected
and there exists a cycle C in ĜP containing p and q. Let P′ be a tree in ĜP containing
C\{p}. Then P′′ = P′\{q}∪{p} is also a tree in ĜP . SetM = P′∪P andM ′ = P′′∪P.
Then χM , χM ′ ∈ Fa and 0 = bTχM − bTχM ′ = bq− bp. This implies that b ∈ {0, λ}P,
λ ≥ 0, using part 3 of Lemma 4.3. Hence, bTx is a multiple of aTx. This proves that
aTx ≥ k − 1 defines a facet of PSCP.

Different from the Steiner tree case (cf. [10]), properties 1 to 3 are not necessary in
the Steiner connectivity case, see Figure 5 (property 3), Figure 6 (left: property 1,
right: property 2) for examples. Property 4 is necessary, see Proposition 4.6 below.

We now derive necessary conditions. Let ΦVi(P) be the Vi-contraction of P, i.e.,
contract every path p ∈ P iteratively in the following way until no reduction is
possible anymore:

◦ If p contains the edges {u, v} and {v, w}, and v /∈ Vi then contract {u, v} and
{v, w} to {u,w}.
◦ If p = ({u1, u2}, {u2, u3}, . . . , {ur−1, ur}), r ≥ 2, with u1 /∈ Vi then contract p to
p = ({u2, u3}, . . . , {ur−1, ur}).
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Figure 6: Examples of facet defining Steiner partitions that do not satisfy properties 1 (left) and 2
(right) of Proposition 4.5. In both examples the Steiner partition consists of three node sets which
are marked gray. The square (terminal) nodes have to be connected.

◦ If p = ({u1, u2}, {u2, u3}, . . . , {ur−1, ur}), r ≥ 2, with ur /∈ Vi then contract p to
p = ({u1, u2}, {u2, u3}, . . . , {ur−2, ur−1}).

Proposition 4.6. If the Steiner partition inequality (1) is facet defining for a Steiner
partition P with at least three partition sets, then the following properties have to be
satisfied:

1. The shrunk graph GP is 2-node-path-connected.
2. Either G[Vi] is connected or for each two subsets V ′i and V ′′i of Vi such that

V ′i ∪̇V ′′i = Vi and V ′i is disconnected from V ′′i , there exists a path p ∈ PP which
contains at least one node of V ′i and one node of V ′′i for all i = 1, 2, . . . , k.

3. For each G[Vi] the set of paths ΦVi(P) does not contain a Steiner path bridge with
respect to G[Vi], i.e., if we remove any p̃ ∈ ΦVi(P) then every two terminal nodes
in G[Vi] are still connected by paths of ΦVi(P) \ {p̃}.

4. If two terminal nodes s and t in some G[Vi] are connected by a path p′ ∈ PP , then
these terminals must be also connected by P or we can subdivide Vi into V ′i and
V ′′i , Vi = V ′i ∪̇V ′′i , such that s ∈ V ′i , t ∈ V ′′i , and V ′i and V ′′i are not connected by
P. In the second case for each Vj ∈ p′, Vj 6= Vi, there exists a path p′′ ∈ PP with
Vj /∈ p′′, and V ′i ∈ p′′, V ′′i ∈ p′′.

Proof. In the following let P = (V1, . . . , Vk), k ≥ 3, be a Steiner partition with
corresponding partition inequality

∑
p∈PP

apxp ≥ k − 1.

1. Assume GP is not 2-node-path-connected. In this case there exists a node Vi
in GP which is an articulation node in the following sense: If Vi and all paths
incident to Vi are removed from GP , then the resulting graph is not connected
(by the remaining paths). Suppose w.l.o.g. that Vi separates V1, . . . , Vi−1 from
Vi+1, . . . , Vk. Let G1 = GP [V1, . . . , Vi] and G2 = GP [Vi, . . . , Vk], see Figure 7.
Let k1 be the number of nodes of G1 and k2 be the number of nodes of G2.
Recall that the number of nodes of GP is k. Note that Vi is a node of G1 and G2.
Therefore we have k = k1 + k2 − 1.
We construct a smaller Steiner partition P ′ = {V1∪ . . .∪Vi−1∪Vi, . . . , Vk} which
contains all nodes of G2\{Vi} and all nodes of G1 as a single node. Let the
resulting Steiner partition inequality be

∑
p∈PP ′

a′pxp ≥ k2 − 1.
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G2

G1
Vi

path contains Vi

Figure 7: The graph GP in the proof of Proposition 4.6 part 1 is not 2-node-path-connected and Vi
is an articulation node. Each path that connects G1 and G2 (dashed in the picture) contains Vi.

Similarly, we construct a Steiner partition P ′′ = {V1, . . . , Vi ∪ Vi+1 ∪ . . . ∪ Vk}
which contains all nodes of G1\{Vi} and all nodes of G2 as a single node. We get
the partition inequality

∑
p∈PP ′′

a′′pxp ≥ k1 − 1.
The sum of these two partition inequalities is equal to the partition inequality
for P . Indeed, k1 − 1 + k2 − 1 = k1 + k2 − 2 = k − 1, and a′p + a′′p = ap, see
Figure 7. Hence, Inequality (1) does not define a facet.

2. Assume w.l.o.g. G[V1] is not connected and there exists no path connecting dif-
ferent components of G[V1]. Let V ′1 ⊂ V1 be the node set of one connected
component of G[V1] such that (V1\V ′1) ∩ T 6= ∅. Since G is connected (and ev-
ery edge is covered by at least one path) there is a node set Vj , j ∈ {2, . . . , k},
say V2, such that V ′1 and V2 are connected by a path. We construct a new
Steiner partition P ′ = (V1\V ′1 , V ′1 ∪ V2, V3, . . . , Vk) and get the partition inequal-
ity
∑

p∈PP ′
a′pxp ≥ k − 1. Let P̂ = {p ∈ PP |V ′1 ∈ p, V2 ∈ p}, i.e., P̂ contains all

paths that connect V ′1 and V2. One can easily verify that

a′p =

{
ap − 1 if p ∈ P̂

ap otherwise (since V ′1 is not connected to (V1 \ V ′1)).

Since |P̂| ≥ 1, the partition inequality for P is the sum of the partition inequality
for P ′ and the inequalities xp ≥ 0 for all p ∈ P̂. Therefore, the partition inequality
for P is not facet defining.

3. Assume there is a Steiner path bridge p̃ ∈ ΦVi(P) with respect to G[Vi]. Let V ′i
and V ′′i := Vi \V ′i be two components of G[Vi] that contain terminal nodes which
are only connected by p̃ ∈ ΦVi(P). Then P ′ = (V1, . . . , V

′
i , V

′′
i , . . . , Vk) is a Steiner

partition. Let the corresponding partition inequality be
∑

p∈PP ′
a′pxp ≥ k. We

claim that this partition inequality plus the upper bound inequality −xp̃ ≥ −1
of p̃ is equal to the partition inequality for P .
The partition P ′ only differs from P in splitting the node set Vi. Because p̃ is
the only path that connects V ′i and V ′′i , we have PP ′ = PP ∪ {p̃}. Furthermore,
there is no path in PP (except p̃, if p̃ ∈ PP ) that contains V ′i and V ′′i . Therefore
the coefficients of all these paths stay the same: ap = a′p for all p ∈ PP ′\{p̃}. For
p̃ ∈ PP we get a′p̃ = ap̃ + 1.

4. Assume w.l.o.g. that there are two terminal nodes s and t in G[V1] that are
connected by a path p′ ∈ PP and not connected by paths in P. Let V ′1 be the
nodes reachable from s via paths in P and V ′′1 := V1 \ V ′1 . This shows that the
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first or the second case of the first part of the statement must hold.
Furthermore, assume w.l.o.g. that V2 ∈ p′ and there is no path p′′ ∈ PP such
that V ′1 ∈ p′′, V ′′1 ∈ p′′, and V2 /∈ p′′. Consider the Steiner partitions P ′ :=
(V ′1 , V

′′
1 , V2, . . . , Vk) and P ′′ := (V1 ∪ V2, V3, . . . , Vk) with corresponding partition

inequalities ∑
p∈PP ′

a′pxp ≥ k and
∑
p∈PP ′′

a′′pxp ≥ k − 2,

respectively. We show that 2 times the partition inequality for P is dominated
by the sum of the partition inequalities for P ′ and P ′′. For the right hand side,
we obtain:

k + k − 2 = 2 · k − 2 = 2 · (k − 1).

For the left hand sides and p ∈ P, we observe that

a′p =

{
ap + 1 if V ′1 ∈ p, V ′′1 ∈ p
ap otherwise

a′′p =

{
ap − 1 if V1 ∈ p, V2 ∈ p
ap otherwise.

We claim that 2 ·ap ≥ a′p +a′′p. Indeed, the only case in which this is not trivially
satisfied is when V ′1 ∈ p and V ′′1 ∈ p (and thus V1 ∈ p), but V2 /∈ p. But this case
contradicts our assumptions.

4.2 Separating the Steiner Partition Inequalities

Grötschel, Monma, and Stoer [11] showed that separating the Steiner partition in-
equalities for the Steiner tree problem is NP-hard. This implies that the separation
of the Steiner partition inequalities for the Steiner connectivity problem is also NP-
hard. However, we show in the following that the Steiner partition inequalities for
the SCP are satisfied by all points in PLP (SCPrarc+)|P. This implies that the sep-
aration problem for a superclass of Steiner partition inequalities can be solved in
polynomial time.

Theorem 4.7. PLP (SCPrarc+)|P satisfies all Steiner partition inequalities.

Proof. Let y∗ ∈ PLP (SCPrarc+). We show that the projection x∗p = y∗vpwp satisfies all
Steiner partition inequalities.

Consider an arbitrary Steiner partition P = (V1, . . . , Vk) in G and the corresponding
partition inequality

∑
p∈PP

apxp ≥ k−1. W. l. o. g. we assume that r ∈ Vk. Consider
the following chain of inequalities

∑
p∈PP

apx
∗
p

(1)

≥
∑
p∈PP

ap
∑

a∈δ−(vp)

y∗a
(2)

≥
k−1∑
i=1

∑
a∈δ−(Wi)

y∗a
(3)

≥ k − 1,

where Wi := {t ∈ T\{r} | t ∈ Vi} ∪ {vp, wp |Vi ∈ p}, for i = 1, . . . , k − 1.
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Inequality (1): Scaling the flow balance constraints x∗p = y∗vpwp ≥
∑

a∈δ−(vp) y
∗
a by ap

and summing up gives (1).

Inequality (3): Each node set Wi (i = 1, . . . , k − 1) contains at least one terminal
node, but not the root node r. Hence, the arc set δ−(Wi) is a directed Steiner cut
between root r and Wi. Therefore,

∑
a∈δ−(Wi)

y∗a ≥ 1 must hold. Summing over all
these cuts gives (3).

Inequality (2): All arcs in the cuts δ−(Wi), i = 1, . . . , k−1, are of the form (r, vp) ∈ A′
or (wp̃, vp) ∈ A′ for p, p̃ ∈ P. Denote by Vp := {Vi |Vi ∈ p, i = 1, . . . , k} the set of
shrunk nodes contained in p; then |Vp| − 1 = ap. The proof proceeds by establishing
a relation between ap and the number of times an arc entering vp appears in the cuts
δ−(Wi), i = 1, . . . , k − 1.

Consider an arc (r, vp) ∈ A′. Then the following chain of equations holds:

ap = |Vp| − 1 = |Vp \ {Vk}| = |{Wi | (r, vp) ∈ δ−(Wi), i = 1, . . . , k − 1}|. (2)

Here, (r, vp) ∈ A′ implies Vk ∈ p (r ∈ Vk) and this yields |Vp| − 1 = |Vp \ {Vk}|.
Moreover, (r, vp) ∈ δ−(Wi) implies Vi ∈ p. Taking the union for i = 1, . . . , k−1 yields
|Vp \ {Vk}| = |{Wi | (r, vp) ∈ δ−(Wi), i = 1, . . . , k − 1}|. Multiplying Equation (2)
with y∗rvp gives

ap y
∗
rvp = |{Wi | (r, vp) ∈ δ−(Wi), i = 1, . . . , k − 1}| · y∗rvp

=
k−1∑
i=1

∑
(r,vp)∈δ−(Wi)

y∗rvp .
(3)

Consider an arc (wp̃, vp) ∈ A′. Then the following chain of equations and inequalities
holds

ap = |Vp| − 1 ≥ |Vp \ Vp̃| ≥ |{Wi | (wp̃, vp) ∈ δ−(Wi), i = 1, . . . , k − 1}|. (4)

Here, (wp̃, vp) ∈ A′ implies Vp∩Vp̃ 6= ∅ and this yields |Vp|−1 ≥ |Vp \Vp̃|. Moreover,
(wp̃, vp) ∈ δ−(Wi) implies Vi ∈ p and Vi /∈ p̃. Taking the union for i = 1, . . . , k − 1
yields |Vp \ Vp̃| ≥ |{Wi | (wp̃, vp) ∈ δ−(Wi), i = 1, . . . , k − 1}|. Multiplying inequal-
ity (4) by y∗wp̃vp gives

ap y
∗
wp̃vp

≥ |{Wi | (wp̃, vp) ∈ δ−(Wi), i = 1, . . . , k − 1}| · y∗wp̃vp

=
k−1∑
i=1

∑
(wp̃,vp)∈δ−(Wi)

y∗wp̃vp .
(5)

Summing (3) and (5) over all arcs (r, vp) and (wp̃, vp) gives inequality (2):∑
p∈PP

ap
∑

a∈δ−(vp)

y∗a =
∑
p∈P

ap
∑

a∈δ−(vp)

y∗a

=
∑

(r,vp)∈A′
ap y

∗
rvp +

∑
(wp̃,vp)∈A′

ap y
∗
wp̃vp

(3) and (5)
≥

k−1∑
i=1

∑
a∈δ−(Wi)

y∗a.

This shows the claim.
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Proposition 4.8. The separation problem for PLP (SCPrarc+)|P can be solved in poly-
nomial time.

Proof. Let P = {y ∈ Rn |Ay ≥ b, y ≥ 0} be a polyhedron, I ⊆ {1, . . . , n}, and
x∗ ∈ RI be a vector. If the optimization problem for P is solvable in polynomial
time then the separation problem “x∗ ∈ P |I?” for the projection is solvable in
polynomial time. This follows from the equivalence of optimization and separation
and its consequences, see Grötschel, Lovász, and Schrijver [9] (intersect P with the
affine space y|I = x∗). In our case, the LP relaxation of (SCPrarc+) can be solved in
polynomial time. This implies the claim.

In the following, we give a direct algorithm to generate a violated cut. Let x∗ ∈
[0, 1]P be the point to be separated; denote Ã = A′P = {(vp, wp) ∈ A′ | p ∈ P} and
A′′ = A′ \ A′P. The separation problem is to find a vector y ∈ PLP (SCPrarc+) with
y|P = x∗ or to find a separating cutting plane. Consider the following reformulation
of the inequality system associated with (SCPrarc+) with y|P = x∗ =: y∗:∑

a∈δ−(W ),a∈A′′
ya ≥ 1−

∑
a∈δ−(W ),a∈Ã

y∗a ∀W ⊆ V ′\{r}, W ∩ T 6= ∅

−
∑

a∈δ−(vp)

ya ≥ −y∗vpwp ∀ (vp, wp) ∈ A′

ya ≥ 0 ∀ a ∈ A′′.

(6)

Let W := {W ⊆ V ′ \ {r} |W ∩ T 6= ∅}. By the Farkas lemma either inequality
system (6) or the following inequality system has a solution:∑

W∈W

(
1−

∑
a∈δ−(W ),a∈Ã

y∗a

)
· µW −

∑
p∈P

y∗vpwpπp > 0∑
W∈W:a∈δ−(W )

µW −
∑

p∈P:a∈δ−(vp)

πp ≤ 0 ∀ a ∈ A′′

µW ≥ 0 ∀W ∈ W
πp ≥ 0 ∀ p ∈ P.

(7)

This feasibility problem can be solved by a column generation procedure. In fact,
given dual variables y′′a , a ∈ A′′, the pricing problem for the µ-variables is to find a
cut δ−(W ), W ⊆ V ′\{r}, W ∩T 6= ∅, which has capacity smaller than 1 with respect
to the arc capacities (y′′, y∗) or to conclude that no such cut exists.

If y /∈ PLP (SCPrarc+) for y|P = x∗, then there exist π∗ and µ∗ which satisfy (7). In
particular, we have ∑

W∈W

(
1−

∑
a∈δ−(W ),a∈Ã

y∗a

)
· µ∗W −

∑
p∈P

y∗vpwpπ
∗
p > 0

⇐⇒
∑
W∈W

(
1−

∑
(vp,wp)∈δ−(W )

x∗p

)
· µ∗W −

∑
p∈P

x∗pπ
∗
p > 0.

Then ∑
W∈W

µ∗W ≤
∑
W∈W

∑
p:(vp,wp)∈δ−(W )

µ∗W xp +
∑
p∈P

π∗p xp
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Figure 8: The inequality x1 + x2 + x3 + x4 ≥ 2 is valid but not a partition inequality.

is a cutting plane that separates x∗ = y|P from the Steiner connectivity polytope.

Corollary 4.9. If x∗ ∈ PLP (SCPcut) does not satisfy all Steiner partition inequali-
ties, one can construct a cutting plane that separates x∗ from the Steiner connectivity
polytope in polynomial time.

Proof. A solution of (7) with polynomial support can be constructed in polynomial
time.

(SCPrarc+)|P implicitly contains other constraints that do not correspond to partition
inequalities. In the following we call these inequalities generalized Steiner partition
inequalities.

Example 4.10. Figure 8 shows a generalized Steiner partition inequality which is
not a Steiner partition inequality. Consider the inequality x1 + x2 + x3 + x4 ≥ 2.
Because the right hand side is 2, a Steiner partition would consist of three node sets,
each of which must include at least one terminal node. However, in every possible
partition at least one path contains all three partition nodes.

We show that this cut can be separated with our direct method as follows. Let
x∗ ∈ PLP (SCPcut) with x∗1 = x∗2 = x∗3 = 0.5 and x∗4 = 0. Obviously x∗ satisfies all
Steiner cut inequalities but not x1 + x2 + x3 + x4 ≥ 2. Consider inequality set (6)
for two specific node sets W 0

b := {1̄, 2, 2̄, 4̄, b} and W 0
c := {2, 2̄, 3̄, c}

y3̄2 ≥ 1− y∗
11̄
− y∗

44̄
(W 0

b )
y1̄2 +y4̄2 ≥ 1− y∗

33̄
(W 0

c )
−ya1 −y2̄1−y3̄1−y4̄1 ≥ −y∗

11̄
−y1̄2 −y3̄2−y4̄2 ≥ −y∗

22̄
−ya3−y1̄3−y2̄3 −y4̄3 ≥ −y∗

33̄
−ya4−y1̄4−y2̄4−y3̄4 ≥ −y∗

44̄

and the corresponding inequality set (7) (µt corresponds to W 0
t , t = b, c)

(1− y∗
11̄
− y∗

44̄
)µb + (1− y∗

33̄
)µc − π1 · y∗11̄

− π2 · y∗22̄
− π3 · y∗33̄

− π4 · y∗44̄
> 0

µb − π2 ≤ 0
µc − π2 ≤ 0
µb, µc ≥ 0

πi ≥ 0 i = {1, 2, 3, 4}.
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A valid solution for the second system is µb = µc = 1, π2 = 1, and all other variables
set to 0. Since y∗

11̄
= x∗1 = 0.5, y∗

22̄
= x∗2 = 0.5, y∗

33̄
= x∗3 = 0.5, and y∗

44̄
= x∗4 = 0,

the value of the first inequality in this system is 0.5. This yields the cutting plane

(1− x1 − x4) + (1− x3)− x2 ≤ 0⇔ x1 + x2 + x3 + x4 ≥ 2.

4.3 A Separation Heuristic for the Generalized Steiner partition
inequalities

The construction in Example 4.10 can be generalized to develop a separation heuristic
for the generalized Steiner partition inequalities that is based on a relaxation of
(SCPrarc+) but uses only a small subset of directed (r, t)-Steiner cut inequalities.
Such a reduction can alleviate the computational complexity of the exact separation
procedure, which requires the solution of the feasibility problem (7) by a column
generation algorithm in the projection step. The crucial point in this procedure is
the selection of the cutsets. We tried different approaches and discuss the one that
worked best.

The heuristic can formally be described as follows. We first choose arbitrarily a
terminal node as root node r ∈ T . Then we consider for each of the remaining
terminal nodes t ∈ T \ {r} the set P0

t ⊆ P of paths that contain t, and we define the
node set

W 0
t := {t} ∪ {wp | p ∈ P0

t } ∪ {vp | p ∈ P0
t , r 6∈ p}.

Then δ−(W 0
t ) forms a directed (r, t)-cut in the Steiner connectivity digraph. In fact,

it is easy to see that

δ−(W 0
t ) = {(vp, wp) ∈ A′ | p ∈ P0

t , r ∈ p} ∪ {(wp̃, vp) ∈ A′ | p̃ /∈ P0
t , p ∈ P0

t , r /∈ p}.

We then extend P0
t by all paths that intersect at least one path in P0

t , i.e.,

P1
t := P0

t ∪ {p ∈ P | ∃ p̃ ∈ P0
t : p ∩ p̃ 6= ∅}

to obtain the node set

W 1
t := {t} ∪ {wp | p ∈ P1

t } ∪ {vp | p ∈ P1
t , r 6∈ p}.

Repeating this construction until all paths are reached, produces a sequence of path
and node sets

P0
t ⊂ P1

t ⊂ · · · ⊂ P
j(t)+1
t = P and W 0

t ⊂W 1
t ⊂ · · · ⊂W

j(t)+1
t

and corresponding directed (r, t)-Steiner cuts

δ−(W i
t ) = {(vp, wp) ∈ A′ | p ∈ Pit, r ∈ p} ∪ {(wp̃, vp) ∈ A′ | p̃ /∈ Pit, p ∈ Pit, r /∈ p} (8)

for each t ∈ T \ {r}, i = 0, . . . , j(t). The heuristic then relaxes the feasibility
problem (7) by setting W := {W i

t | t ∈ T \ {r}, i = 0, . . . , j(t)}. For very large
problems, we even use W := {W i

t | t ∈ T \ {r}, 0 ≤ i ≤ k} for some small number k.
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5 Computational Results

In this section, we computationally compare the LP relaxations of four formulations
of the Steiner connectivity problem, namely,

◦ the weak cut formulation (SCPwcut),
◦ the cut formulation (SCPcut),
◦ the strengthened directed cut formulation (SCPrarc+), cf. Section 3, and
◦ a fourth formulation (SCPwcut+), which extends the weak cut formulation (SCPwcut)

by cutting planes computed using the separation heuristic of Section 4.3.

The advantage of the weak cut formulation (SCPwcut) is its compactness. This formu-
lation has the smallest number of variables and inequalities. Moreover, the separa-
tion problem for the weak Steiner path cut constraints can be solved in the original
undirected graph. The second formulation (SCPcut) requires the construction of
the Steiner connectivity digraph to solve the separation problem. The third for-
mulation (SCPrarc+) uses the arcs of the Steiner connectivity digraph as variables.
Note that the size of the Steiner connectivity digraph depends on the number and
length of paths in the original graph, which can become very large. For this rea-
son our strongest formulation, the strengthened directed cut formulation (SCPrarc+),
becomes intractable for large problems. Our fourth formulation (SCPwcut+) there-
fore tries to combine the compactness of the weak cut formulation with the quality
of the strengthened directed cut formulation by projecting cuts that are separated
heuristically from a small set of judiciously chosen directed Steiner cuts back into
the original space of variables. We will now give computational evidence that this
approach does indeed work.

5.1 Instances

We test our formulations on six transportation networks that we denote as China,
Dutch, SiouxFalls, Anaheim, Potsdam, and Chicago. Instances Anaheim, SiouxFalls,
and Chicago use the graphs of the street networks with the same names from the
Transportation Network Test Problems Library of Bar-Gera [18]. Instances China,
Dutch, and Potsdam correspond to public transportation networks. The Dutch net-
work was introduced by Bussieck [8] in the context of line planning. The Potsdam
data were provided to us in a joint project on line planning by the local public
transport company ViP Verkehrsgesellschaft Potsdam GmbH. The China instance
is artificial; we constructed it as a showcase example, connecting the twenty biggest
cities in China by the 2009 high speed train network.

All instances are associated with an OD matrix that gives the number of passengers
who want to travel between each pair of nodes. We define as terminals all stations
with positive supply or demand, i.e., such that there exists a positive entry in the
corresponding row or column of the OD matrix. The paths can then be interpreted
as possible lines (e.g., bus lines in the street networks) to connect the terminals/OD
nodes. For each network, we consider two instances of the Steiner connectivity
problem involving different path lengths, namely, one instance with paths of length
three (instances with suffix 1) and one instance with paths of length five (instances
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Table 1: Street and public transportation networks. The columns are as follows: name of the
instance, number of terminals, number of nodes, number of edges, number of paths, and number of
nodes and arcs of the associated Steiner connectivity digraph. (We inserted all terminals twice into
the Steiner connectivity digraph in order to use them as sources and sinks at the same time; this
speeds up the computations.) The last column gives the length of the paths.

name |T | |V | |E| |P| |V ′| |A′| |p|

China1 20 20 98 68 176 2 798 3
China2 20 20 98 343 726 65 873 5
Dutch1 23 23 106 91 228 5 585 3
Dutch2 23 23 106 437 920 126 227 5
SiouxFalls1 24 24 124 115 278 6 513 3
SiouxFalls2 24 24 124 527 1 102 129 608 5
Anaheim1 38 454 1 344 2 544 5 164 229 369 3
Anaheim2 38 454 1 344 5 975 12 026 2 734 865 5
Potsdam1 107 885 3 572 1 196 2 606 36 905 3
Potsdam2 107 885 3 572 1 528 3 270 118 631 5
Chicago1 386 909 3 672 5 536 11 844 785 244 3
Chicago2 386 909 3 672 10 373 21 518 5 938 444 5

Table 2: LP values and computation time for four formulations of the Steiner connectivity problem.
An ‘*’ indicates that the time limit of five hours was reached.

(SCPw
cut) (SCPcut) (SCPr

arc+) (SCPw
cut+)

name value time value time value time value time

China1 5.000 0.0 5.000 0.0 6.333 139.0 6.333 0.1
China2 3.786 0.0 3.786 1.0 4.000 1024.4 3.895 1.5
Dutch1 7.000 0.0 7.000 0.0 7.500 3.0 7.333 0.1
Dutch2 4.333 0.0 4.333 2.2 4.500 105.3 4.500 2.4
SiouxFalls1 6.000 0.0 6.000 0.0 7.551 * 7.667 0.2
SiouxFalls2 4.000 0.0 4.000 5.9 4.485 * 4.600 3.1
Anaheim1 36.667 33.9 36.240 * 40.531 * 37.435 567.9
Anaheim2 25.833 363.5 25.804 * 26.000 * 25.833 304.4
Potsdam1 71.129 456.6 71.333 196.0 75.280 * 73.706 3 457.4
Potsdam2 46.463 114.2 46.500 405.7 49.110 * 47.326 504.0
Chicago1 96.900 793.5 96.900 7 050.0 101.285 * 127.167 1 066.5
Chicago2 65.178 439.1 65.183 * 66.476 * 74.360 10 074.3

with suffix 2). These paths are constructed between each pair of nodes, if possible.
The instances were reduced by some preprocessing, see [3].

Table 1 gives some statistics on these instances. It shows the number of nodes, edges,
and arcs for the networks and the associated Steiner connectivity digraphs as well
as the number of paths for all instances. One can see that the number of arcs of the
Steiner connectivity digraph, which is the number of variables in the strengthened
directed cut formulation (SCPrarc+), is nearly quadratic in the number of paths P.
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Table 3: Comparison between the weak cut formulation amended by the separation heuristic and
the strong directed cut formulation. The table shows both LP values at roughly the time that is
needed to solve (SCPwcut+).

(SCPr
arc+) (SCPw

cut+)
name value time value time

China1 5.386 0.1 6.333 0.1
China2 3.786 1.7 3.895 1.5
Dutch1 7.233 0.1 7.333 0.1
Dutch2 4.333 2.6 4.500 2.4
SiouxFalls1 6.035 0.2 7.667 0.2
SiouxFalls2 4.023 3.8 4.600 3.1
Anaheim1 36.989 568.0 37.435 567.9
Anaheim2 25.000 304.0 25.824 304.4
Potsdam1 74.361 3 459.0 73.706 3 457.4
Potsdam2 47.650 511.0 47.326 504.0
Chicago1 100.394 1 124.0 127.167 1 066.5
Chicago2 66.378 10 620.0 74.360 10 074.3

5.2 Results

Table 2 presents computational results on solving the LP relaxations of the four
models (SCPwcut), (SCPcut), (SCPrarc+), and (SCPwcut+) using unit costs for the paths.
It lists the LP values and the computation times in CPU seconds. An ‘*’ in the time
column indicates that the time limit of five hours was reached. All computations were
done with version 1.2.0 of scip [1, 17] on an Intel Quad-Core 2, 3.0 GHz computer
(in 64 bit mode) with 6 MB cache, running Linux and 16 GB of memory. We use
the simplex method of CPLEX 12.1 [12] as LP-solver (in single core mode). We have
also tried the barrier method, but did not obtain consistently better results.

We used the cuts around the terminal nodes to initialize all formulations. Then a
cutting plane algorithm depending on the formulation was run until no improvement
could be made or the time limit was exceeded (formulations (SCPwcut), (SCPcut), and
(SCPrarc+)); the separation heuristic was stopped if we did not find a cut or if the LP
value did not change for three rounds of cuts (formulation (SCPwcut+)). For instances
China, Dutch, SiouxFalls, Anaheim, and Potsdam, the heuristic considered all cuts
associated with node sets W := {W i

t | t ∈ T \ {r}, i = 0, . . . , j(t)}. For the very big
Chicago instances, which have |T | · |P| ≥ 500 000, we considered only the first two
levels of neighborhoods, i.e., W := {W i

t | t ∈ T \ {r}, 0 ≤ i ≤ 1}, see Section 4.3.

The weak cut formulation (SCPwcut) has the shortest computation times and is only
for three instances slightly worse than the cut formulation (SCPcut), which always
takes much longer. Hence, it is not worthwhile to construct the Steiner connectivity
digraph only to separate the strong Steiner path cut constraints. However, the
Steiner connectivity digraph is the key to improve the LP bound significantly via
the strengthened cut formulation (SCPrarc+). For China1, for example, the directed
formulation produces a 26% improvement of the LP value. The weakness of this
model is the long computation time and the memory consumption. For Chicago2,
(SCPrarc+) gets close to the memory limit (95%).
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Model (SCPwcut+) combines the compactness of the weak cut formulation with the
quality of the strengthened directed cut formulation. Its memory consumption can
be controlled very well via the definition of the considered cuts, such that we get be-
low 50% for Chicago2. There is a loss of quality sometimes, but note that (SCPwcut+)
yields even better LP bounds than (SCPrarc+) for instances SiouxFalls1 and Sioux-
Falls2, as well as for the very large instances Chicago1 and Chicago2, within the
given time limit. Table 3 compares the LP values of (SCPrarc+) and (SCPwcut+) af-
ter roughly the amount of time that is needed to solve (SCPwcut+). In all but two
instances, (SCPwcut+) provides a better LP value than (SCPrarc+). In this way, the
weak cut formulation amended by the separation heuristic for generalized Steiner
partition inequalities achieves a quality almost as good as (SCPrarc+), while running
times and memory requirements are kept within tolerable limits.
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