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Abstract

The paper proposes goal-oriented error estimation and mesh refinement
for optimal control problems with elliptic PDE constraints using the value
of the reduced cost functional as quantity of interest. Error representation,
hierarchical error estimators, and greedy-style error indicators are derived and
compared to their counterparts when using the all-at-once cost functional as
quantity of interest. Finally, the efficiency of the error estimator and generated
meshes are demonstrated on numerical examples.
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1 Introduction

Solving optimization problems with PDE constraints numerically with finite ele-
ments, one faces two fundamental questions: How large is the error of a computed
approximate solution, and what is the coarsest mesh on which a required accuracy
can be obtained? Both questions are usually addressed simultaneously with the
closely related concepts of a posteriori error estimators and error indicators.

The first question can only be answered if a metric is defined that allows to quantify
the distance between approximate and exact solution. Classical error estimators for
PDE problems use a general norm, often a Sobolev norm, of the difference of exact
and approximate solution. More recently, goal-oriented error estimators focus on
the difference of observables, so-called quantities of interest. With the error concept
defined, a variety of computational techniques can be applied to estimate the error
value [1, 2, 14].

∗This work has been supported by the DFG Research Center Matheon ”Mathematics for key
technologies” in Berlin.
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The second question is most often addressed by adaptively refining the finite el-
ement mesh in regions that contribute most to the error value and where a local
improvement of the discretization accuracy can be expected to decrease the error
value most. This leads to a kind of greedy algorithm for solving the nonlinear
approximation problem posed by the second question.

In genuine optimal control problems, the quantity of interest is the cost functional
J . Quite naturally, the whole point of solving optimization problems is to obtain
a minimal value of J , whereas a general measure of distance between exact and
approximate solution is usually of minor practical concern. The equality constraint
usually takes the form of a state equation that allows to compute an (at least
locally) unique state y = y(u) for every value of the control u. This allows to
write the optimal control problem either in all-at-once form as miny,u J(y, u), where
both state and control enter as optimization variable into the cost functional J , or
equivalently in reduced form minu J̃(u) = J(y(u), u), with the control as the only
optimization variable whereas the state is just an implicitly defined intermediate
quantity. For stationary problems, the all-at-once formulation is usually preferred
for actual computation. Consequently, starting with the seminal paper by Becker,
Kapp, and Rannacher [5], the value |J(yh, uh)− J(y, u)| has been used throughout
the literature to quantify the distance between the exact solution (y, u) and its
computed approximation (yh, uh). Goal-oriented error estimation techniques have
been developed for a large variety of PDE-constrained optimal control problems,
see [2,12] for a survey and the more recent papers [6,10,11,16] for control and state
constrained problems.

As pointed out by Vexler [15], there are different problems usually written in form of
optimal control problems for which the quantity of interest is not the cost functional,
but a different function of the control. The most notable example of such problems
are parameter identification problems, where the error in the identified parameters
is the natural quantity of interest, or the data mismatch in case a regularization
parameter needs to be determined from a discrepancy principle [9]. Monitoring
convergence of inexact Newton methods for interior point methods in optimal con-
trol problems leads to yet another kind of quantity of interest. Goal-oriented error
estimation techniques have been developed for those situations as well [13]. Here,
however, we will be concerned with genuine optimal control problems, where the
cost functional is actually the quantity of interest.

In many practical applications computing an accurate minimal value of the cost
functional is of less importance than obtaining a control that, when applied, leads
to a cost functional value that is as small as possible. In other words, in these sit-
uations the relevant quantity of interest is J(y(uh), uh) instead of J(yh, uh). After
all, yh is only an approximation of the state y(uh) that will be obtained by apply-
ing uh, and the error it introduces into the cost functional value J(yh, uh) is of no
practical consequence. In this paper we will follow this line of thought and develop
a goal-oriented error estimator for J̃(u) in Section 2.1 with associated error indi-
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cators in Section 2.3. The computational concept is formulated using hierarchical
error estimators for obtaining an approximate error representation in Section 2.2.
Algorithmic considerations are discussed in Section 2.4.

The difference between the proposed approach and previous error estimators is
largest whenever yh incurs a discretization error into the cost functional’s value that
is essentially independent of the control. Vice versa, if such control-independent dis-
cretization errors are missing, no significant difference can be expected. Therefore,
we report numerical results for illustrative optimal control problems designed to
cover both cases in Section 3.

2 Error Estimation

2.1 Abstract error representation

In order not to hide the concept behind technical details, we consider a rather
abstract linear optimal control problem

min
y∈Y,u∈U

J(y, u) = 〈y, 1
2
Hyyy − by〉+ 〈u, 1

2
Huuu− bu〉 (1)

subject to the equality constraint

Ay +Bu− bλ = 0. (2)

Here, Y and U are Banach spaces, Hyy : Y → Y ∗ and Huu : U → U∗ are bounded,
symmetric, and positive semidefinite, and A : Y → Y ∗ has a bounded inverse.
B : U → Y ∗ is merely continuous, and clearly we require by, bλ ∈ Y ∗ and bu ∈ U∗.
This abstract framework is just meant to simplify notation. In the following sections
we will restrict our attention to more concrete problem settings with elliptic PDEs.

Using (2), we can write
y(u) = A−1(bλ −Bu)

and consider the equivalent unconstrained or reduced problem

min
u∈U

J̃(u) = J(y(u), u). (3)

We assume that the reduced Hessian

H̃ = J̃ ′′ = B∗A−∗HyyA
−1B +Huu

is positive definite on U , such that (3) has a unique minimizer ū. Equivalent
necessary and sufficient conditions are

J̃ ′(ū) = 0 (4)
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in the reduced setting (3) and, introducing the Lagrangian

L(y, u, λ) = J(y, u) + 〈λ,Ay +Bu− bλ〉

for λ ∈ Y ,
L′(ȳ, ū, λ̄) = 0. (5)

Given an approximate solution uh of (3), we are interested in the error in the
reduced functional. Introducing the Newton correction δu = ū− uh, the error can
be written as

Ẽ(uh) = J̃(uh)− J̃(ū) =
1
2
〈δu, H̃δu〉. (6)

Here we used (4) and the fact that J̃ is quadratic. For nonlinear but differentiable
problems, remainder terms can be written down, which are, however, often ignored
in practical algorithms.

In particular in PDE constrained optimization where A represents an elliptic differ-
ential operator, it is often more convenient to solve (5) rather than (4), because H̃
is in general a nonlocal operator and its discretization is usually dense. Therefore
we assume an approximate solution xh = [yh, uh, λh]T of (5) has been computed,
such that the Newton correction δx = x̄ − xh = [δy, δu, δλ]T ∈ X = Y × U × Y
satisfies the residual equation Hδx = r. Here,

H = L′′ =

Hyy A∗

Huu B∗

A B

 (7)

denotes the Hessian of the Lagrange function.

An error representation that will turn out to be computationally more useful than (6)
is based on the following Lemma.

Lemma 2.1. For arbitrary x = [xy, xu, xλ]T ∈ X it holds that

〈δu, H̃xu〉 = 〈w,Hx〉, (8)

where w = [wy, wu, wλ]T is given by

wy = −A−1Bδu, (9)
wu = δu, (10)
wλ = −A−∗Hyywy. (11)

Proof. Solving Hx = z by block elimination via A and A∗ we see that H̃xu =
zu −B∗A−∗(zy −HyyA

−1zλ) and hence

〈δu, H̃xu〉 =
1
2
〈
δu, zu −B∗A−∗(zy −HyyA

−1zλ)
〉
.

With w defined as above, this is just (8).
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Applying Lemma 2.1 to (6) and using r = Hδx we obtain the error representation

Ẽ(uh) =
1
2

(〈wy, ry〉+ 〈wu, ru〉+ 〈wλ, rλ〉) . (12)

2.2 Galerkin discretization and hierarchical error estimators

Computing the error Ẽ by (12) is as difficult as solving the original problem (1).
For the purpose of error estimation, however, the weight functions wu, wy, and wλ
can be approximated with moderate cost.

In the following we assume that (5) has been solved by a Galerkin discretization
using a finite dimensional ansatz spaces Xh = Y h × Uh × Y h ⊂ X, such that the
discrete solution xh satisfies

〈L′(xh), ξh〉 = 0 for all ξh ∈ Xh. (13)

The finite dimensional Galerkin representation Hhh : Xh → (Xh)∗ of H in Xh is
defined by 〈Hhhξh, vh〉(Xh)∗,Xh = 〈Hξh, vh〉X∗,X for all ξh, vh ∈ Xh. Similarly, the
Galerkin right hand side bh is the projection of b = [by, bu, bλ]T onto (Xh)∗ and
satisfies 〈bh, vh〉(Xh)∗,X = 〈b, vh〉X∗,X for all vh ∈ Xh. With this notation, xh is
given as the solution of the linear equation system

Hhhxh = bh,

leaving the residual r = b − Hxh. Note that due to Galerkin orthogonality, r is
polar to Xh, i.e. 〈r, ξh〉 = 0 for all ξh ∈ Xh and thus rh = 0.

Let us assume there are finite dimensional extension spaces Y e ⊂ Y and U e ⊂ U
given, such that Y h ∩ Y e = {0} and Uh ∩ U e = {0}. The approximation [δxh, δxe]
of δx = x̄ − xh on the extended ansatz space Xh × Xe with Xe = Y e × U e × Y e

then satisfies [
Hhh Heh

Hhe Hee

] [
δxh

δxe

]
=
[

0
re

]
. (14)

Solving (14) yields a computable approximation δuh + δue of δu. Since (14) can
be quite expensive to solve, and one is only interested in an approximation for δu
anyway, the system is usually simplified. We will address this topic in Section 2.4.

Discretizing (9)–(11) in a similar way, we may define approximate weight functions
why + wey and whλ + weλ satisfying[

Ahh Aeh

Ahe Aee

] [
why
wey

]
= −

[
Bhh Beh

Bhe Bee

] [
δuh

δue

]
(15)

and [
Ahh Aeh

Ahe Aee

]∗ [
whλ
weλ

]
= −

[
Hhh
yy Heh

yy

Hhe
yy Hee

yy

] [
why
wey

]
, (16)
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respectively. Finally, as rh = 0, a computable estimate Ẽe of Ẽ is given by

Ẽ(uh) ≈ [Ẽ](uh) =
1
2
(
〈wey, rey〉+ 〈weu, reu〉+ 〈weλ, reλ〉

)
. (17)

2.3 Error indicators

In case Ẽ is not sufficiently small, the ansatz space Xh needs to be enlarged. Natural
candidates for functions to add are the ones that span the extension space Xe. Let
us assume that {ξe1, . . . , ξen} is a basis of Xe and that w =

∑n
i=1w

e
i ξ
e
i . A rather

straightforward strategy is to extend the ansatz space with those basis functions
ξei carrying the most weight in Ẽ(uh), i.e., for which |wei 〈ξei , r〉| is largest. This
approach works quite well. A closer look, however, reveals that extending the
ansatz space also affects the part of the Galerkin solution in Xh. In the following
we will therefore design a greedy-style error indicator which for each basis function
of Xe estimates how much Ẽ would be affected if just this one basis function was
included into the ansatz spaces.

For any ξ ∈ Xe, let x(ξ) denote the Galerkin solution of (1) computed in the ansatz
space Xh + Rξ, with u(ξ) being its control component.

Theorem 2.2. Assume that x(ξ) = xh + εξ + x̂ for some x̂ ∈ Xh. Then the
linearized error reduction

Ẽ(u(ξ)) = Ẽ(uh) + ε
〈

(Hee −Hhe(Hhh)−1Heh)we, ξ
〉

+O
(
ε2 + ε‖wh + we − w‖

)
(18)

holds.

Proof. Since both x(ξ) and xh are Galerkin solutions in ansatz spaces that include
Xh,

〈Hx̂, φ〉 = 〈H(x(ξ)− εξ − xh), φ〉 = −ε〈Hξ, φ〉
holds for all φ ∈ Xh, such that x̂ is given as the solution of Hhhx̂ = −εHehξ. Using
Lemma 2.1, we compute the directional derivative

〈Ẽ′(uh), x̂u + εξu〉 = 〈δu, H̃(x̂u + εξu)〉
= 〈w,H(x̂+ εξ)〉

=
〈[
wh

we

]
,

[
Hhh Heh

Hhe Hee

] [
x̂
εξ

]〉
+R

=
〈[
Hhh Heh

Hhe Hee

] [
wh

we

]
,

[
−ε(Hhh)−1Hehξ

εξ

]〉
+R

= ε
〈

(Hee −Hhe(Hhh)−1Heh)we, ξ
〉

+R

where the remainder term due to discretization of w is of order R = O(ε‖wh+we−
w‖).
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Suppose that δxe =
∑n

i=1 e
iξei . Let us define the error indicator weight p = (Hee −

Hhe(Hhh)−1Heh)we. With the influence of including a basis function ξi into the
ansatz space quantified by (18), we define the error indicators

ηi =
∣∣ei〈p, ξei 〉∣∣ . (19)

Note that if p ∈ (Xe)∗ is computed in the Galerkin setting of Xe, it is represented as
a vector in Rn by the scalar products with the ansatz functions of Xe as pi = 〈p, ξei 〉.
Thus, (19) reduces to ηi = |eipi|.

2.4 Practical error estimation for PDE constrained optimization

In this section we focus on second order elliptic PDEs and thus assume that A :
H1(Ω) → H1(Ω)∗ is an elliptic second order differential operator defined over a
domain Ω ⊂ Rd, and that Y h = {ξ ∈ C(Ω) : ξ|T ∈ P1∀T ∈ T } is the space of linear
finite elements over a conforming simplicial triangulation T of Ω with vertices T ν .
Let Y e = {ξ ∈ C(Ω) : ξ|T ∈ P2 ∀T ∈ T ∧ ξ(t) = 0 ∀t ∈ T ν} be the hierarchical
extension of Y h. The basis functions used for spanning Y e are chosen with minimal
support in order to give a sparse Galerkin matrix. To each edge in the triangulation
a piecewise quadratic basis function known as ”bubble function” is associated, the
support of which is the union of the elements incident to the edge.

In this computational setting, the direct implementation of error estimation and
extension of ansatz spaces as worked out above is inefficient and impracticable. Be-
low we discuss practical modifications that lead to more efficient and implementable
algorithms.

Approximate computation of weight functions. Since Y e is significantly
larger than Y h by a factor of around 3 in 2D and 6 in 3D, solving (14) might
be quite expensive. As is common for hierarchical error estimators (see [1, 8]), we
solve a cheaper approximation by neglecting one off-diagonal block and localizing
the defect problem. Consequently, the square subblocks of Hee are reduced to just
their diagonal, giving Ĥee: [

Hhh Heh

Ĥee

] [
δxh

δxe

]
=
[

0
re

]
.

Note that in Ĥee, all basis functions are decoupled, such that the computations are
spatially local. For this reason, long-distance influences, leading to the so-called
pollution error, have to be captured by δxh. Dropping Heh instead of Hhe, or both
off-diagonal blocks, would lead to δxh = 0 and consequently neglect the global error
transport.

As to the weight functions, in (15) we can again localize Aee to Âee and drop
either Ahe or Aeh. Since why does not enter into (17) due to ry being polar to Y h,
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dropping Ahe and solving for wey first would again neglect the pollution error due
to the locality of Âee. This is in fact extremely critical if the range of B has local
support, e.g. in boundary control problems — see Figure 12 in Section 3.2. This
is different from energy norm estimates of elliptic PDEs, where the pollution error
plays a negligible role [7,8]. Thus we now drop Aeh and solve for why first. The very
same consideration holds for approximating weλ via (16).

Having thus computed the weight functions we = (wey, w
e
u, w

e
λ), evaluating (17) is

just a matter of linear algebra.

Mesh refinement. Enlarging the ansatz space in case the estimated error is too
large is often realized as h-adaptivity. Instead of including basis functions from
Xe into the ansatz space, mesh edges are marked for refinement if their associated
quadratic basis would have been included into the ansatz space.

3 Numerical Examples

Before selecting example problems, let us briefly compare (12) with representations
of the error quantity E(yh, uh) = J(yh, uh)− J(ȳ, ū) proposed in [5]. A qualitative
comparison will allow us to design test problems highlighting the differences.

Assuming that (9) is solved by a Galerkin discretization, implying 〈λh, Ayh+Buh−
bλ〉 = 0, we have

Eh(yh, uh) = J(yh, uh)− J(ȳ, ū) = L(yh, uh, λh)− L(ȳ, ū, λ̄)

=
1
2
〈
(δy, δu, δλ), L′′ [δy, δu, δλ]T

〉
=

1
2

(〈δy, ry〉+ 〈δu, ru〉+ 〈δλ, rλ〉) .

First of all, since L′′ is indefinite, E can be both positive or negative, and in partic-
ular it can be zero even far away from the solution. Even if one is only interested
in the optimal value J̃(ū), computational estimates of [E] will be less reliable on
coarser meshes and far away from the solution, such that the reliability of a van-
ishing error estimate is questionable. For this reason, breaking [E] up into local
contributions and summing up their absolute values is taken as a remedy, but this
may sacrifice the efficiency of the error estimator. And of course, by construction
[E] gives little information about the objective value J̃(uh) that will actually be
achieved if the computed control is implemented in practice.

In contrast, Ẽ is always nonnegative, and zero only at the exact solution. Thus, a
negative computational estimate [Ẽ] is a strong indicator that the computation of
the error representations and weight functions is not accurate enough.
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The weight functions in E corresponding to wy and wλ are

δy = A−1(rλ −Bδu) = wy +A−1rλ

and
δλ = A−∗(ry −Hyyδy) = wλ +A−∗ry −A−∗HyyA

−1rλ.

Therefore the differences between Ẽ and E, and between the generated meshes, will
be most pronounced when wy is small but rλ is large, or ‖wλ‖ � ‖ry‖, respectively.
Such situations occur, e.g., when the state equation error is large where it affects the
cost functional but, due to spatial distance or averaging effects, has little influence
on u. In particular, boundary control with state observation far away from the
control boundary and finite dimensional controls come to mind.

Below we present one boundary control example and one with finite dimensional
control. We will use linear finite elements on unstructured triangular meshes and
examine both, the differences between Ẽ and Eh, and the impact of approximating
δu via (18). Computations are performed using the KASKADE 7 code based on
DUNE [3, 4]. Since DUNE does not support marking of edges for refinement, the
edge-related error indicators ηi are distributed equally to the incident elements. A
fixed fraction (25%) of the elements with largest error indicator contributions is
then marked for refinement.

3.1 Finite dimensional control

Example 1. We construct a test problem with finite dimensional scalar control
where a large state equation error is created by a reentrant corner of the domain.
We choose Ω = {x ∈ [0, 6]× [0, 2] : x2 ≤ 6− x1 ∨ x2 ≥ x1 − 4}. The problem is

min
1
2
‖y − 1‖2L2(Ω) s.t. −∆y = u in Ω

y = 0 on ∂Ω

with an optimal control value of ū = 3.26358 computed on a very fine discretization.
Due to symmetry, actual computations have been restricted to the lower half of
Ω. The computational domain with the coarse grid is shown in Figure 1 together
with the optimal state y∗. The errors Ẽ(uh) and E(xh) for adaptive refinement
according to [E] and [Ẽ] are shown in Figure 2, refined grids in Figure 3. Both
refinement criteria produce very similar grids with the same efficiency. In contrast,
the errors Ẽ(uh) and E(xh), respectively, are strikingly different, showing an order
of approximation difference. Both estimators provide good estimates of the true
errors.

Example 2. As an extreme example we consider a problem where the control
acts only on a subset Ωc = [0, 1] × [0, 2] of the domain Ω, and where the influence
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Figure 1: Setting of Example 1. Left: computational domain with coarse grid.
Right: optimal state.
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Figure 2: Error versus total number of degrees of freedom. Refinement according
to [E] is shown as +, according to [Ẽ] as ×. Top lines: errors E(xh) for both
refinement strategies and estimated error [E] (�) for (+). Bottom lines: errors
Ẽ(uh) for both refinement strategies and estimator [Ẽ] (�) for (×).
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Figure 3: Meshes obtained by refining eight times according to [Ẽ(uh)] (top, 1377
dofs) and [E(xh)] (bottom, 1539 dofs).
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Figure 4: Effect of error indicator formulation on the errors E(xh) (top lines) and
Ẽ(uh) (bottom lines) for Example 1 (left) and Example 2 (right). In both cases,
refinement is according to [Ẽ].
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Figure 5: Setting of Example 2. Left: computational domain with coarse grid and
shaded control region. Right: optimal state.

of the state error caused by the intruding corner on the control is attenuated by
a bottleneck in the domain. An additional source term is applied on the whole
domain such that the intruding corner leads to a relevant gradient singularity.

min
y∈H1(Ω),u∈R

1
2
‖y − 1‖2L2(Ω) s.t. −∆y = 3 + χΩcu in Ω

y = 0 on ∂Ω

Again, computation is restricted to the lower half of the domain as shown in Figure 5
together with the optimal state. Here the optimal control value is ū = 4.74727. The
errors and their estimates are shown in Figure 6, refined meshes in Figure 7. As
expected, the smaller influence of the corner singularity on the control leads to
significantly less refinement in that area when using [Ẽ] as refinement criterion.
The degrees of freedom saved on the right of the domain are spent on the left in
order to compute a more accurate control. This is also reflected in the error, where
a small but persistent accuracy gain of factor 2.5 for the same number of degrees
of freedom can be observed when refining according to [Ẽ]. As a downside, the
actually computed value of J(yh, uh) is much less accurate for refinement driven by
[Ẽ].

3.2 Boundary control

This example is modeled after [5]. We choose Ω = [1/4, 3/4] × [0, 3/4] ∪ [0, 1] ×
[1/2, 3/4] and define the control boundary ∂Ωc = {x ∈ ∂Ω : x2 = 0}. The observa-
tion boundary is either ∂Ωo = ∂Ωc (a) or ∂Ωo = {x ∈ ∂Ω : x2 = 3/4} (b). On this
geometry we consider the tracking type problem

min
1
2
‖y − yd‖2L2(Ωo) +

α

2
‖u‖2L2(Ωc)
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Figure 6: Error versus total number of degrees of freedom. Refinement according
to [E] is shown as +, according to [Ẽ] as ×. Top lines: errors E(xh) for both
refinement strategies and estimated error [E] (�) for (+). Bottom lines: errors
E(uh) for both refinement strategies and estimator [Ẽ] (�) for (×).

Figure 7: Meshes obtained by refining six times according to [Ẽ] (top, 1365 dofs)
and [E] (bottom, 1417 dofs) with approximately the same number of vertices.
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subject to

−κ∆y + y = 0 in Ω
κ∂ny = u on ∂Ωc

∂ny = 0 on ∂Ω\∂Ωc

Following [5], we choose yd = 1 and α = 1, but κ = 0.1.

The unique stationary point of the Lagrangian

L(y, u, λ) =
1
2
‖y − yd‖2L2(∂Ωo) +

α

2
‖u‖2L2(∂Ωc) +

∫
Ω

(∇y · ∇λ+ yλ)dx−
∫
∂Ωc

uλ dx,

is the solution. As before, the space Y h of piecewise linear finite elements on a
triangular mesh is chosen as ansatz space for y and λ. Uh is just the trace space of
Y h on ∂Ωc. Together with the stationarity condition

0 = ∂uL(y, u, λ) = αu− λ (20)

this ensures ru = 0.

Equivalently, we can use (20) to eliminate u pointwisely, which is just block elim-
ination of u in (7) via the Nemyckii operator Huu, and obtain a control reduced
Lagrangian

L̂(y, λ) =
1
2
‖y − yd‖2L2(∂Ωo) −

1
2α
‖λ‖2L2(∂Ωc) +

∫
Ω

(∇y · ∇λ+ yλ)dx.

In this case, the Hessian of the Lagrangian turns out to be

L′′ =
[
Hyy A∗

A Q

]
, Q = −BH−1

uuB
∗,

and accordingly the weight functions are wy = −A−1Qδλ and wλ = −A−∗Hyywy.

4 Conclusion

Goal-oriented error estimation and adaptive refinement for optimal control problems
can equally well be performed with respect to the error quantities E(xh) and Ẽ(uh),
respectively. The error quantities E and Ẽ can differ by orders of magnitude, such
that using the one that is of actual interest can be crucial, in particular if used in
termination criteria. Depending on the problem, the adaptively refined meshes can
be quite similar or very different, in the latter case leading to a modest efficiency
gain.

Acknowledgement. Support by DFG Research Center Matheon “Mathematics
for key technologies”, project A1, is gratefully acknowledged.
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Figure 8: Adaptive grids obtained for situation (a) by refining according to [E]
(left) and according to [Ẽ] (center). Optimal state y (right).
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Figure 9: Error versus total number of degrees of freedom. Refinement according
to [E] is shown as +, according to [Ẽ] as ×. Top lines: errors E(xh) for both
refinement strategies and estimated error [E] (�) for (+). Bottom lines: errors
Ẽ(uh) for both refinement strategies and estimator [Ẽ] (�) for (×).
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Figure 10: Adaptive grids obtained for situation (b) after five steps of refinement
according to [E] (left, 1074 dof) and according to [Ẽ] (center, 870 dof). Optimal
state y/2 (right, scaled for graphical presentation).
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Figure 11: Error versus total number of degrees of freedom. Refinement according
to [E] is shown as +, according to [Ẽ] as ×. Top lines: errors E(xh) for both
refinement strategies and estimated error [E] (�) for (+). Bottom lines: errors
Ẽ(uh) for both refinement strategies and estimator [Ẽ] (�) for (×).
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Figure 12: Effect of neglecting the pollution error by considering considering local
defect problems only. Top left: pollution error taken into account (same as Fig. 10
center, 870 dof). Tor right: pollution error not taken into account (1000 dof).
Bottom: error Ẽ (•) and its estimate [Ẽ] (�) taking the pollution error into account,
error Ẽ (◦) and its estimate [Ẽ] (�) neglecting the pollution error.
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