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1 Executive Summary

Every day, millions of people are transported by buses, trains, and airplanes
in Germany. Public transit (PT) is of major importance for the quality of
life of individuals as well as the productivity of entire regions. Quality and
efficiency of PT systems depend on the political framework (state-run, mar-
ket oriented) and the suitability of the infrastructure (railway tracks, airport
locations), the existing level of service (timetable, flight schedule), the use
of adequate technologies (information, control, and booking systems), and
the best possible deployment of equipment and resources (energy, vehicles,
crews). The decision, planning, and optimization problems arising in this
context are often gigantic and “scream” for mathematical support because of
their complexity.

This article sketches the state and the relevance of mathematics in planning
and operating public transit, describes today’s challenges, and suggests a
number of innovative actions.

The current contribution of mathematics to public transit is — depending
on the transportation mode — of varying depth. Air traffic is already well
supported by mathematics. Bus traffic made significant advances in recent
years, while rail traffic still bears significant opportunities for improvements.
In all areas of public transit, the existing potentials are far from being ex-
hausted.
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For some PT problems, such as vehicle and crew scheduling in bus and
air traffic, excellent mathematical tools are not only available, but used in
many places. In other areas, such as rolling stock rostering in rail traffic,
the performance of the existing mathematical algorithms is not yet suffi-
cient. Some topics are essentially untouched from a mathematical point
of view; e.g., there are (except for air traffic) no network design or fare
planning models of practical relevance. PT infrastructure construction is es-
sentially devoid of mathematics, even though enormous capital investments
are made in this area. These problems lead to questions that can only be
tackled by engineers, economists, politicians, and mathematicians in a joint
effort.

Among other things, the authors propose to investigate two specific topics,
which can be addressed at short notice, are of fundamental importance not
only for the area of traffic planning, should lead to a significant improvement
in the collaboration of all involved parties, and, if successful, will be of real
value for companies and customers:

• discrete optimal control: real-time re-planning of traffic systems in case
of disruptions,

• model integration: service design in bus and rail traffic.

Work on these topics in interdisciplinary research projects could be funded
by the German ministry of research and education (BMBF), the German
ministry of economics (BMWi), or the German science foundation (DFG).

2 Success Stories

What good is mathematics in public transit? Three examples elucidate the
benefits of mathematics for the customer, the planner, and the stakeholder.

Details Datum Abfahrt Ankunft Dauer Umst. Verkehrsmittel

 früher

30.07.08 15:24 16:25 1:01 2

30.07.08 15:31 16:35 1:04 4

30.07.08 15:44 16:45 1:01 2

Fig. 1: Berlin’s “trip info” recommends a route.

Electronic Trip Planners. Thumbing through thick timetables and rail-
way guides in order to determine the best connection in a bus, railway, or
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flight network is a matter of the past. Today, bus companies, railways,
and airlines offer electronic trip planners, which provide this information via
the Internet or via mobile phones in a comfortable and fast way, always
up-to-date, and at no charge. To make this service work, correct and com-
prehensive data is needed first and foremost. The “intelligence” to utilize
this data is provided by mathematics: good methods to compute shortest
paths in networks.1 Appropriate algorithms for this problem are know since
the nineteen-fifties. Their use in customer-friendly systems became a reality
because of the rapid progress in information technology in recent years.

Examples for electronic trip planners are the “trip info” (“Fahrinfo”) of Berlin’s public transport
company Berliner Verkehrsbetriebe (http://www.fahrinfo-berlin.de), see Fig. 1, the Hafas sys-
tem, which is used by the German railway company Deutsche Bahn (http://reiseauskunft.
bahn.de), and the flight search of Lufthansa (http://www.lufthansa.de). The basic method to
compute shortest paths is Dijkstra’s algorithm. This method has undergone many refinements
and improvements over the years in order to deal with large networks and complex constraints,
see [12].

Fig. 2: Flight bargains in the beginning and middle of 2008 (sources: http://
www.lufthansa.com/online/portal/lh/de/specials, 3. 1. 2008; http://

www.airberlin.com, 3. 6. 2008)

Revenue Management. In the middle of 2008, Lufthansa offered flights
to various destinations in Europe for 99e, see Fig. 2, Air Berlin promotes
flights to Paris as cheap as 29e, and sometimes one can find tickets for
less than 10e. How do such prices come about? They are the result of
sophisticated ticket sales strategies known as revenue or yield management.
The idea is as follows. Once an airline has published a flight in its schedule,

1Customers sometimes complain that they can find better or cheaper routes than a
trip planner. This is, however, not a mathematical problem, but usually due to parameter
settings such as “minimum transfer times”.
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it is essentially clear what the costs will be. The goal is then to maximize
the revenue. There were originally two strategies to do this: the classical
carriers charged high prices (and had empty airplanes on certain flights),
while the low costs carriers filled their airplanes solely with cheap tickets.
Today, all airlines pursue (depending on the company) different mixtures of
these strategies. The clou about it is in the permanent adjustment of the
booking classes and prices to the demand that has already materialized and
the demand that is yet expected. Many airlines use mathematical methods
of stochastic optimization to do these adjustments. On the basis of such
forecasts, it can be reasonable to sell, at certain points in time, residual
capacities at very low prices, such that at least some revenue is generated
instead of flying empty seats.

The above described and at present commonly used form of revenue management was developed
around 1990. In this context, the famous competition between American Airlines and the low cost
carrier PeopleExpress is often mentioned, because AA finally won the fight by introducing “Super
Saver” and “Ultimate Super Saver” tickets, which were sold using yield management methods. On
the occasion of the bestowal of the INFORMS Edelman Award in 1991, AA provided evidence that
revenue management created an additional revenue of 1.4 billion USD in the period from 1988 to
1991 [32]. After additional improvements, a benefit of even 1 billion USD per year was reported
[9]. The most popular revenue management method is the EMSR rule (expected marginal seat
revenue), which states that one should sell tickets of some booking class for a flight as long as
the expected profit is positive [26]. Starting from this basic form, researchers and practitioners
have developed a large variety of methods to control ticket sales, ranging from the consideration
of individual flights (“leg control”), via the inclusion of simple network effects (“segment control”),
to the treatment of entire itineraries (“origin destination control”), see [34] for a recent overview
of the state of the art in this area of research in stochastic optimization.
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Fig. 3: Berlin’s public transit company BVG in numbers (source: [33])
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Vehicle and Crew Scheduling. Fig. 3 illustrates the development of
Berlin’s public transit company BVG over recent years by means of three
statistics: the number of employees descended from 27 002 in 1991 to 10 982
in 2006, labor costs fell in the same period of time from 734 mil.e to 485
mil.e, and state subsidies sank from 762 mil.e in 1993 to 318 mil.e in
2006 [33]. These remarkable reductions could be achieved without changing
the level of service. They are not only, but to a significant extent, results
of mathematical optimization. As Andreas Sturmowski, CEO of the BVG,
put it [33]: “The use if IT-based planning systems allows for significant im-
provements in the planning processes of the BVG! Resource allocation is
optimized. Increases in the productivity of vehicle and crew utilization [are
achieved] by minimizing deadhead trips, [. . . ], better use of depot capaci-
ties, [. . . , and] reductions in staff requirements by optimized duty schedules
[. . . ].” (translation by the authors). All this is made possible by methods of
combinatorial and mixed integer optimization, which can deal with the enor-
mous problem sizes that are typical for this area. This “computing power”
leads to both significant speed-ups of and to quality improvement in the
planning process. Customers do not directly notice this progress; however,
the indirect impact on ticket prices and state subsidies is significant.

Mathematical methods for vehicle and crew scheduling are today sold as standard modules in the
market leading planning systems. In the area of public transit, such systems are, among others,
MICROBUS 2 of IVU Traffic Technologies AG (http://www.ivu.de) from Berlin, HASTUS of the Cana-
dian company Giro Inc. (http://www.giro.ca), and Turni by the Italian company Double-Click
(http://www.turni.it/page001.htm), in air traffic the systems NetLine by Lufthansa Systems
GmbH (http://www.lhsystems.com) and Carmen of the US Jeppesen group(http://www.carmen.
se), in rail traffic the system railRMS by Jeppesen or the optimization modules of the US com-
pany Innovative Scheduling, Inc. (http://www.innovativescheduling.com). The state of the art
of mathematical research is documented by the proceedings of the tri-annual international CASPT
and the German Heureka conferences [10, 11, 14, 18, 35, 36].

3 PT Planning Problems: Survey and Status Quo

Public transit (PT) is of high relevance for every society. Tab. 1 illustrates
at the example of some statistics on Berlin’s public transit company (BVG),
the German railway company Deutsche Bahn (DB), and the German airline
Lufthansa (LH) for the business year 2006, that PT is also an important
sector of the economy.

In the future, the importance of public transit will increase because of the
surging costs of individual traffic. In Germany, in the summer of 2008, a
single tankful of gasoline cost about 75e, which is nearly the price of a
monthly BVG public transit ticket for the tariff zone AB, which contains the
entire area of the state of Berlin (about 40 square kilometers).

Public transit can be subdivided into the following three areas:
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company pkm/year employees turnover/Euro profit/Euro

BVG 4,074 bil. 12.685 0,636 bil. 23 mil.
DB 74,788 bil. 229.200 30,053 bil. 1.680 mil.
LH 110,330 bil. 93.541 19,849 bil. 845 mil.

Tab. 1: Public transit 2006 in Germany; sources: [4], [15], [16]. The re-
spective figures must be interpreted, because some of them are derived in
different ways. The BVG, e.g., reports for the number of employees the “av-
erage number of employees over the year”, including apprentices. The figures
of DB and LH include, among other things, cargo traffic.

• public mass transit, i.e., bus, tram, subway, and commuter trains (BT),

• long and short distance passenger rail traffic (RT),

• civilian passenger air traffic (AT).

We will denote these in the following shortly as bus, rail, and air traffic. The
planning problems appearing in these areas can be classified from a business
point of view as follows:

• scheduling (e.g., vehicle and crew scheduling)

• control (e.g., delay and disruption management)

• (network) design (e.g., infrastructure, timetable)

• regulation of competition (e.g., tenders).

Mathematical methods are already used in all these fields. However, the
maturity of the technology and the penetration of practice is different. In
scheduling, mathematical optimization methods are well established as an
industry standard, the mathematical control and design of public transit
systems is (with the notable exception of air traffic) in a research state,
while the mathematics of PT regulation is still in its infancy. There are
also differences depending on the transportation mode. One reason is that
the planning problems in bus, rail, and air traffic may be similar, but they
are not identical. Technical and organizational conditions as well as the
market environment influence the structure of the planning process, as well
as the definition and the characteristics of the individual tasks, which in turn
has its effects on mathematical solution approaches. At present, the use of
mathematics is most advanced in air traffic, and least common in rail traffic.

We survey in the following the state of the most important developments.
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Fig. 4: Bus scheduling with MICROBUS 2 (source [28])

3.1 Scheduling

Scheduling determines – on the basis of a fixed timetable – the use of vehicles
and crews. Operating a bus (including general overhead) costs approximately
250 000e per year in Germany. About 70 % of this amount are crew costs,
and 25 % vehicle costs. In rail and air traffic, the vehicle costs take a larger
share of the total costs, in particular, because of higher fuel expenses.

The problems to plan vehicles and crews can, in their basic forms, be for-
mulated in terms of standard models of combinatorial optimization. One
can view them as multi-commodity flow problems or as path covering prob-
lems. These models are well studied and can be solved in dimensions which
make a treatment of realistic and relevant scenarios possible at a high level
of detail. However, technical constraints, legal prescriptions, and company
agreements increase the complexity of the problems to such an extent that
specialized methods have to be developed. These have reached a mature
state and are today (as already mentioned) offered by software companies
all over the world.

The particular structure of the planning process and its subdivision into
individual problems depends on the perception of the operation and differs by
countries, transportation modes, and software companies. Fig. 4 illustrates
the view of the software company IVU Traffic Technologies AG on public
transit. The planning system MICROBUS 2 can be used to schedule, on
the basis of a given network and timetable, vehicle rotations and crew duties
for a day of operation, which are subsequently concatenated to vehicle and
duty rosters. These individual steps are supported by optimization tools,
which are marked in red. We give in the following a synopsis and explain
the problems both from an applied and from a mathematical point of view.
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Vehicle Scheduling. The first successful applications of mathematical
methods in public transit dealt with bus scheduling. This planning step
is about the construction of sequences of timetabled and deadhead trips, the
so-called vehicle rotations, such that every “timetabled trip” (a trip listed in
the timetable) is operated by a suitable vehicle. The planning horizon is usu-
ally a single day of operation. A bus departs from its depot in the morning
and returns in the evening. The objective is to service all timetabled trips
and to minimize the corresponding costs (of driving and waiting). This task
can be formulated mathematically as a multi-commodity flow problem, see
Fig. 5. In the case of Berlin’s public transport company BVG, this leads to
an optimization problem with 100 million variables, which can be solved by
modern algorithms in less than one hour on a standard desktop computer to
proven fleet optimality [27]. Using this method, BVG reports savings of 38
buses in a single depot (Spandau) in 2003, i.e., about 20 % of the vehicles,
and of 377 hours of unproductive waiting time [30].

In air traffic, vehicle scheduling is usually subdivided into two steps, namely,
fleet assignment and tail assignment. Fleet assignment decides which type of
aircraft is used to operate a specific flight. In the subsequent tail assignment

Vehicle scheduling graph:

g

r

a

b

c

d

e

Fig. 5: Vehicle scheduling in public
transit (see [27])
The vehicle scheduling problem in pub-
lic transit can be mathematically mod-
eled as a multi-commodity flow problem.
The model is based on a scheduling graph,
which connects the timetabled trips by all
possible deadhead trips. Vehicles of differ-
ent types “flow” through this graph in such
a way that every timetabled trip is covered
by a rotation of a vehicle of a suitable type.
Formally, the model can be described as
follows. We denote by D a set of vehicle
types, by T a set of timetabled trips, by
Ad a set of arcs for all possible deadhead

trips for every vehicle type d, and by κd

the number of available vehicles of type d.
We introduce a 0/1 variable xd

ij for every
arc (i, j) and every vehicle type d. xd

ij en-
codes if a deadhead trip (i, j) is operated
by a vehicle of d (in which case xd

ij = 1) or
not (xd

ij = 0).
The corresponding formulation as an inte-
ger linear program is:

min
X

d,(i,j)

c
d
ijx

d
ij

X

d,(t,j)

x
d
tj = 1, ∀t ∈ T ,

X

d,(t,j)

x
d
tj −

X

d,(i,t)

x
d
it = 0, ∀t ∈ T , d ∈ D,

X

(d,j)

x
d
dj ≤ κd, ∀d ∈ D,

x ≥ 0 and integer.

Berlin’s public transit company BVG dis-
tinguishes about 50 different types of ve-
hicles, 28 000 timetabled trips, and ap-
proximately 100 million deadhead trips.
This translates via the above model into a
multi-commodity flow problem with about
100 million variables and several hundred
thousands of equations and inequalities.
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step, rotations for the individual airplanes of each fleet are constructed,
including necessary maintenance activities. There are two reasons for this
subdivision. First, operation costs for large and small airplanes differ much
more than for buses, such that fleet assignment is much closer related to
network design than bus scheduling to bus network design. Second, the
planning horizon of the tasks is different (tail assignment is closer to the
day of operation). Fleet assignment can be modeled as a multi-commodity
flow problem, similar to bus scheduling, while tail assignment leads to path
covering problems that are solved using column generation methods, see Fig.
6. Today, optimal vehicle rotations for an entire bus company or airline are
computed routinely.

Vehicle scheduling in rail traffic features additional technical constraints,
which depend, among other things, on the infrastructure at railway and
shunting stations and on the driving dynamics of individual trains. Such
constraints increase the complexity of the associated models substantially.
At present, the mathematical methodology is not good enough to deal with
problems of relevant sizes. Vehicle scheduling in rail traffic is currently to a
wide extent still a matter of manual planning and heuristic methods.

Crew Scheduling. Crew scheduling is commonly subdivided into two con-
secutive steps: crew/duty scheduling and crew/duty rostering. Crew schedul-
ing is about the construction of a number of crew rotations, the so-called
duties (in bus traffic) or pairings (in air traffic), which are not yet assigned
to specific crews; this step accounts for legal regulations and aims at cost
minimization. Crew rostering subsequently concatenates anonymous duties
to longer rosters over some planning horizon and assigns them to concrete
persons; here, fairness considerations and employee preferences are taken
into account.

Airline crew scheduling is the area where the first big successes in mathemat-
ical crew scheduling were achieved. Labor costs of large airlines range in the
billions and are, next to fuel costs, the second largest individual cost factor
[1]. At the beginning of the nineteen-nineties, it became possible for the first
time to solve large crew scheduling problems with thousands of flights to
proven optimality [21]. Since then, optimization technology has made rapid
progress and is now established as an industry standard. Today, all major
airlines use mathematical “crew optimizers” [37]. Methodologically, these
systems are based on set partitioning models, which can deal with the com-
plex rules for breaks, rest periods, etc. These models are solved by column
generation methods, see Fig. 6.

These methods have been transfered with some delay to bus and in some
places also to rail traffic. However, the problems in these areas have special
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combinatorics of their own, which, among other things, are caused by differ-
ent degrees of freedom for crew reliefs (e.g., in bus traffic one changes crews
“on the fly”, i.e., during a trip, which is obviously impossible in airline crew
scheduling); on the other hand, duty schedules in bus traffic are constructed
for a single day of operation, while airline crew scheduling is typically done
for a period of several weeks or a month.

Summarizing, crew scheduling is the area in which the use of mathematical
methods in public transit is most advanced. Occasionally this is criticized,
as documented, e.g., by the headline of the Atlanta Constitution of August
13, 1994: “Delta to furlough 101 more pilots in bid to cut costs”. But such
criticism has no bearing on the mathematical methodology. Indeed, it is no

Duty scheduling graph in public transit
with morning and afternoon peaks:

Fig. 6: Duty scheduling in public
transit[6]

The duty scheduling problem in public
transit can mathematically be understood
as a path covering problem. Similar to ve-
hicle scheduling, one constructs a schedul-
ing graph, in which indivisible units of
(driving) work, the so-called duty ele-

ments, are linked by all possible connec-
tions. Driver duties correspond to “paths”
in this scheduling graph, and every duty
element has to be covered by such a duty.
The difference to vehicle scheduling is that
complex rules for the feasibility of duties
such as break rules have to be observed,
which depend on the form of the duty in its
entirety and which can not be decided lo-
cally. Consequently, a mathematical duty
construction can no longer efficiently be
done in terms of variables for individual

concatenations of duty elements, but must
introduce variables for entire duties, which
makes these models larger and more diffi-
cult to solve.
Following this line of thought leads to a
formally very simple model, a so-called set

partitioning problem. It considers for some
set of duty elements I the set of all possible
duties J . For every such duty j, a 0/1 vari-
able xj is introduced. It indicates whether
duty j is included in the duty schedule
(in which case xj = 1) or not (xj = 0).
For every duty element, a constraint stip-
ulates that exactly one duty covering this
element must be chosen. For large, indus-
trial problems it is not possible to handle
this formulation explicitly, because there
can easily be billions of duties even for
small problems with only 200 trips (duty
elements) [22]. However, such models can
be solved implicitly using so-called column

generation methods, which generate (in a
mathematically precise sense) at any time
the potentially interesting duties in a dy-
namic way [3, 13].
The corresponding formulation as an inte-
ger linear program is

min
X

j∈J

cj xj

X

j∋i

xj = 1, ∀i ∈ I

x > 0 and integer.

Nowadays duty scheduling problems in bus
and air traffic with several hundred or even
thousands of crews are solved on a routine
basis [2, 6].
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problem to optimize for social criteria. Managers, however, usually focus on
cost reductions.

3.2 Control

Fig. 7 illustrates that controlling the implementation of a schedule is as
important as constructing it. Bad weather, accidents, technical damages,
and strikes can cause disruptions. For example, the Chicago Tribune reports
on December 27, 2007: “According to its pilots union . . . , United has run low
on crews to fly its planes. That’s a result of lean staffing, scheduling practices
and freakishly bad weather that have caused large numbers of pilots to hit
the maximum number of monthly duty hours allowed by federal regulators
well before December’s end.” There are different possibilities to face such
difficulties.

Stochastic and Robust Optimization. A theoretically satisfactory pos-
sibility is to use methods of stochastic optimization, that try to anticipate
disruptions in a probabilistic way. A main obstacle to the application of
stochastic methods, however, is the limited availability of expected values
and probability distributions in practice. For this reason, a simplified vari-
ant of stochastic optimization, the so-called robust optimization approach,
has been investigated in recent years. It only accounts for certain uncer-
tainty intervals in the data by means of a worst case analysis. This method
has not made it into practice yet. Real-world planning systems take some
precaution by introducing buffers at critical points.

Fig. 7: Airline planning and control with NetLine (source [8])
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Online Optimization. Stochastic and robust optimization pave the way
to overcome disruptions by instantaneous re-planning. Re-planning itself
is a topic of online resp. real-time optimization, a method that searches
for recovery operations that lead from a disrupted state back to a stable
state as fast as possible and, in this way, reduce the damages caused by
disruptions as much as possible. Online optimization methods are, e.g.,
currently successfully used for dispatching the “yellow angel” service vehicles
of the German automobile club ADAC [20]. In principle, bus and rail traffic
also have the necessary IT infrastructure at their disposal. However, in these
areas disruption management is usually done by experienced dispatchers. In
air traffic, first successes with mathematical methods are reported, e.g., at
the American carrier Continental Airlines [38]. The software companies have
started to take up the topic.

Inadequate control leads not only to customer dissatisfaction, but also to
enormous costs. For example, airlines must pay passenger overnights and
arrange ferry and extra flights, bus and railway companies do not get their
full payment in case of quality impairments.

Robust and real-time optimization are new and topical branches of research,
which can only have an impact if a close cooperation with practice can be
established.

3.3 Service Design

Service design can be subdivided into three important areas: infrastructure
construction, vehicle procurement, and line, timetable, and fare planning.

Infrastructure Construction. The arguably most important topic of
planning in public transit are decisions about investments in infrastructure
such as the construction of airports, railway tracks, railway stations, or bus
depots. Infrastructure investment costs are huge. The new ICE (intercity
express = high speed train) line from Cologne to Frankfurt, e.g., cost more
than 5 bil.e, the construction of the new Berlin airport BBI is estimated
at 2–5 bil.e. Once taken, decisions about infrastructure constructions can
only be changed over a very long period of time. It is therefore necessary to
conduct an extremely careful analysis of all possible alternatives.

The decision methodology that is currently used in infrastructure construc-
tion is based on the simulation of a few scenarios in the sense of case studies
(usually accompanied by a super-charged political discussion). This method
is not adequate to deal with projects that interact in a complex way with the
entire transportation infrastructure. In rail traffic, to mention one example,
there is currently a discussion in Germany whether the construction of new,
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expensive high speed tracks produces the biggest benefit or if a bundle of
many small investments would be more useful. Infrastructure investments
in bus traffic focus on the selection of sites for bus depots, a topic that is
currently particularly important because of merger activities. Here, network
optimization computations are necessary. To the best of our knowledge,
however, this is not done to an extent that would be worth mentioning.
From a mathematical point of view, problems of similar structure come up
in telecommunications. The German research network association (DFN-
Verein), an organization that operates the research Internet in Germany,
e.g., has undertaken a simultaneous site and network optimization for the
German science network (currently X-WIN) on a regular basis for many
years [5]. The methods that have been developed in this context could be a
starting point for mathematical approaches to infrastructure design in public
transit.

Vehicle Procurement. The procurement of airplanes, trains, buses, etc.
constitutes a major cost factor in public transit. An A380 passenger plane
costs more than 200 mil.e, an ICE3 high speed train more than 20 mil.e,
a 25m articulated bus 500 000e. The German railway company Deutsche
Bahn operates 236 ICE-train units [15], Berlin’s public transport company
BVG more than 1,300 buses [4], the German airline Lufthansa 411 passenger
planes of various types [16]. The assessment of the fleet size that is necessary
to operate a flight, rail, or bus network is sometimes still done using simple
rules of thumb [24, 31], such as

⌈

length of line×frequency
average speed

⌉

+ reserve;

sometimes, instruments of operational scheduling are also employed. Usu-
ally, decisions are taken as a compromise on the political level, on which
mathematical considerations do not always play an important role.

Line, Timetable, and Fare Planning. Line planning and timetabling
deal with the specification of subway, tram, and bus line routes, travel fre-
quencies, and the concrete departure and arrival times of the vehicles. These
two planning steps belong arguably together, at present, however, they are
carried out sequentially, mainly because the mathematical methods for a si-
multaneous treatment are not available. For both problems, research codes
exist. In line planning, one can deal with medium sized instances, see, e.g.,
[7]. Somewhat more advanced is periodic timetable optimization, which was
used, e.g., to compute the timetable of the Berlin subway [25]. All these
approaches act on the assumption of a given, fixed demand.
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Fare planning investigates how the demand for public transit changes in re-
sponse to a change in ticket prices. To this purpose, one must model user
demand patterns and, in this way, forecast the demand subject to varying
prices. Very simple demand models are based on price elasticities. The
problem with these models is that elasticities have only been empirically
estimated in isolated places (at certain times and places) and with rather
different results. Constant price elasticities can not be used to predict sub-
stitution effects. More modern models, based on discrete choice approaches,
have been developed in the meantime and can now be solved to a moderate
extent [29], but they have not been applied in practice. Air traffic is an ex-
ception. Here the already discussed revenue management methods are used
with great success.

The long term goal must be to deal with line, timetable, and fare planning in
an integrated way, because all these problems are intimately related to each
other. However, as the individual problems are not completely mastered yet,
we are still far away from an optimization at a system-wide level.

3.4 Regulation

Service design, as discussed in the previous section, is based on the current
regulatory framework. All over the world, there is a discussion how far the
public transit market can be deregulated and in what way competition can be
introduced into this system. The deregulation in air traffic has led to a veri-
table boom. There was an enormous reduction in ticket prices and a surge in
passenger volume. Similar effects are hoped for rail and bus traffic, however,
it is not clear what the right deregulation recipes are. Hitherto experiences
in different parts of the world produce a mixed picture. The deregulation of
the railway sector in Great Britain was hailed as a major breakthrough in
the beginning, then led to a disaster, and now, after changes in the general
conditions, a success is beginning to show. Another example is the redesign
of the bus transport network in Santiago de Chile, which took place in spring
2007. It resulted in a complete breakdown of the metropolitan traffic that
nearly forced the government of Chile to resign. The mathematical analysis
of regulatory measures can help to identify and prevent undesirable conse-
quences of changes in the design of a traffic system.

An example of how this could look like in practice is given by the German
“railway infrastructure usage regulation” (“Eisenbahn-Infrastruktur-Benutz-
ungsverordnung”, EIBV), that is supposed to set the rules for a competitive
access to the German railway network. The EIBV states in § 9 para. 5: “In
the decision process . . . the operator of the railway system must compare
the fees for the controversial slots and . . . in case of a conflict between
more than two slots he must give precedence to those slots whose sum of
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fees is collectively maximal.” (translation by the authors). This is an opti-
mization decree. It obliges the German railway network operator DB Netz
AG to solve a track allocation problem, and the German network regulation
agency Bundesnetzagentur to make sure that an optimal solution is deter-
mined. Without mathematical optimization, a non-discriminatory access in
the sense of this regulation is not conceivable. This is “overlooked” by all
involved parties, usually with the justification that negotiated solutions are
better suited. Basically very similar problems arise in airport slot alloca-
tion in air traffic and in the tendering of bus lines. These topics lead from a
mathematical point of view to questions in combinatorial auction theory and
in algorithmic game theory, which are at present debated in the economic
research community and for which several Nobel prizes in economics, the
last one in 2007, have been awarded.

There are by now successful applications of this methodology in the tendering
of transportation contracts in logistics [23] and firms have emerged which
market the corresponding auctioning platforms (combine.net). In public
transport, however, such methods have not been applied yet.

4 Strengths, Weaknesses, and Challenges

Section 3 described planning problems in public transit from an operator’s
point of view. This section offers a synopsis from a mathematical perspec-
tive, elucidates strengths and weaknesses, and describes some of the current
challenges.

4.1 General Conditions for the Use of Mathematics

Centralized Forms of Organization. The public transport modes bus,
rail, and air traffic are characterized by relatively centralized forms of orga-
nization. Except for the area of operations control, there is sufficient lead
time for all planning problems, such that it is possible to compute alterna-
tives and variants. These are in principle excellent premises for the use of
mathematical planning methods.

Availability of Data and Information Technology. In order to use
optimization methods, detailed and precise data is required. Progress in
information technology makes data available in ever larger quantity and in
ever increasing quality. Radio data transmission, GPS, and electronic tick-
eting systems are abundant sources of information about user behavior and
the state of operation of a public transit company. Far-sighted planning,
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however, needs considerable amounts of additional data. Vehicle schedul-
ing, e.g., requires thousands of lengths of alternative deadhead trips, which
can be used potentially. These so-called degrees of freedom are not auto-
matically available, at least not in sufficient quality, and their procurement
is often a major effort during the introduction of optimization systems. In
some areas obtaining the necessary data is difficult in principle. In fare and
service design in public transport it would actually be necessary to forecast
user behavior in the presence of changes of prices or changes of the service
level. Here, one usually uses statistical origin-destination matrices. The oc-
casionally used price elasticities are based on fairly unreliable data. In these
areas, a trustworthy data basis must be created in order to develop accurate
methods of service design.

Public transit as well as the associated planning methods benefit hugely from
the breathtaking developments in information technology. Cellular phones,
radio data transmission, etc. made the use of quantitative, mathematical
planning methods possible.

Complexity. Small public transit companies may very well produce good
results using manual planning under constant general conditions. But even
there, quality and efficiency requirements are increasing. For large public
transit companies with thousands of buses, tens of thousands of employees,
and countless connections, planning by “peering”, by analyzing Excel sheets,
or by arguing in terms of individual aspects is neither the state of the art
nor best practice. The same holds for expensive investments in infrastruc-
ture constructions, which change the logistics of entire regions. It is again
and again striking to see that airports are constructed without connections
to the subway or commuter train system. Such mistakes are due to the lack
of a “global point of view” and the fact that network effects of individual
decisions are not understood. Infrastructure policy decisions should actually
be embedded in comprehensive network models, that describe the long term
transportation demands of a region, and that, in particular, take inter-modal
effects into account. Planning activities of this type are currently primarily
done by engineering companies from the construction industry, that know
all about the technical aspects, but that do not command the mathematical
methods that are necessary to master the complex dependencies. Further-
more, planning is complicated by government regulations, company agree-
ments, and other rules and standards, which are not written with an eye on
the consequences that an increase in complexity incurs on the subsequent
planning process, see Fig. 8 for a typical example.

Public transit planning problems are highly complex. Mathematics can not
eliminate complexity, but it offers methods to cope with it. Indeed one can
prove that the planning problems that come up in public transit are in a
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mathematically precise sense difficult (NP-hard [19]). Even if mathematical
methods may not necessarily be able to produce provably optimal solutions,
they can often compute the deviation from optimality or similar quality guar-
antees, something that no other methodology provides. In general parlance:
Nothing works without mathematics.

It is alarming that this insight is not yet realized by all public transit com-
panies. In many cases manual planning is still the method of choice, even in
large enterprises. Really astounding, however, is that even some engineering
consultancies and software developers in this area argue that optimization
would only deal with special aspects, while manual planning would con-
sider the problem in its entirety – a completely absurd claim from our point
of view. Actually, the real goal must be to master the complexity of PT
systems by combining traffic engineering know-how with the mathematical
methodology. This is the only way to face the grand challenges in integrated
planning and in the design of entire transportation systems. Investments in
mathematical decision methods are marginal in comparison to investments
in infrastructure construction, vehicles, and crews, the effects, however, that
one can achieve in this way, are considerable.

Standardization. Many public transit companies tend to view themselves
as unique and believe that the problems arising in their case are so special,
that they need particular attention. In addition, the wish list that planners,
managers, and work council members present to software companies is vir-
tually unlimited. This type of atomization of problems is a major obstacle
to the further development of the planning methodology. Only if planning
problems are standardized and if data is available in standard formats, one
can start a serious and sustainable investigation of the underlying mathe-
matical problems over a longer period of time, analyze their mathematical
structure, and develop special purpose methods, such that one can hope for
practical solutions even for the problem dimensions in public transit. Areas
that succeeded in standardization have enjoyed the development of powerful
methods over time. The question about the “correct” definition of the in-
dividual planning problems is often controversial. However, the benefits of
standardization are usually so large that it is better for a company to attune
its processes, than to work with tailor-made individual solutions, which do
not evolve at the the same pace.

As usual, standardization is most advanced in air traffic. Here, the plan-
ning process is subdivided into generally accepted subproblems, for which
data interfaces and powerful optimization methods are available. By now,
bus traffic has established similar standards in the area of operational plan-
ning. In service design, standardization sometimes evolves as a result of the
dominating market position of individual suppliers, e.g., by means of ptv’s
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§8 Flight times of crew members

(1) The unrestricted flight time of every crew member between two rest periods is 10
hours. It is feasible to extend the flight time according to sentence 1 up to 4 times for
up to 4 hours a time in 7 consecutive days; here, the sum of the extensions must not
exceed 8 hours in any 7 consecutive days. The period of 7 consecutive days starts at
any one time at 00.00 Greenwich Mean Time (GMT) of the first day and ends at 24.00
GMT of the seventh day. For a pilot, who acts in his flight time according to sentence
1 as an aviator all or in parts without support by another crew member, paragraphs 2
and 3 do not apply.

(2) The maximum flight time extension for crew members of 4 hours according to para-
graph 1 is diminished

1. by 1 hour, if the flight time is longer than 2, but less than 4 hours,

2. by 2 hours, if the flight time has an intersection of 4 or more hours with the
time window between 01.00 and 07.00 local time of the departure airport (winter
time).

(3) A diminished flight time extension according to paragraph 2 is further diminished

1. by another hour, in case of more than 3, but less than 6 landings,

2. by another 2 hours, in case of more than 5 landings.

(4) If the aircraft crew is larger than the mandatory minimum, and if suitable sleeping
accommodation is available on board in a compartment that is separated from the cock-
pit and the cabin, the regulation authority can accept a request in writing to extend the
flight time according to paragraph 1, sentence 1, of up to 8 hours for two times within 7
consecutive days. Here, the time that a crew members spends in aviation and operation
of the aircraft must not exceed 12 hours.

Fig. 8: From the 2nd executive order on work rules for aircraft crews
(2. Durchführungsverordnung zur Betriebsordnung für Luftfahrtgerät (2.
DVLuftBO), translation by the authors)

product VISUM. Such quasi-standards are in principle a possible basis for
the development of optimization methods, but they would have to be ex-
tended, because they were primarily designed for simulation, and not for
optimization, purposes. In rail traffic, on the other hand, nearly every com-
pany pursues an individual approach, such that results are very difficult to
transfer from one railway company to another. First efforts on standardiza-
tion are also being made, e.g., in the OpenTrack project of ETH Zurich.

Regulation and Deregulation. It is general consensus that public trans-
port is a matter of public interest. However, it is controversial how far the
public interest reaches and how the service is organized, i.e., how the state is
supposed to get to the desired welfare maximum for its citizens. In the past
it was believed that the citizens are best off if state-run, monopolistic oper-
ators run the public transportation system. This concept got under dispute.
The European Union pursues a clear deregulation policy in public transport
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as well as in other areas. The EU proceeds on the assumption that a wel-
fare maximum is more likely being achieved by market mechanisms than by
monopolistic structures. Different countries implement this concept in dif-
ferent ways. It is often unclear, what kind of planning problems will evolve
in the future und which individual market participant should plan what in
the presence of deregulation measures.

For instance, the following scenarios are being discussed in bus traffic. Should
a region specify the level of service in detail and only invite tenders for the
operation of the trips, or should the regions evaluate offers of public transport
companies, or should public transport companies act as providers of mobility
in free competition? Air traffic has enjoyed an enormous boom because
of the US-driven deregulation. Competition and the necessary, resulting
optimization measures improved efficiency substantially. “Should wheel and
track be split and what should be operated privately?” are controversial
topics in the railway sector. The advocates of railway privatization refer to
air traffic success stories, the opponents argue that an integrated system can
be planned and controlled better, and is therfore more customer friendly.

A monopolistic approach offers a chance for an integrated system-wide opti-
mization, while the creation of a market forces each participant to optimize
his activities. No matter if and how regulation and deregulation take place,
mathematics is always useful.

Regulation and deregulation, auctions and allocation mechanisms received a
great deal of attention in the economic research community in recent years.
One can, however, not by any means speak of a mathematical theory of
regulation and deregulation yet. Up to now, quantitative implementations of
theoretical concepts have only taken place in very special and individual areas
such as auctioning truck-load contracts, mining rights, or telecommunication
frequencies — not always to the satisfaction of all parties.

4.2 Mathematical Models and Algorithms

Discrete optimization is in general perfectly suited to formulate many plan-
ning problems in public transit, because they are often about yes/no decisions
that can be modeled as 0/1 optimization problems. Mathematical modelers
have learned to express complex dependencies by means of linear equations
and inequalities with integrality constraints and created, in this way, mod-
eling tools that in principle allow to formulate problems in public transport
at an arbitrary level of accuracy. This approach has several advantages.
Traffic planning problems can be understood and described precisely, with
all their constraints and prerequisites. In this way, discrete mathematics
offers its services as a “language of traffic planning”. It allows to communi-
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cate and analyze questions across companies and countries. Mathematical
models help to structure problem areas, to recognize and point out special
cases and generalizations. One should not conceal in this context that it is
quite in-transparent for the layman whether a model is theoretically or prac-
tically easy or difficult to solve. Even experienced optimizers can often not
tell a priori, whether and for which order of magnitude a concrete, difficult
problem can be solved.

Standard Models and Techniques. Over time, a number of standard
models of combinatorial optimization have proved to be useful in traffic ap-
plications (set partitioning, path covering, and network flows); these are
complemented by general techniques such as the use of methods from lin-
ear and integer optimization. These methods and algorithms have been the
subject of intensive work in the last decades. Today, problem sizes can be
tackled that one would not have thought possible a few years ago. A study by
Bob Bixby from 2004 showed that linear programs that took two months of
computing time to solve in 1988, could be solved in a second in 2004. Faster
computers contributed a speed-up factor of about 1 600 to this, improve-
ments in LP algorithms contributed a factor of about 3 300. Simply writing
down mathematical models and applying standard techniques, however, is
only sufficient to solve the problems of small PT companies, and for special
applications. Often, minor-looking modifications, which are motivated by
practical requirements, increase the level of difficulty significantly and must
be faced by well-directed research efforts. The consideration of time windows,
precedence constraints, path length restrictions etc. are typical examples for
this.

Data for Academic Research. Applied algorithmic research on NP-hard
problems can only succeed if practically relevant data is available, which can
be used to test algorithmic alternatives experimentally. Availability of real-
world data for academic research is of utmost value. One cannot avoid
noticing that the situation in this area is very unsatisfactory. Even public
transit companies that collect data with additional public funds, do (with
very few exceptions) not even confidentially make this data available for
academic research. Fear of leaking business secrets is a substantial obstacle
to progress in the mathematical solution of planning problems in public
transit.

Theory and Algorithms. Planning problems in the area of traffic and
transport usually lead to combinatorial optimization problems with an ex-
treme number of variables and/or constraints, which cannot be tackled by
commercial linear or integer programming standard codes. In the last decade,
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techniques such as Lagrangean pricing or separation algorithms have been
developed, which can deal with such problem sizes by means of dynamically
generating the currently relevant variables and constraints on the fly, instead
of dealing with every detail of the problem right from the beginning. These
techniques allow to solve classical problems in traffic planning with sufficient
quality.

These successes pave the way to the present research on a number of ad-
vanced topics:

• Coupling of discrete models (integrated planning). Up to now, suc-
cess in the solution of coupled discrete models (e.g., vehicle and crew
scheduling) has been limited to highly structured individual cases of
limited size. The long-term goal is to overcome the artificial decompo-
sition of the planning process into a hierarchical sequence of individual
problems in order to produce an overall plan in one step, using a tool-
box of models and methods that can be combined with each other.
One approach to get the coupling of models to work uses methods of
non-linear and non-differentiable optimization (sub-gradient and bun-
dle methods). Substantial research and development efforts are still
needed here.

• Robust and stochastic planning. The successes in classical optimization
brought another aspect more and more into the focus of attention. It
is that sophisticated plans are particularly vulnerable to disruptions.
The overall goal must therefore be to compute plans that do not only
look good on paper, but also turn out to be good in practice. Here, it is
necessary to implement buffers in such a way that small disruptions can
be intercepted without major operational changes. There are at present
several, at least theoretically, competing approaches to deal with this
question, in particular, methods of robust and stochastic optimization
seem to be suitable. Practical applications and experiences, however,
are virtually non-existent.

• Real-time planning. Traffic systems sometimes get out of hand because
one cannot take all potential disruptions into account. Exactly these
disruptions annoy passengers the most, in particular, if no information
on the further course of the journey is available. Real-time optimization
tries to tackle this kind of problems. One must admit, however, that
the theoretical tools are currently not particularly advanced and that,
specifically, hardly any useful statements about the practical perfor-
mance of online algorithms can be made. It is therefore an important
matter to develop theoretically well-founded methods for the real-time
optimization of transportation systems that work in practice.

• Coupling of discrete, stochastic, and non-linear models (infrastructure
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planning). An area that is, from our point of view, nearly devoid of
mathematics is the construction of the infrastructure of transportation
systems. If anywhere, traditional planning methods are dominating
the scene here. Decisions are made in a political way, considering
some technical details, past experiences, and, in good cases, the use of
simulation software.

The development of mathematical methods of infrastructure design
is undoubtedly difficult, because it requires a combination of models
from different mathematical areas, that employ, in particular, different
mathematical tools. User behavior can only be predicted and must
therefore modeled in a stochastic way, quantities such as revenue =
price × demand lead to non-linearities, monthly tickets to staircase
functions and hence to discontinuities, the consideration of the tradeoff
between quality and price to multi-criteria optimization, and this list
can be continued arbitrarily.

Considering the long-term impact of these decisions and the pure in-
vestment volume, however, it would seem appropriate to undertake
serious attempts towards a model-based long-term planning. The re-
search community is investigating some of the relevant basic prob-
lems such as non-linear network flows, integer programs with certain
non-linearities, or the general acceleration of stochastic optimization
approaches by means of, e.g., scenario reduction, algorithmic game
theory etc. First successes were scored in the application of discrete
choice models to fare planning in public transit or in airline revenue
management.

In the end, decisions about infrastructure construction will clearly not
be made on the basis of a single mathematical model. Alternative com-
putations and complex scenario simulations must also be considered as
decision criteria.

4.3 Transfer and Education

Communication and Education. An obstacle to the exploitation of
synergies between practitioners, algorithms designers, and theoreticians is
a common lack of willingness to approach each other. Mathematicians do
not want to enter the “lower depths” of data acquisition, while practition-
ers find the considerations of the mathematicians too far from reality. This
division starts already in the language. A practitioner who talks about op-
timization is often thinking of a different thing than a mathematician. This
communication problem is reinforced by ignorance of the contributions that
the respective other group could make. What hits the eye in the context of
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this article is, in particular, a striking deficit in the education of traffic en-
gineers with respect to modern methods of optimization, graph theory, and
discrete mathematics. Every engineer knows what a differential equation is,
but many have not learned that decision problems can be formulated and
solved as integer programs, albeit this is the modern approach to good traf-
fic planning. This is (all over the world) a clear shortcoming in university
education, that must be remedied.

Business Environment. With the advent of mathematical planning in
the airline industry, many companies set up operations research (or similarly
termed) departments, which investigated the planning problems mentioned
in this article and developed proprietary solutions. Over the years, most
of these departments have been sourced out. The best among them became
software companies that offer standardized solutions which are used by many
airlines. In bus and rail traffic, on the other hand, such OR departments have
not evolved to the same extent. Software for bus and railway companies is
developed by suppliers with a university background. All these companies
are small in comparison to their customers and have problems to impose
their ideas and internal standards against the manifold of special requests
of their big customers. These special requests fragment the software market
and produce high costs, because they require cost intensive individual devel-
opments and maintenance. Small software companies also have problems to
make enough advertisements to promote their innovations successfully.

4.4 Conclusion

Problems of infrastructure design, crew scheduling, etc. are for more than
100 years topical subjects of traffic engineering. They were always solved
using the available technical and mathematical tools of the time. The dean
of the traffic engineering faculty of the university of Dresden wrote in his
obituary to the eminent traffic engineer Rüger:

“Using scientific insights to improve the work of public transit companies,
their application and implementation in planning and operations, were

always his maxim.” (translation by the authors).

Rüger [31] in East Germany and Lehner [24] in West Germany wrote pioneer-
ing works on traffic planning, which describe, in principle, a mathematical
model of a public transit company. At that time, the decision problems had
to be reduced to (from today’s point of view) simple, practically adequate,
formulas, which constitute, even today, reasonable decision rules for practice.
The progress in mathematics, however, now makes entirely new approaches
possible, which derive decisions as solutions of complex network models. The
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goal must be to consequently develop these mathematics further, in order to
continously improve the planning process in the sense of Rüger and Lehner,
such that resources are saved, the use of public funds is reduced, and the
customers enjoy a user friendly and adequate level of transportation services.

We see the transition from formula- to model-based mathematical planning
(as we have sketched it) as a leap similar to the transition from the Braun
tube to the transistor, or from the drawing board to the CAD system, and
we are convinced that mathematics will more and more become a substantial
production factor in public transit.

Despite the mentioned shortcomings in inter-disciplinary communication, in
education, and in the transfer to practice, Germany has, in our opinion, excel-
lent premises to help mathematical planning methods achieve a breakthrough
in public transit. German traffic systems are among the best of the world,
German software companies have leading positions in the world market, and
German universities feature a variety of departments where scientists work
on the quantitative treatment of planning problems in public transit on the
highest international level. Public transit offers substantial optimization po-
tentials. The know-how to exploit them is available. If we succeed in getting
the different parties to cooperate in a coordinated and well-directed way,
Germany could become a showcase of efficient public transit.

5 Visions and Recommendations

Our vision is to establish discrete mathematics and optimization as an es-
sential production factor in all areas of traffic planning. The mathematical
models and methods have to be built up such that they can support the vari-
ous planning processes in practice in an adequate and user friendly way. This
requires mathematical progress (in some areas definitely significant progress),
but also the interfaces to the involved engineers and practitioners must be
improved in a joint endeavor.

As we have shown in the preceeding sections, there is need for action in nearly
all areas of public transportation planning. It reaches from mathematical
modeling and the associated theory, via the implementation of this theory
within algorithms, to the introduction of optimization systems in practice.
This is an agenda for decades, which requires not only the overcoming of
mathematical and company internal obstacles, but also the consideration of
political conditions.

We want to propose here two concrete measures, which can be initiated on
relatively short notice and which can be funded by the German ministries
of education and research resp. industry and commerce (BMBF/BMWi) or
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the German science foundation (DFG) together with the industry. Both
measures are characterized by the inter-disciplinarity that is typical for the
traffic area. They combine mathematical research with engineering know-
how, business management, practical experiences, and the innovative use of
IT systems.

5.1 Discrete optimal control: real-time re-planning of traffic

systems in case of disruptions

Operational disruptions of traffic systems are virtually unavoidable. Larger
disruptions require adaptations of the schedule, which must be initiated im-
mediately after the incident. From a mathematical point of view, this is
a topic of online or real-time optimization. The application of online opti-
mization methods needs many premises. All data about the planned and the
actual state of the traffic system must be available. In addition, forecasts
about possible evolutions of the system and existing alternatives of action
are needed. The goal is to bring the traffic system back into a state in which
plan and status quo coincide to the largest possible extent and in which the
“damage” is minimal.

Online planning is done today in the control centers of public transport com-
panies by experienced dispatchers, who are supported by control systems and
their visualization tools. The dispatching itself, however, is mainly done “by
hand”. In most cases, decision tables and rule sets are used. These give
clear instructions, but do not provide for optimization. Online optimiza-
tion is supposed to advance the pursuit of goals instead of the execution of
rules. A change to this type of mathematical planning requires, in particular,
adaptations of the IT infrastructure and the linkage of different databases,
a non-trivial endeavor in information technology.

A fundamental problem in online optimization is the recording of data in
order to analyze and reconstruct the sequence of events. Ideally, such data
should not only record the executed operation, but also the causes for dis-
ruptions and the countermeasures that have been taken. Such data is usually
not available. A research program in online optimization should already start
at this level and establish a high-quality database.

It must be possible to use this data in simulation systems, such that exem-
plary verifications of individual scenarios are possible. As long as there is no
practically proven online theory, it is necessary to use simulation tools in or-
der to reconsider solution approaches. Simulation has a long tradition in the
railway industry, where a number of systems such as RailSys, OpenTrack,
etc. allow to produce an accurate picture of the real operation. In bus and
air traffic, such simulation systems are still missing or under development.
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The real-time algorithms to be developed should take the dispatchers’ years
of experience and their heuristic scheduling rules into account. Cooperation
between mathematicians, computer scientists, and experienced dispatchers
is necessary. A possible additional progress that we see is that mathematical
algorithms can monitor the state of a traffic system in the sense of a control
circuit, in order to take preventative measures when changes in the state of
the system are forecast or become apparent that can impair the operation.
Ideas of this type could be summarized under the term “discrete optimal
control”. It refers to the continuous use of optimization algorithms to keep
traffic systems on schedule. Similar questions come up, e.g., in mechanics
and in production engineering. Their mathematical study is the subject of
control theory, which typically uses methods from the theory of differential
equations. The novelty in this case is that methods from discrete optimiza-
tion play a prominent role as well.

Projects of this type could have been started 10 years ago. At that time, how-
ever, the IT base did not exist. Today we see a chance to bring know-how in
information technology, mathematical methods, and operational experience
together in a way that is beneficial for all participants. Such a project can
range from the online optimization of subways, street cars, and commuter
trains, via the real-time optimization of bus networks, to the real-time op-
timization of the entire German railway network or the entire European
airspace; the last two of these applications are clearly still a long way off.
From the customer’s point of view it is important to combine online opti-
mization and passenger information, such that there is an immediate benefit
for the passengers.

5.2 Model integration: service design in bus and rail traffic

We have talked about various aspects of model integration and want to
propose here the integration of mathematical models in the special area of
service design in bus and rail transport. The goal is that the resulting models
are algorithmically tractable and produce reasonable results from a practical
point of view.

Similar as in the preceeding case of discrete optimal control, the data that
is actually needed is not available at a sufficient level of accuracy.

The special characteristic of service design is a tight correlation of several
aspects. We have already pointed out that demand forecasting is a stochastic
problem, while network design leads to discrete optimization problems, and
the determination of fares to non-linear mixed-integer optimization models.
The integration of models from different mathematical disciplines is there-
fore a prerequisite for the development of successful approaches to service
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design. Model integration is in general hopelessly difficult, however, the spe-
cial structures of this concrete application seem to present a chance for the
successful development of adequate solution approaches.

First steps in this direction have been taken in toll collection applications us-
ing so-called bi-level optimization techniques. Non-linear optimization mod-
els and stochastic demand models (discrete choice Logit models) have been
combined in the area of fare planning.

The procedure would be based upon traditional planning structures. Beyond
the computation of a few scenarios, however, integrated models could take
feedback and substitution effects into account, e.g., by explicitly including
individual traffic (i.e., car traffic) in the models.
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