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Abstract

Nowadays most data networks use shortest path protocols such &0DISPIS to route
traffic. Given administrative routing lengths for the links of a networkdalla packets are
sent along shortest paths with respect to these lengths from their doutioeir destina-
tion. One of the most fundamental problems in planning shortest patlorietig to decide
whether a given set of routing paths forms a valid routing and, if this isheotase, to find a
small subset of the given paths that cannot be shortest paths sinouiséynér any routing
lengths. In this paper we show that itA§P-hard to approximate the size of the smallest
shortest path conflict by a factor less tHaft.

Keywords: shortest path routing, computational complexity

1 Introduction

One of the most fundamental problems in planning networisdgmploy a shortest path routing
protocol such as OSPF or IS-IS is to decide whether a giveafseuting paths forms a valid
routing and, if this is the case, to find a routing metric foriehhthese paths are shortest paths
between their respective terminals. If the given path sesdmt form a valid shortest path
routing, one often wishes to find a small subset of the givahspthat form a shortest path
conflict, i.e., that cannot be shortest paths simultangduoslany routing metric.

In this paper, we consider the problem of finding a shortett yrauting conflict of minimum
size in a given path set. This problem naturally arises ieget linear programming approaches
for shortest path routing optimization, where invalid ingtpatterns are cut off the feasible
solution space using inequalities based on such shortdstrqating conflicts; see [3, 4, 5, 6,
10, 12, 13, 14]. The separation problem for these conflicjuadities is exactly the problem
of finding a shortest path routing conflict of minimum weigbBtepending on the shortest path
routing version and the integer linear programming forriataused to optimize the routing
paths, slightly different notions of 'conflict’ and of the éight’ of a shortest path routing conflict
have to be used. For the unsplittable shortest path rougngjan, Bley [3, 4] proposed greedy
algorithms to compute conflicts that are inclusion-wiseimai, but not necessarily minimal in
terms of size or weight. For the problem version associaifdam arc-flow formulation for the
shortest multi-path routing version, Tomaszewski et al] froposed an integer programming
approach, while Brostim and Holmberg [7, 8] derived efficient polynomial time aigams to
optimize (and separate) over a special subclass of thespamneling conflicts.

In this paper, we show that finding minimal shortest pathingutonflicts is\/P-hard. We
only discuss the unweighted case corresponding to the matHdrmulation of the unsplittable
shortest path routing variant explicitly. We prove thatsit\"P-hard to approximate the size
of the smallest path set that is contained in a given set dfspaid that does not comprise a



unique shortest path routing by a factor smaller thah This result, however, generalizes in a
straightforward way to the conflicts associated with thert&sb multi-path routing variant and
with integer programming formulations based on arc flowshorigst path graphs.

2 Notation and Preliminaries

Throughout this paper, 1dd = (V, A) be a directed graplR (s, t) be the set of all simplés, ¢)-
paths, and® be the set of all simple paths in. We denote the source and the target of a gath
by sp andtp, respectively. We say that the arc lengths Z* arecompatiblewith a given path
setS C P, if each pathP € S is the uniquely determined shortest path between its teisin
with respect to\. A path setS is aUnique Shortest Path System (USH®)ere exists a vector
of compatible arc lengths € Z4 for S. Otherwise we say tha$ is anon-USPS If S is a
non-USPS, but any proper subset®is a USPS, theis is called arirreducible non-USPSor
a(unigue) shortest path conflict

Clearly, any subset of an USPS is an USPS as well. Also theyepgih setS = () is
an USPS. The family of USPSs in a digraphforms a so-called independence system (or
hereditary family)Z c 27. The circuits of this independence system are exactly thdiicible
non-USPSs. A given path s&tforms a valid unique shortest path routing if and only if iedo
not fully contain any of these irreducible non-USPSs. Ushglinear programming techniques
discussed in [1, 2], for example, one can decide in polynbtiriee whether a given path set
S C PisaUSPS or not. One easily finds ti#ats an USPS if and only if the linear system

D A=) A1 forall P € S,Q € P(sp,tp) \ {P} (1a)
acQ a€EP
A >1 foralla € A (1b)

has a solution. As the separation problem for the ineqaalitLa) boils down to a two shortest
path problem, which can be solved efficiently with the altjon of Katoh, Ibaraki, and Mine
[11] for example, the overall system (1) can be solved in potgial time. Using scaling and
rounding techniques, any fractional solution of (1) candredd into an integer-valued compat-
ible metric for the given path sét[1]. If (1) has no solution, thed§ is a non-USPS. In this case,
we are interested in finding a small non-USPS containe®l imhich can be formally described
as follows:

Problem: MIN-NON-USPS

Instance:  AdigraphD = (V, A) and a non-USPS C P.
Solution:  An (irreducible) non-USPR C S.

Objective: min |R|.

The more general problem of finding a non-USPS of minimum tteggin be formalized as
follows:

Problem: MIN-WEIGHT-NON-USPS

Instance: A digraph D = (V, A), a non-USPSS C P, and strictly positive
weightswp € Z, forall P € S.

Solution:  An (irreducible) non-USPR C S.

Objective: min ), p wp.

This problem arises when we seek for an inequality that sé@sa given fractional routing from
the unique shortest path routing polytope, which is definethkb path sets of all valid unique
shortest path routings. Its computational complexityefane is of great practical importance. If
MIN-WEIGHT-NON-USPS cannot be solved in polynomial time, one cannot hopptimize
over the unique shortest path routing polytope in polynbtiize.



Figure 1: Subgraph oD corresponding to edge§, ..., f.., nodew; € W, and incidences
f1, f2 € 6(w;).

3 Hardness Results

For any fixedk € Z, we can find a minimum weight non-USBEEC S with |R| < k (or prove
that no irreducible non-USPS witfR| < k exists) in polynomial time by solving the linear
system (1) for all subse® C S with |R| < k. In special digraphs where the size of irreducible
non-USPSs is bounded by some constaniiyMION-USPS and NN-WEIGHT-NON-USPS
are therefore solvable in polynomial time. In general, hgergit is computationally hard to
approximate these problems within a factor strictly srmatan7/6.

Theorem 3.1 For anye > 0, it is N"P-hard to approximateviiIN-NoON-USP Swithin a factor
7/6 — e. This holds even if each pafh € S is a shortestsp, t p)-path w.r.t. the number of arcs
and|P| =2forall P € S.

Proof. We construct an approximation preserving reduction from dptimization problem
MINIMUM VERTEX COVER. The latter problem is defined a follows: Given an undirected
graphH = (W, F), find a minimum cardinality sef’ C W such that, for each edge € F,
at least one of the nodesandv belongs toC. Hastad [9] proved that, unle§d = NP, this
problem is not approximable within a factof6 — ¢, for anye > 0.

Suppose we are given an instardée= (W, F') of MINIMUM VERTEX COVER consisting of
the nodesu; withi € I := {1,...,n} and the edgeg, withk € K = {1,...,m}. Leta € Z
be a large integer number. At the end of the proof, we discassth choosey appropriately.
We construct a MN-NON-USPS instance consisting of a digraph= (V, A) and a path sef
as follows.

For eachi € I, we introduc€« + 2 nodesu?, ..., u& and@?,...,u®. These nodes are
connected by the ards:t, @) and (al, ut), for i = 0,...,«, and by the arcgu}, u.*!) and

70 Y 70 Y 1)

(al,altt), forl = 0,...,a — 1. For eachk € K, we add four nodes;, v?, o}, and 3.
These are connected by the afcs, v?), (vZ,vi), (03, 07), (02, 0}), (vi, L), (Uf,vi), (vi,08),
and(v7,v7) for all k € K. Furthermore, we add two ar¢s;, v}, ;) and (v}, v7,,) for each
k=1,...,m— 1, and two arcg},, v?) and (92, v1) for k = m. Finally, we introduce arcs

for the node-edge incidencesih. For alli € I and allk with f; € §(w;), we add the four arcs
(v, u), (v2,4?), (u?,vi), and(u, v;). The resulting digrapt is illustrated in Figure 1.



Figure 2: Union of the path se§; for all k € K andS}, S?;, andS}, for somei, k with
fr € 6(’11)1)

The given path set consists of four different types of paflas.each € I, we have2a many
paths

= {(al,ul ul ™), (ul, @l ul“)\l:(),...,afl}.

iy Yis Hg y Yy Yg
For each: € K, we are given four paths, namely

Sk _{ Ii l%)a (U%vviv@i)v (Ei’ﬁ%’vl&rl)v (ﬁl%?ﬁé?vliﬂ)} fOI’k‘#m, and
1
k

82 _{ 11 Uk’vk) (Uli7vli761i)v (@ 717]%71}%—1-1)7 (171%717]%71124—1)} for k = m.

Finally, we are given four paths for each node-edge incideémé{. For each € I and eaclk
with fi € §(w;), these paths are

Sl = {0k v, @), (07, vi,ul)} and iy = {(uf, af, o), (@, uf,vp)}-
The path sef is the union of all those sets, i.65.:= U; S} UUy S¢ YU . p, es(00) SirUSin-
Itis illustrated in Figure 2. Note that each pathSris a shortest path between its terminal nodes
and contains exactly two arcs.

In the first part of the proof, we show that any vertex caveC W in H can be transformed
into a non-USP&R := R(C) C S in D with |[R| = 2a|C| + 8m. As a byproduct, this also
proves that the constructed path systgms indeed a non-USPS.

LetC C W be a vertex cover ifi/. For each edg¢ = w,w; € F, we denote:(f) := w;,
if ¢ < jandw; € C, andc(f) := wj, otherwise. Sinc&' is a vertex coverg(f) e C for all
f € F. We define the path set corresponding’tas

R=RC) = |J SlLJUSk U shush.

) ) it w;eC i,k wi=c(fr)
The size of this path set is

IR| = 2a-|C| + 8m. )

The path seR is a USPS if and only if the linear system (1) has a feasibletswl. In order to
show thatR is a non-USPS, it is therefore sufficient to show that theofeilhg sub-system of



(1) has no solution:

Aoy + Aot a2y + 1< Aara) + Az vk (3a)
Al al) T Aw201) T 1S A2 a1y + A2 52) VE  (3b)
Aobop) T A0tz TS Aaal ) T A0kt vh#Em (30
Noz.ot) + Matt, ) H 1S Az, + Aed, ot Vk4m  (3d)
A@h,o2) T A@2 0l T 1S A@n 02) + A2, (3e)
A@z, o8 T AL 02 T 1S A2 o) T Al (3)
Nt by + At ity + 1 A gty + At Vil:w el lta (39)
Nutiaty + A at gttty + 1< A o)+ A i) Vil:w eCl4a (3n)
Az ) T Aaz ) T 1< Mgz a0y + Ao 0y Vki:w =c(fe) (3i)
Aw202) T A@2,a0) + 1< A2 40) + A0 a9 Vki:w =c(fr) (3
Augae) T A@e oty T 1 < A o1y A1 o) Vk,i:wi=c(fr) (3K)
Adague) T Ao by T1 < Age 1) + Al o) Vki:wi=c(fs) (3

Inequalities (3a) ensure that, for eak’:hthe path(v}, v}, v2) is strictly shorter than the other
two-arc path(o;, o7, v3) from o} to v7. Together, (3a)—(3f) express that each pathinS? is
strictly shorter than its alternative other two-arc patmakogously, inequalities (3g) and (3h)
enforce that each path ;.. . S/ is shorter than its respective alternative two-arc patlilevh
inequalities (3i)—(3I) ensure this property for all pathgk i wi=e(fr) Sl L U Sz K

To verify that this linear system has no solution, we applykEa Lemma. For each [
with w; € C andl # «, we multiply both inequalities (3g) and (3h) with a factor,ofi) :=

Hf € F : w; = ¢(f)}], which yields the equivalent inequalities (3g’) and (3hAdding
all inequalities (3a)—(3f), (3g’), (3h"), and (3i)—(3I)¢h yields an inequality that contains each
variable),, a € A, with the same coefficient on the left and on the right hand aitd a positive
constant on the left hand side. As this inequality cannotlisfeed,R is no USPS.

In the second part of the proof, we now show that any irredacibn-USPSR C Sin D
can be transformed back into a vertex cogter= C(R) C W in H with 2« |C| > |R| —8m. It

is sufficient to define such a backward transformation ontyrfeducible non-USPSs, because
any non-USP®R' C Sin D can be reduced to an irreducible non-USRE R’ in polynomial
time (using the greedy algorithm proposed in [3], for exaahpl

In order to define the backward transformation properly, vt fieed to show that all irre-
ducible non-USPSs i@ have a structure that is similar to that of the non-USR%€’) con-
structed in the first part of the proof. So, #&tC S be an irreducible non-USPS.

First, observe that all paths j, S7 must be contained iR. Suppose there is somésuch
that the path(vZ,,v},,o1,) does not belong t&. Without loss of generality, we may assume
thatk’ = 1. Let M > 2| A| and consider the metric

M+1+1, if a € {(ul,al), (ul,ul)},
M+a+2, if a € {(v},0}), (0}, v})},
M + 17 ifae {<’Dlivvli+1)7 (@l%’vl%—&-l)? (ﬂvlmv%)’ (171%1777%)}
M—|—(2m—1)(a—|—4)+1, if a = (v},v}),
Aa 1= +(k-2)(a+4)+1, if a € {(v,v}):k#1},
(k- 1)(a+4), it a = (12, 50),
+(m+k—2)(a+4)+1, ifa=(v},0}),
+(m+k—1)(a+4), if a = (v,0%), and
M, otherwise.

One easily finds that/ < A\, < 3/2M for all a € A. Since all paths ir§ contain two
arcs, no path with three or more arcs/incan be shorter than any pathd For each path



P e S\ {(v},vi,v1)}, however, there is only one alternatifse-, tp) path with only two arcs,
and it is straightforward to verify that each pathSﬁ\ {(v},v{,v})} is indeed shorter than the
corresponding alternative path. Hen&e, { (v, vi, 1)} is a USPS, which implies that the path
(v?, v}, 0}) must be contained in the (irreducible) non-USRSC S. Analogously, it follows
that any other patt® € (J, S7 is contained irfR.

With the same technique, we can show that, forfamy K, there exists some:= ¢(k) with
fx € d(w;) such thatS‘3 C 'R. Without loss of generality, let = 1, fi = w;w;, and suppose
that at most one of the two pattts = (v?, 9%, 4Y) andP; = (92, v?,u?) and at most one of the
two pathsP; = (vf,77,49) andP; = (v7,v{, u}) belong toR. Then, with) defined as above,
the metric

Ao +2m(a+4) ifa=(v?0?),
Ao +2m(a+4) ifa= (v}, ul)andP; € R,
Vo Ao +2m(a+4) ifa= (v2,u?)andP; ¢ R,
“ Ao +2m(a+4) if a=(vf,u))andP; ¢ R,
Ao +2m(a+4) ifa= (vf,ﬂ?) andP; ¢ R,
A otherwise,

is compatible withS \ ({P;, P;, P;, P;} \ R)}. Hence, the non-USPR must contain either
both paths irS}; or both paths irs?

Analogously, one can show thdf C R, for eachk € K andi = c(k). Furthermore, one
finds that, for any: € K, there exist somg = ¢ (k) with f, € §(w;) such thatS}!, c R.*

Now we can define the vertex set corresponding to the irretiioon- USPS% as

C= C(R) = {wc(k) ke K}

Because (k) is either; or j for any edgefi, = w,w; € F, the selC' is a vertex cover itH. The
above observations imply that

|R|zz(|s,3\+|s3 MERRT \)+ > IS = 8m+2a|C]. (4)

ke K i€l w;eC

It follows in a straightforward way that computing an apgmoate solution for MN-NON-
USPS is at least as hard as computing an approximate sofatidiniMuM VERTEX COVER.
Suppose there is air — ¢)-approximation algorithmd for MIN-NON-USPS withe > 0 and
(r—e) > 1. Then we choose := [8m(r—1—c¢)/e|. With this choice ofx, both the construction
of the MIN-NON-USPS instance and the backward transformation of an icibiunon-USPS
to a vertex cover are polynomial in the encoding sizéfof

Due to (2) and (4), we hayR*| = 8m + 2«|C*| for any minimum vertex cove®'* in H
and any minimum non-USPB* C S in D. Furthermore,

2a|C(R)|+8m< IR| e
2a|C*|+8m — |R*| —

@)

implies thaa|C(R)| < 2a |C*|(r — €) + 8m(r — 1 — €). Therefore, we have
8m(r—1—c¢)

IC(R)| €
<pr—ed+— T e e <p— =,
cr] ST T ST T T e ST T

Consequently, anyr — e)-approximate solutiolR C S for the constructed Mi-NoN-USPS
instance can be transformed back into(an- ¢/2)-approximate solutio”'(R) of the given
MINIMUM VERTEX COVER instance. Thus, anyr — ¢)-approximation algorithm for M-
NON-USPS vyields arn(r — ¢/2)-approximation algorithm for MiiMuM VERTEX COVER.

INote thati = c(k) andj = ¢/(k) may be different. There may exist an irreducible non-USPS- S in the
constructed digrapl that contains only one of the two path s&f, andS}, for eachfy, € §(w;).



Since MNIMUM VERTEX COVER is N"P-hard to approximate within a factor strictly smaller
than7/6, so is MN-NON-USPS. O

The constant inapproximability threshold Bf6 carries over directly to MN-WEIGHT-NON-
USPS.

Corollary 3.2 For anye > 0, itis NP-hard to approximatéV IN-WEIGHT-NON-USP Swithin
afactor7/6 —e.

4 Concluding remarks

In this paper, we showed that the problemssWNON-USPS and NN-WEIGHT-NON-USPS
of finding a minimum size or minimum weight non-USPS contéliimea given path set ark"P-
hard to approximate within a factor strictly smaller thaf6. This implies that the problem of
finding an inequality that separates a given fractional4pathing from the unique shortest path
routing polytope is\VP-hard as well.

These results and the presented proof carry over in a stfaiglard way also to the case
where we seek for a minimum size or a minimum weight conflicrninvalid shortest multi-
path routing, where a conflict is given as a set of shortestspatd a set of non-shortest paths,
that cannot be shortest and non-shortest paths simultalyeou

With a slight modification, the presented proofs also cakrgrdo the problem where we
seek for a minimum size or minimum weight conflict in a giverlexion of shortest path
graphs (see [7, 3]) for both the unsplittable shortest aadstortest multi-path routing variant.
The (extended) shortest path graph for a destination nditeedevhich arcs must be contained
in a shortest path towards this destination and which arcg mat be contained in any shortest
path. A conflict in this representation is a pair of two setmae@et contains the prescribed
destination-arc pairs, where the arc must be containedliomest path towards the destination,
while the other set contains the forbidden destinationpaits, where the arc must not be con-
tained in any shortest path towards the destination. Thasants of the problem of finding a
minimum weight shortest path routing conflict arise in theesation problem over the polytopes
associated with integer linear programming formulatiohshmrtest path routing problems that
are based on arc routings or shortest path graphs.
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