
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

RALF BORNDÖRFER CARLOS CARDONHA

A Set Partitioning Approach to Shunting

The work of the second author is supported by CNPq-Brazil.

ZIB-Report 09-18 (April 2010)

A Set Partitioning Approach to Shunting

Ralf Borndörfer
∗

Carlos Cardonha
∗§

Abstract

The Vehicle Positioning Problem (VPP), also know as the
shunting problem, is a classical combinatorial optimization problem
in public transport planning. It has been investigated using several
models and approaches, which work well for small instances, but not for
large ones. We propose in this article a novel set partitioning model and
an associated column generation approach for the VPP and for a multi-
period generalization. The model provides a tight linear description of
the problem and can, in particular, produce non-trivial lower bounds.
The pricing problem, and hence the LP relaxation itself, can be solved
in polynomial resp. pseudo-polynomial time, for some versions of the
problem. Computational results for large-scale instances are reported.

1 Introduction

The Vehicle Positioning Problem (VPP) is about the parking of ve-
hicles (buses, trams, or trains) in a depot. The aim is to organize the
parking in such a way that the pull-in operations in the evening and the
pull-out operations on the subsequent morning can be done without shunt-
ing movements. The problem is that the parking positions are organized in
tracks, which work as one- or two-sided stacks or queues. If at some point
in time a required vehicle is not in the front of a track, shunting movements
must be performed. Their number must be minimized. We also consider a
multi-periodic generalization of the VPP. The p-Periodic Vehicle Po-

sitioning Problem (VPPp) consists of planning a cyclic sequence of p

successive pull-in-pull-out periods in order to model the depot activity of
an entire week. This is important in practice, because many vehicles that
pull-in on Friday evening will not move until Monday morning.

The VPP and its variants, such as the Bus Dispatching Problem, the
Tram Dispatching Problem, and the Train Unit Dispatching Prob-

lem, are well-investigated in the combinatorial optimization literature, see
Hansmann and Zimmermann [8] for a comprehensive survey. The prob-
lem was introduced by Winter [13] and Winter and Zimmerman [14]. They

∗Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany; Email borndoerfer@zib.de,

cardonha@zib.de

§The work of this author is supported by CNPq-Brazil.

1

modeled the VPP with two-index variables as a Quadratic Assignment

Problem (QAP) and used linearization techniques to solve it as an integer
linear program. Hamdouni, Soumis and Desaulniers [9] extend their work
exploring robustness and introducing the concept of uniform tracks to solve
larger problems. Gallo and Di Miele [7] propose a three-index formulation
and extend the problem to deal with vehicles of different lengths and in-
terlaced sequences of arrivals and departures. Freling, Kroon, Lentink, and
Huisman [6] and Kroon, Lentink, and Schrijver [12] improved this model
by a new formulation of shunting constraints involving additional binary
variables. They also consider decomposable vehicles (trains) and different
types of tracks (the number of uniform tracks is assumed to be known in
advance). Lentink [11] continues by a heuristic and a column generation
algorithm based on a decomposition strategy for the problem. Recently,
Borndörfer and Cardonha [3] combined the original binary quadratic pro-
gramming model of Winter [13] with the model improvement of Kroon,
Lentink, and Schrijver [12] in order to derive the first non-trivial lower
bounds for the number of shunting movements. However, all of the men-
tioned approaches work only satisfactorily for specifically structured or for
very small instances, and, in particular, not for an integrated treatment of
multi-period problems.

We propose in this paper novel set partitioning models for the VPP and
the VPPp as bases for a column generation solution approach. We show
that the associated pricing problem, and hence the entire LP relaxation,
can be solved in polynomial resp. pseudo-polynomial time for some versions
of the problem, namely, if a certain objective function that we call “first
crossings” is minimized. Our computational results show that this approach
can produce non-trivial lower bounds. In this way, large-scale instances can
be solved.

An approach similar, but not identical, to ours was used by Diepen [5]
in the context of airport gate assignments; this problem involves interlaced
sequences of arrivals and departures, which are already matched, and stacks
of size one. A set partitioning approach for a shunting problem involving
matched arrivals and departures was also considered by Lentink [11].

2 The Vehicle Positioning Problem

The Vehicle Positioning Problem (VPP) is a 3-dimensional matching
problem that can be described as follows. Some number n of vehicles arrive
in a sequence A = {a1, . . . , an}, a1 < · · · < an. They must be assigned to
parking positions in some number m ≤ n of parking tracks S = {s1, . . . , sm}
in a depot; from these tracks, the vehicles depart to service a sequence of
timetabled trips D = {d1, . . . , dn}, d1 < · · · < dn. Denote by (a, s, d) the
assignment of the arriving vehicle a to a parking position in track s in order

2

to service the departing trip d. Note that the parking position in track s

is determined implicitly by the assignments involving the preceding vehicle
arrivals.

Assignments are restricted by a number of constraints. We consider t

vehicle types T = {T1, . . . , Tt} with ti vehicles of type Ti, i = 1, . . . , t. Each
arriving vehicle a has a type t(a), and each departing trip d has a type t(d).
Departure d can only be serviced by vehicles of type t(d). The assignment
(a, s, d) is feasible if t(a) = t(d); we will henceforth only consider feasible
assignments. Each arriving vehicle a also has a size (or length) l(a), and each
track s ∈ S has size β. We assume that β|S| ≥

∑
a∈A l(a)+ |S|maxa∈A l(a),

i.e., there is enough space to park all vehicles. Note that in this version of
the problem, the tracks are all identical. If all vehicle types have the same
size, which we also assume, we have l = 1 and β|S| ≥ n, i.e., β is the number
of parking positions in each track. Furthermore, we assume that the first
departure trip starts after the last arrival of an incoming vehicle, and that
each track is operated as a FIFO stack, that is, vehicles enter the track at
one end and leave at the other. Consider assignments (a, s, d) and (a′, s, d′),
whose parking positions are located in the same track s; then a shunting
movement is required if either a < a′ and d > d′ or if a′ < a and d′ > d.
In this case, we say that these assignments are in conflict and denote the
associated crossings by (a, s, d) † (a′, s, d′) or (a, d) † (a′, d′). A crossing of
two assignments (a, s, d) † (a′, s, d′) such that a′ is parked immediately after
a (i.e., all arrivals between a and a′ are assigned to tracks different from
s) is called a first crossing. Winter [13] showed that any solution involving
crossings also has first crossings. Clearly, the number of crossings is in
general larger than or equal to the number of first crossings.

A configuration q is a set of assignments (aj , s, dj), j = 1, . . . , r, to some
track s, such that aj < aj+1, j = 1, . . . , r − 1, i.e., the parking positions
in the track are filled consecutively, and

∑r
j=1 l(aj) ≤ β, i.e., the track is

big enough for all assigned parkings. When the meaning is clear from the
context, we write a ∈ q, d ∈ q, and (a, d) ∈ q if (a, s, d) ∈ q. In other words,
a configuration records all parking assignments for an entire track. Let Qs

denote the set of all configurations for track s; let us write s ∈ q for q ∈ Qs.
Let finally Q =

⋃
s∈S denote the set of all configurations.

A matching is a set of configurations qs, one for each track s ∈ S, such
that each arriving vehicle and each departing trip is assigned to a parking
position in exactly one track (or configuration). Then the vehicle positioning
problem is to find a matching that minimizes the total number of crossings;
in fact, we focus on the case that minimizes the number of first crossings.
Note that it is equivalent to find a matching without crossings and without
first crossing.

The Multi-Periodic Vehicle Positioning Problem (VPPp) in-
volves a cyclic sequence of p single period instances of the VPP, i.e., the
departures dh

j of period h define the arrivals ah+1
i in period h+1, where pe-

3

riod indices are taken modulo p. Denote the arrival sequence for period h by
Ah = {ah

1 , . . . , ah
n} and the departure sequence by Dh = {dh

1 , . . . , dh
n}; then

Dh = Ah+1, h = 1, . . . , p. The last wp periods of the sequence form “the
weekend”. Typically, the number wn of timetabled trips on weekend peri-
ods is smaller than the number n of trips on regular (weekday) periods. We
therefore consider dummy arrivals ah

i , h = p−wp+1, . . . , p, i = wn+1, . . . , n,
and dummy departures dh

j , h = p − wp, . . . , p, j = wn + 1, . . . , n, such that

dh
j = ah+1

j , h = p − wp, . . . , p, j = wn + 1, . . . , n, that indicate parking
during the weekend. We also stipulate that only a subset of wm tracks can
be used for arrivals and departures, and that the idle n − wn vehicles stay
parked on the remaining m−wm tracks on the weekend, i.e., the only legal
assignments for the weekend parking tracks s = wm + 1, . . . , m in the week-
end periods h = p−wp + 1, . . . , p are of the form (ah, s, dh), where ah = dh

is a weekend arrival/departure. We denote the set of configurations for a
track s in period p by Qp

s. The remaining concepts are the same as for the
single period VPP.

We remark that a sequential solution of the VPPp by a subsequent treat-
ment of successive single period subproblems might not yield good solutions,
in particular, if myopic choices on “Friday” do not take the upcoming “Mon-
day” into account.

The computational complexity of the VPP was analyzed by Winter
in [13]. Some of his results can be extended to the VPPp as well.

Theorem 1. (Winter) It is possible to decide in polynomial time if an
instance of VPP needs shuntings when all tracks have size two and the
assignment of vehicles to trips is fixed.

Corollary 1. It is possible to decide in polynomial time if an instance of
VPPp needs shuntings when all tracks have size two and the assignment of
vehicles to trips is fixed.

Proof. The problem can be reduced to a bipartite matching problem similar
as in [13]. The only difficulty is with the arrivals on the last weekday period
and the departures on the first weekday period. These assignments can
also be included in a bipartite matching problem, where arrivals on the
last weekday period can be assigned not only to the departures on the last
weekday period, but also to departures on the first weekday period.

Theorem 2. (Winter) Deciding if an instance of VPP needs shuntings is
NP-complete.

Corollary 2. Deciding if an instance of VPPp needs shuntings is NP-
complete.

Proof. Let I be an instance of VPP with arrival sequence A, departure
sequence D and m tracks. We create an instance I ′ of VPPp with at least 3

4

weekday periods. The second weekday period is such that A2 = A, D2 = D,
and the number of tracks is m (i.e., the second weekday period is the single
period instance I).

The other periods are such that both the arrival and the departure se-
quences are either equal to A (in the case of the weekday periods) or equal
to the sequence formed by the first wn elements of A (in the case of the
weekend periods). It is clear that there is a crossings-free solution for these
periods.

On the other hand, the second weekday period is non-trivial and its
solution is independent of the matchings for the other periods. Consequently,
we obtain an optimal solution for I ′ from an optimal solution for I and vice-
versa. Therefore, if it is possible to decide in polynomial time if an instance
of VPPp needs shuntings, than it is possible to do the same for VPP.

Theorem 3. (Winter) Optimizing VPP is NP-hard.

Corollary 3. Optimizing VPPp is NP-hard.

Proof. The proof is similar to the one presented for Corollary 2.

3 Integer Programming Models

The following IP formulation (L) of the VPP is based on the model proposed
by Lentink, Kroon and Schrijver [12]. It yields the best performance among
the models of the literature. The formulation uses binary variables xa,s,d to
indicate the assignment of arrival a to track s and departure d and binary
variables ra,s,d to indicate a conflict on track s involving assignments that
contain arrival a and departure d. Equations (L) (i) assure that each arriving
vehicle a is assigned to exactly one configuration, (L) (ii) is analogous for
departing trips d, (L) (iii) controls the size restriction of track s, and (L) (iv)
indicates if there is a conflict between the assignment of a and the assignment
of d on track s. The objective function counts the total number of crossings.
The model reads as follows:

(L) min
∑

(a,s,d)∈A×S×D

ra,s,d

(i)
∑

(s,d)∈S×D

xa,s,d = 1 ∀a ∈ A

(ii)
∑

(a,s)∈A×S

xa,s,d = 1 ∀d ∈ D

(iii)
∑

(a,d)∈A×D

xa,s,d ≤ β ∀s ∈ S

(iv)
∑

a′<a

xa′,s,d +
∑

d′≤d

xa,s,d′ − ra,s,d ≤ 1 ∀(a, s, d) ∈ A× S ×D

xa,s,d, ra,s,d ∈ {0, 1}.

5

We propose the following set partitioning model for the VPP:

(X) min
∑

q∈Q

cqxq

(i)
∑

a∈q∈Q

xq = 1 ∀a ∈ A

(ii)
∑

d∈q∈Q

xq = 1 ∀d ∈ D

(iii)
∑

s∈q∈Q

xq = 1 ∀s ∈ S

xq ∈ {0, 1} ∀q ∈ Q.

This model employs binary variables xq, q ∈ Q, to indicate the use of track
configurations. Equations (X) (i) assure that each arriving vehicle a is
assigned to exactly one configuration, (X) (ii) is analogous for departing
trips d, and (X) (iii) allows exactly one configuration for each track (which
can be empty). The objective sums up the number of crossings or first
crossings, depending on the definition of c.

Recall that we consider in this article a version of the VPP with iden-
tical tracks. We can therefore improve model (X) by working with generic
configurations. Replacing (X) (iii) by the single inequality

(iii′)
∑

q∈Q

xq ≤ m,

produces an equivalent formulation (X ′). Doing so removes a significant
amount of symmetry from the model. In fact, the number of variables is
reduced by a factor of m, and the number of solutions by a factor of m!.
Such symmetries are one of the reasons why the hitherto proposed models
do not work well computationally.

Recall also that we assume that all vehicles have size 1, such that at most
β of them can be assigned to a single track. Then there are (at most) O(n2β)
different sets of arrivals and departures that can be assigned to a track, and
from each set it is possible to generate O(β!) different arrival and departure
sequences. Consequently, there are O(sn2ββ!) = O(nn2βββ) = O(n3β+1)
possible stack configurations.

Proposition 1. If all vehicles have unit size, model X has O(n) constraints
and O(n3β+1) variables.

Formulation X has also some appealing theoretical properties. Inter-
preting the VPP as a partitioning problem for configurations, i.e., as a
combinatorial packing problem, see Borndörfer [2], it follows:

Theorem 4. The intersection graph associated with formulation (X) for a
VPP on two tracks is perfect.

6

This means that the 2-track case of formulation (X) can be solved by a
cutting plane algorithm separating only clique constraints.

For the VPPp, we propose the following similar set partitioning model :

(Xp) min
∑

q∈Q

cqx
h
q

(i)
∑

a∈q∈Qh

xh
q = 1 ∀h, a ∈ Ah

(ii)
∑

dh∈q∈Qh

xh
q = 1 ∀h, d ∈ Dh

(iii)
∑

sh∈q∈Qh

xh
q = 1 ∀h, s ∈ Sh

xh
q ∈ {0, 1} ∀q ∈ Qh.

Model Xp allows the same use of generic configurations as model X. Fur-
thermore, the configuration variables for the weekend parking tracks can be
identified. This means that we can replace the inequalities (Xp) (iii) by the
following inequalities

(iiia)
∑

q∈Qh

xq ≤ m ∀ weekday periods h

(iiib)
∑

q∈Qh

xq ≤ wm ∀ weekend periods h,

to obtain an equivalent formulation (Xp ′). Again, this trick removes sym-
metry from the model, improving the computational performance.

The number of possible stack configurations can be calculated indepen-
dently for each period. Of course, vehicles that were parked on the first
weekend period come back into use on the first weekday period. We there-
fore have O(n3β+1) possible stack configurations on all periods except the
first and the last weekday period, which should be considered simultaneously
and have O(22βn3β+1) possible stack configurations.

Proposition 2. If all vehicles have unit size, model X
p has O(pn) con-

straints and O(pn3β+1 + 22βn3β+1) variables.

We now compare the strengths of the linear relaxations of models L

and X. Denote by VLP (F) the optimal objective value of the LP relaxation
of some integer programming formulation F, and by PLR(F) the polytope
associated with the LP relaxation of formulation F.

Formulation L is the most successful model for VPP described in the
literature so far. However, Borndörfer and Cardonha [3] have shown that
its LP relaxation is weak:

Theorem 5. VLP (L) = 0 if m > 1.

7

The following theorem shows that X is stronger than L:

Theorem 6. PLR(X) ⊆ PLR(L).

Proof. Let xq be a solution of the linear relaxation of an instance I of VPP.
We set the values of (xa,s,d, ra,s,d) for each (a, s, d) ∈ A× S ×D as follows:

xa,s,d =
∑

(a,d)∈q,q∈Qs

xq

ra,s,d =
∑

(a,d′),(a′,d)∈q
(a,d′)†(a′,d)

q∈Qs

xq.

We show that (xa,s,d, ra,s,d) belongs to PLR(X).

(i)
∑

sd xa,s,d =
∑

sd

∑
(a,d)∈q,q∈Qs

xq =
∑

sd,(a,d)∈q,q∈Qs
xq = 1 ∀a ∈ A

(ii)
∑

as xa,s,d =
∑

as

∑
(a,d)∈q,q∈Qs

xq =
∑

as,(a,d)∈q,q∈Qs
xq = 1 ∀d ∈ D

(iii)
∑

ad xa,s,d =
∑

q∈Qs
xq|q| ≤

∑
q∈Qs

xqβ ≤ β ∀s ∈ S

(iv)
∑

a′<a xa′,s,d +
∑

d′≤d xa,s,d′ − 1

≤
∑

(a′,d),(a,d′)∈q
(a,d′)†(a′,d)

q∈Qs

2xq +
∑

(a′,d)∨(a,d′)/∈q,q∈Qs
xq − 1

= 2
∑

(a′,d),(a,d′)∈q
(a,d′)†(a′,d)

q∈Qs

xq −
∑

(a′,d),(a,d′)∈q
(a,d′)†(a′,d)

q∈Qs

xq

=
∑

(a′,d),(a,d′)∈q
(a,d′)†(a′,d)

q∈Qs

xq = ra,s,d ∀(a, s, d) ∈ A× S ×D

The inequalities above show that the pair (xa,s,d, ra,s,d) is a solution for the
linear relaxation of Lentink’s model.

Theorem 7. VLR(X) > 0 for some instances of VPP that require shunt-
ings.

Proof. We give a family of instances of VPP which have a pair (a, d) that
must belong to every matching and that will cross in any feasible configu-
ration. For such a pair, cq > 0 for (a, d) ∈ q, and

∑
(a,d)∈q,q∈Q xq = 1.

One such family can be generated as follows. Let A and D be such
that t(a1) = t(dn), there is no other arrival ai (departure dj) with i 6= 1
(j 6= n) such that t(a1) = t(ai) (t(dn) = t(dj)) and assume that the depot
has n parking positions (i.e., the instance has a feasible solution). In such
an instance, a1 must be assigned to dn, and every configuration q which
contains this pair has cost cq > 0.

8

A similar proof yields the following corollary regarding VPPp:

Corollary 4. VLR(Xp) > 0 for some instances of VPPp that require shunt-
ings.

Theorem 7 and Corollary 4 show that the linear relaxations of X and
Xp can yield nontrivial lower bounds for the problem. However, this is not
the case in every instance of the problem that require shuntings. Both cases
will come up in our computational results.

4 Column Generation

We propose to solve X and Xp using a column generation approach. In order
to choose the variables that enter the master problem in each iteration, we
must solve a pricing subproblem. It will turn out that the complexity of the
pricing subproblem depends on the way shuntings are counted. The number
of shuntings is often estimated in terms of the total number of crossings. We
propose to minimize the number of first crossings, which is also a reasonable
estimate, because it counts the occasions on which problems comes up in
pratice.

4.1 Pricing First Crossings

The idea is to use a dynamic program, recording the arrival and departure
assigned to the last parking position. The problem with this approach is
that in the case of shuntings, book-keeping becomes necessary in order not
to assign an arrival or departure twice. This difficulty can be addressed as
follows. First, Winter [13] has shown that considering only configurations
where the arriving vehicles do not produce crossings, i.e., with ascending
arrival times, does not change the minimal number of crossings. His proof
can be easily modified in order to show that this also holds when first-
crossings must be minimized. Note we have already defined the possible
configurations Q and Qp in this way. Second, allowing several assignments
to cover a departure does also not hurt, but, as we will see in a minute,
makes the pricing problem easier. We therefore consider relaxations (X′′)
and (Xp′′) of the formulations (X′) and (Xp′), that extend Q and Qp to sets
Q′′ and Qp′′ that include such configurations, and which, in addition, relax
constraints (X′) (ii) and (Xp′) (ii) to

(ii′)
∑

d∈q∈Q′′

xq ≥ 1 ∀d ∈ D

(ii′)
∑

d∈q∈Qh′′

x
p
h ≥ 1 ∀h, d ∈ D,

respectively. This construction is similar to the so-called q-path relaxation
that is popular in vehicle routing, see Baldacci, Toth, and Vigo [1].

9

Proposition 3. 0 ≤ VLR(X′′) ≤ VLR(X) and 0 ≤ VLR(Xp ′′) ≤ VLR(Xp).

Theorem 8. The pricing problem for the LP relaxation of model X′′ can be
solved in pseudo-polynomial time O(mn4β) if first crossings are minimized.

Proof. The pricing problem can be solved by dynamic programming. For
a fixed track s, consider a state space H indexed by tuples in A × D ×
[0, β]. Let C be a matrix indexed by such tuples (a, d, k), such that entry
c[a][d][k] holds the maximum reduced cost of a configuration of size k, that
terminates by assigning arrival a to departure d. Let us denote the dual
variables associated with constraints (X′′) (i), (ii′), and (iii′) by σa, ωd, and
π, respectively. Then the recursion formula for the entries of C is as follows:

c[a′][d′][k′] = maxa<a′,d6=d′,k=k′−l(a) {c[a][d][k] + σa + ωd + αad} ,

where αkd = 1, if d < d′, and 0 else. The initialization is c[a][d][0] := π. The
recursion takes time O(mn4β).

Corollary 5. The pricing problem for the LP relaxation of model X
p ′′ can

be solved in pseudo-polynomial time O((p + 1)mn4β) if first crossings are
minimized.

Proof. The multi-period pricing problem is similar to the single period pric-
ing problem. Basically, the dynamic program in the proof of Theorem 8
must be applied for each period. In addition, we must consider possible
assignments of arrivals on the last weekday period to departures on the
first weekday period. Consequently, we execute the pricing routine X ′′

(p + 1) times, which leads to an O((p + 1)mn4β) pseudo-polynomial time
algorithm.

Recall that the vehicles have unit size, i.e., β = O(n). Then:

Corollary 6. The pricing problem for the LP relaxation of model X
′′ can

be solved in polynomial time O(mn5), if first crossings are minimized and
vehicles have unit size.

Corollary 7. The pricing problem for the LP relaxation of model X
p ′′ can

be solved in polynomial time O((p+1)mn5), if first crossings are minimized
and vehicles have unit size.

4.2 Generating columns and uniform tracks

In order to speed up the convergence of our column generation algorithm, we
initialize the column pool by a promising set of configurations. Namely, we
use a greedy procedure to construct a set of configurations with a hopefully
small number of crossings. This procedure is inspired by the concept of
uniform tracks of Hamdouni, Soumis and Desaulniers [9]. Uniform tracks

10

are tracks that receive just one type of vehicle (and therefore do not have
crossings). Solutions with uniform tracks are more robust (as pointed out
by [9]).

We first construct a lower bound on the number of non-uniform tracks in
a feasible solution for an instance of VPP (or for one period in an instance
of VPPp).

Proposition 4. If all tracks have the same size, there must be at least

BNU :=

∑

Ti∈T

ti mod β

β

non-uniform tracks in any solution of VPP.

Proof. It is not possible to assign more than ti mod β vehicles of type Ti

to uniform tracks.

Based on this lower bound, we develop an algorithm that assigns ti
mod β arrivals and departures of type Ti to BNU tracks. By assigning the
remaining arrivals and departures to uniform tracks, we obtain a feasible
matching for one period. Clearly, this algorithm is does in general not
produce optimal solutions.

Theorem 9. There are instances of VPP for which there is no optimal
solution that uses only BNU non-uniform tracks.

Proof. We give a family of instances of VPP for which any optimal solution
contains BNU + 1 non-uniform tracks. Let t ≥ 2, with t1 = β−1, t2 = β+1,
and ti = β, 2 < i ≤ t. Assume that the first 2β arrivals and the last 2β
departures are of type T1 or T2. Let t(dn−2β+1) = t(a2β) = T1, and assume
that arrivals and departures of type T1 appear distributed in subsequences
with the following property: if the subsequence containing dn−2β+1 has size
k, the first subsequence of type T1 in A contains k +k′ arrivals, with k′ > 0.
Similarly, the second subsequence of type T1 in D contains k′+k′′ departures,
with k′′ > 0. We repeat this procedure to determine the position in the
sequences of all arrivals and departures of type T1 (and, consequently, T2 as
well). Figure 1 shows an example for β = 4 and n = 8.

Clearly, any assignment involving the remaining n − 2β arrivals and
departures crosses with any assignment involving pairs of type T1 or T2.
Besides, elements of type Ti, i > 2, can be assigned to uniform tracks.

Consequently, instances of this family can only have crossing-free solu-
tions if pairs of type T1 are assigned to non-uniform tracks with pairs of
type T2.

Finally, we observe that this heuristic can be performed in polynomial
time.

11

a8a7a6a5a4a3a2a1

d8d7d6d5d4d3d2d1

Figure 1: Example for an instance with 0 crossings only for solutions with
non-uniform tracks.

5 Computational Results

This section presents the results of a computational evaluation of our column
generation approaches. All computations were done on an 64-bits Intel(R)
Core(TM)2 Quad with 2.83 GHz, 8 GB of RAM memory, running openSuse
Linux 11.2. Our code is implemented in C++ and was compiled using g++

4.4.1 and with the callable library of CPLEX 12.1.0 [4].
Our code solves formulations (X′′) and (Xp′′) to minimize first crossings.

We initialize the column pool using the greedy heuristics of Section 4.2. In
each iteration of the column generation algorithm, the pricing routine of
Section 4.1 is called and the minimal reduced cost configuration is added.
In addition, the greedy heuristic is called to complete this configuration to a
matching; the configurations of this matching are also added. Then the LP is
resolved. This procedure is repeated until no more improving configuration
exists, i.e., until the LP is solved to optimality. After that, the column pool
is passed to the IP solver of CPLEX in order to compute a (heuristic) integer
solution.

Table 1 reports computational results for instances of the VPP. The
names n − m − t of the instances indicate the number n of arrivals and
departures, the number m of tracks, and the number t of vehicle types. The
columns list the number QLP of configurations priced, its value VLR, the
value VIP of the heuristic integer solution, and the CPU time in seconds to
solve the LP relaxation. It can be seen that the number of shuntings is very
low and often zero for the larger problems, which have a size that is typical
in practice. Smaller problems can enforce shuntings, in particular, if many
vehicle types are involved. Such instances can be computationally difficult,
featuring large LP/IP gaps.

Table 2 reports computational results for the multi-period VPPp. The
names nPer −wPer − n−m−wn− t of the instances indicate the number
nPer of weekday periods, the number wPer of weekend periods, the number
n of arrivals on weekday periods, the number m of tracks, the number wn

of weekend periods, and the number t of vehicle types. The columns are
the same as in Table 2. Note that the number of periods for a real-world
instance would be 14, with a morning and evening period for every day of
the week. In other words, the instances named 10-4-*-*-*-* correspond

12

Instance QLP VLR VIP Time (sec)

20-4-12 101 2 2 0
40-5-15 1012 0.2 3 6
63-7-8 37 0 0 1
64-8-12 257 0 0 1
96-12-7 12 0 0 1
150-15-6 15 0 0 3
150-15-15 740 0 1 82
160-20-10 20 0 0 2
160-20-40 694 0 0 14
200-20-10 20 0 0 0

Table 1: Solving problem VPP using formulation X′′.

Instance QLP VLR VIP Time (sec)

4-2-20-4-15-5 976 1 3 1
5-2-36-6-24-5 5682 0 1 4
6-3-30-5-18-5 4947 1 5 3
10-3-64-8-48-6 12942 0 3 36
10-4-80-10-56-8 25454 0 5 80
10-4-120-12-90-8 80314 0 5 1166
10-4-150-15-110-9 20217 0 1 129
10-4-150-15-100-10 50122 0 4 861

Table 2: Solving problem VPPp using formulation Xp′′

to a typical “standard week”. As far as we know, instances of this size
and complexity have not been considered or solved in the VPP literature
before. The multi-period instances are much larger and substantially more
difficult than their single-period counterparts; often, we could not eliminate
shuntings completely. Nevertheless, the number of shuntings is still very low
and the time consumption of the algorithm is still reasonable. It is therefore
possible to solve even difficult multi-period vehicle positioning problems with
very good results.

6 Conclusions

We presented in this article novel set partitioning models for the VPP and
for the VPPp, which are suitable for a column generation solution approach.
These models have better theoretical properties than the models that have
been used previously. For the minimization of first crossings, the associated
pricing problems and hence the entire LP relaxation can be solved in polyno-

13

mial time (if all vehicles have unit size). In this way, large scale multi-period
instances can be solved with good quality and in reasonable time.

References

[1] Baldacci, R., and Toth, P., and Vigo, D., Recent advances in vehicle
routing exact algorithms, Springer Berlin/Heidelberg, 4OR: A Quar-
terly Journal of Operations Research, vol. 5 (2007), Number 4, 269-298.

[2] Borndörfer, R., Combinatorial packing problems, “The Sharpest Cut
- The Impact of Manfred Padberg and His Work”, Martin Grötschel
(Ed.), MPS-SIAM, vol. 4 (2004), Series on Optimization, 19–32.

[3] Borndörfer, R., and Cardonha, C. A Binary Quadratic Programming
Approach to the Vehicle Positioning Problem, ZIB Technical Report
09-12, (2009).

[4] ILOG, CPLEX Website,http://www.ilog.com/products/cplex/.

[5] Diepen, G., and van den Akker, J.M., and Hoogeveen, J.A., Integrated
Gate and Bus Assignment at Amsterdam Airport Schiphol, Robust and
Online Large-Scale Optimization (2009), Lecture Notes in Computer
Science, 338–353.

[6] Freling, R., and Lentink, R., and Kroon, L., and Huisman, D., ”Shunt-
ing of passenger train units in a railway station”, ERIM Report Series
Research in Management, 2002.

[7] Gallo, G., and Di Miele, F., Dispatching buses in parking depots, Trans-
portation Science, 35 (2001), 322–330.

[8] Hansmann, R. S. and Zimmermann, U. T., Optimal Sorting of Rolling
Stock at Hump Yards, “Mathematics – Key Technology for the Future:
Joint Projects Between Universities and Industry”, Jäger, W. and
Krebs, H.–J. (Ed), Springer Berlin, 2008, 189–203.

[9] Hamdouni, M., and Soumis, F., Desaulniers, G., ”Dispatching Buses in
a Depot Using Block Patterns”, Transportation Science, 40, 3 (2006) ,
364–377.

[10] Kaufmann, L., and Broeckx, F., An Algorithm for the Quadratic As-
signment Problem, European J. Oper. Res., 2 (1978), 204–211.

[11] Lentink,R.M., “Algorithmic Decision Support for Shunt Planning”,
Ph.D. thesis, Erasmus Research Institute of Management, Erasmus Uni-
versity Rotterdam, 2006.

14

[12] Kroon, L., Lentink, R., Schrijver, A., ”Shunting of passenger train
units: an integrated approach”, ERIM Report Series Reference No.
ERS-2006-068-LIS, 2006, http://ssrn.com/abstract=1317605.

[13] Winter, T., ”Online and Real-Time Dispatching Problems”, Ph.D. the-
sis, TU Braunschweig, 1998.

[14] Winter, T., and Zimmermann, U., Real-time dispatch of trams in stor-
age yards, Annals of Operations Research, 96 (2000), 287–315.

15

	Introduction
	The Vehicle Positioning Problem
	Integer Programming Models
	Column Generation
	Pricing First Crossings
	Generating columns and uniform tracks

	Computational Results
	Conclusions

