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Abstract

We consider a system with Poisson arrivals and i.i.d. service times.
The requests are served according to the state-dependent processor shar-
ing discipline, where each request receives a service capacity which de-
pends on the actual number of requests in the system. The linear systems
of PDEs describing the residual and attained sojourn times coincide for
this system, which provides time reversibility including sojourn times for
this system, and their minimal non negative solution gives the LST of
the sojourn time V (τ) of a request with required service time τ . For the
case that the service time distribution is exponential in a neighborhood
of zero, we derive a linear system of ODEs, whose minimal non nega-
tive solution gives the LST of V (τ), and which yields linear systems of
ODEs for the moments of V (τ) in the considered neighborhood of zero.
Numerical results are presented for the variance of V (τ). In case of an
M/GI/2−PS system, the LST of V (τ) is given in terms of the solution
of a convolution equation in the considered neighborhood of zero. For
bounded from below service times, surprisingly simple expressions for
the LST and variance of V (τ) in this neighborhood of zero are derived,
which yield in particular the LST and variance of V (τ) in M/D/2−PS.

Mathematics Subject Classification (MSC 2000): 60K25, 68M20,
60G10.

Keywords: Poisson arrivals; general service times; locally exponen-
tial service times; deterministic service times; state-dependent processor
sharing; generalized processor sharing; many-server; time reversibility;
insensitivity; M/GI/r−PS; M/D/r−PS; M/D/2−PS; sojourn time;
Laplace-Stieltjes transform; moments.

1



1 Introduction

Processor Sharing (PS) systems have been widely used in the last decades for
modeling and analyzing computer and communication systems, cf. e.g. [Kle],
[CMT], [KY], [Ya2], [BBJ], [GRZ], [YY1], [BB1], [BB2], and the references
therein. In this paper we deal with sojourn times of requests in a node,
where the requests are served according to the following generalized pro-
cessor sharing discipline, which we call State-Dependent Processor Sharing
(SDPS) discipline, cf. [Coh], [GRZ]. If there are n ∈ N := {1, 2, . . .} requests
in the node then each of them receives a positive service capacity ϕ(n), i.e.,
each of the n requests receives during an interval of length ∆τ the amount
ϕ(n)∆τ of service. In case of ϕ1(n) = 1/n, n ∈ N, we obtain the well known
single-server PS system, cf. e.g. [CMT], [YY1], in case of ϕ1,k(n) = 1/(n+k),
n ∈ N, we have a single-server PS system with k ∈ N permanent requests
in the system, cf. [YY2], [VB], in case of ϕr(n) = min(r/n, 1), n ∈ N, an
r-server PS system, where all requests are served in a PS mode, but each
request receives at most the capacity of one processor, cf. [Coh] p. 283, [Bra],
[GRZ], [BB1], in case of ϕr,k(n) = min(r/(n + k), 1), n ∈ N, an r-server PS
system with k ∈ N permanent requests, in case of ϕ∞(n) = 1, n ∈ N, an
infinite-server system.

A system working under the SDPS discipline and where the requests
arrive according to a Poisson process of intensity λ, the required service
times are i.i.d. with df. B(x) := P (S ≤ x), where S denotes a generic
service time, and finite mean mS := ES and independent of the arrival
process is denoted by M/GI/SDPS, the corresponding r-server PS system
is denoted by M/GI/r − PS.

Networks with nodes working under the SDPS discipline are investi-
gated in [Coh], [BP], [CVB], [Zac], [BB1], [BB2]. In particular, for the
M/GI/SDPS system some basic results are known, cf. [Coh], which we will
use and therefore shortly review in the following. Let N(t) be the number
of requests in the system at time t, Y ∗(t) := (Y ∗

1 (t), . . . , Y ∗
N(t)(t)) the vector

of the residual service times of the N(t) requests in the system at time t,
ordered randomly, and Ỹ ∗(t) := (Ỹ ∗

1 (t), . . . , Ỹ ∗
N(t)(t)) the vector of the at-

tained service times of the N(t) requests in the system at time t, ordered
randomly. The vector processes (N(t); Y ∗(t)), t ∈ R, and (N(t); Ỹ ∗(t)),
t ∈ R, are Markov processes. The M/GI/SDPS system is stable, i.e., there
exist unique stationary processes (N(t); Y ∗(t)), t ∈ R, and (N(t); Ỹ ∗(t)),
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t ∈ R, if and only if

∞
∑

n=0

n
∏

ℓ=1

̺

ℓϕ(ℓ)
< ∞, (1.1)

where ̺ := λmS denotes the offered load, cf. [Coh] (7.18). We assume in
the following that the system is stable and in steady state, i.e. that (1.1)
is fulfilled and that (N(t); Y ∗(t)), t ∈ R, and (N(t); Ỹ ∗(t)), t ∈ R, are
stationary Markov processes. Then the stationary occupancy distribution
p(n) := P (N(t) = n), n ∈ Z+, as well as the stationary distributions of
(N(t); Y ∗(t)) and (N(t); Ỹ ∗(t)) on {N(t) = n} are given by

p(n) =

( ∞
∑

m=0

m
∏

ℓ=1

̺

ℓϕ(ℓ)

)−1 n
∏

ℓ=1

̺

ℓϕ(ℓ)
, (1.2)

P (N(t)=n; Y ∗
1 (t)≤y1, . . . , Y

∗
n (t)≤yn) = p(n)

n
∏

ℓ=1

BR(yℓ)

= P (N(t)=n; Ỹ ∗
1 (t)≤y1, . . . , Ỹ

∗
n (t)≤yn), (1.3)

where

BR(x) :=
1

mS

∫ x

0
(1−B(ξ)) dξ, x ∈ R+, (1.4)

denotes the stationary residual service time distribution having the density
bR(x) = (1 − B(x))/mS , x ∈ R+, cf. [Coh] (7.19) for the case of phase-type
distributed service times, [Zac] for the general case. For the sojourn time V
of an arbitrary arriving request with required service time S, from Little’s
law and (1.2) we find

EV =
1

λ

∞
∑

n=0

np(n) = mS

∞
∑

n=0

1

ϕ(n+1)
p(n). (1.5)

For the conditional sojourn time V (τ) of a request with required service
time τ ∈ R+ it holds

EV (τ) =
τ

mS
EV, (1.6)

cf. [Coh] (7.27). More generally, for τ ∈ R+, k ∈ N we have the estimate

τk
(

∞
∑

n=0

1

ϕ(n+1)
p(n)

)k
≤ E[V k(τ)] ≤ τk

∞
∑

n=0

( 1

ϕ(n+1)

)k
p(n), (1.7)
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cf. [BB2] Theorem 3.1. It seems that in case of the general M/GI/SDPS
system for V (τ) and V besides (1.5)–(1.7) there are known only asymp-
totic results for heavy tailed service times, cf. [GRZ]. However, for special
cases several results and numerical algorithms are well known. We mention
only a few references. For the M/GI/1 − PS system and special cases,
cf. e.g. [CMT], [KY], [Ya1], [Ya2], [YY1], [ZK]. The variance of V (τ) in
the M/M/2 − PS system is given in [Tol]. The Laplace-Stieltjes transform
(LST) and moments of V (τ) in the general M/M/r−PS system are treated
in [Bra] and in the M/M/SDPS system in [BB1].

The aim of this paper is to derive analytical results and representations
for sojourn times in the M/GI/SDPS system. The paper is organized as fol-
lows. In Section 2 we analyze a linear system of partial differential equations
(PDEs), which has two different stochastic interpretations, implying time re-
versibility including sojourn times of the M/GI/SDPS system. Moreover,
its minimal non negative solution gives the LST of V (τ), which implies that
V (τ) depends on B(x) for x > τ only via mS in distribution. In Section 3
we assume that the service time distribution coincides with an exponential
distribution in some interval [0, d). We derive a linear system of ordinary
differential equations (ODEs) with constant coefficients, whose minimal non
negative solution gives the LST of V (τ), τ ∈ [0, d), and which provides cor-
responding linear systems of ODEs for the moments of V (τ), τ ∈ [0, d). For
the case that the service time is the minimum of an exponential and deter-
ministic time we give the LST and the moments of V in terms of minimal
non negative solutions of linear systems of ODEs. Numerical results are pre-
sented for the variance of V in M/D/r−PS. In Section 4 we assume again
that the service time distribution coincides with an exponential distribution
in some interval [0, d), but we consider the special case of an M/GI/r−PS
system. For the M/GI/2−PS system a representation for the LST of V (τ),
τ ∈ [0, d], in terms of the solution of a convolution equation is given. For
the limiting case of bounded from below service times, surprisingly simple
expressions for the LST and variance of V (τ), τ ∈ [0, d], are derived, which
yield in particular the LST and variance of V (τ) and V in M/D/2 − PS.

2 Sojourn times in M/GI/SDPS

We assume in the following that the system is stable, i.e., that (1.1) is
fulfilled, and in steady state. In particular mS is finite. Moreover, for
technical reasons – if not stated otherwise – we make in the following the
assumption:
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(A1) B(x) has a continuous density b(x) and B(x) < 1 for x ∈ R+.

For notational convenience let B̄(x) := 1 − B(x), B̄R(x) := 1 − BR(x), cf.
(1.4), and β(x) := b(x)/B̄(x), βR(x) := bR(x)/B̄R(x) be the complementary
distributions and hazard rates of the service time df. and the stationary
residual service time df., respectively. Further we will use several vector
notations in this section. If not stated otherwise, let y := (y1, . . . , yℓ) ∈ R

ℓ
+

where ℓ = m or ℓ = n, respectively, and

Ωℓ := {y ∈ R
ℓ
+ : 0 < y1 < . . . < yℓ}.

For y, ỹ ∈ R
ℓ let y ≤ ỹ if and only if yi ≤ ỹi for i = 1, . . . , ℓ.

Besides the randomly ordered residual service times Y ∗
1 (t), . . . , Y ∗

N(t)(t)

and attained service times Ỹ ∗
1 (t), . . . , Ỹ ∗

N(t)(t) we need them ordered increas-

ingly. Let 0 ≤ Y1(t) ≤ . . . ≤ YN(t)(t) be the residual service times of the N(t)
requests at time t, ordered increasingly, and let Y (t) := (Y1(t), . . . , YN(t)(t))
be the corresponding vector. In view of the SDPS discipline, this implies
that the requests are ordered according to their departure instants in this
case. Let 0 ≤ Ỹ1(t) ≤ . . . ≤ ỸN(t)(t) be the attained service times of the N(t)

requests at time t, ordered increasingly, and let Ỹ (t) := (Ỹ1(t), . . . , ỸN(t)(t))
be the corresponding vector. In view of the SDPS discipline, this implies
that the requests are ordered reversely to their arrival instants in this case.
For n ∈ N, y ∈ Ωn let

p(n; y) :=
∂n

∂y1 . . . ∂yn
P (N(t)=n; Y (t) ≤ y)

be the density of Y (t) on {N(t) = n} and

p̃(n; y) :=
∂n

∂y1 . . . ∂yn
P (N(t)=n; Ỹ (t) ≤ y)

be the density of Ỹ (t) on {N(t) = n}. On the boundary of Ωn let p(n; y)
and p̃(n; y) be defined by continuous continuation. The support of p(n; y)
and p̃(n; y) is the closure Ω̄n of Ωn.

Denoting by Sn the set of all permutations of the set {1, . . . , n}, from
(1.3), (1.4) for n ∈ N, y ∈ Ωn we obtain

p(n; y) =
∑

π∈Sn

∂n

∂y1 . . . ∂yn
P (N(t)=n; Y ∗

1 (t)≤yπ(1), . . . , Y
∗
n (t)≤yπ(n))

= n! p(n)
n

∏

ℓ=1

bR(yℓ), (2.1)
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and analogously it follows

p̃(n; y) = n! p(n)
n

∏

ℓ=1

bR(yℓ). (2.2)

By continuous continuation, (2.1) and (2.2) hold for n ∈ N, y ∈ Ω̄n, too.

2.1 PDEs for sojourn times

For the M/GI/SDPS system let the stability condition (1.1) and (A1) be
satisfied. Let Vℓ(t), ℓ = 1, . . . , N(t), be the sojourn time of the request
with residual service time Yℓ(t) from time t on until its departure from the
system, i.e., its prospective sojourn time from time t on. Since the Yℓ(t) are
ordered increasingly, the SDPS discipline implies that the Vℓ(t) are ordered
increasingly, too, i.e., 0 ≤ V1(t) ≤ . . . ≤ VN(t)(t). Further, V1(t) = 0 if and
only if Y1(t) = 0. In view of (A1) and the distributional and independence
assumptions, for 0 < m ≤ n, y ∈ Ωn, the LSTs

vn,m(s; y) :=
∂n

∂y1 . . . ∂yn
E[e−sVm(t)

I{N(t) = n, Y (t) ≤ y}] (2.3)

of Vm(t) on {N(t) = n, Y1(t) ∈ dy1, . . . , Yn(t) ∈ dyn} are well defined for
s ∈ R+. For fixed s and 0 < m ≤ n, let vn,m(s; y) be defined on the boundary
of Ωn by continuous continuation. Taking into account that in [BB2] the
residual service times Yℓ(t) are denoted by Rℓ(t), from [BB2] (2.2)–(2.6),
(1.2), and (1.4) it follows that the vn,m(s; y) satisfy the following linear
system of PDEs

ϕ(n)
∂

∂ξ
vn,m(s; y1+ξ, . . . , yn+ξ)

∣

∣

∣

ξ=0

= −
(

λ+s+ϕ(n)
n

∑

ℓ=1

β(yℓ)
)

vn,m(s; y1, . . . , yn)

+ ϕ(n+1)

n+1
∑

ℓ=1

∫ yℓ

yℓ−1

vn+1,m+I{ℓ≤m}(s; y1, . . . , yℓ−1, τ, yℓ, . . . , yn)

β(τ)dτ (2.4)

for 0 < m ≤ n, y ∈ Ωn, where y0 := 0 and yn+1 := ∞, with initial condition

vn,1(s; 0, y2, . . . , yn) = n! p(n)m−1
S

n
∏

ℓ=2

bR(yℓ), (2.5)
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vn,m(s; 0, y2, . . . , yn) =
λ

ϕ(n)
vn−1,m−1(s; y2, . . . , yn), 1 < m ≤ n,

(2.6)

for 0 ≤ y2 ≤ . . . ≤ yn, and that it holds

vn,m(0; y) = n! p(n)

n
∏

ℓ=1

bR(yℓ), 0 < m ≤ n, y ∈ Ω̄n. (2.7)

Note that these equations are consequences of the Kolmogorov forward equa-
tions (Fokker-Planck equations) and of (2.1).

Let Ṽℓ(t), ℓ = 1, . . . , N(t), be the sojourn time of the request with at-
tained service time Ỹℓ(t) from its arrival at the system until time t. Since
the Ỹℓ(t) are ordered increasingly, the SDPS discipline implies that the Ṽℓ(t)
are ordered increasingly, too, i.e. 0 ≤ Ṽ1(t) ≤ . . . ≤ ṼN(t)(t). Further,

Ṽ1(t) = 0 if and only if Ỹ1(t) = 0. In view of (A1) and the distributional
and independence assumptions, for 0 < m ≤ n, y ∈ Ωn, the LSTs

ṽn,m(s; y) :=
∂n

∂y1 . . . ∂yn
E[e−sṼm(t)

I{N(t)=n, Ỹ (t) ≤ y}] (2.8)

of Ṽm(t) on {N(t) = n, Ỹ1(t) ∈ dy1, . . . , Ỹn(t) ∈ dyn} are well defined for
s ∈ R+. For fixed s and 0 < m ≤ n, let ṽn,m(s; y) be defined on the
boundary of Ωn by continuous continuation. As ṽn,m(0; y) corresponds to
the density of Ỹ (t) on {N(t) = n}, from (2.2) we find that

ṽn,m(0; y) = p̃(n; y) = n! p(n)
n

∏

ℓ=1

bR(yℓ), 0 < m ≤ n, y ∈ Ω̄n. (2.9)

In the following let s ∈ R+ be fixed. The dynamics of the M/GI/SDPS
system during an interval [t−h, t] of length h provide for 0 < m ≤ n, y ∈ Ωn

the balance condition

ṽn,m(s; y1, . . . , yn) =
(

1−λh−ϕ(n)h

n
∑

ℓ=1

β(yℓ)
)

e−sh

ṽn,m(s; y1−ϕ(n)h, . . . , yn−ϕ(n)h)

+ ϕ(n+1)h
n+1
∑

ℓ=1

∫ yℓ

yℓ−1

ṽn+1,m+I{ℓ≤m}(s; y1, . . . , yℓ−1, τ, yℓ, . . . , yn)

β(τ)dτ + o(h).

The first summand on the r.h.s. corresponds to the situation that during
[t − h, t] there is no arrival and no departure; the sojourn time increases
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by h. The second summand corresponds to departures from the system.
Subtracting on both sides ṽn,m(s; y1 − ϕ(n)h, . . . , yn − ϕ(n)h), dividing by
h and taking h ↓ 0 provides the following linear system of PDEs

ϕ(n)
∂

∂ξ
ṽn,m(s; y1+ξ, . . . , yn+ξ)

∣

∣

∣

ξ=0

= −
(

λ+s+ϕ(n)
n

∑

ℓ=1

β(yℓ)
)

ṽn,m(s; y1, . . . , yn)

+ ϕ(n+1)
n+1
∑

ℓ=1

∫ yℓ

yℓ−1

ṽn+1,m+I{ℓ≤m}(s; y1, . . . , yℓ−1, τ, yℓ, . . . , yn)

β(τ)dτ (2.10)

for 0 < m ≤ n, y ∈ Ωn, which correspond to the Kolmogorov forward
equations. Taking into consideration arrivals, we find the initial conditions
for 0 ≤ y2 ≤ . . . ≤ yn. As Ỹ1(t) = 0 implies Ṽ1(t) = 0, from (2.9) and (1.4)
we obtain

ṽn,1(s; 0, y2, . . . , yn) = ṽn,1(0; 0, y2, . . . , yn) = n! p(n)m−1
S

n
∏

ℓ=2

bR(yℓ).

(2.11)

In case of 1 < m ≤ n the dynamics provide

ṽn,m(s; 0, y2, . . . , yn) =
λ

ϕ(n)
ṽn−1,m−1(s; y2, . . . , yn), 1 < m ≤ n,

(2.12)

as the arrival probability for an interval of length h/ϕ(n) is 1 − e−hλ/ϕ(n).
Note that the vn,m(s; y) and the ṽn,m(s; y) satisfy the same system of

PDEs (2.4)–(2.7).

Lemma 2.1 For any fixed s ∈ (0,∞), the linear system of PDEs (2.4) with
the initial conditions (2.5), (2.6) and growth condition

0 ≤ vn,m(s; y) ≤ vn,m(0; y), 0 < m ≤ n, y ∈ Ω̄n, (2.13)

where vn,m(0; y) is given by (2.7), has at most one solution.

Proof Let s ∈ (0,∞) be fixed. Replacing in (2.4) yi by yi +η, i = 1, . . . , n,
integrating with the weight exp((λ + s)η/ϕ(n))

∏n
ℓ=1 B̄(yℓ)/B̄(yℓ + η) over

[−y1, 0] with respect to η and applying (2.5), (2.6) provides that the system
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of PDEs (2.4) with the initial conditions (2.5), (2.6) is equivalent to the
following linear system of integral equations for 0 < m ≤ n, y ∈ Ω̄n:

vn,m(s; y1, . . . , yn) = I{m=1}n! p(n)m−n
S e

− λ+s
ϕ(n)

y1
(

n
∏

ℓ=1

B̄(yℓ)
)

+ I{m>1}
λ

ϕ(n)
e
− λ+s

ϕ(n)
y1

(

n
∏

ℓ=1

B̄(yℓ)

B̄(yℓ−y1)

)

vn−1,m−1(s; y2−y1, . . . , yn−y1)

+
ϕ(n+1)

ϕ(n)

∫ 0

−y1

e
λ+s
ϕ(n)

ξ
(

n
∏

ℓ=1

B̄(yℓ)

B̄(yℓ+ξ)

)

n+1
∑

ℓ=1

∫ yℓ

yℓ−1−I{ℓ=1}ξ

vn+1,m+I{ℓ≤m}(s; y1+ξ, . . . , yℓ−1+ξ, τ +ξ, yℓ+ξ, . . . , yn+ξ)

β(τ +ξ) dτdξ. (2.14)

Assume that the system of integral equations (2.14) has two different so-
lutions, where both solutions fulfill the growth condition (2.13). Then the
difference v̄n,m(s; y) of these solutions satisfies the homogenized version of
(2.14). For 0 < m ≤ n let κn,m ∈ R+ denote the smallest number such
that |v̄n,m(s; y)| ≤ κn,mvn,m(0; y), y ∈ Ω̄n. Note that κn,m ∈ (0, 1] due
to the growth condition. Let κn−1,0 := 0 for notational convenience and
let κ0 := sup0<m≤n κn,m. The triangle inequality applied to the homoge-
nized version of (2.14), the definitions of κn,m and κ0, and (2.7), (1.4), (1.2)
provide after some algebra for 0 < m ≤ n, y ∈ Ω̄n that

|v̄n,m(s; y1, . . . , yn)| ≤ κn−1,m−1
λ

ϕ(n)
e
− λ+s

ϕ(n)
y1

(

n
∏

ℓ=1

B̄(yℓ)

B̄(yℓ−y1)

)

vn−1,m−1(0; y2−y1, . . . , yn−y1)

+ κ0
ϕ(n+1)

ϕ(n)

∫ 0

−y1

e
λ+s
ϕ(n)

ξ
(

n
∏

ℓ=1

B̄(yℓ)

B̄(yℓ+ξ)

)

n+1
∑

ℓ=1

∫ yℓ

yℓ−1−I{ℓ=1}ξ

vn+1,m+I{ℓ≤m}(0; y1+ξ, . . . , yℓ−1+ξ, τ +ξ, yℓ+ξ, . . . , yn+ξ)

β(τ +ξ) dτdξ

=
(

κn−1,m−1 e
− λ+s

ϕ(n)
y1 +

λ

λ+s
κ0 (1−e

− λ+s
ϕ(n)

y1)
)

vn,m(0; y1, . . . , yn)

≤ max
(

κn−1,m−1 ,
λ

λ+s
κ0

)

vn,m(0; y1, . . . , yn).

9



Therefore, by definition it holds

κn,m ≤ max
(

κn−1,m−1 ,
λ

λ+s
κ0

)

, 0<m≤n. (2.15)

Let j ∈ Z+ be arbitrarily fixed. In view of κj,0 = 0, from (2.15) we find
κj+1,1 ≤ λ

λ+s κ0. Now induction on m ∈ N yields κj+m,m ≤ λ
λ+s κ0 in view of

(2.15). Thus we obtain κ0 ≤ λ
λ+s κ0, which implies the contradiction κ0 ≤ 0.

From Lemma 2.1 we conclude that the Kolmogorov forward equations
(2.4)–(2.7) and (2.9)–(2.12) provide a complete description of the LSTs
vn,m(s; y) and ṽn,m(s; y), respectively. Moreover, since the vn,m(s; y) and
the ṽn,m(s; y) satisfy the same system of PDEs (2.4)–(2.7), and taking into
account (2.1), (2.2), from Lemma 2.1 we obtain the following time reversibil-
ity result for M/GI/SDPS systems:

Theorem 2.1 Let the stability condition (1.1) for the M/GI/SDPS system
with (A1) be satisfied. Then it holds

ṽn,m(s; y) = vn,m(s; y), 0 < m ≤ n, y ∈ Ω̄n, s ∈ R+, (2.16)

P (Ṽm(t)≤x |N(t)=n, Ỹ (t)=y) = P (Vm(t)≤x |N(t)=n, Y (t)=y),

0 < m ≤ n, y ∈ Ω̄n, x ∈ R+. (2.17)

Because of the SDPS discipline, from a probabilistic point of view, for
0 < m ≤ n, y ∈ Ω̄n the sojourn time Vm(t) conditioned that N(t) = n,
Y (t) = y depends only on y1, . . . , ym and the total number n of requests in
the system since the requests with residual service times ym+1, . . . , yn have
residual service times of an amount greater or equal to ym and are thus in
the system at least as long as the request with service time ym. However,
in the following a rigorous proof will be given. In view of (2.16) and (2.7),
(2.9), we try the substitution

ṽn,m(s; y1, . . . , yn) = vn,m(s; y1, . . . , yn)

= un,m(s; y1, . . . , ym)
n

∏

ℓ=m+1

bR(yℓ), (2.18)

where the un,m(s; y), 0 < m ≤ n, y ∈ Ω̄m, let be continuous functions. The
system of PDEs (2.4) is fulfilled if the un,m(s; y) satisfy the following system
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of PDEs for 0 < m ≤ n, y ∈ Ωm:

ϕ(n)
∂

∂ξ
un,m(s; y1+ξ, . . . , ym+ξ)

∣

∣

∣

ξ=0

= −
(

λ+s+ϕ(n)
m

∑

ℓ=1

β(yℓ)
)

un,m(s; y1, . . . , ym)

+ ϕ(n+1)

m
∑

ℓ=1

∫ yℓ

yℓ−1

un+1,m+1(s; y1, . . . , yℓ−1, τ, yℓ, . . . , ym)

β(τ)dτ

+ ϕ(n+1)bR(ym)un+1,m(s; y1, . . . , ym). (2.19)

The initial condition (2.5) is fulfilled if for 1 = m ≤ n

un,1(s; 0) = n! p(n)m−1
S , (2.20)

and the initial condition (2.6) is fulfilled if for 1 < m ≤ n, 0 ≤ y2 ≤ . . . ≤ ym

un,m(s; 0, y2, . . . , ym) =
λ

ϕ(n)
un−1,m−1(s; y2, . . . , ym). (2.21)

Note that (2.7) is fulfilled if for 0 < m ≤ n, y ∈ Ω̄m

un,m(0; y1, . . . , ym) = n! p(n)
m
∏

ℓ=1

bR(yℓ). (2.22)

Lemma 2.2 For any s ∈ R+, the linear system of PDEs (2.19) with the
initial conditions (2.20), (2.21) has a minimal non negative solution, and
the minimal non negative solution is bounded by un,m(0; y), i.e. by the r.h.s.
of (2.22).

Proof Analogously to the derivation of (2.14) we find that the system
of PDEs (2.19) with initial conditions (2.20), (2.21) is equivalent to the
following system of integral equations for 0 < m ≤ n, y ∈ Ω̄m:

un,m(s; y1, . . . , ym) = e
− λ+s

ϕ(n)
y1

(

m
∏

ℓ=1

B̄(yℓ)

B̄(yℓ−y1)

)(

I{m=1}n! p(n)m−1
S

+ I{m>1}
λ

ϕ(n)
un−1,m−1(s; y2−y1, . . . , ym−y1)

)

+
ϕ(n+1)

ϕ(n)

∫ 0

−y1

e
λ+s
ϕ(n)

ξ
(

m
∏

ℓ=1

B̄(yℓ)

B̄(yℓ+ξ)

)
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( m
∑

ℓ=1

∫ yℓ

yℓ−1−I{ℓ=1}ξ
un+1,m+1(s; y1+ξ, . . . , yℓ−1+ξ, τ +ξ,

yℓ+ξ, . . . , ym+ξ)β(τ +ξ) dτ

+ bR(ym+ξ)un+1,m(s; y1+ξ, . . . , ym+ξ)

)

dξ. (2.23)

This system of integral equations can be solved by the method of suc-
cessive approximation starting from un,m;0(s; y1, . . . , ym) ≡ 0 and defining
un,m;i+1(s; y1, . . . , ym) recursively with respect to i by the r.h.s. of (2.23),
where the un′,m′(s; ỹ1, . . . , ỹm′) are replaced by un′,m′;i(s; ỹ1, . . . , ỹm′). For
this recursion by induction on i it follows that for fixed 0 < m ≤ n,
0 ≤ y1 ≤ . . . ≤ ym the un,m;i(s; y1, . . . , ym) are monotonically increasing
with respect to i and that it holds

un,m;i(s; y1, . . . , ym) ≤ un,m;i(0; y1, . . . , ym). (2.24)

Moreover, if un,m(s; y1, . . . , ym) is any non negative solution of the system
of PDEs (2.19) with initial conditions (2.20), (2.21) for fixed s ∈ R+, then
un,m(s; y1, . . . , ym) is a non negative solution of (2.23), and thus it follows
that un,m;i(s; y1, . . . , ym)−un,m(s; y1, . . . , ym) satisfies the corresponding ho-
mogeneous recursion with respect to i. Therefore induction on i provides

un,m;i(s; y1, . . . , ym) ≤ un,m(s; y1, . . . , ym). (2.25)

As, because of (1.2) and (1.4), the r.h.s. of (2.22) is a solution of (2.19)
and (2.20), (2.21) for s = 0, thus un,m;i(0; y1, . . . , ym) is bounded by the
r.h.s. of (2.22), and in view of (2.24), un,m;i(s; y1, . . . , ym) is bounded by
the r.h.s. of (2.22) for any s ∈ R+. Thus for any s ∈ R+, the limit
limi→∞ un,m;i(s; y1, . . . , ym) exists pointwise and is, due to Lebesgue’s the-
orem, a non negative solution of (2.23). This solution is the minimal non
negative solution of (2.23) because of (2.25). Moreover, in view of (2.24), it
is bounded by the minimal non negative solution of (2.23) for s = 0, and
thus by the r.h.s. of (2.22) as the r.h.s. of (2.22) is a non negative solution
of (2.19) and (2.20), (2.21) for s = 0, i.e. of (2.23) for s = 0.

Summarizing Lemma 2.1 and Lemma 2.2 we have proved the following

Theorem 2.2 Let the stability condition (1.1) for the M/GI/SDPS system
with (A1) be satisfied.

Then for s ∈ (0,∞), the LSTs vn,m(s; y) and ṽn,m(s; y) are given by
(2.18) for 0 < m ≤ n, y ∈ Ω̄n, where un,m(s; y), y ∈ Ω̄m, is the minimal
non negative solution of the linear system of PDEs (2.19) with the initial
conditions (2.20), (2.21).
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2.2 LST and moments of V (τ)

For the M/GI/SDPS system let the stability condition (1.1) and (A1) be
satisfied. For s ∈ R+, 0 < m ≤ n, x ∈ R+ let

gn,m(s, x) :=
∂

∂x
E[e−sVm(t)

I{N(t) = n, Ym(t) ≤ x}]. (2.26)

Note that in view of Theorem 2.1 it also holds

gn,m(s, x) =
∂

∂x
E[e−sṼm(t)

I{N(t) = n, Ỹm(t) ≤ x}].

From Theorem 2.2 by integrating vn,m(s; y) over

0 ≤ y1 ≤ . . . ≤ ym−1 ≤ x ≤ ym+1 ≤ . . . ≤ yn

with respect to dy1 . . .dym−1dym+1 . . .dyn we obtain that

gn,m(s, x) = en−m(x)fn,m(s, x), (2.27)

where

eℓ(x) :=
B̄R(x)ℓ

ℓ!
, (2.28)

fn,m(s, x) :=

∫

0≤y1≤...≤ym−1≤x
un,m(s; y1, . . . , ym−1, x) dy1 . . .dym−1.

(2.29)

For s ∈ (0,∞), 0 < m ≤ n, x ∈ R+, ℓ ∈ Z+ let

g(ℓ)
n,m(s, x) := (−1)ℓ ∂ℓ

∂sℓ
gn,m(s, x). (2.30)

From (2.26) it follows that

g(ℓ)
n,m(s, x) =

∂

∂x
E[V ℓ

m(t)e−sVm(t)
I{N(t) = n, Ym(t) ≤ x}], (2.31)

which implies

0 ≤ g(ℓ)
n,m(s, x) ≤ ℓ!s−ℓgn,m(0, x) (2.32)

in view of vℓe−sv ≤ ℓ!s−ℓ. Moreover, from (2.31) it follows that g
(ℓ)
n,m(s, x) is

monotonically decreasing with respect to s ∈ (0,∞). Thus the limit

g(ℓ)
n,m(x) := lim

s↓0
g(ℓ)
n,m(s, x), 0<m≤n, x ∈ R+, ℓ ∈ Z+, (2.33)
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exists, but it may be infinite for some ℓ ∈ N.
Let V (n, τ), n ∈ Z+, τ ∈ R+, be the sojourn time of a tagged arriving

request with required service time τ (τ -request) finding n requests at its
arrival in the system, and let V (τ), τ ∈ R+, be the sojourn time of a tagged
arriving τ -request. For the M/GI/SDPS system the following representa-
tions for the LSTs and moments of V (n, τ) and V (τ) are known, cf. [BB2]
Theorem 2.1, Theorem 3.1 and Theorem 3.2:

Theorem 2.3 For the M/GI/SDPS system let the stability condition (1.1)
and (A1) be satisfied. Then for s ∈ R+ and τ ∈ R+ the LSTs of V (n, τ),
n ∈ Z+, and V (τ) are given by

E[e−sV (n,τ)] =
ϕ(n+1)

λ(τ)p(n)

n+1
∑

m=1

gn+1,m(s, τ), (2.34)

E[e−sV (τ)] =
1

λ(τ)

∞
∑

n=1

ϕ(n)
n

∑

m=1

gn,m(s, τ), (2.35)

respectively, where

λ(x) := λB̄(x), x ∈ R+. (2.36)

If additionally

∞
∑

n=0

( 1

ϕ(n+1)

)k
p(n) < ∞ (2.37)

for some k ∈ N, then the kth moments of V (n, τ), n ∈ Z+, and V (τ) are
finite for τ ∈ R+, and it holds

E[V k(n, τ)] =
ϕ(n+1)

λ(τ)p(n)

n+1
∑

m=1

g
(k)
n+1,m(τ), (2.38)

E[V k(τ)] =
1

λ(τ)

∞
∑

n=1

ϕ(n)
n

∑

m=1

g(k)
n,m(τ) = k

∫ τ

0

∞
∑

n=1

n
∑

m=1

g
(k−1)
n,m (x)

λ(x)
dx.

(2.39)

Theorem 2.3 provides the following insensitivity property of V (τ) in
M/GI/SDPS.
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Theorem 2.4 Let the stability condition (1.1) for the M/GI/SDPS be sat-
isfied. Then the conditional sojourn times V (n, τ), n ∈ Z+, and V (τ) depend
on the service time distribution B(x) for x > τ only via the mean service
time mS in distribution.

Proof Suppose first that (A1) is fulfilled. Then un,m(s; y1, . . . , ym) is the
minimal non negative solution of the linear system of PDEs (2.19) with
initial conditions (2.20), (2.21). Therefore un,m(s; y1, . . . , ym) depends on
B(x) for x > ym only via mS , and hence fn,m(s, τ) depends on B(x) for
x > τ only via mS because of (2.29). In view of (2.28), (1.4), (2.27), and
(2.36), thus the assertion follows from (2.34) and (2.35). The case of a
general distribution B(x) of the service time with finite mean mS is obtained
by taking the limit in distribution of a sequence of service time distributions
Bν(x), ν = 1, 2, . . ., where the service times have the given mean mS and
the Bν(x) fulfill (A1) and converge weakly to B(x).

3 Locally exponential service times

We assume now that the service time S has finite mean mS and that its dis-
tribution B(x) coincides with an exponential distribution in a neighborhood
of zero, i.e.

B(x) = 1 − e−µx, x ∈ [0, d), (3.1)

where µ ∈ R+, for some d ∈ (0,∞). Moreover, for technical reasons we
assume (A1) again, i.e., we assume that B(x) has a continuous density b(x)
and that B(x) < 1 for x ∈ R+.

Again we assume in the following that the system is stable, i.e. that
(1.1) is fulfilled, and in steady state. In view of (3.1), for 0 < m ≤ n,
0 < y1 < . . . < ym < d the system of PDEs (2.19) simplifies to

ϕ(n)
∂

∂ξ
un,m(s; y1+ξ, . . . , ym+ξ)

∣

∣

∣

ξ=0

= − (λ+s+ϕ(n)mµ)un,m(s; y1, . . . , ym)

+ ϕ(n+1)µ
m

∑

ℓ=1

∫ yℓ

yℓ−1

un+1,m+1(s; y1, . . . , yℓ−1, τ, yℓ, . . . , ym)dτ

+ ϕ(n+1)m−1
S e−µymun+1,m(s; y1, . . . , ym).
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Replacing yi by yi + η, i = 1, . . . , m, and integrating over [−y1, 0] with
respect to η provides the system of integral equations

un,m(s; y1, . . . , ym) − un,m(s; 0, y2−y1, . . . , ym−y1)

=
1

ϕ(n)

∫ 0

−y1

(

− (λ+s+ϕ(n)mµ)un,m(s; y1+ξ, . . . , ym+ξ)

+ ϕ(n+1)µ
m

∑

ℓ=1

∫ yℓ

yℓ−1−I{ℓ=1}ξ
un+1,m+1(s; y1+ξ, . . . , yℓ−1+ξ,

τ +ξ, yℓ+ξ, . . . , ym+ξ) dτ

+ ϕ(n+1)m−1
S e−µ(ym+ξ)un+1,m(s; y1+ξ, . . . , ym+ξ)

)

dξ.

In view of (2.29), integrating over 0 ≤ y1 ≤ . . . ≤ ym = x < d with respect
to dy1 . . .dym−1 and applying Fubini’s theorem yields after some algebra

fn,m(s, x) −

∫

0≤ξ2≤...≤ξm≤x

un,m(s; 0, ξ2, . . . , ξm)dξ2 . . .dξm

=
1

ϕ(n)

∫ x

0

(

− (λ+s+ϕ(n)mµ)fn,m(s, ξm)

+ ϕ(n+1)mµfn+1,m+1(s, ξm)

+ ϕ(n+1)m−1
S e−µξmfn+1,m(s, ξm)

)

dξm. (3.2)

Because of (2.20), (2.21) and (2.29), from (3.2) we obtain the linear system
of ODEs

ϕ(n)
∂

∂x
fn,m(s, x) = −(λ+s+ϕ(n)mµ)fn,m(s, x)

+ I{m>1}λfn−1,m−1(s, x) + ϕ(n+1)mµfn+1,m+1(s, x)

+ ϕ(n+1)m−1
S e−µxfn+1,m(s, x), 0<m≤n, 0<x<d, (3.3)

with the initial condition

fn,m(s, 0) = I{m=1}n! p(n)m−1
S , 0<m≤n. (3.4)

Note that from (2.29), (2.22), (1.4), and (3.1) it follows

fn,m(0, x) = n! p(n) (mSeµx)−m Fm−1(x)

(m−1)!
, 0<m≤n, 0≤x<d,

(3.5)
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where

F (x) :=

{

(eµx−1)/µ, µ 6= 0,
x, µ = 0,

x ∈ R+. (3.6)

Let

hn,m(s, x) :=
1

p(0)
(mSeµx)m−nfn,m(s, x), 0<m≤n, 0≤x<d. (3.7)

In view of (2.27), (2.28), (1.4), (3.1), (3.6), and (3.7), it holds

gn,m(s, x) = dn−m(x)hn,m(s, x), 0<m≤n, 0≤x<d, (3.8)

where

dℓ(x) :=
p(0)

ℓ!
(mSeµx−F (x))ℓ, ℓ ∈ Z+, x ∈ R+. (3.9)

Note that dℓ(x) > 0 for 0 ≤ x < d as

mS =

∫ ∞

0
B̄(x)dx ≥

∫ d

0
B̄(x)dx = e−µdF (d).

Because of (3.7), (3.3), (3.4), and (1.2), the hn,m fulfill the linear system of
ODEs with constant coefficients

ϕ(n)
∂

∂x
hn,m(s, x) = −(λ+s+ϕ(n)nµ)hn,m(s, x)

+ I{m>1}λhn−1,m−1(s, x) + ϕ(n+1)mµhn+1,m+1(s, x)

+ ϕ(n+1)hn+1,m(s, x), 0<m≤n, 0<x<d, (3.10)

with initial condition

hn,m(s, 0) = I{m=1}
n

∏

j=1

λ

ϕ(j)
, 0<m≤n. (3.11)

From (3.7), (3.5), and (1.2) it follows

hn,m(0, x) =
(

n
∏

j=1

λ

ϕ(j)

)

e−nµx Fm−1(x)

(m−1)!
, 0<m≤n, 0≤x<d.

(3.12)

Replacing in (3.10) x by ξ, integrating appropriately weighted over [0, x]
with respect to ξ and applying (3.11) provides that the system of ODEs
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(3.10) with initial condition (3.11) is equivalent to the following system of
integral equations:

hn,m(s, x) = h∗
n,m(s, x) +

1

ϕ(n)

∫ x

0

(

I{m>1}λhn−1,m−1(s, ξ)

+ ϕ(n+1)mµhn+1,m+1(s, ξ) + ϕ(n+1)hn+1,m(s, ξ)
)

e
−( λ+s

ϕ(n)
+nµ)(x−ξ)

dξ, 0<m≤n, 0≤x<d, (3.13)

where

h∗
n,m(s, x) = I{m=1}

(

n
∏

j=1

λ

ϕ(j)

)

e
−( λ+s

ϕ(n)
+nµ)x

, 0<m≤n, 0≤x<d.

(3.14)

Lemma 3.1 Let h∗
n,m(s, x) be arbitrary continuous functions.

Then for any fixed s ∈ (0,∞), the linear system of integral equations
(3.13) with growth condition

|hn,m(s, x)| ≤ c hn,m(0, x), 0<m≤n, 0≤x<d, (3.15)

for some c > 0, where hn,m(0, x) is given by (3.12), has at most one solution.

Proof The proof runs analogously to the proof of Lemma 2.1. Assume
that the system of integral equations (3.13) has two different solutions,
where both solutions fulfill the growth condition (3.15). Then the differ-
ence h̄n,m(s, x) of these solutions satisfies the homogenized version of (3.13),
i.e. (3.13) in case of h∗

n,m(s, x) = 0. For 0 < m ≤ n let κn,m ∈ R+ denote the
smallest number such that |h̄n,m(s, x)| ≤ κn,mhn,m(0, x), 0 ≤ x < d. Note
that κn,m ∈ (0, 2c] due to the growth condition. Let κn−1,0 := 0 for no-
tational convenience and let κ0 := sup0<m≤n κn,m. The triangle inequality
applied to (3.13), the definitions of κn,m and κ0, and (3.12), (3.6) provide
after some algebra for 0 < m ≤ n, 0 ≤ x < d that

|h̄n,m(s, x)| ≤
1

ϕ(n)

∫ x

0

(

κn−1,m−1λhn−1,m−1(0, ξ)

+ κ0ϕ(n+1)mµhn+1,m+1(0, ξ) + κ0ϕ(n+1)hn+1,m(0, ξ)
)

e
−( λ+s

ϕ(n)
+nµ)(x−ξ)

dξ

=
(

n
∏

j=1

λ

ϕ(j)

) e
−( λ+s

ϕ(n)
+nµ)x

(m−1)!

∫ x

0

(

κn−1,m−1(m−1)Fm−2(ξ)eµξ
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+ κ0
λ

ϕ(n)
Fm−1(ξ)

)

e
λ+s
ϕ(n)

ξ
dξ

≤ max
(

κn−1,m−1 ,
λ

λ+s
κ0

) (

n
∏

j=1

λ

ϕ(j)

) e
−( λ+s

ϕ(n)
+nµ)x

(m−1)!
(

Fm−1(ξ)e
λ+s
ϕ(n)

ξ

∣

∣

∣

∣

x

ξ=0

)

≤ max
(

κn−1,m−1 ,
λ

λ+s
κ0

)

hn,m(0, x).

Therefore, by definition it holds κn,m ≤ max(κn−1,m−1 , λ
λ+s κ0), 0 < m ≤ n,

which provides a contradiction as at the end of the proof of Lemma 2.1.

Lemma 3.2 Let h∗
n,m(s, x) be arbitrary continuous functions such that

0 ≤ h∗
n,m(s, x) ≤ h∗

n,m(0, x), 0<m≤n, 0≤x<d, s ∈ R+. (3.16)

Assume that there exists a non negative solution of the system of integral
equations (3.13) for s = 0.

Then the system of integral equations (3.13) has a minimal non negative
solution h̃n,m(s, x) for any s ∈ R+, and it holds

h̃n,m(s, x) ≤ h̃n,m(0, x), 0<m≤n, 0≤x<d, s ∈ R+. (3.17)

Proof For fixed s ∈ R+ let hn,m;0(s, x) := 0, 0 < m ≤ n, 0 ≤ x < d, and
recursively for i = 0, 1, . . . let

hn,m;i+1(s, x) := h∗
n,m(s, x) +

1

ϕ(n)

∫ x

0

(

I{m>1}λhn−1,m−1;i(s, ξ)

+ ϕ(n+1)mµhn+1,m+1;i(s, ξ) + ϕ(n+1)hn+1,m;i(s, ξ)
)

e
−( λ+s

ϕ(n)
+nµ)(x−ξ)

dξ, 0<m≤n, 0≤x<d. (3.18)

By induction on i ∈ Z+ after some algebra it follows that hn,m;i(s, x) is
monotonically increasing with respect to i, that

hn,m;i(s, x) ≤ hn,m(s, x), 0<m≤n, 0≤x<d, (3.19)

for any non negative solution hn,m(s, x) of (3.13), and that

hn,m;i(s, x) ≤ hn,m(0, x), 0<m≤n, 0≤x<d, (3.20)
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for any non negative solution hn,m(0, x) of (3.13) for s = 0. Thus the limit

h̃n,m(s, x) := lim
i→∞

hn,m;i(s; x), 0<m≤n, 0≤x<d,

exists pointwise and represents, due to (3.18) and Lebesgue’s theorem, a
non negative solution of (3.13). From (3.19) it follows that h̃n,m(s, x) is the
minimal non negative solution of (3.13), and (3.20) implies (3.17).

Now, from Theorem 2.3, and Lemma 3.1, Lemma 3.2 we obtain the
following

Theorem 3.1 Let the stability condition (1.1) for the M/GI/SDPS sys-
tem, where the service time distribution fulfills (3.1), be satisfied. Then for
s ∈ R+ and τ ∈ [0, d) the LSTs of V (n, τ), n ∈ Z+, and V (τ) are given by

E[e−sV (n,τ)] =
ϕ(n+1)

λ(τ)p(n)

n+1
∑

m=1

gn+1,m(s, τ), τ ∈ [0, d), (3.21)

E[e−sV (τ)] =
1

λ(τ)

∞
∑

n=1

ϕ(n)
n

∑

m=1

gn,m(s, τ), τ ∈ [0, d), (3.22)

respectively, where

λ(x) = λe−µx, x ∈ [0, d), (3.23)

gn,m(s, x) is given by (3.8), (3.9), and hn,m(s, x) is the minimal non negative
solution of the linear system of ODEs (3.10) with initial condition (3.11).

Proof Suppose that (3.1) and (A1) are fulfilled. Then Theorem 2.3 pro-
vides (3.21), (3.22), (3.23), where gn,m(s, x) is given by (3.8), (3.9), and
hn,m(s, x) is a solution of the linear system of ODEs (3.10) with initial con-
dition (3.11). Further, taking into account (3.8), we find that hn,m(s, x) is
non negative and monotonically decreasing with respect to s ∈ R+ since
gn,m(s, x) is non negative and monotonically decreasing with respect to
s ∈ R+ in view of (2.26). The case of a general distribution B(x) of the
service time with finite mean mS and (3.1) is obtained by taking for fixed
τ ∈ [0, d) the limit in distribution of a sequence of service time distributions
Bν(x), ν = 1, 2, . . ., where the service times have the given mean mS , Bν(x)
is given by (3.1) for x ∈ [0, d′) for some d′ ∈ (τ, d), the Bν(x) fulfill (A1)
and converge weakly to B(x).

As hn,m(0, x) given by (3.12) is a non negative solution of (3.10), (3.11)
for s = 0, in view of (3.14) from Lemma 3.2 it follows that there exists a
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minimal non negative solution h̃n,m(s, x) of (3.10), (3.11), and that it holds
0 ≤ h̃n,m(s, x) ≤ h̃n,m(0, x) ≤ hn,m(0, x). Since hn,m(s, x) is non negative
and monotonically decreasing with respect to s ∈ R+, moreover it holds
0 ≤ hn,m(s, x) ≤ hn,m(0, x). In view of Lemma 3.1 for c = 1, thus we have
hn,m(s, x) = h̃n,m(s, x) for s ∈ (0,∞).

As hn,m(s, x) is monotonically decreasing with respect to s ∈ R+, the
limit

hn,m(x) := lim
s↓0

hn,m(s, x) = lim
s↓0

h̃n,m(s, x), 0<m≤n, 0≤x<d,

exists pointwise and represents, due to Lebesgue’s theorem, a non negative
solution of (3.13) for s = 0, and it holds h̃n,m(0, x) ≤ hn,m(x) as h̃n,m(0, x)
is the minimal non negative solution of (3.13) for s = 0. Further, Lemma 3.2
provides that h̃n,m(s, x) ≤ h̃n,m(0, x) for s ∈ (0,∞), and by taking the limit
s ↓ 0 we find hn,m(x) ≤ h̃n,m(0, x). Hence we have hn,m(x) = h̃n,m(0, x).

Note that lims↓0 E[e−sV (n,τ)] = 1 since the distribution of V (n, τ) is non
defective because of the stability of the system. Taking the limit s ↓ 0 in
(3.21) therefore provides

n
∑

m=1

dn−m(x)hn,m(x) =
λ(x)p(n−1)

ϕ(n)
, 0<n, 0≤x<d,

cf. (3.8). On the other hand, from (3.9), (3.12), (3.23), (1.2) we find

n
∑

m=1

dn−m(x)hn,m(0, x) =
λ(x)p(n−1)

ϕ(n)
, 0<n, 0≤x<d.

In view of hn,m(x) = h̃n,m(0, x) ≤ hn,m(0, x) and dn−m(x) > 0, therefore we
conclude that

lim
s↓0

hn,m(s, x) = h̃n,m(0, x) = hn,m(0, x). (3.24)

Thus hn,m(0, x) given by (3.12) is the minimal non negative solution of
(3.10), (3.11) for s = 0.

Remark 3.1 Note that the data in (3.10)–(3.12) are independent of mS and
thus of B(ξ) for ξ ≥ d, and therefore hn,m(s, x) as the minimal non negative
solution of (3.10), (3.11) is independent of B(ξ) for ξ ≥ d, too. Moreover,
hn,m(s, x) can be continued for fixed s ∈ R+ to the minimal non negative
solution of (3.10), (3.11) for x ∈ R+ since the proof of Lemma 3.2 remains
valid for any positive d.

21



For s ∈ (0,∞), ℓ ∈ Z+ let

h(ℓ)
n,m(s, x) := (−1)ℓ ∂ℓ

∂sℓ
hn,m(s, x), 0<m≤n, 0≤x<d. (3.25)

Note that from (2.30), (3.8) it follows

g(ℓ)
n,m(s, x) = dn−m(x)h(ℓ)

n,m(s, x), 0<m≤n, 0≤x<d. (3.26)

Thus h
(ℓ)
n,m(s, x) is monotonically decreasing with respect to s ∈ (0,∞) in

view of (2.31), and (2.32) implies

0 ≤ h(ℓ)
n,m(s, x) ≤ ℓ!s−ℓhn,m(0, x), 0<m≤n, 0≤x<d. (3.27)

Taking the ℓth derivative with respect to s ∈ (0,∞) at both sides of (3.10)
provides the linear system of ODEs

ϕ(n)
∂

∂x
h(ℓ)

n,m(s, x) = −(λ+s+ϕ(n)nµ)h(ℓ)
n,m(s, x)

+ I{m>1}λh
(ℓ)
n−1,m−1(s, x) + ϕ(n+1)mµh

(ℓ)
n+1,m+1(s, x)

+ ϕ(n+1)h
(ℓ)
n+1,m(s, x) + ℓh(ℓ−1)

n,m (s, x), 0<m≤n, 0<x<d,

(3.28)

where h
(−1)
n,m (s, x) := 0, and from (3.11) we obtain the initial condition

h(ℓ)
n,m(s, 0) = I{ℓ=0, m=1}

n
∏

j=1

λ

ϕ(j)
, 0<m≤n. (3.29)

Note that the system of ODEs (3.28) with initial condition (3.29) is equiv-
alent to the following system of integral equations:

h(ℓ)
n,m(s, x) = h∗

n,m(s, x) +
1

ϕ(n)

∫ x

0

(

I{m>1}λh
(ℓ)
n−1,m−1(s, ξ)

+ ϕ(n+1)mµh
(ℓ)
n+1,m+1(s, ξ) + ϕ(n+1)h

(ℓ)
n+1,m(s, ξ)

)

e
−( λ+s

ϕ(n)
+nµ)(x−ξ)

dξ, 0<m≤n, 0≤x<d, (3.30)

where

h∗
n,m(s, x) = I{ℓ=0, m=1}

(

n
∏

j=1

λ

ϕ(j)

)

e
−( λ+s

ϕ(n)
+nµ)x

+
ℓ

ϕ(n)

∫ x

0
h(ℓ−1)

n,m (s, ξ)e
−( λ+s

ϕ(n)
+nµ)(x−ξ)

dξ, 0<m≤n, 0≤x<d.

(3.31)
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Assume now that (2.37) is fulfilled for some fixed k ∈ N. Due to Hölder’s
inequality and Theorem 2.3, then the limits

g(ℓ)
n,m(x) = lim

s↓0
g(ℓ)
n,m(s, x), 0<m≤n, 0≤x<d,

cf. (2.33), exist for ℓ = 0, 1, . . . , k. In view of (3.26), thus also the limits

h(ℓ)
n,m(x) := lim

s↓0
h(ℓ)

n,m(s, x), 0<m≤n, 0≤x<d, (3.32)

exist for ℓ = 0, 1, . . . , k, and it holds

g(ℓ)
n,m(x) = dn−m(x)h(ℓ)

n,m(x), 0<m≤n, 0≤x<d, (3.33)

for ℓ = 0, 1, . . . , k. Taking the limit s ↓ 0 in (3.28) and (3.29) provides the
linear systems of ODEs

ϕ(n)
d

dx
h(ℓ)

n,m(x) = −(λ+ϕ(n)nµ)h(ℓ)
n,m(x) + I{m>1}λh

(ℓ)
n−1,m−1(x)

+ ϕ(n+1)mµh
(ℓ)
n+1,m+1(x) + ϕ(n+1)h

(ℓ)
n+1,m(x) + ℓh(ℓ−1)

n,m (x),

0<m≤n, 0<x<d, ℓ ∈ {1, . . . , k}, (3.34)

with the initial conditions

h(ℓ)
n,m(0) = 0, 0<m≤n, ℓ ∈ {1, . . . , k}. (3.35)

In view of (3.32), (3.25), from (3.24) and (3.12) we find

h(0)
n,m(x) =

(

n
∏

j=1

λ

ϕ(j)

)

e−nµx Fm−1(x)

(m−1)!
, 0<m≤n, 0≤x<d. (3.36)

Now, from Theorem 2.3, and Lemma 3.1, Lemma 3.2 we obtain the following

Theorem 3.2 Let the stability condition (1.1) for the M/GI/SDPS sys-
tem, where the service time distribution fulfills (3.1), be satisfied. Further,
let (2.37) be fulfilled for some k ∈ N. Then the kth moments of V (n, τ),
n ∈ Z+, and V (τ) are finite for τ ∈ R+, and for τ ∈ [0, d) it holds

E[V k(n, τ)] =
ϕ(n+1)

λ(τ)p(n)

n+1
∑

m=1

g
(k)
n+1,m(τ), τ ∈ [0, d), (3.37)

E[V k(τ)] = k

∫ τ

0

∞
∑

n=1

n
∑

m=1

g
(k−1)
n,m (x)

λ(x)
dx, τ ∈ [0, d), (3.38)
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where λ(x) is given by (3.23) and g
(ℓ)
n,m(x) by (3.33), (3.9) for ℓ = 0, 1, . . . , k,

where h
(0)
n,m(x) is given by (3.36) and h

(ℓ)
n,m(x) is the minimal non negative

solution of the linear system of ODEs (3.34), (3.35) for ℓ = 1, . . . , k.

Proof Suppose that (3.1) and (A1) are fulfilled. Then Theorem 2.3 pro-

vides (3.37), (3.38), where λ(x) is given by (3.23), g
(ℓ)
n,m(x) is given by (3.33),

(3.9) for ℓ = 0, 1, . . . , k, where h
(0)
n,m(x) is given by (3.36) and h

(ℓ)
n,m(x) is de-

fined by (3.32) for ℓ = 1, . . . , k. The case of a general distribution B(x) of
the service time with finite mean mS and (3.1) is obtained by taking for fixed
τ ∈ [0, d) the limit in distribution of a sequence of service time distributions
Bν(x), ν = 1, 2, . . ., where the service times have the given mean mS , Bν(x)
is given by (3.1) for x ∈ [0, d′) for some d′ ∈ (τ, d), the Bν(x) fulfill (A1)
and converge weakly to B(x).

Let ℓ ∈ {1, . . . , k} be fixed. As h
(ℓ)
n,m(x) is a non negative solution of

(3.28), (3.29) for s = 0, in view of (3.30), (3.31) from Lemma 3.2 it follows

that there exists a minimal non negative solution h̃
(ℓ)
n,m(s, x) of (3.28), (3.29)

for any s ∈ R+, and that it holds 0 ≤ h̃
(ℓ)
n,m(s, x) ≤ h̃

(ℓ)
n,m(0, x). From (3.27)

we obtain 0 ≤ h̃
(ℓ)
n,m(s, x) ≤ h

(ℓ)
n,m(s, x) ≤ ℓ!s−ℓhn,m(0, x) for s ∈ (0,∞),

which implies h
(ℓ)
n,m(s, x) = h̃

(ℓ)
n,m(s, x) for s ∈ (0,∞) by applying Lemma 3.1

for c = ℓ!s−ℓ. Since the limit

h(ℓ)
n,m(x) = lim

s↓0
h(ℓ)

n,m(s, x) = lim
s↓0

h̃(ℓ)
n,m(s, x), 0<m≤n, 0≤x<d,

represents, due to Lebesgue’s theorem, a non negative solution of (3.30) for

s = 0, we obtain h̃
(ℓ)
n,m(0, x) ≤ h

(ℓ)
n,m(x) as h̃

(ℓ)
n,m(0, x) is the minimal non

negative solution of (3.30) for s = 0. Further, as h̃
(ℓ)
n,m(s, x) ≤ h̃

(ℓ)
n,m(0, x) for

s ∈ (0,∞), by taking the limit s ↓ 0 we find h
(ℓ)
n,m(x) ≤ h̃

(ℓ)
n,m(0, x). Hence

it holds h
(ℓ)
n,m(x) = h̃

(ℓ)
n,m(0, x). Thus h

(ℓ)
n,m(x) is the minimal non negative

solution of (3.28), (3.29) for s = 0, i.e. of (3.34), (3.35).

Note that the LSTs and the moments of V (n, τ), n ∈ Z+, and V (τ) at
τ = d are given by continuous continuation from 0 ≤ τ < d.

3.1 Cut exponential service times

Let the service times be distributed according to the minimum of an expo-
nential time with parameter µ ∈ R+ and a deterministic time d ∈ (0,∞),
i.e.

B(x) = 1 − I{0≤x<d}e−µx, x ∈ R+. (3.39)
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For the mean mS we find

mS = e−µdF (d), (3.40)

where F (d) is given by (3.6). Note that the model corresponds to an
M/D/SDPS system for µ = 0.

Let the stability condition (1.1) for the M/GI/SDPS system with ser-
vice time distribution (3.39) be satisfied. Then the LSTs of V (n, τ), n ∈ Z+,
and V (τ), τ ∈ [0, d), are given by Theorem 3.1, and the moments of V (n, τ),
n ∈ Z+, and V (τ), τ ∈ [0, d), are given by Theorem 3.2.

In view of

E[e−sV ] =

∫

R+

E[e−sV (τ)]dB(τ), E[V k] =

∫

R+

E[V k(τ)]dB(τ),

and (3.23), (3.39), (3.40), from Theorem 3.1 and Theorem 3.2 we obtain the
following representations for the LST and the moments of the unconditional
sojourn time V , respectively, where (1.7) and Fubini’s theorem are used for
the moments of V .

Theorem 3.3 Let the stability condition (1.1) for the M/GI/SDPS system
with service time distribution (3.39) be satisfied. Then for s ∈ (0,∞), the
LST of V is given by

E[e−sV ] =
1

λ

∞
∑

n=1

ϕ(n)
n

∑

m=1

(

µ

∫ d

0
gn,m(s, x)dx + gn,m(s, d−)

)

, (3.41)

where gn,m(s, x) is given by (3.8), (3.9), and hn,m(s, x) is the minimal non
negative solution of the linear system of ODEs (3.10) with initial condition
(3.11). If additionally (2.37) is fulfilled for some k ∈ N, then the kth moment
of V is finite, and it holds

E[V k] =
k

λ

∫ d

0

∞
∑

n=1

n
∑

m=1

g(k−1)
n,m (x)dx, (3.42)

where g
(k−1)
n,m (x) is given by (3.33), (3.9), where h

(0)
n,m(x) is given by (3.36)

and h
(ℓ)
n,m(x) is the minimal non negative solution of the linear system of

ODEs (3.34), (3.35) for ℓ = 1, . . . , k − 1.
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3.2 Numerical results

We apply the results of this section to the variance of the sojourn time V
in M/D/r − PS, which means µ = 0 in (3.39) and ϕ(n) = min(r/n, 1),
n ∈ N. Let the stability condition (1.1) for the M/D/r − PS system be
satisfied, i.e., let ̺ = λd < r. Then (2.37) is fulfilled for all k ∈ N. Thus
from Theorem 3.3 it follows that E[V 2] in M/D/r − PS is given by (3.42)

for k = 2, where g
(1)
n,m(x) is given by (3.33), (3.9) for ℓ = 1, where h

(1)
n,m(x)

is the minimal non negative solution of the linear system of ODEs (3.34)

with the initial condition (3.35) for ℓ = 1, and h
(0)
n,m(x) is given by (3.36).

In view of µ = 0, from (3.33), (3.9), (3.40), (3.6), (3.34), (3.36), and (3.35)
we obtain that

g(1)
n,m(x) = p(0)

(d−x)n−m

(n−m)!
h(1)

n,m(x), 0<m≤n, 0≤x<d, (3.43)

where h
(1)
n,m(x) is the minimal non negative solution of the linear system of

ODEs

ϕ(n)
d

dx
h(1)

n,m(x) = −λh(1)
n,m(x) + I{m>1}λh

(1)
n−1,m−1(x)

+ ϕ(n+1)h
(1)
n+1,m(x) +

(

n
∏

j=1

λ

ϕ(j)

) xm−1

(m−1)!
,

0<m≤n, 0<x<d, (3.44)

with the initial condition

h(1)
n,m(0) = 0, 0< m≤ n. (3.45)

The minimal non negative solution h
(1)
n,m(x), 0 < m ≤ n, of (3.44), (3.45)

can be approximated by solving a suitable finite version n ≤ n′ of the linear

system of ODEs (3.44), (3.45), where h
(1)
n,m(x) is replaced by 0 on the r.h.s. of

(3.44) if n > n′. The second moment E[V 2] can be computed subsequently
via (3.42), (3.43) by numerical integration. The first moment E[V ] can be
computed via Little’s law (1.5).

Note that the sequence of the solutions of the finite versions of (3.44),

(3.45) indexed by n′ converges pointwise monotonically increasing to h
(1)
n,m(x)

for n′ → ∞: Applying the construction of the minimal non negative solution
given in the proof of Lemma 3.2 to the corresponding finite versions of (3.30),
(3.31) for s = 0 and ℓ = 1, by induction on i ∈ Z+ and taking then the limit
i → ∞ we obtain the monotonicity of the solutions of the finite versions of
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(3.30), (3.31) with respect to n′ and that they are bounded by h
(1)
n,m(x). Thus

the sequence of these solutions converges pointwise monotonically increasing

to a non negative solution of (3.30), (3.31), which is bounded by h
(1)
n,m(x).

Since h
(1)
n,m(x) is the minimal non negative solution of (3.30), (3.31), the

assertion is proved. Therefore, due to Lebesgue’s theorem, E[V 2] can be
computed with arbitrary accuracy by choosing n′ sufficiently large.

In Table 3.1 there are given EV and var(V ) for r = 2, 4, 8, 16. Note
that in case of r = 2 the simple expression (4.54) for var(V ) = var(V (d))
has been used. Without loss of generality we have chosen d := 1 (unit of
time).

Table 3.1: The mean and variance of the sojourn time V in M/D/r − PS
for r = 2, 4, 8, 16 in case of d = 1.

r = 2 r = 4 r = 8 r = 16
̺/r

EV var(V ) EV var(V ) EV var(V ) EV var(V )

0.30 1.0989 0.0559 1.0132 0.0034 1.0006 0.0001 1.0000 0.0000
0.35 1.1396 0.0885 1.0232 0.0070 1.0017 0.0002 1.0000 0.0000
0.40 1.1905 0.1354 1.0378 0.0133 1.0039 0.0006 1.0001 0.0000
0.45 1.2539 0.2031 1.0584 0.0239 1.0079 0.0014 1.0004 0.0000
0.50 1.3333 0.3011 1.0870 0.0411 1.0148 0.0033 1.0011 0.0001
0.55 1.4337 0.4454 1.1260 0.0689 1.0260 0.0069 1.0029 0.0003
0.60 1.5625 0.6628 1.1794 0.1142 1.0436 0.0140 1.0065 0.0009
0.65 1.7316 1.0018 1.2532 0.1889 1.0708 0.0274 1.0137 0.0025
0.70 1.9608 1.5563 1.3572 0.3166 1.1128 0.0529 1.0270 0.0063
0.75 2.2857 2.5273 1.5094 0.5476 1.1785 0.1030 1.0511 0.0151
0.80 2.7778 4.4060 1.7455 1.0045 1.2860 0.2083 1.0953 0.0366
0.85 3.6036 8.6560 2.1489 2.0534 1.4771 0.4604 1.1805 0.0933
0.90 5.2632 21.3348 2.9694 5.2085 1.8769 1.2376 1.3696 0.2797
0.95 10.2564 92.7299 5.4571 23.0418 3.1104 5.6830 1.9752 1.3814

4 M/GI/r − PS with locally exponential service

times

We consider now an M/GI/r − PS system, i.e.

ϕ(n) = min(r/n, 1), n ∈ N, (4.1)
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where the service time S has finite mean mS and its distribution B(x)
coincides with an exponential distribution in a neighborhood of zero, i.e.

B(x) = 1 − e−µx, x ∈ [0, d), (4.2)

where µ ∈ (0,∞), for some d ∈ (0,∞). Moreover, we assume that the
stability condition (1.1) is satisfied, i.e. that ̺ < r, and that the system
is in steady state. From Theorem 3.1 it follows that the LST of V (τ) for
s ∈ (0,∞) is given by

E[e−sV (τ)] =
eµτ

λ

∞
∑

n=1

ϕ(n)
n

∑

m=1

p(0)

(n−m)!
(mSeµτ−F (τ))n−mhn,m(s, τ),

τ ∈ [0, d), (4.3)

where hn,m(s, x) is the minimal non negative solution of the linear system
of ODEs (3.10) with initial condition (3.11). Applying the substitution

hn,m(s, x) = λn+1−m
(

n
∏

j=1

1

ϕ(j)

)

e−µxϑn,m(s/λ, λx),

0<m≤n, 0≤x<d, (4.4)

and the notation κ := µ/λ, it follows that ϑn,m(σ, ξ) is the minimal non
negative solution of

∂

∂ξ
ϑn,m(σ, ξ) = −

( 1+σ

ϕ(n)
+ (n−1)κ

)

ϑn,m(σ, ξ)

+ I{m>1}ϑn−1,m−1(σ, ξ) +
mκ

ϕ(n)
ϑn+1,m+1(σ, ξ)

+
1

ϕ(n)
ϑn+1,m(σ, ξ), 0<m≤n, ξ ∈ (0,∞), (4.5)

with initial condition

ϑn,m(σ, 0) = I{m=1}, 0<m≤n, (4.6)

restricted to ξ ∈ [0, λd), cf. Remark 3.1. The linear system of ODEs (4.5),
(4.6) is equivalent to the system of integral equations

ϑn,m(σ, ξ) = I{m=1}e
−( 1+σ

ϕ(n)
+(n−1)κ)ξ

+

∫ ξ

0

(

I{m>1}ϑn−1,m−1(σ, η) +
mκ

ϕ(n)
ϑn+1,m+1(σ, η)

+
1

ϕ(n)
ϑn+1,m(σ, η)

)

e
−( 1+σ

ϕ(n)
+(n−1)κ)(ξ−η)

dη,

0<m≤n, ξ ∈ R+. (4.7)
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As (e−(n−1)κξ/(m − 1)!)((eκξ − 1)/κ)m−1, 0 < m ≤ n, ξ ∈ R+, is a non
negative solution of (4.5), (4.6) for σ = 0, the minimal non negative solution
ϑn,m(σ, ξ), 0 < m ≤ n, ξ ∈ R+, of (4.7) for σ > 0 can be constructed by the
method of successive approximation starting from ϑn,m;0(σ, ξ) ≡ 0, defining
ϑn,m;i+1(σ, ξ) recursively with respect to i by the r.h.s. of (4.7), where the
ϑn′,m′(σ, η) are replaced by ϑn′,m′;i(σ, η), and taking the limit i → ∞. This
construction provides the estimate

0 ≤ ϑn,m(σ, ξ) ≤
e−(n−1)κξ

(m−1)!

(eκξ−1

κ

)m−1
, 0<m≤n, ξ ∈ R+, (4.8)

and it follows that ϑn,m(σ, ξ) for 0 < m ≤ n − (r − 1) does not depend on
ϕ(ℓ) for ℓ < r. By continuous continuation from (2.34), (2.36), (4.2), (2.27),
(2.28), (3.7), and (4.4) we obtain that

E[e−λσV (0,ξ/λ)] = ϑ1,1(σ, ξ), ξ ∈ [0, λd], (4.9)

where V (0, τ) denotes the sojourn time of a τ -request finding at its arrival
the M/GI/r−PS system empty. Further, by continuous continuation from
(4.3), (4.4), and (3.6) we find that

E[e−λσV (ξ/λ)] = p(0)
∞

∑

m=1

∞
∑

n=m

(

n−1
∏

j=1

1

ϕ(j)

)((κ̺−1)eκξ+1

κ

)n−m

ϑn,m(σ, ξ)

(n−m)!
, ξ ∈ [0, λd]. (4.10)

Note that ̺ = 1/κ for the M/M/r − PS system.
As ϑn,m(σ, ξ) for 0 < m ≤ n − (r − 1) does not depend on ϕ(ℓ) for

ℓ < r, besides the M/GI/r − PS system we consider the corresponding
M/GI/SDPS system where the service capacity ϕ(n) = min(r/n, 1), n ∈ N,
is replaced by

ϕ̃(n) = r/n, n ∈ N. (4.11)

Note that this M/GI/SDPS system is equivalent to an M/GI/1 − PS
system by replacing the service time S by S/r. We denote by p̃(n) the
stationary occupancy distribution of the M/GI/SDPS system with service
capacity (4.11), by Ṽ (τ) the sojourn time of a τ -request in this system and
by ϑ̃n,m(σ, ξ) the minimal non negative solution of the corresponding system
of ODEs

∂

∂ξ
ϑ̃n,m(σ, ξ) = −

( 1+σ

ϕ̃(n)
+ (n−1)κ

)

ϑ̃n,m(σ, ξ)
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+ I{m>1}ϑ̃n−1,m−1(σ, ξ) +
mκ

ϕ̃(n)
ϑ̃n+1,m+1(σ, ξ)

+
1

ϕ̃(n)
ϑ̃n+1,m(σ, ξ), 0<m≤n, ξ ∈ (0,∞), (4.12)

with initial condition

ϑ̃n,m(σ, 0) = I{m=1}, 0<m≤n, (4.13)

which is equivalent to the system of integral equations

ϑ̃n,m(σ, ξ) = I{m=1}e
−( 1+σ

ϕ̃(n)
+(n−1)κ)ξ

+

∫ ξ

0

(

I{m>1}ϑ̃n−1,m−1(σ, η) +
mκ

ϕ̃(n)
ϑ̃n+1,m+1(σ, η)

+
1

ϕ̃(n)
ϑ̃n+1,m(σ, η)

)

e
−( 1+σ

ϕ̃(n)
+(n−1)κ)(ξ−η)

dη,

0<m≤n, ξ ∈ R+, (4.14)

cf. (4.5)–(4.7). Analogously to (4.8) we obtain the estimate

0 ≤ ϑ̃n,m(σ, ξ) ≤
e−(n−1)κξ

(m−1)!

(eκξ−1

κ

)m−1
, 0<m≤n, ξ ∈ R+. (4.15)

Further, analogously to (4.9) it follows that

E[e−λσṼ (0,ξ/λ)] = ϑ̃1,1(σ, ξ), ξ ∈ [0, λd], (4.16)

where Ṽ (0, τ) denotes the sojourn time of a τ -request finding at its arrival
the M/GI/SDPS system with service capacity (4.11) empty. Using the
well known expression for the LST of the sojourn time of a τ -request finding
at its arrival the corresponding M/GI/1 − PS system with scaled service
time empty, cf. [YY1] (2.24) and (2.26), where, because of (4.2), ψ(s, u)
for u ∈ [0, d) can be determined directly from [YY1] (2.22) and the initial
condition ψ(s, 0) = 1, in view of (4.16), after some algebra we obtain that

ϑ̃1,1(σ, ξ) = E[e−λσṼ (0,ξ/λ)]

=
r2−r1

(r2−1)e(r2−rκ)ξ/r+(1−r1)e(r1−rκ)ξ/r
, ξ ∈ [0, λd], (4.17)

where

r1,2 := (1+σ+rκ ∓
√

(1+σ+rκ)2 − 4rκ )/2 (4.18)
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are the zeroes of z2 − (1 + σ + rκ)z + rκ. Note that (4.18) implies

0 < r1 < min(rκ, 1), r2 > max(rκ, 1) (4.19)

for σ > 0. Moreover, analogously to (4.10) we find that

E[e−λσṼ (ξ/λ)] = p̃(0)

∞
∑

m=1

∞
∑

n=m

(

n−1
∏

j=1

1

ϕ̃(j)

)((κ̺−1)eκξ+1

κ

)n−m

ϑ̃n,m(σ, ξ)

(n−m)!
, ξ ∈ [0, λd]. (4.20)

On the other hand, by using the well known expression for the LST of the
sojourn time of a τ -request in the corresponding M/GI/1−PS system with
scaled service time, cf. [YY1] (2.29), in view of (4.2), after some algebra we
obtain that

E[e−λσṼ (ξ/λ)] =
1 − ̺

r
(1−r2)2

r2(r2−r1)
e(r2−rκ)ξ/r − (1−r1)2

r1(r2−r1) e(r1−rκ)ξ/r + 1−κ̺
rκ

,

ξ ∈ [0, λd]. (4.21)

Note that (4.21) for ̺ = 1/κ also follows from the expression for the LST
of the sojourn time of a τ -request in the M/M/1 − PS system, cf. [YY1]
(2.43).

As ϑn,m(σ, ξ) for 0 < m ≤ n− (r − 1) does not depend on ϕ(ℓ) for ℓ < r
and since ϕ(ℓ) = ϕ̃(ℓ) for ℓ ≥ r, it holds

ϑn,m(σ, ξ) = ϑ̃n,m(σ, ξ), 0<m≤n−(r−1), ξ ∈ R+. (4.22)

Because of (4.22), (4.1), and (4.11), from (4.10) and (4.20) we obtain that

E[e−λσV (ξ/λ)]

= p(0)
∞

∑

m=1

m+r−2
∑

n=m

(

n−1
∏

j=1

1

ϕ(j)

)((κ̺−1)eκξ+1

κ

)n−m ϑ̄n,m(σ, ξ)

(n−m)!

− p(0)
r−1
∑

m=1

r−1
∑

n=m

((

r−1
∏

j=n

r

j

)

− 1
)((κ̺−1)eκξ+1

κ

)n−m ϑ̃n,m(σ, ξ)

(n−m)!

+
rrp(0)

r!p̃(0)
E[e−λσṼ (ξ/λ)], ξ ∈ [0, λd], (4.23)
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where

ϑ̄n,m(σ, ξ) := ϑn,m(σ, ξ) − ϑ̃n,m(σ, ξ), 0<m≤n, ξ ∈ R+. (4.24)

From (4.6) and (4.13) it follows that

ϑ̄n,m(σ, 0) = 0, 0<m≤n, (4.25)

and (4.22) provides that

ϑ̄n,m(σ, ξ) = 0, 0<m≤n−(r−1), ξ ∈ R+. (4.26)

Moreover, from (4.8) and (4.15) we find the estimate

|ϑ̄n,m(σ, ξ)| ≤
e−(n−1)κξ

(m−1)!

(eκξ−1

κ

)m−1
, 0<m≤n, ξ ∈ R+. (4.27)

4.1 M/GI/2 − PS with locally exponential service times

Let us consider the M/GI/2 − PS system, i.e. the case of r = 2, in more
detail. We assume that the stability condition (1.1) for the M/GI/2 − PS
system is satisfied, i.e. that ̺ < 2, and that the system is in steady state.
In view of (1.2), (4.1), (4.11), in case of r = 2 the representation (4.23) for
the LST of the sojourn time of a τ -request simplifies to

E[e−λσV (ξ/λ)] =
1−̺/2

1+̺/2
(2G(ξ, 1)−G(ξ, 0)−ϑ̃1,1(σ, ξ))

+
2

1+̺/2
E[e−λσṼ (ξ/λ)], ξ ∈ [0, λd], (4.28)

where ϑ̃1,1(σ, ξ) and E[e−λσṼ (ξ/λ)] are given by (4.17) and (4.21) for r = 2,
respectively, and where for fixed positive σ

G(ξ, z) :=
∞

∑

m=1

(m−1)!

2m−1
ϑ̄m,m(σ, ξ)zm−1. (4.29)

The series on the r.h.s. of (4.29) converge for ξ ∈ [0, λd], |z| < 2/̺ as well
as for ξ ∈ R+, |z| < 2κ due to (4.27), (4.2), and it holds

|G(ξ, z)| <
2κ

2κ − |z|
, ξ ∈ R+, |z| < 2κ. (4.30)

Further, (4.25) yields that

G(0, z) = 0. (4.31)
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Because of (4.30), the Laplace transform

G∗(w, z) :=

∫

R+

e−wξG(ξ, z)dξ (4.32)

of G(ξ, z) with respect to ξ exists for ℜw > 0, |z| < 2κ. From (4.1), (4.5),
(4.11), (4.12), (4.24), and (4.26) we find for ξ ∈ (0,∞) that

∂

∂ξ
ϑ̄1,1(σ, ξ) = −(1+σ)ϑ̄1,1(σ, ξ) + κϑ̄2,2(σ, ξ) +

∂

∂ξ
ϑ̃1,1(σ, ξ), (4.33)

∂

∂ξ
ϑ̄m,m(σ, ξ) = −

(m(1+σ)

2
+(m−1)κ

)

ϑ̄m,m(σ, ξ) + ϑ̄m−1,m−1(σ, ξ)

+
m2κ

2
ϑ̄m+1,m+1(σ, ξ), m ≥ 2. (4.34)

In view of (4.15) and (4.27), the Laplace transform ϑ̃∗
1,1(σ, w) of ϑ̃1,1(σ, ξ) and

the Laplace transforms ϑ̄∗
m,m(σ, w) of ϑ̄m,m(σ, ξ), m ≥ 1, exist for ℜw > 0.

Because of (4.13) and (4.25), from (4.33) and (4.34) it follows for ℜw > 0
that

(1+σ+w)ϑ̄∗
1,1(σ, w) = κϑ̄∗

2,2(σ, w) + wϑ̃∗
1,1(σ, w) − 1, (4.35)

(m(1+σ)

2
+(m−1)κ+w

)

ϑ̄∗
m,m(σ, w) = ϑ̄∗

m−1,m−1(σ, w)

+
m2κ

2
ϑ̄∗

m+1,m+1(σ, w), m ≥ 2, (4.36)

respectively. In view of (4.29), (4.32), and (4.35), multiplying both sides of
(4.36) by (m− 1)!(z/2)m−1 and summing up for m ≥ 2 provides after some
algebra that

(z2−(1+σ+2κ)z+2κ)
∂

∂z
G∗(w, z) + (z−(1+σ+2w))G∗(w, z)

= 1 − wG∗(w, 0) − wϑ̃∗
1,1(σ, w), ℜw > 0, |z| < 2κ. (4.37)

As the zeroes r1,2 of z2 − (1 + σ + 2κ)z + 2κ fulfill (4.19), G∗(w, z) is a
solution of the ODE (4.37) for fixed w which is continuous at z = r1. For
real z ∈ (r1, 2κ) thus from (4.37) it follows that

G∗(w, z) = (wG∗(w, 0)+wϑ̃∗
1,1(σ, w)−1)

∫ z

r1

((x−r1)(r2−z)

(z−r1)(r2−x)

)

r2−2κ+2w
r2−r1 dx

(x−r1)(r2−z)
,

ℜw > 0, z ∈ (r1, 2κ). (4.38)
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The substitution ((x−r1)(r2−z))/((z−r1)(r2−x)) = e−
r2−r1

2
ξ yields that

G∗(w, z) =
r2−r1

2
(wG∗(w, 0)+wϑ̃∗

1,1(σ, w)−1)

∫ ∞

0

e−wξdξ

(r2−z)e(r2−2κ)ξ/2+(z−r1)e(r1−2κ)ξ/2
,

ℜw > 0, z ∈ (r1, 2κ). (4.39)

By means of analytic continuation to z = 0 and applying the geometric
series with common ratio (r1/r2)e

(r1−r2)ξ/2 to the integrand, for ℜw > 0
from (4.39) we obtain the representation

G∗(w, 0) =

∑∞
k=0

(r1/r2)k

(r2−2κ+2w)/(r2−r1)+k

r2 − w
∑∞

k=0
(r1/r2)k

(r2−2κ+2w)/(r2−r1)+k

(wϑ̃∗
1,1(σ, w)−1) (4.40)

of the Laplace transform of G(ξ, 0) by a hypergeometric function. On the
other hand, in view of (4.13), (4.31), and of the properties of the Laplace
transform, from (4.39) we find that

G(ξ, z) =
r2−r1

2

∫ ξ

0

( ∂

∂η
(G(η, 0)+ϑ̃1,1(σ, η))

)

dη

(r2−z)e(r2−2κ)(ξ−η)/2+(z−r1)e(r1−2κ)(ξ−η)/2
,

ξ ∈ R+, z ∈ (r1, 2κ), (4.41)

where (4.41) even holds for ξ ∈ R+, |z| < r2 due to the uniqueness theorem
for analytic functions and Taylor’s theorem, and where r2 > 1 because of
(4.19). In view of (4.13) and (4.31), integration by parts provides that

G(ξ, z) =
1

2
(G(ξ, 0)+ϑ̃1,1(σ, ξ))

−
1

2

r2−r1

(r2−z)e(r2−2κ)ξ/2+(z−r1)e(r1−2κ)ξ/2

−
r2−r1

4

∫ ξ

0
(G(η, 0)+ϑ̃1,1(σ, η))

(r2−z)(r2−2κ)e(r2−2κ)(ξ−η)/2+(z−r1)(r1−2κ)e(r1−2κ)(ξ−η)/2

((r2−z)e(r2−2κ)(ξ−η)/2+(z−r1)e(r1−2κ)(ξ−η)/2)2
dη,

ξ ∈ R+, |z| < r2. (4.42)
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In particular, choosing z = 0 in (4.42) yields that

G(ξ, 0) = ϑ̃1,1(σ, ξ) −
r2−r1

r2e(r2−2κ)ξ/2−r1e(r1−2κ)ξ/2

−
r2−r1

2

∫ ξ

0
(G(η, 0)+ϑ̃1,1(σ, η))

r2(r2−2κ)e(r2−2κ)(ξ−η)/2−r1(r1−2κ)e(r1−2κ)(ξ−η)/2

(r2e(r2−2κ)(ξ−η)/2−r1e(r1−2κ)(ξ−η)/2)2
dη,

ξ ∈ R+. (4.43)

Due to (4.43), (4.29), (4.24), (4.9), and (4.17), moreover it holds

E[e−λσV (0,ξ/λ)] =
2(r2−r1)

(r2−1)e(r2−2κ)ξ/2+(1−r1)e(r1−2κ)ξ/2

−
r2−r1

r2e(r2−2κ)ξ/2−r1e(r1−2κ)ξ/2
−

r2−r1

2

∫ ξ

0
E[e−λσV (0,η/λ)]

r2(r2−2κ)e(r2−2κ)(ξ−η)/2−r1(r1−2κ)e(r1−2κ)(ξ−η)/2

(r2e(r2−2κ)(ξ−η)/2−r1e(r1−2κ)(ξ−η)/2)2
dη,

ξ ∈ [0, λd], (4.44)

cf. [Bra] Theorem 4 for the case of an M/M/2 − PS system.
The Volterra integral equation (convolution equation) (4.43) can be used

for computing G(ξ, 0), ξ ∈ [0, λd], e.g. by means of the Neumann series.
Alternatively, (4.40) can be used for computing G(ξ, 0), ξ ∈ [0, λd], by in-
verting both factors on the r.h.s. and applying the convolution formula.
Subsequently, G(ξ, 1), ξ ∈ [0, λd], can be computed via (4.41) or (4.42) for
z = 1.

4.2 M/GI/2 − PS with bounded from below service times

In this section we consider the M/GI/2 − PS system with bounded from
below service times, i.e., we consider the case of r = 2 where

B(x) = 0, x ∈ [0, d), (4.45)

for some d ∈ (0,∞). Moreover, we assume that the stability condition (1.1)
for the M/GI/2−PS system is satisfied, i.e. that ̺ < 2, and that the system
is in steady state. The LST of V (τ) is given by the limit µ ↓ 0 of the LST
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of V (τ) in the corresponding system with locally exponential service times,
cf. Section 4.1. Thus from (4.28) we obtain that

E[e−λσV (ξ/λ)] = lim
κ↓0

(1−̺/2

1+̺/2
(2G(ξ, 1)−G(ξ, 0)−ϑ̃1,1(σ, ξ))

+
2

1+̺/2
E[e−λσṼ (ξ/λ)]

)

, ξ ∈ [0, λd]. (4.46)

In view of

lim
κ↓0

r1 = 0, lim
κ↓0

r2 = 1+σ, (4.47)

cf. (4.18), from (4.17) we find that

lim
κ↓0

ϑ̃1,1(σ, ξ) =
1+σ

1+σe(1+σ)ξ/2
, ξ ∈ [0, λd]. (4.48)

Moreover, after tedious algebra from (4.21) and (4.18) it follows that

lim
κ↓0

E[e−λσṼ (ξ/λ)] =
1−̺/2

(1−̺/2) + σ
1+σ ξ/2 + ( σ

1+σ )2(e(1+σ)ξ/2−1)
,

ξ ∈ [0, λd]. (4.49)

In the limiting case of κ ↓ 0, in view of (4.47) and (4.48), the Volterra
integral equation (4.43) for G(ξ, 0) simplifies to

G(ξ, 0) =
1+σ

1+σe(1+σ)ξ/2
− e−(1+σ)ξ/2

−
1+σ

2

∫ ξ

0

(

G(η, 0)+
1+σ

1+σe(1+σ)η/2

)

e−(1+σ)(ξ−η)/2dη,

ξ ∈ [0, λd]. (4.50)

Multiplying by e(1+σ)ξ/2, differentiating with respect to ξ, and multiplying
again by e(1+σ)ξ/2 provides that

∂

∂ξ
(e(1+σ)ξG(ξ, 0)) = −

σ(1+σ)2

2

e(1+σ)3ξ/2

(1+σe(1+σ)ξ/2)2
, ξ ∈ (0, λd).

In view of G(0, 0) = 0, cf. (4.50), thus we find that

G(ξ, 0) = −
σ(1+σ)

ζ2

∫ ζ

1

( η

1+ση

)2
dη

∣

∣

∣

ζ=e(1+σ)ξ/2
, ξ ∈ [0, λd], (4.51)
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where
∫ ζ

1

( η

1+ση

)2
dη =

1

σ3

(

σ(ζ−1) − 2 log
(1+σζ

1+σ

)

+
σ(ζ−1)

(1+σ)(1+σζ)

)

for σ > 0. Further, in the limiting case of κ ↓ 0, taking into account (4.47),
(4.48), (4.51), and using integration by parts, from (4.41) for z = 1 after
some algebra we obtain that

G(ξ, 1) =
σ(1+σ)2

2

∫ ζ

1

σζ

(ω+σζ)2ω2

∫ ω

1

( η

1+ση

)2
dηdω

−
σ(1+σ)2

2

∫ ζ

1

ζ

(1+σω)(ω+σζ)2
dω

−
σ(1+σ)

2ζ2

∫ ζ

1

( η

1+ση

)2
dη

∣

∣

∣

∣

ζ=e(1+σ)ξ/2

= − σ(1+σ)2
∫ ζ

1

1

(ω+σζ)2ω

∫ ω

1

( η

1+ση

)2
dηdω

−
σ(1+σ)

ζ2

∫ ζ

1

( η

1+ση

)2
dη

∣

∣

∣

∣

ζ=e(1+σ)ξ/2

, ξ ∈ [0, λd], (4.52)

where for the last equation again integration by parts has been used. Note
that the r.h.s. of (4.52) can be evaluated by using the dilogarithm function

Li2(z) := −

∫ z

0

log(1−ω)

ω
dω.

Summarizing, from (4.46), (4.52), (4.51), (4.48), and (4.49) we find the
following representation for the LST of V (τ).

Theorem 4.1 Let the stability condition ̺ < 2 for the M/GI/2 − PS sys-
tem, where the service time fulfills (4.45), be satisfied. Then for s ∈ R+ and
τ ∈ [0, d] the LST of V (τ) is given by

E[e−sV (τ)] =
1−̺/2

1+̺/2

(

− 2σ(1+σ)2
∫ ζ

1

1

(ω+σζ)2ω

∫ ω

1

( η

1+ση

)2
dηdω

−
σ(1+σ)

ζ2

∫ ζ

1

( η

1+ση

)2
dη −

1+σ

1+σζ

+
2(1+σ)2

(1−̺/2)(1+σ)2 + σ log(ζ) + σ2(ζ−1)

)∣

∣

∣

∣

σ=s/λ, ζ=e(λ+s)τ/2

,

τ ∈ [0, d]. (4.53)
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Note that Theorem 4.1 also provides the LST of V (τ), τ ∈ [0, mS ], and in
particular the LST of V = V (mS) in M/D/2 − PS for d = mS .

Taking the kth derivative with respect to s at s = 0 on both sides of
(4.53) yields the kth moment of V (τ) for τ ∈ [0, d]. In particular, we find the
following simple expression for the variance of V (τ) after tedious algebra.

Corollary 4.1 Let the stability condition ̺ < 2 for the M/GI/2 − PS
system, where the service time fulfills (4.45), be satisfied. Then for τ ∈ [0, d]
the variance of V (τ) is given by

var(V (τ)) =
1

λ2

( 2̺ξ2

(1+̺/2)2(1−̺/2)2
−

4(eξ−1−ξ)

(1+̺/2)(1−̺/2)

+
2

9

1−̺/2

1+̺/2
((12ξ−10)eξ+9+e−2ξ)

)
∣

∣

∣

ξ=λτ/2
, τ ∈ [0, d]. (4.54)

Note that Corollary 4.1 also provides the variances of V (τ), τ ∈ [0, mS ], and
of V = V (mS) in M/D/2 − PS for d = mS , cf. Table 3.1 for r = 2.
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