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Abstract

We consider a system with Poisson arrivals and general service times,
where the requests are served according to the State-Dependent Pro-
cessor Sharing (SDPS) discipline (Cohen’s generalized processor sharing
discipline), where each request receives a service capacity which depends
on the actual number of requests in the system. For this system, denoted
by M/GI/SDPS, we derive approximations for the squared coefficients
of variation of the conditional sojourn time of a request given its service
time and of the unconditional sojourn time by means of two-moment
fittings of the service times. The approximations are given in terms
of the squared coefficients of variation of the conditional and uncondi-
tional sojourn time in related M/D/SDPS and M/M/SDPS systems,
respectively. The numerical results presented for M/GI/m−PS systems
illustrate that the proposed approximations work well.

Mathematics Subject Classification (MSC 2000): 60K25, 68M20,
90B22,

Keywords: Poisson arrivals; general service times; state-dependent pro-
cessor sharing; Cohen’s generalized processor sharing; many-server; per-
manent customers; M/GI/m−PS; sojourn time; moments; approxima-
tions; two-moment fitting.

1 Introduction

Processor Sharing (PS) systems have been widely used in the last decades
for modeling and analyzing computer and communication systems, cf. e.g.
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[BBJ], [BB2], [GRZ], [Ott], [PG], [Yas], and the references therein. In this
paper we deal with approximations for the second moment of the conditional
sojourn time V (τ) of a request with required service time τ (τ -request) and
of the unconditional sojourn time V in the following system, denoted by
M/GI/SDPS: At a node requests arrive according to a Poisson process
of intensity λ with i.i.d. service times, which are independent of the arrival
process and have the df. B(x) := P (S ≤ x) with finite mean mS := ES,
where S denotes a generic service time. The requests are served according
to the following State-Dependent Processor Sharing (SDPS) discipline, cf.
[Coh], [BBJ]: If there are n ∈ N := {1, 2, . . .} requests in the node then each
of them receives a positive service capacity ϕ(n), i.e., each of the n requests
receives during an interval of length ∆τ the amount ϕ(n)∆τ of service. In
case of ϕ1(n) = 1/n, n ∈ N, we obtain the well known M/GI/1 − PS
system, cf. e.g. [Yas]. In case of ϕ1,k(n) = 1/(n + k), n ∈ N, we have a
single-server PS system with k ∈ N permanent requests in the system, in
case of ϕm(n) = min(m/n, 1), n ∈ N, an M/GI/m − PS system, i.e. an
m-server PS system, where all requests are served in a PS mode, but each
request receives at most the capacity of one processor, cf. [Coh] p. 283, [Bra],
[GRZ]. Finally, in case of ϕ(n) = 1, n ∈ N, we have an M/GI/∞ system.

The M/GI/SDPS system is stable if and only if

∞
∑

n=0

n
∏

j=1

̺

jϕ(j)
< ∞, (1.1)

where ̺ := λmS denotes the offered load, cf. [Coh] (7.18). We assume in the
following that the system is stable and in steady state. Then the distribution
p(n) := P (N = n), n ∈ Z+, of the stationary number N of requests in the
system is given by, cf. [Coh] (7.19),

p(n) =

( ∞
∑

m=0

m
∏

j=1

̺

jϕ(j)

)−1 n
∏

j=1

̺

jϕ(j)
, n ∈ Z+. (1.2)

For the unconditional sojourn time V of an arriving request from Little’s
law and (1.2) we find that

EV =
1

λ

∞
∑

n=0

np(n) = mS

∞
∑

n=0

1

ϕ(n+1)
p(n), (1.3)

and for the conditional sojourn time V (τ) of a τ -request it holds

EV (τ) =
τ

mS
EV = τ

∞
∑

n=0

1

ϕ(n+1)
p(n), τ ∈ R+, (1.4)
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cf. [Coh] (7.27). More generally, for τ ∈ R+, k ∈ N we have the estimate

τk
(

∞
∑

n=0

1

ϕ(n+1)
p(n)

)k
≤ E[V k(τ)] ≤ τk

∞
∑

n=0

( 1

ϕ(n+1)

)k
p(n), (1.5)

and it holds

lim
τ↓0

E[V k(τ)]

τk
=

∞
∑

n=0

( 1

ϕ(n+1)

)k
p(n), (1.6)

cf. [BB3] Theorem 3.1. It seems that for the general M/GI/SDPS system
for V and V (τ) besides (1.3)–(1.6) there are known only asymptotic results
for heavy tailed service times, cf. [GRZ]. However, for special cases several
results and numerical algorithms are known. For the M/GI/1−PS system
and special cases, cf. e.g. [Yas], [SGB], for the M/M/m−PS system cf. [Bra],
for the general M/M/SDPS system cf. [BB2]. For the M/GI/SDPS sys-
tem with service times exponentially distributed in a neighborhood of zero
as well as for the M/D/SDPS system and in particular for the M/D/2−PS
system cf. [BB4]. In [vBe] there are given simple approximations for the sec-
ond moments of V (τ) and V in the M/GI/1−PS system. For an approxi-
mation of V in the GI/GI/1 − PS system see [Sen], for an approximation
and an upper bound of EV in the G/GI/1 − PS system see [BB1].

The aim of this paper is to derive for the M/GI/SDPS system in Sec-
tion 2 approximations for the second moment of V (τ) and in Section 3
approximations for the second moment of V . They are based on two two-
moment fittings of the service times, and are given in terms of the first two
moments of V (τ) and V in related M/D/SDPS and M/M/SDPS systems,
respectively. The numerical results presented for M/GI/m−PS systems in
Section 4 illustrate that the proposed approximations work well and can be
computed efficiently.

2 Approximations for the second moment of V (τ)

We assume that the M/GI/SDPS system is stable and in steady state. Fur-
ther, we assume that

∑∞
n=0 ϕ(n+1)−2 p(n) is finite, ensuring that E[V 2(τ)]

is finite, too, cf. (1.5).
Instead of dealing with the second moment of a r.v. X, we consider

its squared coefficient of variation (scv) c2(X) := var(X)/(EX)2 in the
following. Note that from (1.4)–(1.6) it follows that

c2(V (τ)) ≤ c2(1/ϕ(N+1)), τ ∈ (0,∞), (2.1)

3



with equality for c2(V (0)) := limτ↓0 c2(V (τ)). For obtaining approximations
for c2(V (τ)) based on a two-moment characterization of B(x) given by mS

and c2(S), we model the service time by a mixture of a zero and a positive
service time d0:

BD,p(x) := (1−p) I{x ≥ 0} + p I{x ≥ d0}, x ∈ R+, (2.2)

where p ∈ (0, 1], d0 ∈ (0,∞). The mean and scv of (2.2) are given by
mS = p d0, c2(S) = (1 − p)/p. The df. (2.2) can be used for modeling
arbitrary service times with given mean mS ∈ (0,∞) and scv c2(S) ∈ [0,∞)
since the parameters

p := 1/(c2(S)+1), d0 := mS/p (2.3)

provide the desired mean and scv, i.e., (2.2), (2.3) provide a two-moment
fitting for arbitrary service times. Assume now that S has the df. BD,p(x).
Note that under the SDPS discipline the sojourn times of the zero ser-
vice time requests are zero and that they do not have any impact on the
system dynamics. Thus the dynamics of the M/GI/SDPS system corre-
spond to these of an M/D/SDPS system with arrival intensity λ0 := pλ
and deterministic service times d0 = mS/p. Therefore the sojourn time
V D,p(τ) of a τ -request in the M/GI/SDPS system with service time df.
(2.2), (2.3) equals the sojourn time of a τ -request in the M/D/SDPS sys-
tem with arrival intensity λ0 and deterministic service times d0 in distribu-
tion. Time scaling provides that V D,p(τ) equals p−1V D(pτ) in distribution,
where V D(τ) denotes the sojourn time of a τ -request in the M/D/SDPS
system with arrival intensity λ and deterministic service times d := mS . In
particular, we find that

c2(V D,p(τ)) = c2(V D(pτ)) = c2(V D(τ/(c2(S)+1))), (2.4)

cf. (2.3). Note that (2.4) implies that (2.1) is tight for any τ ∈ (0,∞) with
respect to B(x) given mS by choosing p sufficiently small, i.e., within a
one-moment characterization of the service times (2.1) cannot be improved.
In case of an arbitrary M/GI/SDPS system with service time df. B(x),
characterized by mS and c2(S), the r.h.s. of (2.4) provides the following first
approximation for c2(V (τ)):

c2(V (τ)) ≈ c2
app1(V (τ)) := c2(V D(τ/(c2(S)+1))). (2.5)

The approximation (2.5) bases on approximating B(x) via the two-moment
matching (2.2), (2.3). Note that for any approximation of c2(V (τ)) in
M/GI/SDPS given by a two-moment fitting of arbitrary service times,
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c2(V D(τ)) is needed in case of c2(S) = 0. In [BB4] Theorem 3.2 there is
given an algorithm for computing E[(V D(τ))2], τ ∈ [0, d), based on solv-
ing numerically an infinite linear system of ordinary differential equations
(ODEs) with constant coefficients. Moreover, there is derived a represen-
tation for var(V (τ)), τ ∈ [0, d], in M/D/2 − PS, cf. [BB4] Corollary 4.1,
which provides that

c2(V D(τ)) =
̺

2
−

(

1+
̺

2

)(

1−
̺

2

)eξ−1−ξ

ξ2

+
1

18

(

1+
̺

2

)(

1−
̺

2

)3 (12ξ−10)eξ+9+e−2ξ

ξ2

∣

∣

∣

ξ=λτ/2
, τ ∈ (0, d],

(2.6)

for the M/D/2 − PS system. Note that

c2(V D(τ)) = 1 − 2(1−̺)
eξ−1−ξ

ξ2

∣

∣

∣

ξ=λτ
, τ ∈ (0, d], (2.7)

for the M/D/1−PS system, cf. e.g. [Ott] Section 5, [vBe] (2.1), (2.12). The
numerical results given in Section 4 illustrate that in case of M/GI/m−PS
systems the approximation (2.5) works well. However, the numerical com-
plexity for solving the ODEs may become rather high. Moreover, only in
case of τ ∈ (0, (c2(S)+1)mS) we can apply the algorithm given in [BB4] The-
orem 3.2 for computing c2

app1(V (τ)), cf. (2.5). Therefore we are interested

in further approximations for c2(V (τ)).
Applying the approximation (2.5) to exponential service times, we find

for c2(V D(τ)) the approximation

c2(V D(τ)) ≈ c2(V M (2τ)), (2.8)

where V M (τ) denotes the sojourn time of a τ -request in the corresponding
M/M/SDPS system with arrival intensity λ and exponential service times
with mean d = mS . Inserting now approximation (2.8) into (2.5), we obtain
the following second approximation for c2(V (τ)) for a general M/GI/SDPS
model:

c2(V (τ)) ≈ c2
app2(V (τ)) := c2(V M (2τ/(c2(S)+1))). (2.9)

The advantage of approximation (2.9) is that E[(V M (τ))2] can be computed
for all τ ∈ (0,∞) by means of the faster algorithm given in [BB2] (2.24),
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(2.26)–(2.28) for M/M/SDPS systems, based again on solving numerically
an infinite linear system of ODEs with constant coefficients. Remember that

c2(V M (τ)) = 2̺
e−ξ−1+ξ

ξ2

∣

∣

∣

ξ=λτ(1−̺)/̺
, τ ∈ (0,∞), (2.10)

for the M/M/1−PS system, cf. e.g. [Yas] (2.6), (2.7). Alternatively to the
modeling of B(x) by (2.2), (2.3), in case of c2(S) ≥ 1 one can also model
B(x) by a mixture of a zero and an exponential service time with mean d0:

BM,p(x) := (1−p) I{x ≥ 0} + p (1−exp(−x/d0)), x ∈ R+, (2.11)

where p ∈ (0, 1], d0 ∈ (0,∞). Since the mean and scv of (2.11) are given by
mS = p d0 and c2(S) = (2 − p)/p, respectively, the df. (2.11) can be used
for modeling arbitrary service times with given mean mS ∈ (0,∞) and scv
c2(S) ∈ [1,∞), since the parameters

p := 2/(c2(S)+1), d0 := mS/p (2.12)

provide the desired mean and scv, i.e., (2.11), (2.12) provide a two-moment
fitting of the service times in case of c2(S) ∈ [1,∞). Analogously to the
derivations of (2.4), by applying the arguments given for the df. (2.2), (2.3)
to the df. (2.11), (2.12), one finds for the sojourn time V M,p(τ) of a τ -request
in the M/GI/SDPS system with service time df. (2.11), (2.12) that

c2(V M,p(τ)) = c2(V M (pτ)) = c2(V M (2τ/(c2(S)+1))), (2.13)

cf. (2.12). Thus (2.9) is exact in case of the service time df. (2.11), (2.12).
Therefore we have two heuristics for the approximation (2.9) in case of
c2(S) ≥ 1, which thus should be a good approximation at least for c2(S) ≥ 1
from a theoretical point of view. However, for c2(S) small (2.5) will be in
general a better approximation than (2.9), since approximation (2.5) is exact
for c2(S) = 0. Note that the approximations (2.5) and (2.9) satisfy (2.1)
with equality in the limiting case of τ ↓ 0, and that they thus are exact
in the limiting case of τ ↓ 0. Therefore the approximations (2.5) and (2.9)
should work very well for τ small. The corresponding approximations for
c2(V ((c2(S)+1)τ)) are independent of B(x) given mS , and they take values
in [0, c2(1/ϕ(N + 1))] because of (2.1), cf. Table 4.1 below.

Remark 2.1 The quality of the approximations (2.5) for c2(S) ≥ 0 and
(2.9) for c2(S) ≥ 1 is determined by the sensitivity of c2(V (τ)) with respect
to B(x) given mS and c2(S). The approximations (2.5) for c2(S) ≥ 0 and
(2.9) for c2(S) ≥ 1 cannot be improved for any B(x) without using further
characteristics of B(x).
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3 Approximations for the second moment of V

We assume again that the M/GI/SDPS system is stable and in steady
state. Further, we assume that

∑∞
n=0 ϕ(n + 1)−2 p(n) and E[S2] are finite,

ensuring that E[V 2] is finite, too, cf. (1.5).
Because of (1.4), it holds

E[V 2]

(EV )2
−

E[S2]

(ES)2
=

1

(EV )2

∫

R+

E[V 2(τ)]dB(τ) −
1

(ES)2

∫

R+

τ2dB(τ)

=
1

(ES)2

∫

R+

( E[V 2(τ)]

(EV (τ))2
− 1

)

τ2dB(τ),

which provides

c2(V ) − c2(S) = m−2
S

∫

R+

c2(V (τ))τ2dB(τ), (3.1)

cf. [BB2] (4.4). Note that (3.1) and (2.1) imply the estimate

c2(S) ≤ c2(V ) ≤ (c2(S)+1)c2(1/ϕ(N+1)) + c2(S). (3.2)

In view of (3.1), any approximation for c2(V (τ)), τ ∈ (0,∞), provides an
approximation for c2(V ). For obtaining a first approximation for c2(V )
we use again the two-moment matching of B(x) by (2.2), (2.3). For the
unconditional sojourn time V D,p in the M/GI/SDPS system with service
time df. (2.2), (2.3) from (3.1), (2.4) we obtain that

c2(V D,p) − c2(S) = m−2
S

∫

R+

c2(V D,p(τ))τ2dBD,p(τ)

= m−2
S

∫

R+

c2(V D(pτ))τ2dBD,p(τ) = m−2
S p c2(V D(pd0))d

2
0

= p−1c2(V D(mS)) = (c2(S)+1)c2(V D),

where V D denotes the unconditional sojourn time in the M/D/SDPS sys-
tem with arrival intensity λ and deterministic service times d := mS . Thus
it holds

c2(V D,p) = (c2(S)+1)c2(V D) + c2(S). (3.3)

In case of an arbitrary M/GI/SDPS system with service time df. B(x),
characterized by mS and c2(S), the r.h.s. of (3.3) provides the following first
approximation for c2(V ):

c2(V ) ≈ c2
app1(V ) := (c2(S)+1)c2(V D) + c2(S). (3.4)
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The approximation (3.4) bases on approximating B(x) via the two-moment
matching (2.2), (2.3). In [BB4] Theorem 3.3 there is given an algorithm for
computing E[(V D)2] based on solving numerically an infinite linear system
of ODEs with constant coefficients. Moreover, (2.6) and (2.7) yield explicite
expressions for c2(V D) = c2(V D(d)) in M/D/2 − PS and M/D/1 − PS
systems, respectively. The numerical results presented in Section 4 illustrate
that in case of M/GI/m−PS systems the approximation (3.4) works well.
However, the numerical complexity for solving the ODEs may become rather
high. Thus we are interested in approximations of lower complexity for
c2(V ).

Applying the approximation (3.4) to exponential service times, we find
for c2(V D) the approximation

c2(V D) ≈ (c2(V M )−1)/2, (3.5)

where V M denotes the unconditional sojourn time in the corresponding
M/M/SDPS system with arrival intensity λ and exponential service times
with mean d = mS . Inserting now approximation (3.5) into (3.4), we obtain
the following second approximation for c2(V ) for a general M/GI/SDPS
model:

c2(V ) ≈ c2
app2(V ) := ((c2(S)+1)c2(V M ) + (c2(S)−1))/2. (3.6)

The advantage of approximation (3.6) is that E[(V M )2] can be computed
by means of the very fast recursive algorithm given in [BB2] Algorithm 3.1
for M/M/SDPS systems. Note that from (3.1), (2.10) it follows that

c2(V M ) = (2+̺)/(2−̺) (3.7)

for the M/M/1−PS system, cf. e.g. [vBe] (2.14), (2.17). In case of c2(S) ≥ 1,
for the unconditional sojourn time V M,p in the M/GI/SDPS system with
service time df. (2.11), (2.12) from (3.1), (2.13) we obtain that

c2(V M,p) − c2(S) = m−2
S

∫

R+

c2(V M,p(τ))τ2dBM,p(τ)

= m−2
S p

∫

R+

c2(V M (pτ))(exp(−τ/d0)/d0)τ
2 dτ

= p−1m−2
S

∫

R+

c2(V M (x))(exp(−x/mS)/mS)x2 dx

= ((c2(S)+1)/2)(c2(V M )−1),
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which implies

c2(V M,p) = ((c2(S)+1)c2(V M ) + (c2(S)−1))/2.

Thus (3.6) is exact in case of the service time df. (2.11), (2.12). Therefore we
have two heuristics for the approximation (3.6) in case of c2(S) ≥ 1, which
thus should be a good approximation at least for c2(S) ≥ 1. However, for
c2(S) small (3.4) will be in general a better approximation than (3.6), since
approximation (3.4) is exact for c2(S) = 0. Note that the approximations
(3.4) and (3.6) satisfy (3.2) since (3.2) holds for V D and V M . The corre-
sponding approximations for (c2(V )− c2(S))/(c2(S)+1) are independent of
B(x) given mS , and they take values in [0, c2(1/ϕ(N +1))] because of (3.2),
cf. Table 4.2 below.

Remark 3.1 The quality of the approximations (3.4) for c2(S) ≥ 0 and
(3.6) for c2(S) ≥ 1 is determined by the sensitivity of c2(V ) with respect
to B(x) given mS and c2(S). The approximations (3.4) for c2(S) ≥ 0 and
(3.6) for c2(S) ≥ 1 cannot be improved for any B(x) without using further
characteristics of B(x).

4 Numerical results

In this section we study the quality of the approximations (2.5), (2.9) and
(3.4), (3.6) for M/GI/m − PS systems, i.e. for ϕm(n) = min(m/n, 1).

In Table 4.1 there is given c2(V ((c2(S) + 1)τ)) in M/D/m − PS and in
M/M/m − PS for m = 1, 2. Remember that c2(1/ϕm(N + 1)) is an upper
bound for c2(V (τ)), τ ∈ (0,∞), with equality in the limiting case of τ ↓ 0.
For the examples given in Table 4.1 the approximations c2

app1(V (τ)) and

c2
app2(V (τ)) work well. Remember that c2(1/ϕm(N + 1)) can be considered

as an approximation for c2(V (τ)), τ ∈ (0,∞), based on a sequence of one-
moment fittings of the service times given by (2.2), (2.3) for p ↓ 0, cf. (2.4).
Table 4.1 shows that this simple approximation works well for τ small and
in case of higher load.
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Table 4.1: c2(V ((c2(S) + 1)τ)) in M/D/m − PS and M/M/m − PS for
m = 1, 2.

c2(V ((c2(S)+1)τ))

̺/m τ/mS M/D/1−PS M/M/1−PS M/D/2−PS M/M/2−PS

c2(V D(τ)) c2
app2(V

D(τ)) c2(V D(τ)) c2
app2(V

D(τ))

c2
app1(V

M (2τ)) c2(V M (2τ)) c2
app1(V

M (2τ)) c2(V M (2τ))

0.50 0.00 0.500000 0.500000 0.218750 0.218750
0.50 0.50 0.455593 0.426123 0.194754 0.179580
0.50 1.00 0.405115 0.367879 0.169378 0.151071

0.80 0.00 0.800000 0.800000 0.627200 0.627200
0.80 0.50 0.770438 0.749230 0.601854 0.583827
0.80 1.00 0.734037 0.703200 0.571023 0.545056

0.95 0.00 0.950000 0.950000 0.901372 0.901372
0.95 0.50 0.941046 0.934363 0.892669 0.886176
0.95 1.00 0.929561 0.919109 0.881514 0.871367

Table 4.2: (c2(V ) − c2(S))/(c2(S) + 1) in M/D/m − PS, M/M/m − PS,
and the upper bound c2(1/ϕm(N + 1)) for m = 1, 2, 4, 8.

(c2(V )−c2(S))/(c2(S)+1) upper bound

̺/m m M/D/m−PS M/M/m−PS c2(1/ϕm(N+1))

c2(V D) c2
app2(V

D)

(c2
app1(V

M )−1)/2 (c2(V M )−1)/2

0.50 1 0.405115 0.333333 0.500000
0.80 1 0.734037 0.666667 0.800000
0.95 1 0.929561 0.904762 0.950000

0.50 2 0.169378 0.135787 0.218750
0.80 2 0.571023 0.514929 0.627200
0.95 2 0.881514 0.857461 0.901372

0.50 4 0.034771 0.026712 0.048800
0.80 4 0.329685 0.293047 0.368122
0.95 4 0.773738 0.751506 0.792178

0.50 8 0.003180 0.002293 0.005164
0.80 8 0.125968 0.109163 0.145096
0.95 8 0.587403 0.568731 0.603059
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Table 4.2 provides (c2(V ) − c2(S))/(c2(S) + 1) in M/D/m − PS and in
M/M/m−PS for m = 1, 2, 4, 8 as well as its upper bound c2(1/ϕm(N+1)).
Remember that (c2(V ) − c2(S))/(c2(S) + 1) ≥ 0, cf. (3.2). For the ex-
amples given in Table 4.2 the approximations c2

app1(V ) and c2
app2(V ) work

well, in particular in case of higher load. Moreover, Table 4.2 shows that
c2(1/ϕm(N +1)) is not only an upper bound but also a good approximation
for (c2(V ) − c2(S))/(c2(S) + 1) in case of higher load. Note that c2

app2(V
D)

is a worse approximation for c2(V D) = c2(V D(mS)) than c2
app2(V

D(mS)),

cf. also Table 4.1, but the complexity for computing c2
app2(V

D) is lower than

for c2
app2(V

D(mS)).
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