TakustralRe 7
D-14195 Berlin-Dahlem
Germany

Konrad-Zuse-Zentrum
fur Informationstechnik Berlin

ANDREAS BLEY
AMBROS M. GLEIXNER
THORSTEN KOCH
STEFAN VIGERSKE

Comparing MIQCP solversto a
gpecialised algorithm for mine
production scheduling

Supported by the DFG Research Center MATHEON Mathematics for key technologies in Berlin.

Z1B-Report 09-32 (October 2009)

Comparing MIQCP solvers to a specialised
algorithm for mine production scheduling

Andreas Bley!, Ambros M. Gleixner?, Thorsten Koch?, and Stefan Vigerske?

! Technische Universitit Berlin, Strafe des 17. Juni 136, 10623 Berlin,
bley@math.tu-berlin.de
2 Zuse Institute Berlin, TakustraBe 7, 14195 Berlin, {gleixner,koch}@zib.de
3 Humboldt-Universitét zu Berlin, Unter den Linden 6, 10099 Berlin,
stefan@math.hu-berlin.de

Abstract. This paper investigates the performance of several out-of-
the-box solvers for mixed-integer quadratically constrained programmes
(MIQCPs) on an open pit mine production scheduling problem with mix-
ing constraints. We compare the solvers BARON, COUENNE, SBB, and
SCIP to a problem-specific algorithm on two different MIQCP formu-
lations. The computational results presented show that general-purpose
solvers with no particular knowledge of problem structure are able to
nearly match the performance of a hand-crafted algorithm.

1 Introduction

The rise of general mixed-integer programming (MIP) solvers over the last
decade [6] is a prime example of how mathematics is able to derive general
insights from specific findings and then apply these to other problems with-
out having to look at their inner workings anymore. While in the 90s it was
common to write your own branch-and-bound framework employing specialised
problem-specific routines, see e.g. [14,17], today it is often very hard to outper-
form sophisticated state-of-the-art MIP solvers like CPLEX [16], GUROBI [15],
CBC [11], or SCIP [2].

Effective general-purpose techniques are currently applicable for most linear
mixed-integer and continuous convex optimisation problems. In contrast, for
many nonconvex optimisation problems, specialised algorithms are still required
to find globally optimal solutions.

Traditional solution methods for nonconvex integer optimisation problems
have been developed either as entirely new solvers [22,19], or by directly ex-
tending a solver for NLPs to cope with integrality conditions, see e.g. [3,10]. In
recent years several groups have started to explore a different direction by trying
to extend MIP solvers to handle nonlinearities, see e.g. [1,4,5,9,16].

In this paper we compare the performance of a specialised branch-and-bound
code to solve an open-pit mine production scheduling problem with mixing con-
straints to the performance of several general-purpose solvers on these problems,
specifically BARON [22], COUENNE [4], SBB [3], and SCIP [5].

bley@math.tu-berlin.de
{gleixner,koch}@zib.de
stefan@math.hu-berlin.de

2 A. Bley, A. M. Gleixner, T. Koch, S. Vigerske

Open-pit mine production scheduling has been chosen as a test case, since
the authors were involved in a research project to solve these challenging, large-
scale optimisation problems [7]. Now a few years later it can be seen that using
recent general-purpose software we are able to get nearly as good solutions out-
of-the-box.

In Section 2 we describe our model of the open-pit mine production schedul-
ing problem (OPMPSP). For a more thorough discussion of this application
see e.g. [20,12,8]. Section 3 provides two different MIQCP formulations for the
OPMPSP. In Section 4 we present the details and results of our computational
study.

2 Open pit mine production scheduling with stockpiles

In this section we describe in detail our model of the open pit mine production
scheduling problem (OPMPSP). Typically, the orebody of an open pit mine
is discretised into small mining units called blocks. Block models of real-world
open pit mines may consist of hundreds of thousands of blocks resulting in
large-scale optimisation problems. To overcome this difficulty, groups of blocks
are often aggregated to form larger mining units with possibly heterogeneous
ore distribution, which we call aggregates. We assume such an aggregation of a
block model is given a priori, with the set of aggregate indices N' = {1,..., N}.4
Note that this setting comprises the special case of an unaggregated block model
where we have only one block per aggregate.

Moreover, we assume complete knowledge about the contents of each aggre-
gate i: First, its rock tonnage R;, i.e. the amount of material which has to be
extracted from the mine. Second, its ore tonnage O;, i.e. the fraction of the rock
tonnage sufficiently valuable to be processed further; in contrast, the non-ore
fraction of each aggregate is discarded as waste immediately after its extraction
from the mine. Finally, the tonnages A}, ..., AK quantify a number of mineral
attributes contained in the ore fraction. Attributes may be desirable, such as
valuable mineral, or undesirable, such as chemical impurities.

The mining operations consist of several processes: First, rock is extracted
from the pit, which we refer to as mining. Subsequently, the valuable part of
the extracted material is refined further for sale, which is called processing; the
remaining material not sufficiently valuable is simply discarded as waste. In an
intermediate stage between mining and processing, the valuable material may
be stored on stockpiles. A stockpile can be imagined as “bucket” in which all
material is immediately mixed and becomes homogeneous. It may be used for
different reasons: blending, storage of excessive mined material, and storage of
low grade ore for possible future processing.

The lifespan of the mine is discretised into several, not necessarily homo-
geneous periods 1,...,T. A feasible mine schedule determines, for each time

4 Various techniques exist for computing aggregates of blocks, for an example see the
fundamental tree method [21].

MIQCP solvers vs. a spec. algo. for mine sched. 3

N,N number of aggregates and set of aggregate indices {1,..., N}, respectively

P(3) set of immediate predecessors of aggregate ¢

R;,O; rock and ore tonnage of aggregate i, respectively [tonnes]

AF tonnage of attribute k in aggregate ¢ (A; for a single attribute) [tonnes|

c sales price of attribute k (c for a single attribute) [$m/tonne]

m,p mining and processing cost, respectively [$m/tonne]

T number of time periods

Ot discount factor for time period ¢ (typically 1/(1+ ¢)" with fixed interest rate ¢ > 0)

M,, P, mining and processing capacity, respectively, for time period ¢ [tonnes|

Table 1: List of notation

period, the amount of rock which is to be mined from each aggregate, the frac-
tion of the mined ore which is to be sent for processing or stockpiled, as well as
the amount of ore sent from the stockpiles to the processing plant. The major
constraints which must be satisfied are resource constraints and precedence con-
straints. Resource constraints restrict the amount of rock which may be mined
and the amount of ore which may be processed during each time period ¢ by
limits M; and P;, respectively. Precedence constraints model the requirement
that wall slopes are not too steep, ensuring the safety of the mine. Technically,
these constraints demand that, before the mining of aggregate ¢ may be started,
a set of predecessor aggregates P (i) must have been completely mined.

Long-term mining schedules have to be evaluated by their net present value:
For each time period, we take the return from the processed and sold minerals
minus the cost for mining and processing, multiplied by a decreasing discount
factor to account for the time value of money. The sales price per tonne of
attribute k is denoted by c*; the mining and processing cost per tonne rock is
denoted by m and p, respectively. For homogeneous time periods and constant
interest rate ¢ > 0 per time period, the profit made in time period ¢ is multiplied
by a factor of 1/(1+ ¢q)*. In general, discount factors 41, ..., d7 may be arbitrary,
decreasing values between 0 and 1. The objective is to find a feasible mine
schedule with maximum net present value.

Already without considering stockpiles, open pit mine production scheduling
poses an NP-hard optimisation problem, see e.g. [13]. One inherent difficulty is
given by the opposing nature of precedence constraints and net present value
objective: Whereas we want to mine and process high-value material as early as
possible to profit from subsequent interest, the precedence constraints (together
with limited mining and processing capacity per time period) just prohibit this
since high-value material is typically found in the lower layers of the pit. Further-
more, since heavy aggregation of the block model may decrease the net present
value, we ideally want to solve the problem for as highly resolved aggregations,
i.e. for as many aggregates, as possible.

This paper focuses on the special case of one attribute — some valuable min-
eral — and a single stockpile with infinite capacity. The next section gives for-

4 A. Bley, A. M. Gleixner, T. Koch, S. Vigerske

mulations of this case as mixed-integer quadratically constrained programmes
(MIQCP). Although we focus on a special case, it includes the essential problem
features. A more general setting comprising multiple attributes, multiple stock-
piles, finite stockpiling capacity, starting with non-empty stockpiles, or blending
constraints can easily be modelled by minor extensions and modifications. To
conclude this section, Table 1 summarises the notation introduced above.

3 MIQCP formulations

In this section we provide mized-integer quadratically constrained programming
(MIQCP) formulations of the open pit mine production scheduling problem with
one attribute (“metal”) and a single, infinite-capacity stockpile, as presented
in [7]: an aggregated “basic” formulation and an extended “warehouse” formu-
lation. These formulations are theoretically equivalent. The results in [7], how-
ever, clearly speak in favour of the extended formulation. For the LP relaxation
based solvers, this is equally confirmed by our computational study presented in
Section 4.

3.1 Basic formulation

To track the various material flows, we define the following continuous decision
variables for each aggregate ¢ and time period ¢:

Yiy € [0,1] as the fraction of aggregate i mined at time period ¢,

yﬁ . €10,1] as the fraction of aggregate ¢ mined at time period ¢ and sent
immediately for processing,

yf,t € [0,1] as the fraction of aggregate ¢ mined at time period ¢ and sent
to the stockpile,

of,a; >0 as the absolute amount of ore respectively metal on the
stockpile at time period ¢, and

of, aY >0 as the absolute amount of ore respectively metal sent from the
stockpile to the processing plant at time period t.

With this, the net present value of a mine schedule is calculated as

NPV (y™,yP, 0P, aP) =
T N N N
Z s [o <af + Z Aiyf,t) —p (0? + Z Oiy§t> —m Z Ry
t=1 i=1 i=1 i=1

In order to model the precedence constraints, we define the binary decision
variables

(1)

x;t € {0,1} as equal to 1 if aggregate 4 is completely mined within time
periods 1,...,t.

MIQCP solvers vs. a spec. algo. for mine sched. 5

A precedence-feasible extraction sequence is then guaranteed by the two sets of
constraints

t
xi7t<2yf7 forieN,t=1,...,T, (2)
T=1
t
D oyl <y fori e N,jeP(i),t=1,....,T. (3)

T=1

Additionally, we may, without altering the set of feasible solutions, require the
sequence of binary variables x;1,...,2; to be nondecreasing for each aggre-
gate i:

Tit—1 gl’i’t fOT’iGN,tZQ,...,T. (4)

Though redundant from a modelling point of view, these inequalities may help
(or hinder) computationally, and have been used in the benchmark algorithm
from [7]. Conservation of the mined material is enforced by

T
ny“’tgl for i € N, and (5)
t=1

yit—l—yf’tgyﬁt forie N,t=1,...,T, (6)

i.e. for each aggregate, the amount sent for processing or to the stockpile during
one time period must not exceed the total amount mined. (The difference of
Yiy — yf’ .= yf,t is discarded as waste.) To model the state of the stockpile, we
make

Assumption S Material sent from the stockpile to the processing plant is
removed at the beginning of each time period, while material extracted from the
pit (and not immediately processed) is sent to the stockpile at the end of each
time period.

Following this assumption, we must not send more material from the stockpile
to processing than is available at the end of the previous period:

O o
a

1 fort=2,...,T, (7)
a P

1 fort=2,...,T. (8)

oo S
NN

If we assume the stockpile to be empty at the start of the mining operations, we
have

o) =af =0. 9)

6 A. Bley, A. M. Gleixner, T. Koch, S. Vigerske

Starting with a nonempty stockpile requires only small modifications. Now, the
book-keeping constraints for the amount of ore on the stockpile read

N
oS — > im1 Oivi g for t =1, (10)
= N
' 0p_1 =0y +>,0,0iy;, fort=2,...T,

and analogously for the amount of metal on the stockpile

s {Zf\il Ay, for t =1, (1)

a, =
! al_, —al + 3N, Ayys, fort=2,...,T.

The resource constraints, limiting mining and processing capacity for each time
period, read

N
Z Ry < M, fort=1,...,T, and (12)
i=1
N

of +> Ol <P, fort=1,...,T, (13)
i=1

respectively. Last, we need to ensure that the ore-metal-ratio of the material sent
from stockpile to processing equals the ore-metal-ratio in the stockpile itself.
Otherwise, only the profitable metal could be sent to processing and for sale
while the ore, only causing processing costs, could remain in the stockpile. This
involves the nonconvex quadratic mixing constraints

ay Ay

5 = s fort=2,...,T.
0t 011

To avoid the singularities for zero denominators, we reformulate them as
ayo;_; =ay_,0y fort=2,...,T. (14)
All in all, we obtain the basic formulation
max NPV (y™,yP, oP,aP)
s.t. (2) - (14),
z € {0, 1}V*T, (BF)
Y™ Pyt € 0,17,

0°%,a° 0P, aP = 0.

3.2 Warehouse formulation

In the basic formulation (BF) the material of all aggregates sent from the pit to
the stockpile is aggregated into variables 0® and a®. Alternatively, we may track

MIQCP solvers vs. a spec. algo. for mine sched. 7

the material flows via the stockpile individually. Instead of variables 0°, a®, oP,
and aP, we then define for each aggregate ¢ and time period ¢:

zﬁ . €10,1] as the fraction of aggregate i sent from stockpile for processing
at time period ¢ and

zit € [0,1] as the fraction of aggregate ¢ remaining in the stockpile at time
period t.

The net present values in terms of these variables is calculated as

NPV (y™,yP, 2P) =
N

T N N
25t cZAi(ygt-l—zgt)—pZOi(yEt—i—zEt)—mZRiyi‘f’t . (15)
t=1 i=1 i=1

i=1
Constraints (2) — (6) remain unchanged. Starting with an empty stockpile gives
Zi =2, =0 for i e N. (16)
Under Assumption S, the stockpile balancing equations read
Zigat i1 = 2t 2 forie N,t=2,...,T. (17)

The resource constraints on mining are the same as (12), the resource constraints
on processing become

N
ZOi (WF,+20,) <P fort=1,...,T. (18)
=1

Instead of the mixing constraints (14), now we demand that for each time period
t, the fraction zf,t / z:t is equal for each aggregate i. We obtain a better formu-
lation by introducing, for each time period ¢, a new variable f; € [0,1] called
out-fraction, and requiring that

p
L= forie N,t=2,...,T.

s D
Zig T 2y

zZ

To avoid zero denominators, we reformulate this as

zps(L—= fi) = 27 1 fo forie N,t=2,...,T. (19)
This gives the warehouse formulation
max NPV (y™,yP, zP)
s.t. (2) - (6), (12), (16) — (19),
x € {0, 1}V*T (WF)
ym Pyt 2P, 20 € [0, 1T
feio,1r.

8 A. Bley, A. M. Gleixner, T. Koch, S. Vigerske

Note that the basic formulation is an aggregated version of the warehouse formu-
lation, and thus the LP relaxation (obtained by dropping integrality and mixing
constraints) is tighter for the warehouse formulation.

3.3 A priori out-fraction discretisation

The application-specific algorithm of Bley et al. [7] is based on the linear MIP
relaxation obtained by first dropping all of the quadratic constraints. To tighten
this relaxation for the warehouse formulation, they propose a rough a priori
discretisation of the out-fractions, which we describe in the following. Choose a
series of fixed ratio levels 0 = ¢g < 1 < ... < ¢ < ppy1 = 1. Let Ay = d—dy—1
forl=1,...,L+ 1. We define auxiliary binary variables

uey € {0,1} as equal to 1 if the out-fraction f; > ¢y,
for each time period ¢ and level . Trivially, we demand

ut,léuu_l fOI‘ZZQ,...,L,t:L...,T. (20)

Any binary vector @ € {0,1}7*L satisfying (20) corresponds, for each time
period ¢, to an interval [of, 8¢ = {Zle Ay, A+ Zle Al+1ﬁt,l:|. The con-
straints

L L
Z Ajugy < fr <AL+ Z PAYRRLTY
=1

1=1
fort=1,...,T, (21)

force variable f; to be in the interval [of, 3] for each time period t. We obtain
the same effect for the out-fractions of each aggregate by the constraints

1
(6 — 1)l + dnzl, <D Ap(l—up)
I'=1
forie N,i=1,...,L,t

|
—

L
(1 =)z, — iy, < Z Aprug
r=l
forieN,l=1,...,L,it=1,...,T. (23)
Constraints (22) force 27,/(2;, + 27;) greater than or equal to o', while con-
straints (23) force it less than or equal to S°.

4 Computational study

4.1 Application-specific benchmark algorithm

As benchmark algorithm we used the application-specific approach described
in [7]. It features a branch-and-bound algorithm based on a mixed-integer lin-
ear programming relaxation of the problem obtained by dropping the nonlinear

MIQCP solvers vs. a spec. algo. for mine sched. 9

mixing constraints, i.e. (14) for the basic and (19) for the warehouse formula-
tion, respectively. A specialised branching scheme is used to force the maximum
violation of the nonlinear constraints arbitrarily close to zero. As long as inte-
ger variables with fractional values are present, we branch on these to obtain
an integer feasible solution. At nodes of the branch-and-bound tree with inte-
ger feasible relaxation solution, but violated nonlinear constraints, a specialised
spatial branching is performed.

For the basic formulation, if constraint (14) is violated for some time pe-
riod t € {2,...,T}, then — since the current solution is LP optimal — the metal
fraction taken out of the stockpile exceeds the ore fraction taken out. Hence,
there is a ratio ¢ with

of ay
s <P < —5—.
O¢1 A1

From this, two branches are created: one with

of < ¢o;_y and af < da;_y,
the other branch with

of > go;_, and af > 4aj_,.

In both branches, the current solution is cut off and the possible maximum
violation of the mixing constraint for time period t is reduced.

Similarly, for the warehouse formulation, suppose that constraint (19) is
violated for some time period ¢ € {1,...,T}. Then there exist at least two
aggregates i1, i3 € N with different out-fractions, thus there is a ratio ¢ with

p p
, Ziy - < ¢ < — it S
Z’il,t + Zil,t Zig,t + Z’LQ,t

This gives rise to two branches, one with the additional constraints
(1—9)2}, < 627, for i € NV,

forcing the out-fractions of all aggregates in time period ¢t below ¢, the other
branch with constraints

(1 =)z}, = 627, for i e NV,

forcing them above ¢. Again, in both branches, the current solution is cut off
and the possible maximum violation of the mixing constraints for time period ¢
is reduced.

Note especially that the branches are created by adding multiple linear equal-
ities. Such an aggressive branching strategy is usually invalid for general MINLP
solvers, since it cuts off feasible solutions. In this special application it is feasible
because of our additional knowledge, that the out-fractions of each aggregate
must be equal for each time period.

10 A. Bley, A. M. Gleixner, T. Koch, S. Vigerske

Bley et al. [7] implemented this approach using the state-of-the-art MIP
solver CPLEX 11.2.1 with tuned parameter settings. They apply a variable
fixation scheme and cutting planes derived from the underlying precedence con-
strained knapsack structure which has been shown to improve the dual bound for
linear mine production scheduling models. To obtain good primal solutions, they
make extensive use of CPLEX’s rounding heuristics and post-process the inte-
ger feasible solutions by adapting mixing ratios heuristically. For further details,
see [7]. We used the same implementation in our computational study.

4.2 General-purpose MIQCP solvers

For our computational experiments, we had access to four general-purpose solvers
for MIQCPs: BARON, CoUENNE, SCIP, and SBB. This section gives a brief
overview of their algorithmic features.

BARON BARON [22] is a commercial mixed-integer nonlinear programming
(MINLP) solver that implements a branch-and-reduce algorithm. The algorithm
first reformulates the problem into a factorable form by introducing new auxiliary
variables. The reformulated problem contains only sums of univariate functions
and products of two variables. Based on knowledge about convex underestima-
tors for univariate functions and products of variables, a linear relaxation of the
problem is constructed, yielding a valid dual bound for the problem. Branching
on integer variables allows the solver to reduce fractionality of the relaxation
solution, while branching on variables in nonconvex terms allows to compute
tighter convex underestimators. The algorithmic performance is improved by
certain reduction techniques for variable domains and branching variable selec-
tion heuristics.

For our experiments, we used BARON 8.1.5 with CPLEX 11.2.1 [16] as
LP solver and MINOS 5.51 [18] as NLP solver.

Couenne COUENNE [4] is a very recent open source MINLP solver that im-
plements a similar technique to BARON. It is built on top of the MIP solver
CBC [11], and therefore has immediate access to a large set of MIP solution
techniques, such as cut generators, branching variable selectors, and node selec-
tors.

For our experiments, we used COUENNE 0.2 (stable branch, rev.256) with
CBC 2.3 as branch-and-bound framework, CLP 1.10 [11] as LP solver, and the
interior point solver IPOPT 3.6 [23] to handle NLPs.

SCIP SCIP [2]is a constraint integer programming solver that is freely available
for academic use. The strength of SCIP is its flexibility in incorporating general
kinds of constraints into a branch-cut-and-price framework, and its strong tech-
niques for handling mixed-integer linear programs. It has recently been extended
to handle quadratic constraints within an LP based branch-and-cut algorithm [5].

MIQCP solvers vs. a spec. algo. for mine sched. 11

For that purpose, linear underestimators for products and squares of variables
are used. Further, a propagation method for variable domains and a local search
heuristic has been implemented.

For the mining instances considered in this paper, an extension of a relax-
ation enforced neighborhood search (RENS) heuristic has proved very success-
ful. The heuristic creates a sub-MIQCP problem by fixing integer variables to
nonfractional values in the solution of the LP relaxation at some node of the
branch-and-bound tree. This sub-MIQCP is then solved by a separate SCIP in-
stance. During the solution of the sub-MIQCP, a QCP solver is used from time
to time to search for a feasible solution of the sub-MIQCP with all remaining
integer variables fixed.

For our experiments, we used SCIP 1.1.0.11 with CPLEX 11.2.1 as LP solver
and IPoPT 3.6 as QCP solver.

SBB SBB [3] is a commercial solver for MINLPs that implements an NLP
based branch-and-bound algorithm. Thus, instead of constructing and solving a
linear relaxation of the problem, SBB employs a nonlinear relaxation obtained
by relaxing integrality requirements in the original MINLP. The solution of the
NLP relaxation is used as dual bound for the branch-and-bound algorithm.

Note, however, that the NLP relaxation is usually solved by an NLP solver
that guarantees global optimality only for convex problems. Thus, for a noncon-
vex MINLP, it is possible that SBB erroneously prunes nodes of the branch-
and-bound tree in the case where the NLP solver returns a nonglobal optimal
solution. Even though the dual bounds reported by SBB for our mining in-
stances cannot be trusted, we still decided to include SBB into our testset, since
NLP based branch-and-bound algorithms often obtain very good primal solu-
tions also for nonconvex MINLPs. Therefore, it offers an interesting comparison
to the other LP relaxation based approaches.

For our experiments, we used SBB with CONOPT 3.14T [3] and IPOPT 3.6
as NLP solvers. CONOPT implements sequential linear programming (SLP)
and sequential quadratic programming (SQP) algorithms.

4.3 Test instances

Obtaining real-world problem data from open pit mines is difficult, in part due to
the high costs involved in gathering them. Public benchmark instances are typ-
ically not available. Our industry partner BHP Billiton Pty. Ltd.® has provided
us with realistic data from two open pit mines.

Data set Marvin is based on a block model provided with the Whittle 4X
mine planning software®, originally consisting of 8513 blocks which were aggre-
gated to 85 so-called “panels”, i.e. single layers of blocks without block-to-block

5 http://www.bhpbilliton.com/
6 Gemcom Whittle, http://www.gemcomsoftware . com/products/whittle/

http://www.bhpbilliton.com/
http://www.gemcomsoftware.com/products/whittle/

12 A. Bley, A. M. Gleixner, T. Koch, S. Vigerske

precedence relations. The lifespan of this mine, i.e. the time in which the prof-
itable part of the orebody can be fully mined, is 15 years. Each panel has an
average of 2.2 immediate predecessor aggregates.

Data set Dent is based on the block model of a real-world open pit mine in
Western Australia, originally consisting of 96821 blocks which were aggregated to
125 panels. Each panel has an average of 2.0 immediate predecessor aggregates.
The lifespan of this mine is 25 years.

The aggregations to panels, the cutoff grades (determining which blocks in
each panel are immediately discarded as waste), and precedence relations be-
tween the panels were pre-computed by our industry partner. Scheduling pe-
riods are time periods of one year each with a discount rate of 10% per year.
Realistic values for mining costs and processing profits as well as for mining and
processing capacities per year were chosen by our industry partner.

Using this data, we tested the performance of the general-purpose MIQCP
solvers from Section 4.2 on the basic formulation (BF) and the warehouse for-
mulation (WF) — the very formulations on which the benchmark algorithm de-
scribed in Section 4.1 is based. Additionally, we evaluated the effect of using
the a priori out-fraction discretisation described in Section 3.3 by testing for-
mulation (WF)+(20-23) with L = 1, 2, and 4 levels using SCIP. Table 2 gives
an overview over the size of these MIQCP formulations for problem instances
Marvin and Dent.

Formulation Marvin Dent

no. variables no. constraints no. variables no. constraints

total bin. cont. total linear quadr. total bin. cont. total linear quadr.
(BF) 5848 1445 4403 7598 7582 16 12600 3125 9475 15774 15750 24
(WF) 8687 1445 7242 10404 9044 1360 18775 3125 15650 21900 18900 3000
(WF)+(20-23), 1 level 8704 1462 7242 13328 11968 1360 18800 3150 15650 28200 25200 3000
(WF)+(20-23), 2 levels 8721 1479 7242 16235 14875 1360 18825 3175 15650 34475 31475 3000
(WF)+(20-23), 4 levels 8755 1513 7242 22049 20689 1360 18875 3225 15650 47025 44025 3000

Table 2: Size of MIQCPs for instances Marvin and Dent (before presolving)

4.4 Computational results

Our computational experiments were run single-threaded on an Intel Core2 Ex-
treme CPU X9650 with 3.0 GHz and 8 GB RAM. For each run, we imposed a
time limit of 10000 seconds, within which no solver was able to close the opti-
mality gap. We report primal and dual bound and number of nodes processed
after one hour and at the end of the time limit.

Solver settings The solver BARON was run with default and tuned settings.
In the latter, we limited the time spent in preprocessing to 30 minutes (option

MIQCP solvers vs. a spec. algo. for mine sched. 13

maxpretime 1800), which by default appeared to be very time-consuming. We
also reduced the amount of probing to depth 5 of the branch-and-bound tree
(option PEnd 5) and a maximum of 50 variables (option PDo 50).

COUENNE was also run with default and tuned settings. Here, the tun-
ing consists in turning off expensive bound propagation techniques (options
aggressive fbbt no and optimality.bt no), which appeared to be too time-
consuming in our experiments.

For SBB, we generally switched on the option acceptnonopt, ensuring that
SBB did not prune a node if the NLP subsolver did not conclude optimality
or infeasibility of the node’s QCP relaxation. Besides default settings, we also
tested a tuned version with option dfsstay 25. Usually, SBB uses a mix of
depth first search and best bound node selection rule. If a node is processed
without creating subnodes, e.g. because an integer feasible solution is found,
SBB jumps to the branch-and-bound node with best dual bound. With option
dfsstay n, SBB is forced to continue searching the neighbourhood of this node
in a depth first search manner for n more nodes before applying the best bound
node selection rule. This setting can help to improve previously found primal
solutions.

Furthermore, we ran SBB with a setting where the NLP solver IPOPT is
invoked when the default NLP solver (CONOPT) concludes infeasibility of a
QCP relaxation (option infeasseq 100 ipopt). Using this setting, we intended
to reduce the number of cases in which a node is erroneously pruned due to a
suboptimal solution of the QCP relaxation. However, IPOPT always confirmed
the result of CONOPT (“locally infeasible”), thus only reducing the number
of nodes which could be processed within the time limit and leading to a larger
final gap. Hence, we do not report the detailed results for this setting in our
tables.

The results for tuned settings are indicated by ‘*’ in tables and figures. We
parenthesised the dual bound and gap for solver SBB, since they might be invalid
due to the nonconvexity of the problem.

SCIP was run with one setting only. The extended RENS heuristic was called
frequently. The QCP solver was only used inside the RENS heuristic to search
for feasible solutions of the sub-MIQCP with all integer variables fixed.

Results for the basic formulation Table 3 shows the performance of the
application-specific benchmark algorithm from Section 4.1 and the general-pur-
pose solvers when using the basic formulation. The application-specific algorithm
yields the smallest primal-dual gaps among the LP relaxation based solvers, all of
which, however, terminate with large dual bounds: Throughout the whole solu-
tion process, the gap remains above 57.37% for SCIP, BARON, and COUENNE,
and 13.71% for the application-specific algorithm, respectively. Among the LP
based general-purpose solvers, BARON has the best dual bounds, while it is
outperformed by COUENNE and SCIP in terms of primal solutions. However,
including the benchmark algorithm, all LP based solvers perform rather unsatis-
factory on the basic formulation.

14 A. Bley, A. M. Gleixner, T. Koch, S. Vigerske

In contrast, the tightest dual bounds clearly are obtained by the NLP based
approach of solver SBB — although they cannot be trusted. It produces the best
primal solution for problem instance Marvin and terminates with the smallest
gap of 3.25%. For instance Dent, however, the best solution found by SBB was
18.1% worse than the best primal solution found by COUENNE, resulting in a
final gap larger than for the benchmark algorithm.

Solver Marvin Dent
after 3600 seconds after 10000 seconds after 3600 seconds after 10000 seconds
primal dual nodes primal dual nodes gap primal dual nodes primal dual nodes gap

Benchmark 678.2 916.6 249100 678.2 916.4 476456 35.13 47.3 54.0 100500 47.3 53.8 269023 13.71

BARON 240.3 1347.8 15 240.3 1302.9 42 442.29 6.6 108.3 1 66 105.7 12 1508.90
BARON* 240.3 1324.0 29 508.0 1134.7 4600 123.37 6.6 104.3 6 6.6 1043 1999 1487.32
COUENNE — 1655.6 2 — 16500 104 48.1 113.9 0 481 113.9 2 137.04
COUENNE® 283.9 1645.9 2893 642.6 1636.0 15420 154.58 48.1 113.9 0 481 1134 2955 135.81
SCIP 669.9 1579.1 286700 671.4 1575.1 810908 57.37 45.8 110.1 87700 45.8 109.9 281776 58.31
SBB 676.6 (706.1) 7980 682.7 (705.0) 25266 (3.25) 39.4 (50.2) 500 394 (50.2) 1214 (27.53)
SBB* 683.0 (706.0) 8040 685.1 (704.9) 24922 (2.88) 394 (50.2) 540 394 (50.2) 1220 (27.33)

Table 3: Results for basic formulation (BF)

Results for the warehouse formulation Table 4 shows the results for the
warehouse formulation. First note that the LP based approaches perform sig-
nificantly better on this formulation. The application-specific algorithm shows
excellent performance on the warehouse formulation. It produces the best pri-
mal solutions and terminates with the smallest primal-dual gaps of 0.02% for
instance Marvin and 0.33% for instance Dent. Nevertheless, the best primal so-
lutions found by the general-purpose solvers are only 0.4% and 0.2% below the
solution found by the benchmark algorithm for Marvin and Dent, respectively.

The best dual bounds from the general-purpose solvers are 1.4% and 0.2%
away from the benchmark values for Marvin and Dent, respectively. Note that
this difference is not only due to the handling of the nonlinear constraints. Also,
the benchmark algorithm uses knowledge about the underlying precedence con-
strained knapsack structure of the linear constraints in order to fix binary vari-
ables and separate induced cover inequalities. This structure is not directly ex-
ploited by the general-purpose solvers.

In contrast to the LP relaxation based solvers, the QCP relaxation based
approach of SBB appears to be less dependent on the change in formulation.
For the basic formulation, SBB computed a dual bound almost as tight as for the
warehouse formulation — even though these bounds cannot be trusted. Notably,
the Dent instance appears more challenging to SBB than Marvin, while for
SCIP the situation is reversed. This is probably due to the increased problem

MIQCP solvers vs. a spec. algo. for mine sched. 15

size, which affects the solvability of the QCP relaxation in SBB more than the
solvability of the LP relaxation in SCIP.

For both instances, SCIP was able to compute better primal solutions than
SBB. For instance Marvin, SBB produced a solution only slightly worse than
SCIP when using the option dfsstay 25 (see page 13). Here, the forced depth
first search after nodes with integer feasible solution appears to function as an
improvement heuristic, compensating for SBB’s lack of heuristics.

Solver Marvin Dent
after 3600 seconds after 10000 seconds after 3600 seconds after 10000 seconds
primal dual nodes primal dual nodes gap primal dual nodes primal dual nodes gap

Benchmark 694.8 695.9 41057 695.0 695.1 115103 0.02 48.8 49.1 7300 489 49.0 23401 0.33

BARON 175.1 717.9 7 1751 7174 19 309.84 in preprocessing 125 503 1 303.18
BARON* 372.8 7162 965 5132 7151 4552 39.33 125 49.9 281 125 49.9 1756 299.79
COUENNE - 7195 0 - 7195 2 - 473 50.3 0 473 503 2 643
COUENNE® 681.2 7185 193 687.6 7157 1534 4.09 473 50.2 2 473 502 10 611
SCIP 691.0 7054 40100 691.9 704.7 128655 1.81 486 49.2 12900 48.6 49.1 57877 1.08
SBB 677.8 (705.9) 8940 689.0 (705.0) 27498 (2.32) 40.2 (50.1) 580 402 (50.1) 1546 (24.69)
SBB* 684.3 (705.9) 9020 691.8 (705.0) 27095 (1.92) 40.3 (50.1) 660 40.3 (50.1) 1611 (24.19)

Table 4: Results for warehouse formulation (WF)

Comparison of LP based solvers BARON, Couenne, and SCIP For the
basic formulation, the best dual bounds were found by BARON, while for the
warehouse formulations SCIP computed tighter bounds. For all formulations,
SCIP computed the best primal solutions among the global solvers — all found by
the extended RENS heuristic — and terminated with the smallest gaps. BARON
spent much time in preprocessing and per node — also with reduced probing —
which results in a comparably small number of enumerated nodes. COUENNE, in
contrast, spent much time in its primal solution heuristics. A significant amount
of this time was used by the underlying NLP solver IpoPT, which seems to have
difficulties solving the (nonconvex) QCPs obtained from fixing integer variables
in the original formulation.

Figure 1 compares the progress of the primal and dual bounds from the
start to the time limit of 10000 seconds for all three solvers. It can be seen that
even with tuned settings BARON and COUENNE spent a significant amount
of time in presolving, especially for instance Dent. BARON found a number of
primal solutions in presolving. Since the BARON log files do not show the times
when primal solutions were found during presolving, we plot these at the end
of presolving. It is notable that for instance Dent, BARON found no improved
primal solutions after presolve, and COUENNE produced only one primal solution,
which also was found before the branch-and-bound started. Throughout, SCIP
shows the highest primal bound.

16 A. Bley, A. M. Gleixner, T. Koch, S. Vigerske

Marvin

dual bound
~
=
S)
|
;-

700 — BENCHMARK

best primal — e
600 —
500 —
400 !

300 —: :
200 — ! .
| :

|

100 —
0

primal bound

T T T T T T T T T
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

time [s]

Dent

o

°

=
|

\ COUENNE®

o

<)
|
-

dual bound

IS
©
o
|
r

49
best primal — r——=———— e e s o o o o o o o o e e s e oo oo o

40 —

30 —

20 —

10 —

primal bound

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

time [s]

Fig. 1: Progress in primal and dual bounds for the application-specific algorithm (grey)
and the global solvers BARON™ (dotted), COUENNE™ (continuous), and SCIP (dashed)
for warehouse formulation (WF). The “best primal” axis is level with the best known
primal solution value from the application-specific benchmark algorithm. Note the
different scales for primal and dual bounds.

MIQCP solvers vs. a spec. algo. for mine sched. 17

For the dual bound it can be seen that all three solvers start approximately
with the same dual bound. SCIP, however, is able to decrease it more rapidly
and comes closer to the best known primal solution values from the application-
specific algorithm. For both instances, SCIP’s dual bound after 1800 seconds is
already less than 0.35% above its final value at 10000 seconds.

To evaluate whether increasing the time limit could yield significantly better
results, we conducted separate experiments running SCIP on both instances
for 40 hours. For instance Marvin, the primal bound did not improve further
and the gap was reduced only slightly from 1.81% to 1.75%. For instance Dent,
primal and dual bounds improved to yield a final gap of 0.47% compared to a
gap of 1.08% after 10000 seconds.

Marvin Dent

after 3600 seconds after 10000 seconds after 3600 seconds after 10000 seconds

primal dual nodes primal dual nodes gap primal dual nodes primal dual nodes gap
no discr. 691.0 705.4 40100 691.9 704.7 128655 1.81 48.6 49.2 12900 48.6 49.1 57877 1.08
1 level 690.1 702.7 35000 690.1 701.2 102190 1.60 48.4 49.2 12500 48.6 49.1 58696 1.03
2 levels 690.2 702.9 19200 690.2 700.8 51332 1.51 48.1 49.3 7800 48.6 49.2 35019 1.31
4 levels 688.1 704.8 12000 688.1 702.5 31009 2.04 47.8 49.3 2800 48.3 49.2 19451 1.84

Table 5: Performance comparison for solver SCIP on warehouse formulation (WF)
without and with a priori discretisation constraints (20-23) using 1, 2, and 4 levels.

Experiments with a priori out-fraction discretisation To evaluate the
effect of the a priori out-fraction discretisation described in Section 3.3, we con-
ducted experiments running SCIP on the warehouse formulation (WF) with
additional a priori discretisation constraints (20-23) for 1, 2, and 4 levels. Re-
sults can be seen in Table 5 in comparison to the performance on the plain
warehouse formulation (WF).

For both instances, using 1 discretisation level helps to improve the dual
bound slightly. On the other hand, for problem instance Marvin the best pri-
mal solution produced without discretisation was not found anymore. A larger
number of discretisation levels seemed to weaken the computational performance
and hinder finding primal solutions. The main reason for this appears to be the
increased size of the LP relaxation (see Table 2), which grows rapidly with the
number of discretisation levels. This leads to more time being consumed by solv-
ing the LP relaxation and fewer branch-and-bound nodes being processed within
the time limit.

5 Conclusion

We have compared the performance of state-of-the-art generic MIQCP solvers on
two realistic instances arising from the scheduling of open pit mine production.

18 A. Bley, A. M. Gleixner, T. Koch, S. Vigerske

The problem can be characterised as a large mixed-integer linear program which
is complemented by a nonlinear part consisting of quadratic mixing constraints.
The performance of SCIP and the application-specific algorithm indicates
that for such problems, extending a MIP framework compares favourably to
other approaches. Intuitively, the reason might be that integer variables usually
model decisions, whereas nonlinear constraints model conditions. Once a linear
relaxation of the nonlinear constraints has been solved and all variables are
integer feasible, what remains is to fix violations of the nonlinear constraints. One
could argue that in many applications this is easier than trying to fix violated
integrality constraints once a continuous nonlinear relaxation has been solved.

On the other hand, the performance of the QCP relaxation based solver SBB
shows that employing nonlinear relaxations can make the solver more robust
with respect to the choice of the formulation used. Unfortunately, as long as
there is no way to prove global optimality for the relaxation used, this can only
be used as a heuristic. Further, our experiments with SBB indicate that for QCP
based branch-and-bound an SLP/SQP based solver outperforms interior point
algorithms due to better warmstart capabilities.

Comparing the LP based general purpose solvers, COUENNE exploits some
sophisticated heuristics in the root node, which enable it to produce good pri-
mal solutions. However, the low number of enumerated nodes, partly due to
using IPOPT as QCP solver, yields weaker dual bounds. BARON computed
better dual bounds, but was unable to produce compatible primal solutions.
Our experiments demonstrated that SCIP is able to perform nearly as well as
a problem-specific implementation. In a pure MIP setting, SCIP would employ
25 primal heuristics. At the time of testing, only one of these has been extended
to handle nonlinearities. As discussed before, solving arising QCPs by an SLP
or SQP based solver may improve the performance of SCIP even further.

Acknowledgements We thank our industry partner BHP Billiton Pty. Ltd.”
for providing us with the necessary data sets to conduct this study, and GAMS
Development Corp.? for providing us with evaluation licenses for BARON and
SBB. Many thanks to Olivia Smith and Jacint Szabé for their thorough proof-
reading. This research was partially funded by the DFG Research Center M ATH-
EON?, Project B20.

References

1. Kumar Abhishek, Sven Leyffer, and Jeffrey T. Linderoth. FilMINT: An outer-
approximation-based solver for nonlinear mixed integer programs. Technical
Report ANL/MCS-P1374-0906, Argonne National Laboratory, Mathematics and
Computer Science Division, 2006.

" http://www.bhpbilliton.com/
8 http://www.gams.com/
9 http://www.matheon.de/

http://www.bhpbilliton.com/
http://www.gams.com/
http://www.matheon.de/

10.

11.

12.

13.

14.

15.
16.
17.
18.

19.

20.

MIQCP solvers vs. a spec. algo. for mine sched. 19

Tobias Achterberg. Constraint Integer Programming. PhD thesis, Technische Uni-
versitat Berlin, 2007.

ARKI Consulting & Development A/S. CONOPT and SBB.
http://www.gams.com/solvers/solvers.htm.

P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wachter. Branching and bounds
tightening techniques for non-convex MINLP. Optimization Methods and Software,
24(4-5):597-634, 2009.

Timo Berthold, Stefan Heinz, and Stefan Vigerske. Extending a CIP framework
to solve MIQCPs. Technical Report 09-23, Konrad-Zuse-Zentrum fiir Information-
stechnik Berlin (ZIB), 2009. http://opus.kobv.de/zib/volltexte/2009/1186/.
Robert E. Bixby, Marc Fenelon, Zonghao Gu, Ed Rothberg, and Roland Wun-
derling. MIP: Theory and practice — closing the gap. In M. J. D. Powell and
S. Scholtes, editors, System Modelling and Optimization: Methods, Theory and
Applications. Kluwer, 2000.

Andreas Bley, Natashia Boland, Gary Froyland, and Mark Zuckerberg. Solving
mixed integer nonlinear programming problems for mine production planning with
a single stockpile. Technical Report 2009/21, Institute of Mathematics, TU Berlin,
2009.

Natashia Boland, Irina Dumitrescu, Gary Froyland, and Ambros M. Gleixner. LP-
based disaggregation approaches to solving the open pit mining production schedul-
ing problem with block processing selectivity. Computers € Operations Research,
36:1064-1089, 2009. doi:10.1016/j.cor.2007.12.006.

Pierre Bonami, Lorenz T. Biegler, Andrew R. Conn, Gérard Cornuéjols, Igna-
cio E. Grossmann, Carl D. Laird, Jon Lee, Andrea Lodi, Francois Margot, Nicolas
Sawaya, and Andreas Wichter. An algorithmic framework for convex mixed integer
nonlinear programs. Discrete Optimization, 5:186—-204, 2008.

Oliver Exler and Klaus Schittkowski. A trust region sqp algorithm for mixed-
integer nonlinear programming. Optimization Letters, 1:269-280, 2007.

John J. Forrest. COIN-OR linear programming and COIN-OR branch and cut.
http://projects.coin-or.org/{Clp,Cbc}/.

Christopher Fricke. Applications of Integer Programming in Open Pit Mining. PhD
thesis, University of Melbourne, August 2006.

Ambros M. Gleixner. Solving large-scale open pit mining production scheduling
problems by integer programming. Master’s thesis, Technische Universitit Berlin,
June 2008.

Martin Grotschel, Clyde L. Monma, and Mechthild Stoer. Polyhedral and Com-
putational Investigations for Designing Communication Networks with High Sur-
vivability Requirements. Operations Research, 43(6):1012-1024, 1995.

Gurobi Optimization. Gurobi Solver. http://www.gurobi.com/.

IBM ILOG. CPLEX. http://www.ilog.com/products/cplex/.

Thorsten Koch and Alexander Martin. Solving Steiner tree problems in graphs to
optimality. Networks, 32:207-232, 1998.

Bruce A. Murtagh and Michael A. Saunders. MINOS 5.5 User’s Guide. Depart-
ment of Operations Research, Stanford University, 1998. Report SOL 83-20R.
Ivo Nowak and Stefan Vigerske. LaGO: a (heuristic) branch and cut algorithm for
nonconvex MINLPs. Central European Journal of Operations Research, 16(2):127—
138, 2008.

Morteza G. Osanloo, J. Gholamnejad, and Behrooz Karimi. Long-term open pit
mine production planning: a review of models and algorithms. International Jour-
nal of Mining, Reclamation and Environment, 22(1):3-35, 2008.

http://www.gams.com/solvers/solvers.htm
http://opus.kobv.de/zib/volltexte/2009/1186/
http://projects.coin-or.org/{Clp,Cbc}/
http://www.gurobi.com/
http://www.ilog.com/products/cplex/

20

21.

22.

23.

A. Bley, A. M. Gleixner, T. Koch, S. Vigerske

Salih Ramazan. The new fundamental tree algorithm for production scheduling
of open pit mines. European Journal of Operational Research, 177(2):1153-1166,
2007.

Mohit Tawarmalani and Nikolaos V. Sahinidis. Convezification and Global Opti-
mization in Continuous and Mized-Integer Nonlinear Programming: Theory, Algo-
rithms, Software, and Applications. Kluwer Academic Publishers, 2002.

Andreas Wichter and Lorenz T. Biegler. On the implementation of a primal-dual
interior point filter line search algorithm for large-scale nonlinear programming.
Mathematical Programming, 106(1):25-57, 2006.

