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Abstract

One of the biggest impacts on the performance of a Distributed Hash Table (DHT),
once established, is its ability to balance load among its nodes. DHTs supporting range
queries for example suffer from a potentially huge skew in the distribution of their items
since techniques such as consistent hashing [29] can not be applied. Thus explicit load
balancing schemes need to be deployed. Several such schemes have been developed and
are part of recent research, most of them using only information locally available in order
to scale to arbitrary systems.

Gossiping techniques however allow the retrieval of fairly good estimates of global
information with low overhead. Such information can then be added to existing load
balancing algorithms that can use the additional knowledge to improve their perform-
ance. Within this thesis several schemes are developed that use global information like
the average load and the standard deviation of the load among the nodes to primar-
ily reduce the number of items an algorithm moves to achieve a certain balance. Two
novel load balancing algorithms have then been equipped with implementations of those
schemes and have been simulated on several scenarios. Most of these variants show
better balance results and move far less items than the algorithms they are based on.

The best of the developed algorithms achieves a 15 — 30% better balance and moves
only about 50 — 70% of the number of items its underlying algorithm moves. This
variation is also very robust to erroneous estimates and scales linearly with the system
size and system load. Further experiments with self-tuning algorithms that set an al-
gorithm’s parameter according to the system’s state show that even more improvements
can be gained if additionally applied. Such a variant based on the algorithm described by
Karger and Ruhl [30] shows the same balance improvements of 15 — 30% as the variant

above but reduces the number of item movements further to 40 — 65%.
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1. Introduction

1.1. Context

Distributed Hash Tables (DHTS) store key/value-pairs on several nodes of a network and
provide means for inserting, retrieving and deleting a value associated with a key. Each
node is assigned a unique node ID in a given ID space uniformly at random and is then
responsible for all values with keys near its ID (keys are also mapped to this ID space).
By using a technique called consistent hashing [29], the DHT then spreads the stored
items uniformly over the node ID space which achieves a fair balance without any further
effort. More precisely, nodes will have loads varying by O(logn) times the average load
in terms of stored items in a system of n nodes [36, 25]. However, DHTs with range
queries like Scalaris [39] cannot use hash functions to spread their items because they
need to stay in the order given by their keys. Therefore more effort is needed to balance
items among the nodes in such storages.

Consider the following example: Articles are to be stored in a range-query-based DHT
with 100 nodes and the key under which an article is stored is its heading. In case of
keys in (American) English and nodes responsible for equidistant key ranges, items would

then be distributed as shown in Figure 1.1.
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Figure 1.1.: Item distribution of US-English words on 100 nodes with equidistant key ranges.
(list of words aggregated from [11])

DHT Load Balancing with Estimated Global Information 9



1. Introduction

To even out such skewed load distributions load balancing algorithms are required
which change the nodes’ responsibilities that in turn reduces their load. Such algorithms
try to balance an arbitrarily defined load at each node and should only use information
locally available in order to scale to large systems. Several of such algorithms will be
introduced in the following chapters, some of them using different definitions of load,
e.g. the number of keys a node is responsible for, the number of items a node actually
stores or the access-popularity of a node’s items. Some also weight load depending on a

node’s capacities and therefore adapt to heterogeneous environments.

1.2. Aims & Objectives

This thesis aims at improving such load balancing algorithms in terms of moved items
and reached balance by adding estimates of global information. These values can be
retrieved with high confidence and low overhead using gossiping techniques [23, 28] and
include approximations of values like the minimum, maximum and average load as well
as the standard deviation and system size.

A first approach will try to use the average load of all nodes in its decision on whether
to balance two nodes and how much to transfer from one node to another. Most al-
gorithms simply balance two nodes that have been matched by trying to equalise their
loads. This does however not involve a node’s ideal load - the average load. Therefore
several items are transferred multiple times during the algorithm’s task to balance the
load at each node of the system, especially if a node’s load after a balance operation is
sufficiently higher than the average load. By knowing the target load and integrating
it appropriately, a much better performance can be expected. Preliminary results of an
algorithm using the average load already show some improvements compared with its
underlying algorithm without that change [27].

Further variations will be introduced into ordinary load balancing algorithms also
including some of the other information mentioned above. The resulting algorithms’
performance will then be evaluated on a set of given scenarios like the alphabetical
distribution of Figure 1.1. It is assumed that with the right use of such information, any

algorithm can be significantly improved.

1.3. Methods

In order to evaluate any of the introduced algorithms, a simulation will be implemented
that emulates a simple DHT with range queries and starts with an initial system load
distributed among the nodes according to a given scenario. This emulation will disregard

node joins and deletions as well as any other side-effects, e.g. network maintenance,
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node failures, network delay and bandwidth etc., to eliminate any other influences when
assessing an algorithm. It will however allow analysing the algorithm under different
aspects such as different scenarios with different numbers of items and nodes, different
choices for an algorithm’s parameters and a different accurateness of the estimated global
information. It will also provide the ability to run multiple simulations with the same
set of parameters in order to allow the evaluation of randomised algorithms that show
(slightly) different behaviour in each simulation.

The program will follow the strategy of being easily extensible and will in particular
allow additional algorithms and scenarios to be deployed separately and added dynamic-
ally via a plugin-based infrastructure. It will also provide means of comparing different
algorithms with varying parameters on multiple scenarios. A graphical user interface
and a command line client will be created that allow fast evaluations of the algorithms

as well as batch-jobs for more time-consuming simulations.

1.4. Achievements

At first a survey of the field of Distributed Hash Tables has been given by presenting
their concepts and examining their mode of operation including DHT's that support range
queries. Additionally a very thorough overview of load balancing schemes that can be
applied to (arbitrary) DHTs has been given and several novel load balancing algorithms
have been presented. Gossiping algorithms have also been introduced to present a way
estimates of global information can be retrieved in Distributed Hash Tables.

Secondly several algorithm variations have been introduced that make use of estimated
global information in order to minimise the item movements an algorithm performs as
well as the imbalance it reaches. Those variations have then been applied to the load
balancing schemes by Karger and Ruhl [30] and Bharambe et al. [12] and have been
evaluated by performing simulations with different load distribution scenarios. These
variations use estimated values of the system’s average and maximum load, the standard
deviation of the load among the nodes and the system size.

The best algorithm among those variants limits the original algorithm’s item move-
ments in a way that nodes that have a load smaller than the (estimated) average load
will not reach a load above this bound. Additionally it only performs such balance op-
erations that increase the standard deviation by at least a factor s/n with n being the
system size and s a configurable parameter that has been set to 2.0 and 3.0 for the al-
gorithms by Karger and Ruhl and Bharambe et al. respectively. This variation achieves
an up to 30% lower imbalance than the algorithm applied to would achieve alone and
only moves about 50 — 70% of its items.

Further experiments that try to tune the algorithms’ parameters according to the
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1. Introduction

system’s state show that even more improvements are possible. Applying such self-
tuning to the algorithm by Karger and Ruhl for example has shown an up to 30% lower
imbalance with only about 40 — 65% of the item movements of the original algorithm.
Such good performance has however not been achieved by a similar variant that has
been applied to the algorithm by Bharambe et al. Further investigations into the field

of self-tuning algorithms are thus needed.

1.5. Outline

At first a deeper insight into the techniques behind Distributed Hash Tables (DHTS)
will by given in Chapter 2. It will also present several representatives of DHTs and
their characteristics and will introduce methods for achieving range-queriable systems.
It will then present gossip algorithms followed by several novel load balancing schemes
that are available for such DHTs. Chapter 3 will define the system model that is used
in this thesis and the algorithms that have been chosen to be equipped with estimated
global information. It will conclude with the introduction of the algorithm variants that
have been developed. These variants will be evaluated in the following Chapter 4 starting
with a detailed description of the evaluation process itself and the scenarios used. It then
presents the results that the implemented simulator created for the different algorithms
under different aspects of the simulation. Chapter 5 will finally sum up the achievements
of the thesis and will provide ideas about possible extensions of the given algorithms and

future work.
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2. Background / Related Work

This chapter presents Distributed Hash Tables (DHTSs), a prominent representative of
the class of structured overlay networks, which has been of great interest in research
over the past years. The structure of a generic DHT and some of its representatives will
be introduced including DHT's that support range queries. This class of DHTs imposes
some restrictions on the organisation of the stored resources which need to be considered
when designing load balancing algorithms, e.g. stored resources cannot move arbitrarily
to different nodes of the network. Before load balancing algorithms are described in the
last section of this chapter, gossiping algorithms will be introduced. Those algorithms
can be used in peer-to-peer networks to gather estimates of certain global information
that is usually not available in such a setting. This information will later be used to

improve some of the load balancing algorithms described here.

2.1. Distributed Hash Tables (DHTs)

Distributed Hash Tables provide functionality similar to ordinary hash tables. They
store key/value-pairs on several nodes of a network and provide look-up facilities for
retrieving the value associated with a given key. Several such systems exist, but despite
their diversity a reference model can be given which models their approaches in a generic
manner [8] and is outlined below.

In this model, a DHT maps peers P and resources R to a common identifier space I
using mapping functions fp : P — I and fr : R — I. Furthermore, a closeness metric
d:Ix 1 — Ris defined on I which can be used by a mapping function M : I — 2F that
associates identifiers with the peers storing them. The peers themselves are organised
in a logical network to allow access to every other peer’s resources, i.e. by embedding
a graph into the identifier space. Following this notation, differences between several

DHTs only exist because of the different choices made for the following aspects:

o Selection of an identifier space with a closeness metric d: This serves as an address-

space for resources and peers and should be large enough to support large systems.

o Mappings fp and fr: These functions may satisfy certain distributional properties

which can be exploited for load balancing. They can preserve resource semantics
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such as closeness/neighbourhood relations or the order under a given key or com-

pletely drop them, e.g. when following a uniform distribution in I.

o Management of the identifier space: The function M : I — 2F assigns each iden-
tifier of a resource a set of peers responsible for it. Locating resource r therefore
involves finding a peer in M(fgr(r)). Note that systems with replication have

several peers responsible for each resource.

e Structure of the logical network: The logical network can be modelled as a (time-
dependent) directed graph G = (P, E) with vertices P (peers) and edges E (direct
connections). Also let N(p) be the set of peers a given peer p maintains a connec-
tion to, e.g. its neighbours. The overall structure of that graph is then determined

by N(p) for every p € P.

e Routing strategy: Requests for identifiers need to be routed to their responsible
peers. A strategy for that can be described as selecting at a given peer p for
an identifier i a set of next peers R(p,i7) € N(p) to which to forward a request.
Routing is typically greedy, i.e. Yq € R(p,i) : d(i, fp(q)) < d(i, fp(p)), and built
on top of the decisions made for the identifier space and its management, e.g. the

distance function.

e Maintenance strategy: Changes in peer connectivity (referred to as churn) may
occur quite frequently and create the need for mechanisms to repair the state of the
logical network. Since node joins are typically active operations, this task mainly
focuses on repairing connections due to node (connection) failures. Maintenance
strategy can either follow a proactive approach (heartbeats, periodic probing) or
a reactive approach (correction on use, failure or change) or a combination of the
two. Functionality of the DHT heavily relies on a consistent network structure

making this strategy essential for its operation.

Additionally DHTSs provide (supposedly different) implementations for a common set
of functionality they expose to their clients.This includes joining and leaving a network,
several routing functions, looking up identifiers and getting some administrative inform-
ation about the local peer and its neighbours. Data management functionality exposes
insert, delete and update methods as well as searching for resources using queries of
some kind.

Implementations of such structured overlay networks include CAN [37], Pastry [38],
Chord [41], Freenet [19], Tapestry [45], Gnutella [5, 1] and more. The following sections
will concentrate on the first three which all implement a variant of consistent hashing [29,
33] outlined below. The main focus however is not on a complete description of the

different DHTs but to give an overview of their structure and message routing / resource
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2.1. Distributed Hash Tables (DHTS)

retrieval algorithms which both is important for load balancing. Also although the
descriptions will make use of the introduced terminology and definitions they will not be
structured explicitly that way in order to focus on the main aspects of design decisions
and establish a better understanding of the techniques. It will however become apparent
that the DHTs follow the given model.

2.1.1. Consistent Hashing

While traditional hash tables map objects to a static set of buckets, the number of
peers to which resources are mapped constantly changes in DHTs. Karger et al. [29]
and Lewin [33] describe a consistent hash function that operates on a changing set of
buckets and provides some consistency properties, e.g. adding a bucket only changes the
mappings of a minimum fraction of objects needed to maintain a balanced state.

Using the aforementioned syntax, let P be a set of n = ||P|| peers, I the circular
interval [0,1) C R and fr a random function that maps resources of R log(n)-way

¢

independently! and uniformly to I. Now let each real peer p run m “virtual” peers that
operate independently from each other. Virtual peers can be modelled by each peer
being mapped to m different identifiers instead of just one: fp: P — I, C I, ||Ln]| =m
(otherwise the same constraints as fr apply). Also define a function M that maps each
resource 1 € R to the peer p € P that has the closest identifier to fr(r). Each such hash

function has the following properties which also hold for large enough arbitrary I:

e Monotonicity: If new peers are added to P, resources only move from old peers to

new peers, but never between old peers.
e Adding a peer p to P changes the mappings of O(||R||/n) resources.
e Balance: The probability of a resource r € R being assigned to peer p € P is
1 1
o<. (1+ Og(’”)).
n m

Thus using m = Q(log(n)) virtual servers results in a well-balanced state with each node

being responsible for O (||R||/n) resources. Having no virtual nodes however (m = 1)
yields to some nodes having O(log(n)) times more resources associated with them than

others because each node is responsible for O ((log(n) + 1) - || R||/n) resources.

2.1.2. CAN

A basic CAN network [37] uses a virtual d-dimensional Cartesian coordinate space C

for its identifiers and places it on a d-torus for routing. Peers are responsible for their

'A random mapping function is k-way independent if any k elements are mapped independently. This
allows representing real identifiers in / C R with limited precision instead of using an infinite number
of bits and also allows for arbitrary large enough discrete I.
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individual and distinct zones of this coordinate space which is entirely covered at any
point in time. A key/value-pair is stored in CAN by mapping its key to a point ¢ € C
using a uniform hash function and storing it at the peer p responsible for the zone
containing ¢q. Similarly querying for a key corresponds to routing to the node responsible
for the zone containing ¢. For this every peer maintains a list of immediate neighbours
(nodes with zones adjoining their own zone) and routing a message at peer p directed
to g is done by forwarding it to the neighbour of p which is responsible for coordinates
closest to ¢ (greedy forwarding). Also note that several paths exist and can be used in
case of node and connection failures or to deploy a simple request load balancing (see
Figure 2.1 for an example). This way using d dimensions and n = ||P|| commensurate
zones, each individual node maintains 2d neighbours and average routing paths cross
(d/4)(n'/%) zones (peers).

(I} A A A 05 A A A A1
A ) A ) 7 A 7 A
= =
-< >
- >

5

f{ \(O,gv 0.6) 1

- >
- . o
o <
) e a ) N N
0V 4 4 L 4 4 LR

Figure 2.1.: Planar 2-d CAN with coordinates in range [0,1) x [0,1) C R? with 16 nodes routing a
message from node n6 to ¢ = (0.8,0.6) (dashed arrows present an alternative route).

If greedy forwarding fails, an expanding ring search using stateless, controlled flooding
may be used to locate peers closer to the destination. From there greedy forwarding will
be continued.

In order for a node to join an existing CAN;, it needs to take the following steps:
1. Find a CAN node by using some external mechanism, e.g. DNS.

2. (Randomly) choose a point ¢ to join at, contact the peer currently responsible for
that point (using normal routing) and split the zone in half assigning one half to

the new node.

16 DHT Load Balancing with Estimated Global Information



2.1. Distributed Hash Tables (DHTS)

3. Learn neighbours from the previous occupant and notify them of its arrival.

4. Transfer resources according to the new responsibilities.

These steps involve O(d) existing nodes which need to change their list of neighbours.

A node gracefully leaving the system hands over its zone to a neighbour which is
able to join the two zones. If this is not possible the neighbour with the smallest zone
will (temporarily) handle both zones. To identify node failures peers normally send
periodic update messages to their neighbours. If such message is not received for some
time its neighbours each initiate a takeover mechanism and agree on one of them taking
over the failed zone, possibly becoming responsible for two zones. To prevent further
fragmentation of the coordinate space background zone-reassignment algorithms try to
merge zones again.

Further improvements were suggested in order to reduce routing path lengths, i.e.
increasing the number of dimensions or using multiple coordinate spaces (realities), in-
troducing round-trip-times into routing decisions, caching frequently requested resources
or replicating them to their peers’ neighbours. See [37] for more details and an evaluation

of the various improvements.

2.1.3. Pastry

A different approach to realising a distributed hash table is provided by Pastry [38] which
uses identifiers represented by 128-bit numbers. The circular identifier space therefore
consists of integers in the range [0, 2128 _ 1] and the two mapping functions fp and fgr
are expected to distribute their results uniformly and independently among the identifier
space. Resource identifiers are for example created by applying a secure hash function,
e.g. SHA-1 [7], to the resource’s name, content and the resource owner’s identifier. Also
resource r € R is stored at the k peers with identifiers numerically closest to fr(r). k
can be set individually for each resource at its insertion, influences its availability in case
of failures and provides some means of balancing resource requests.

For routing purposes node identifiers in pastry are sub-divided into separate levels
of b bits with a domain at level | being defined as the bits from position (b - 1) to
(b-(I+1)—1). Messages are now forwarded using prefix routing, i.e. messages at peer p
with destination fr(r) matching fp(p) up to level | will be forwarded to a node whose
identifier matches the destination’s identifier up to at least level (I+1). Also each pastry

node p stores information about other peers in 3 different node sets:

e a routing table T which contains information about representatives of different
domains at different levels: for each level [ it contains IP addresses of (2° —1) peers
with the same prefix as fp(p) up to level (I — 1) but a different domain at level [

(to improve route locality, a representative geographically close to p can be chosen),
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e a namespace set L that contains identifiers and IP addresses of || L|| peers that are

numerically close and centred around fp(p) which is used for routing too and

e a neighbourhood set M storing identifiers and IP addresses of || M| peers that are

geographically close to p and which is useful for network maintenance. Note that
this set has been dropped in later versions of Pastry [15]. The following descriptions

however are based on the original version.

While the choice of b influences the size of the routing table (ca. [logy(n)] - (20 — 1)
entries, n = ||P||) and the average routing path length, the sizes of ||L| and ||M]| can

be chosen arbitrarily and are typically 2> and 207! respectively. Using those tables, a

message to resource r arriving at peer p is routed as follows:

if fr(r) is in the range of the two farthest nodes in p’s namespace set N(p):

Forward message to p; € N(p) so that |fr(r) — fp(p;)| is minimal (possibly p).

else if p’s routing table contains a node that shares a longer prefix than p:

else:

Forward the message to that node.

Forward to a known node (from the routing table, namespace set or neighbourhood

set) that shares a prefix at least as long as p but is numerically closer to 7.

Although the third case creates a worst-case with linear performance (in the number

of nodes), Rowstron and Druschel [38] argue that this is very unlikely due to the uniform

distribution of node identifiers and give an average routing path length of [logys (n)] hops.

Nodes joining a Pastry network need to perform the following 6 steps which involve

O(logys(n)) remote procedure calls:

1.

2.

Find a Pastry node p; by using some external mechanism.

Choose a node identifier (at random), contact the peer py currently responsible for

resources with that identifier using normal routing.

. Update its routing tables using the neighbourhood set of p; and the namespace

set of py as approximations of its own neighbourhood and namespace sets. Fill the

routing table with information from the nodes the join message came along.

. Improve those approximations by requesting the state of the nodes in its routing

table and neighbourhood set.

. Notify peers that need to be aware of the new node and send them its own state.

. Transfer resources according to the new responsibilities.

18
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2.1. Distributed Hash Tables (DHTS)

Node failures are detected when a node tries to contact another node in its routing
table or namespace set. The latter is repaired by using an appropriate node of the
namespace set of the live node with the largest identifier in the direction of the failed
node. Repairing a representative in the routing table involves contacting another repres-
entative at the same level and asking it for the required connection or continuing with
requests to nodes at higher levels. The neighbourhood set can be repaired by requesting

the neighbourhood sets of the other live nodes in it.

2.1.4. Chord

Chord [41] places identifiers of m bits on a circle modulo 2™ and performs every cal-
culation modulo 2™. A secure hash function, typically SHA-1 [7], is used for mapping
resources and peers to this identifier space (m = 160 in case of SHA-1). fp maps peers
to identifiers by hashing their IP address and fr hashes the key of a resource. Using
consistent hashing, M maps a resource r € R to the peer p € P whose identifier is equal
to or follows r’s identifier in the identifier space. That is if predecessor(p) denotes the
predecessor of a peer p on the identifier circle, p is responsible for all resources with
identifiers within (fp(predecessor(p)), fp(p)]. Note that Chord does not use an explicit
load balancing scheme but instead relies on consistent hashing with the use of virtual
servers.

Chord nodes store routing information about m nodes in a so-called finger table. The
i’th finger of peer p’s table, 1 < i < m, points to the node p’ whose identifier succeeds
fr(p) by at least 21 i.e. p.finger[i] = M(fp(p) +2"1), p.finger[l] = successor(p).
Note that consecutive fingers can point to the same node if there is no peer between their
designated identifiers. Additionally to the finger table each node maintains a pointer
to its predecessor to simplify node join and leave operations. Figure 2.2 shows such a
node’s complete routing state (including its finger table) in an exemplified Chord ring.

Routing uses those fingers as shortcuts to reach the destination with fewer hops than
using successor links alone (which would suffice for routing correctness and result in
O(n),n = || P|| hops)). If peer p needs to find the node p’ which is responsible for key k,
it searches its finger table for the node j whose identifier immediately precedes k and asks
j for the node it thinks is closest to k. This procedure is repeated until the immediate
predecessor of k is found, whose successor is then the node responsible for k. Note that
those messages could also be forwarded to the nodes recursively instead of implementing
an iterative approach as described here. Because the fingers provide shortcuts half-way,
quarter-way,. .. around the circle and the distance to the destination halves in each step
this results in O(log(n)) nodes to contact (with high probability?).

with high probability means probabilities of at least (1 — O(n~")), n being the system size
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2. Background / Related Work

Figure 2.2.: Chord ring with m = 6 and 16 nodes showing the routing pointers of node n8 and
all nodes’ responsibilities in grey (associations with identifiers).

Nodes joining an existing Chord ring need to take the following steps:
1. Find a Chord node p; by using some external mechanism.

2. Initialise its predecessor and finger pointers by asking p; to look them up or copy
from a neighbour’s finger table and find the correct values on its own (the neighbour

of the to-be-inserted node p can be retrieved by asking p; to look up M (fp(p)) ).

3. Contact (existing) peers that need to be aware of the new node and update their

predecessor and finger pointers.
4. Transfer resources according to the new responsibilities.

Alternatively, step 3 could be omitted if the Chord nodes periodically run a stabilisation
protocol that fixes their finger tables. Note that this would also allow Chord to handle
concurrent joins.

To deal with node failures first recall that Chord only needs to maintain correct
successor pointers in order to work properly. To overcome failures of successor pointers,
each peer stores an additional list of r successors and uses the first live node in that list
in such case. The stabilisation protocol mentioned above also ensures that the finger
tables are corrected in case of node failures. Meanwhile, alternative nodes to forward
routing messages to are found in the finger table (using the preceding finger to the failed

one) or in the successor-list.
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Both, a node joining and leaving a Chord ring will require O (logQ(n)) messages to be

exchanged in order to re-establish the routing state of affected nodes.

2.1.5. Conclusion

The previously presented DHTs show that realising a distributed hash table can be done
in many different ways while still maintaining the goal of efficient resource look-ups (in
terms of visited nodes) with only a small fraction of the system known to a node. CAN
puts its resources and peers in a d-dimensional coordinate space and requires each node
to maintain 2d neighbour links. By using simple forwarding based on the geometric
distance of a node to a target resource, it achieves average routing path lengths of
(d/ 4)(n1/ 4) hops and allows simple request load balancing by routing requests through
different nodes in the direction of a target. Pastry and Chord both map their nodes
and resources to a one-dimensional circular name space with addresses between 0 and
2™ — 1. Pastry further sub-divides those identifiers into levels of b bits and requires a
node to maintain a routing table of size [loggs(n)] - (2° — 1) as well as a namespace and
neighbourhood set of fixed sizes. Using prefix-routing the average number of hops during
routing is [loggs (n)] with a worst-case of O(n). Additionally Pastry allows replication on
a per-resource level which can be set at a resource’s insertion and also provides request
load balancing. Chord on the other hand uses finger tables of size m to point to nodes
responsible for an exponentially increasing key distance from the nodes’ own keys and
achieves routing path lengths of O(log(n)) with high probability.

Except for the request load balancing provided by CAN and Pastry, those three DHT's
do not implement any explicit load balancing algorithms to balance the load among the
nodes but instead rely on the (passive) load balancing provided by consistent hashing
with the help of virtual servers (Chord). Without virtual servers this results in each node
being responsible for an O((log(n) + 1) - 1/n) fraction of the available resources which
is brought down to O(1/n) using virtual servers. Further improvements (even without
virtual servers) are possible using explicit load balancing algorithms (ref. Section 2.4).

Despite their differences, those DHT's all provide a common set of functionality which
allows them to be deployed to the needs of the user and be replaced by one another.
However, they only allow simple requests like retrieving resources for a set of single keys

and lack support for further extensions such as range-queries covered below.

2.2. DHTs with Range Queries

One way of implementing range queries is to build them on top of ordinary DHT's such as
the ones described above. Multiple dimensions, i.e. possible attributes in range queries,

would be reduced to one dimension using space-filling curves and then split into several
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ranges which each serve as a single key that is then stored in the DHT [9, 17, 22] (also see
Figure 2.3). Such partition needs to be implemented with care because too few fractions
lead to poor load balance and too many will increase look-up costs as several of them may
need to be retrieved in order to answer a single range query. The same happens for large
multi-dimensional range queries. Another disadvantage is the increased maintenance

cost this additional layer imposes on the network.
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Figure 2.3.: Example of using a space-filling curve: Patches group coordinates and are then
mapped to one dimension according to the progression of the Hilbert curve (approz-
imation level 4) drawn in red. (map: Marble [2], curve: Wikipedia [6])

Because of these disadvantages, specific DHT's were created that support range queries
out of the box. Mercury [12] and Chord” [39], for example, use key-order-preserving
hash functions which allow significantly lower overhead in design complexity and better
query performance (in terms of visited nodes per range query) compared to the method
depicted above. The following sections will give a short overview of those two imple-
mentations which work a bit differently than ordinary DHTs and need to deal with a
new set of problems, e.g. significant load imbalance based on the key distribution of

their resources.

2.2.1. Mercury

Resources in Mercury [12] consist of a list of (attribute,value) pairs with attributes
supporting int, char, float and string data types. Queries can be created using
multiple filters on given attributes which together form a conjunction (disjunctions of
filters need to be emulated by issuing a single query for each of them).

Mercury partitions its peers into several attribute hubs H, each denoting a group
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that is responsible for a single attribute a. The number of hubs should be reasonably
small but nodes can be part of several such hubs. Within a single hub H, each node
is responsible for a contiguous range of an attribute a and together the nodes form a
circular overlay based on that attribute. This range is assigned to a node when it joins
the network. Furthermore, resource r is stored at each node that is responsible for any
of its attributes in any hub and is thus sent to every hub H, with a € r when it is
inserted into the network.

Processing a query first involves a selection of a (single) hub through which the message
is routed. Within that hub the query is processed by all nodes which have potential
matches. Selecting a hub is therefore crucial for getting a good routing performance and
should be done by evaluating the selectivity of each filter of a query. In-hub-routing
works by sending the query to the node that is responsible for the first value of the hub’s
attribute and forwarding it to subsequent nodes still within the range of the query. For
that nodes store links to their predecessor and successor nodes within each hub and links
to (at least) one node in every other hub. For better robustness to node failures, nodes
could alternatively store a (small) number of those links instead of just one.

Similarly to Chord this system would result in O(n), n = ||P|| hops required for
processing a query. To provide more efficient routing, k long-distance links are added
to the nodes’ state (also see the example given in Figure 2.4). Note that k could be
different for each node but let’s assume that each node contains no more than 2k of
such links whose construction is given as follows. For each link /; a node p responsible
for the range [a;, a,) of attribute a draws a number z € [1/n, 1] = J using the harmonic
probability distribution function p(z) = (n-log(z)) ™! for z € J and stores the node that
is responsible for the value (a, + (amaz — @min) - ) within H,. Queries are then forwarded
to the node among the long-distance links that minimises the (clockwise) distance to the
requested attribute value. Assuming node ranges are uniform, a node responsible for
the first value in a given range can be reached with O (log®(n) - 1/k) hops (including the
first hop which decides the hub to route in).

Constructing O(log(n)) long-distance links in that manner also enables Mercury to
allow uniform random sampling of nodes which is used to gather histograms of system
statistics, e.g. load distribution, node-counts and so on. This provides information
needed to create the links at all (the number of nodes) and may also be used for imple-
menting a load balancing scheme. Mercury uses a load balancing algorithm similar to
the one presented by Karger and Ruhl [30]. Both are described in Section 2.4.2.

Nodes joining Mercury need to complete the following steps:
1. Find a Mercury node p; by using some external mechanism.

2. Obtain a list of representatives of each hub by querying p;.
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x[0..100]

x[101..250]

x[751..900]

x[651..750]

X[401..650] y[p..s]

Figure 2.4.: Mercury network with Hubs H, and H, showing node nd’s predecessor, successor,
cross-hub (h) and k = 3 long-distance (ld) links and each node’s responsibilities
inside its hub.

3. (Randomly) choose a hub to join at, contact one of its members (p2) and become

its predecessor taking half of its values.

4. Copy routing state of po, create its own long-distance links and get hub represent-

atives different to the ones from po.

When nodes fail or leave the network, repairing successor and predecessor links is done
by using the successor and predecessor link lists mentioned before. Long-distance link
failures can be repaired by simply creating new links. Alternatively (and to deal with
many link failures) nodes can periodically re-create all links when the number of nodes
in the system changes substantially. Finally repairing cross-hub links can be achieved
by using a backup link, asking a neighbouring node for its links or (if both fails) using

the external mechanism used for node joins.

2.2.2. Chord” / Scalaris

Chord” [39] is a variation of the Chord protocol described in Section 2.1.4 and has
been implemented in Scalaris [3]. In its basic form it supports one-dimensional range
queries but can also be extended for multiple dimensions as described in [39]. It derives
from Chord by removing consistent hashing and instead using a key-order preserving
hash function to map resources to the identifier space, e.g. by storing the keys in
lexicographical order. Nodes are placed at such points of the identifier space that achieve
well-enough load distribution. This placement is managed by an explicit load balancing
mechanism which constantly changes the nodes’ responsibilities according to the current

system load. Schiitt et al. suggest to use the algorithm presented by Karger and Ruhl [30]
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but any of the algorithms described in Section 2.4 is suitable.

In order to keep the routing performance (number of hops required to reach a node
responsible for a random resource) at O(log(n)),n = || P||, the finger table is constructed
differently and operates in the node space rather than the key space. The first finger
is the node’s successor as in Chord and the ¢’th finger is created by asking the node at
finger (i—1) for its (¢—1)’th finger. This step is repeated as long as fingers point to nodes
succeeding the previous finger and not exceeding the current node. The resulting finger
table then contains at most [log(n)] fingers with the longest finger pointing half-way
around the node circle, the second longest quarter-way, and so on. It is also guaranteed

that no two fingers point to the same node (refer to Figure 2.5 for an example).

(30,35]

Figure 2.5.: Chord” ring with 2% possible IDs and 16 nodes distributed to balance a distribution
of resources with hot spots around 6, 24 and 36 (node responsibilities in grey).

Although the routing algorithm stays the same as in Chord, the number of hops
required to reach a desired node is now guaranteed to be O(log(n)). This is achieved
because fingers in Chord” definitely decrease the distance to a target node by factor 2
each routing step and not just with high probability. Also (re-)building the finger table
requires only O(log(n)) messages compared to O(log?(n)) in Chord.

2.2.3. Conclusion

The aforementioned DHTs show that support for range queries can be achieved with
little less or no overhead to ordinary DHTs. In fact, Chord® even improves Chord’s

performance by guaranteeing routing performance of O(log(n)) hops and changing only
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little compared to Chord. Mercury supports multi-dimensional range queries and uses a
so-called Hub for each of a resource’s attributes. Using k long-distance links it reaches
a designated node within O (logQ(n) . 1/k) hops. Furthermore by the way those links are
generated, Mercury supports random sampling of nodes which it uses to gather system
statistics such as estimates of the average load and the number of nodes.

Both DHTs may use arbitrary load balancing algorithms in order to even out the
load imbalance that is inherent in the use of order-preserving hash functions. Chord”
suggests an algorithm proposed by Karger and Ruhl [30] while Mercury implements its

own variant of this algorithm. Refer to Section 2.4 for a description of those algorithms.

2.3. Gossiping

Gossip algorithms can be advantageous for Distributed Hash Tables in several ways.
They can for example provide another way of learning random nodes and can be used to
adapt the topology of the overlay network to changes. Both is provided by the Cyclon
framework [43]. They can also be used to aggregate (global) information with high
confidence and low overhead which is of more interest here. Such information includes
approximations of values like the minimum, maximum and average load, network size,
variance and standard deviation [28].

A generic proactive algorithm calculating those values could for example work by
letting each node periodically select another node to exchange information about its
local estimate of the desired attribute. Both nodes update their state according to an
aggregation-specific update function that improves a node’s estimate with the help of
the other node’s estimate. In case of average load computation the nodes could start
with local estimates such as their own load. The update function would receive the two
estimates avg, and avg, of the nodes p and ¢ and both nodes will update their local
estimates to (avgy, + avg,)/2 thus achieving a better estimate. Note that the sum of all
estimates remains the same as the sum of all nodes’ loads and can thus be used to further
aggregate the average load the same way. Similarly the minimum and maximum can be
calculated by returning min(avgp, avgy) and max(avgy, avg,) respectively and can also
be used to collect information about the & minimum/maximum loads (and the nodes
holding those values). The variance can be computed by calculating the averages of the
nodes’ loads and their squares since Var(l) = avg(i?) — avg(l)?, same for the standard
deviation o; = y/Var(l).

This method provides exponential convergence to the desired value at each node, but
best performance can only be guaranteed if the node selection is truly random, e.g.
uniform. Nevertheless, this protocol also works by (randomly) selecting nodes from a

list of neighbours that is based on the topology of its network or by making random
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walks. Experiments conducted in [28] show that the more uniform the random sampling
is the faster this algorithm converges.

The following chapters will make use of gossiping algorithms only to retrieve the
aforementioned estimates of global information in order to improve load balancing. For
an overview of further uses of such algorithms on structured overlay networks refer to [23]

and the papers referred there.

2.4. Load Balancing in DHTs

As depicted above, some distributed hash tables include (simple) load balancing tech-
niques with some even being immanent in their design, e.g. by using consistent hashing.
Their ability to balance load among the system however varies greatly and can generally
be improved by deploying a different load balancing algorithm that suits a specific need.
That might include a better partition of the address space among the nodes or, more
generally, a better balance of an arbitrary load like the number of stored resources, a ma-
chine’s workload including computing power or bandwidth or any other. Also, although
not explicitly considered here, one might include node heterogeneity in any balance de-
cision. Other DHTS, in particular those supporting range queries, heavily rely on explicit
load balancing mechanisms because the distribution of the stored resources is retained

and may be highly skewed.

‘ Node i ‘ Node i+1 ‘ _Node i Node k Node j
| | | | |

— | \ | I o i

Node i ‘ / Node i+1 ‘ ‘ Node k ‘ . Nodei _  Nodej
\ |
[« | \ LT (_] | ]

(a) Slide (b) Jump

Figure 2.6.: Supported load balancing operations in arbitrary distributed hash tables.

Note that generic load balancing algorithms can only make use of techniques supported
by every DHT and cannot use features specific to a single one. It is for example possible
to adjust the responsibility of two neighbouring nodes so that one node takes some
resources or responsibilities off of the other. This process is called sliding and may be
supported directly by the DHT or by removing one of the two nodes and inserting it at
an identifier that will result in the desired behaviour. The second generic load balancing
primitive is jumping, that is a node leaves its current position dropping off all its load
and responsibilities to its successor and joining somewhere else in order to take off some
of other node’s load. Examples for both are presented in Figure 2.6 for a ring-based
DHT also showing the changes of every affected node.

The following sections will present several such load balancing algorithms which are
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structured as follows. Section 2.4.1 will describe algorithms that try to balance the
amount of identifier space each node is responsible for, followed by algorithms trying
to balance the actual number of resources in Section 2.4.2. Load balancing algorithms
relying on virtual servers or using replication are covered in sections 2.4.3 and 2.4.4.
Note that some algorithms’ classifications can be ambiguous in which case their main
aspects determine the section they are presented in. Further categorisations could be
made in order to differentiate between passive and active algorithms, i.e. those that only
act on node or item inserts or deletes and those that actively probe the network every
once in a while to search for nodes to balance. This additional classification is included
in the overview of all presented algorithms given in Section 2.4.5

Note that (until otherwise stated) algorithm descriptions in the following sections will
be restricted to ring-based DHT's like Chord which can be done without loss of generality

(special care only needs to be taken with the multiple dimensions of a CAN network).

2.4.1. Address-Based Load Balancing

Address-based load balancing algorithms aim at partitioning the identifier space uni-
formly among the participating nodes so that each node is responsible for an equal range
of identifiers. This is mostly useful for DHT's using consistent hashing (see Section 2.1.1)
where resource identifiers are spread uniformly among the identifier space as well and
do not follow a particular distribution. Recall that using uniform and independent hash
functions for both nodes and resources still results in an O(log(n)) imbalance. Using
virtual servers reduces this imbalance but introduces higher maintenance costs due to
the increased number of connections each real host manages. The following sections
will describe several address-based load balancing algorithms that will try to reduce the

imbalance without using virtual servers.

Karger and Ruhl

Karger and Ruhl’s address-space balancing scheme [30] first adds an ordering to addresses

2b+1 !
of the form © = + in the circular identifier interval I = [0, 1] such that < x—, &
y oy

Y
(y <) or (y =19 and x < 2’). Equation 2.1 shows the order of some addresses with

this specification.

0—1<1<1<§<}<§<§<Z<i<3<3<1 (2.1)

72 74 "4 "8 "8 "8 8 16 16 16 16 '
Secondly, each node maintains a set of O(log(n)) potential positions it can place itself
at (solely dependent on the node itself, e.g. on its IP address). It now occasionally

checks the address range between each such position and the succeeding active node on
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the ring and places itself at the position with the range that covers the smallest address
under the given ordering. It can be observed that nodes place themselves at positions
close to all small addresses (under the given ordering) which distributes them nearly
uniformly among the address space (each node is responsible for an O(1/n) fraction)
with high probability thus achieving a ratio between the largest and smallest interval of

o(1).

Bienkowski et al.

Bienkowski et al. [13] give a load balancing algorithm for ring-based DHTs which estim-
ates the total number of nodes by having each node maintain an additional connection to
a random position in the ring (a marker) and count the number of markers that fall into
the interval of the node itself and some of its successors. Let ¢ and m be the length of the
encountered interval and the number of encountered markers respectively, then a node
continues to add the succeeding node’s data (interval length and number of markers) as
long as m < log(1/i). At the end, i is decreased so that m = log(1/4) using the inform-
ation of the last visited node. Let n; be the solution of log(x) — log(log(x)) = log(1/7).
It follows that with high probability n; is within constant factors of the real number of
nodes n and there are global constants v,u so that v-n; <n < u-n;.

Bienkowski et al. now use these values to define three categories of intervals: short

2-u )
o and maddle

intervals of lengths in between. Note that the given interval definitions have been chosen

4
intervals of length at most ——, long intervals of length at least
vy

so that middle and long intervals have lengths of at least 4/n and halving long intervals
never creates short intervals.

In the algorithm, nodes with short intervals whose predecessors also cover short inter-
vals try to contact nodes with long intervals with probability 1/2 and move to a position
which splits those nodes’ intervals into halves. The search for suitable partner nodes
starts at a random position on the ring and continues to look at up to 6 - log(u - n;) of
the succeeding nodes. If routing messages to random destinations is of complexity R
then this algorithm achieves a constant ratio between the largest and smallest interval
in O(1) rounds with each node incurring a communication cost of O(R + log(n)) per

round.

Manku et al.

Manku [34] describes an algorithm for choosing appropriate node identifiers upon inser-
tion by contacting the node responsible for a random identifier as well as ¢ - log(n) of
its neighbours (using a small constant ¢) and selecting an identifier so that the largest

covered interval among those nodes is split into halves. Node departures are handled
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similarly by moving at most one node of the c¢-log(n) neighbours of the departing node
taking into account the intervals they cover. This algorithm achieves a ratio between the
largest and smallest node interval of at most 4 using ©(R + log(n)) messages, R being
the number of messages needed to contact a random node of the used DHT, and can be
tuned to achieve a ratio of (1+¢€),e > 0 at the cost of re-assigning O(1/¢) nodes instead
of one node and an increased message cost.

Later Kenthapadi and Manku [31] generalise the scheme of using random and local
probes describing algorithms that conduct r random probes each followed by a local
probe discovering v of its neighbours and selecting an identifier to split the largest of
those intervals. They state that with - v > ¢-log(n) the ratio between the largest and
smallest interval is at most 8 with high probability where c is a small constant. n can
be estimated from the first random probe to ensure that condition. Such schemes use
O(r- R+ v) messages which allows fine-tuning of the number of local and random probes

with respect to the message cost.

Giakkoupis and Hadzilacos

Giakkoupis and Hadzilacos [24] employ the power of multiple random choices paradigm
to create a load balancing algorithm they extend to support heterogeneous nodes. Their
algorithm ensures that each key interval a node is responsible for has a length of 1/ 24 for
some constant d € N and its endpoints are integer multiples of its length. It adjusts node
responsibilities only at join and leave operations and works as follows: Nodes joining
the system first contact the nodes responsible for a logarithmic (in system size) number
of points selected uniformly and independently at random. If 1/ 29 is the length of the
interval the node contacts to join the DHT, then [ajoi - d + bjoin | identifiers are looked
up for some positive system-wide parameters a;oin, and bjein. The node then splits the
largest interval in halves. Similar to this nodes leaving the system will again issue a
logarithmic number of requests for nodes ([ajeave * (d 4+ 1) + bjeque | identifiers if 1/ 2% is
the length of the node’s interval), merge the smallest interval with its adjacent interval
and assign the leaving node’s interval to the node removed due to this merge. As in the
algorithm by Manku, a ratio between the largest and smallest node interval of at most 4
is reached but O(R - log(n)) messages need to be exchanged.

In the weighted version of the protocol nodes have an associated weight (an integer
power of 2 with a system-wide upper bound W) proportional to their power, e.g. com-
puting power, bandwidth or storage capacity, and are organised in groups containing
adjacent nodes. The same technique as in the unweighted version is now used to balance
the intervals of those groups while an additional group management protocol handles the
balance inside a group and splits or merges groups in order to keep the sum of all weights

of its nodes between W and (2W —1). Therefore the ratio between the largest and smal-
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lest group interval is 4 and the overall balance depends on this protocol. It could either
achieve a perfect balance inside each group, requiring that up to all its nodes change
their responsibilities, or settle for only a few changes to the nodes’ associations and

achieve an adequate ratio of its nodes’ largest and smallest intervals.

2.4.2. Item-Based Load Balancing

Item-based load balancing algorithms try to balance the actual distribution of the re-
sources among the nodes and do not rely on a uniform resource distribution in the
identifier space. This makes them particularly suitable for range-queriable DHT's that
use order-preserving hash functions. Exemplary distributions of resources that result
from an alphabetical storage can be seen in Figure 1.1 on page 9 and Figure 4.1 on
page 55.

Although some of the depicted address-based load balancing algorithms may be ex-
tended to support item-based load balancing as well, e.g the random and local probes
used by Manku et al. and the power of multiple random choices paradigm incorporated
by Giakkoupis and Hadzilacos could use the node’s actual load instead of the covered
address space, there are also some specific algorithms handling this category of load
balancing which are introduced in the following sections. Also note that item-based load
balancing generally allows arbitrary definitions of load that could for example take into
account a node’s capacity, a resource’s size and popularity, network latency and more or

combine any of those.

Karger and Ruhl

Karger and Ruhl’s item balancing algorithm [30] is a randomised load balancing al-
gorithm that lets each node n; occasionally contact another node n; at random and tries
to balance those nodes if their load differs by at least a factor of 0 < e < /4 which is a
system-wide constant. It uses the two generic load balancing primitives slide and jump
introduced above to adjust how an interval is split between two neighbouring nodes and
to move a node in order to capture some other node’s resources respectively. Note that
when node n; is removed due to such a move, n;’s successor n;;1 gets all of n;’s resources
which can be a severe burden for n;41.

After n; and n; establish contact, Karger and Ruhl’s algorithm first checks whether
n; is n;’s successor in which case the two can be directly balanced. Otherwise it tries to
balance the most loaded node of the three involved nodes n;, n; and nj4q (lines 16-21
in listing 2.1) by either balancing n; with its successor or moving n; to a position that
would result in n; receiving half of n;’s resources.

Karger and Ruhl prove that if each node contacts ©(log(n)) random nodes (n being
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karger_item (DHT d, double e€) {
foreach (Node n; € d) {
Node n; = d.getRandomNodeExcept (n;); // get another random node
if (load(n;) < € - load(n;)) A
balance (n;, n;);
} else if (load(n;) < € - load(n;)) A{
balance (n;, n;);
}
}
+
balance (Node n;, Node n;) { // load(n;) > load(n;)
if (ny == njy1) {
slide(n;, n;); // equalise load of n;, n;
} else {
if (load(njt1) > load(n;)) {
slide(n;, njt1); // equalise load of nj, njti
} else { // load(nji1) < load(n;) -> move n;, balance with n;
jump (n;, n;); // move n; to take half of m;’s resources
// mnj’s resources are moved to mnjii
}
}
}

Listing 2.1: Item-based load balancing by Karger and Ruhl.

the number of nodes in the system, lq,y the nodes’ average load), this will result in
every node having a load of at most (16/€) - Iy with high probability. Contacting
another Q(log(n)) nodes will bring all nodes’ loads to at least (€/16) - lgyg. Increasing
the number of nodes to contact when searching for a node to balance with will increase

the probability of those bounds.

Bharambe et al. (Mercury)

In Mercury [12] (ref. Section 2.2.1) a variant of Karger and Ruhl’s algorithm is used
based on the histograms the DHT provides. Firstly, the local load ljpeq1(n;) of a node
n; is defined to be the average load of itself, its successor and its predecessor. Secondly
Mercury’s histograms are used to retrieve an estimate of the system’s average load l4y,-
A node n; is then said to be light if ljocqi(1i)/lavg < 1/ and heavy if this ratio is greater
than «. This ensures that light nodes have only light neighbours with high probability. If
a light node’s neighbour is heavy, the two nodes need to balance their load. Additionally
heavy nodes probe the system for light nodes which (if found) leave their current position

and move to the heavy node in order to take some of its resources. Listing 2.2 shows an
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implementation of this algorithm.

mercury (DHT d, double a) {
foreach (Node n; € d) {
if (isLight(n;)) {
if (isHeavy(miyr1)) {
slide(n;, niy1); // equalise load of n;, N1
} else if (isHeavy(m;—1)) {
slide (nj—1, n;); // equalise load of ni—1, n;
}
} else if (isHeavy(n;)) A
Node n; = d.getRandomNodeExcept(n;); //get another random node
if (isLight(n;)) {
// n; may be lightly loaded = use most loaded mode of mn;,n;—1,Nit1
Node n; = getMostLoaded (n;, n;—1, Ni+1);
if (nj.isNeighbour0f (n;)) {
slide(n;, n;); // equalise load of n}, n;
} else if (n) # n;) {
jump(nj, n}); // move n; to take half of nl’s resources
// nj’s resources are moved to njyi
}
}
}
}
}

Listing 2.2: Ezample implementation of the load balancing algorithm by Bharambe et al.

Provided that o > v/2, the ratio between the highest and average load (as well as the
ratio between the average and lowest load) is bound by a factor of a. Also note that
by tolerating a small skew, i.e. by setting o appropriately, unnecessary item movements

due to balance operations during load oscillations can be prevented or at least reduced.

Ganesan et al.

Ganesan et al. [21] describe a load balancing algorithm for range-partitioned data that
can also be applied to DHTs. It tries to balance load among nodes whenever the load at
a node increases or decreases by a certain factor § and is called the Threshold Algorithm.
More precisely they define a sequence of thresholds T; = |c- 5iJ ,4 > 1 for some constant
¢ > 0 and whenever a node’s load increases to a (7, + 1) the algorithm tries to adjust
its load as follows. If one of its neighbours has a load of at most 7},,_1 the node balances
its load with the neighbour with the smallest load. Otherwise the node (let it be n)
searches for the least-loaded node nj and, if n;’s load is at most T},_9, tells it to leave

its current position (moving all its items to its successor) in order to take over half of
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n’s load. This might result in further recursive invocations of this adjustment at the
affected nodes. See listing 2.3 for a complete description of the load balancing procedure

performed if such interval is exceeded due to a resource’s insertion.

adjustLoad (Node n;) { // let load(n;) € (Tim,Tim+1]
Node n; = minLoadedNeighbour(n;); // least loaded neighbour
if (load(ny) < Tp-1) { // adjust neighbours
slide(n;, n;); // equalise load of n;, n;
adjustLoad (n;) ;
adjustLoad (n;) ;
} else {
Node np = findLeastLoadedNode () ;
if (load(ng) < Tpm_o) {
jump (ng, n;); // move ny to take half of n;’s resources
// ny’s resources are moved to Ny
adjustLoad (ng4+1); // adjust load of ni’s old successor
}
}
}

Listing 2.3: Method used to adjust load in the Threshold Algorithm by Ganesan et al. when a
resource insertion results in node n;’s load exceeding a threshold.

Load adjustments due to resource deletions are handled accordingly: if the node’s load
drops below a threshold T;, it tries to balance with the highest-loaded neighbour with a
load of at least T}, 1 or tries to move to the highest-loaded node of the system to take
half of its elements if that node has a load of at least T},,+2. This definition reduces too
hasty load balancing operations - and thus resource movements - in case of oscillating
loads around the threshold T,,.

Canesan et al. show that each § > ® := (v/5 4 1)/2 ~ 1.62 can be chosen achieving a
ratio of 6% between the highest and lowest load. They also state that finding the least
and most loaded nodes (line 8 of the adjust Load method in listing 2.3) is not necessary
for their results to hold true. Instead the node could move to any node that violates
a GlobalBalance condition, i.e. for node n; with a load in the interval (7,_1,7}] find a

node ny with a load not in the interval (7)_3, T} 12].

Aspnes et al.

Aspnes et al. [10] describe a load balancing algorithm for range-queriable data structures
that uses arbitrary definitions of load and groups keys into buckets with each peer storing
some of them (similar to virtual servers). A “free-list” of buckets is maintained, e.g. by
using a separate overlay network or storing all such buckets near a fixed key, and is used to

take load off of heavily loaded nodes. Buckets are further divided into closed and open
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buckets depending on a certain threshold based on their load. They are furthermore
partitioned into groups of two (closed, open) or three buckets (closed, open, closed) and
retain this structure by transferring resources as needed, e.g. when a resource is to be
inserted into a closed bucket, it moves one of its resources to the neighbouring open
bucket and accepts the new resource. If an insertion makes an open bucket closed, one
of the buckets from the free list is taken and inserted accordingly (this may transform a
group of two into a group of three or a group of three into two groups of two buckets).
Deleting resources works similarly and may lead to empty buckets which are returned
to the free list during re-structuring.

A bucket’s size can be changed by adjusting the threshold that classifies a bucket
as closed and requires re-structuring the bucket groups. Such changes will be enforced
when the overall system load increases or decreases sufficiently. A centralised version of
this algorithm can for example double this threshold when the free list becomes empty
and halve it when half the number of nodes is in that list. This results in a worst-case
maximum load of 4 times the average load but requires a global controller to adjust the
bucket size. It also creates heavy load movements during such migrations.

Aspnes et al. also describe a distributed version which resizes the buckets based on
an estimate of the system’s average load (gained by gossiping techniques) and prevents
simultaneous resource migrations. In order to achieve the latter, buckets are again
organised into groups of two pairs (closed, open) or one triple (closed, open, closed).
Let M be the load of a closed bucket and /4 < e, < 1/2, 1/8 < ¢4 < 1/4 be random
expansion and congestion thresholds for a group g of buckets. g performs localised
expansion (doubling its threshold to classify nodes as closed) if its estimated average
load [ satisfies [ > e4 - M and performs localised contraction (halving the threshold) if

[ < ¢4 - M allowing each bucket group to migrate separately.

Charpentier et al.

An alternative to using gossiping to gather approximations of global knowledge is to
use cooperative mobile agents. Those agents, while moving from one node to another,
could also be used to initiate load balancing operations. Charpentier et al. [16] use
that technique which is solely sketched here to present a rather different approach using
techniques from the research field of mobile agents. In their algorithm agents gather
approximations of the system’s average load. They first start in an initialisation phase
which tries to estimate the average load to a certain degree of accuracy. Several agents
can be supplied and cooperate with each other to improve their estimates and speed-up
their initialisation phase by exchanging their data. In their second phase agents order
nodes with loads higher than their calculated average to migrate some of their resources

to either or both of their neighbours thus achieving some load balancing.
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2.4.3. Virtual-Server-Based Load Balancing

Several research papers focus on DHT's that use multiple virtual servers on each real peer
and balance load by moving those virtual servers. As depicted above, using consistent
hashing and deploying Q(log(n)) virtual servers (in a system with n real peers) randomly
along the identifier space will lead to each peer being responsible for an O(1/n) fraction
of the stored resources (ref. Section 2.1.1). Another advantage is that each peer can
easily adjust its load by moving some of its virtual servers to any other peer instead of
just being able to shed load to its neighbours or move itself. This however comes at
the cost of maintaining (log(n)) additional network connections, an increased number
of routing hops while looking up random resources as well as increased churn on node
failures which are generally the reasons why the use of virtual servers is not preferred.
Nevertheless the following sections show some algorithms that make use of this technique

as it has been of interest in past research and still is.

Rao et al.

Rao et al. [36] present three different load balancing schemes that try to move virtual
servers from heavily to lightly loaded nodes. Load in their case can be any single resource,
e.g. storage, bandwidth or CPU capacity, so this algorithm could also be classified as
an item-based algorithm. Nodes are considered heavy if their current load exceeds their
target load and are otherwise light. Balancing a heavy peer p;, with a light peer p; will
move the virtual server v to p; that does not make p; heavy and is the lightest virtual
server making pp, light or the heaviest virtual server in case pj cannot be made light that
way. The three schemes now differ in how heavy and light nodes are matched in order
to start balance operations.

The One-to-One Scheme lets light nodes occasionally probe other nodes at random
and virtual servers are transferred if the probed node is heavy. Letting only light nodes
try to contact heavy nodes (instead of heavy nodes trying to contact light nodes) will not
introduce additional workload on heavy nodes and will therefore not increase the risk of
highly loaded systems getting overloaded or trashed due to unnecessary and unsuccessful
probes. The second scheme implements a One-to-Many matching technique by letting
light nodes register with one of d system-wide directories which are also maintained by
the DHT, e.g. by storing a directory at the node responsible for its key. Heavy nodes
may now look at such directories and pick the least loaded node to shed some of their
virtual servers to. This scheme is now extended by registering heavy nodes with those
directories as well and letting the node that stores a directory occasionally match heavy
and light nodes in a Many-to-Many fashion to optimise the load balance even more.

Rao et al. [36] now analyse their algorithms in a static setting, i.e. an initial load is

36 DHT Load Balancing with Estimated Global Information



2.4. Load Balancing in DHT's

distributed among a fixed number of nodes. Neither new resources are added or deleted,
nor are nodes. Using the total number of moved load and the number of probes the
algorithm needs to achieve a state with only light nodes, they conclude that the amount
of load moved is not dependent on the used scheme although the one-to-one scheme
needs more probes in order to succeed. Also in the one-to-many scheme with 16 nodes

per directory most heavy nodes succeed in getting light by contacting only one directory.

Godfrey et al.

Godfrey et al. [25] further extend the many-to-many scheme introduced by Rao et al. and
analyse it in dynamic networks, that is nodes and resources are dynamically added and
removed. In their version, each node initially contacts a random directory and sends its
load and capacity information and repeats to send this data to another random directory
whenever it transfers any load. Additionally if a node becomes heavy, i.e. its current
load is above a given emergency threshold, it contacts its chosen directory and tries to
shed load immediately. Directories on the other hand create schedules for transferring
load among all their known nodes and execute them periodically. They also perform the
immediate balance requests issued by their nodes. Virtual servers are transferred based
on a greedy algorithm that moves each heavy node’s lightest server to a common pool
and matches each of those servers (starting from the heaviest) to the node that suffers
the least impact of such transfer relative to its capacity.

Their evaluation shows that using periodic load balancing with an emergency threshold
allows selecting significantly larger execution periods and thus achieves better node util-
isation with less load movement. They also show that the number of directories deployed
does not severely affect the achieved node utilisation and that by using 16 directories

node utilisation is only 3% higher than in a centralised approach (1 directory).

Chen and Tsai

In a recent paper, Chen and Tsai [18] try to improve the many-to-many scheme depicted
above by introducing ant system heuristics (ASH) to re-assign the virtual servers. Their
algorithm, called Dual-Space Local Search (DSLS), describes an iterative procedure con-

sisting of three stages:
1. Construct an initial solution for the current iteration using the ASH algorithm.

2. Improve this solution by evaluating further local solutions in its neighbourhood

both in terms of load balance and movement cost.

3. Update pheromone trails if a better solution was found.
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In step 1, pheromone variables 7;; are used to denote node j’s desire of taking virtual
server i (with a given maximum desire 7,4, used if i is already assigned to j). Now
with probability pg server ¢ is assigned to another node k£ with enough capacity and a
maximal 7;; and with probability (1 — pg) it is assigned to another node with enough

L, Vj € P. pg thus allows fine-
2 _kep Tik
tuning the algorithm between exploiting already found solutions (high values) or explore

capacity under the probability function p;; =

new variations (low values). If all nodes are fully occupied, a random assignment is used.

Step 2 first tries to find a good solution (if the first step hasn’t found any yet) by
shifting load from overloaded nodes to their neighbours and eventually further. If a
feasible solution is found, i.e. no node exceeds its capacity, a cost-reducing function tries
to minimise movement costs by moving servers back to their original location if possible.

Chen and Tsai’s evaluation shows that their variation achieves better load balance
than the previous implementation of the many-to-many scheme and moves only little
more resources than is necessary in order to balance their scenarios. In contrast to the
previous work though the number of deployed directories has a severe affect on their

algorithm which performs better with less directories.

Ledlie and Seltzer

Ledlie and Seltzer [32] use the multiple random choices paradigm to deploy an algorithm
that generates k different verifiable identifiers for each node at which the node can create
virtual servers. This algorithm, called k-Choices, primarily works at node joins where a
node chooses a target load and a maximum number of k/2 virtual servers to create. It
then creates new virtual servers as long as its target load and the total number of servers
are not exceeded. Each such join happens at the one of the still available identifiers which
results in the lowest cost in terms of difference between the target and real loads of the
two affected nodes. Additionally to this passive implementation, k-Choices can also
work actively and re-select identifiers at any time (not just at node joins) if the change
induces a big enough benefit, e.g. a node is over- or underloaded. Also nodes could
create more virtual servers or delete some.

During their experiments, Ledlie and Seltzer show that their active algorithm achieves
a good load balance for & = 8 identifiers. It was still able to do so under highly dynamic

networks and with large amounts of skewed load.

Godfrey and Stoica

A technique described by Godfrey and Stoica [26] can reduce the additional cost induced
by virtual servers by placing each peer’s k virtual servers in a O(k/n) fraction of the

identifier space instead of spreading them randomly. This way they can share a single set
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of network links. Godfrey and Stoica show that the ratio between highest and average
load can be reduced to (1 + €) for any € > 0 although increasing route lengths and
number of links to maintain by only a constant factor (if applied to an arbitrary DHT).
They further evaluate an implementation based on Chord using 2 -log(n) virtual servers

and achieve a ratio of less than 4.

2.4.4. Load Balancing using Replication

Sometimes replication is not only used to ensure resource availability in such highly
dynamic networks as DHT's, but is also suggested to carry out simple load balancing by
placing replicas at lightly loaded nodes thus evening out the overall imbalance. However
replication is not in the main focus of this work, so the following sections only briefly

describe some of the available techniques.

Byers et al.

Byers et al. [14] combine load balancing and replication techniques by making use of the
power of two choices paradigm. Each resource is assigned d different identifiers using
d different hash functions. It is then associated with the k& most lightly loaded peers
responsible for any of the identifiers. The rest of the peers may store redirection pointers
to those storage locations to simplify searches (resulting in increased maintenance costs).

Otherwise searches will be carried out for all possible identifiers in parallel.

Xu and Bhuyan

Xu and Bhuyan [44] collect information about the stored resources’ access history and
use this as their definition of load to balance the impact of requests to popular resources
among the (possibly heterogeneous) nodes. They first describe a static load distribution
algorithm which splits a node’s zone into two halves depending on its load (unlike its
key range) when a new node arrives. Secondly a dynamic load distribution algorithm
steps in when nodes become overloaded and balances their load among neighbouring
nodes (possibly including their neighbours as well, and so on). In a final step they
specify a replication scheme which enhances their access history with network topology
information and replicates resources to peers near a group of peers with the highest
request rates. Requests from those peers can now be redirected to the replicas to reduce

the access latency and the original node’s (access) load.

Pitoura et al.

Pitoura et al. [35] design a DHT which uses replication for efficient range query processing

and load balancing of resource accesses. For this they use a so-called multi-rotation hash
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function that assigns a resource multiple identifiers of an identifier ring. Whenever a node
becomes overloaded (in terms of request access load), it will add additional replicas at
some of the available identifiers and issue replication requests to its neighbours’ resources
as well. Replicating whole arcs of the identifier space will improve performance of range-
queries that start on a replicated resource location and continue at its original location’s
successor because its data is replicated to the current location’s successor as well. It
should also be mentioned that the underlying algorithm of this system can be applied
to different DHT's as well.

2.4.5. Conclusion

As can be seen from the previously described algorithms, the goal of balancing load in a
distributed hash table can be tackled from several angles. There are at first algorithms
which try to balance the address-space, i.e. give each node responsibility for an equal part
of the identifier space. Those algorithms rely on the uniform distribution of the resources’
identifiers in order to give each node an equal amount of resources to store. They are
therefore not suitable for range-queriable DHT's that are based on order-preserving hash
functions. Another kind of algorithms tries to balance an arbitrarily defined load by
moving items (resources) and nodes accordingly and are thus called item-based. Those
algorithms mostly concentrate on load being the size of all resources stored by a node
or the stored resources’ popularity (number of requests). Heterogeneous algorithms set
those into relation to a node’s capacity. An overview of all presented algorithms and

their classifications is given in Table 2.1.

Algorithm item/addr. active/passive Notes

Karger & Ruhl (1) [30] address-based active

Bienkowski et al. [15] address-based active estimates the network’s size
Manku [3/] address-based  passive (node)

Kenthapadi & Manku [31] address-based  passive (node)

Giakkoupis & Hadzilacos [24] address-based  passive (node)  a weighted version exists
Karger & Ruhl (2) [30] item-based active

Bharambe et al. [12] item-based active uses estimate of average load
Ganesan et al. [21] item-based passive (item)  uses least/most loaded nodes
Aspnes et al. [10] item-based passive (item) uses estimate of average load
Charpentier et al. [16] item-based active uses mobile agents, average load
Rao et al. [36] item-based active uses virtual servers (VS-based)
Godfrey et al. [25] item-based act+pass(item)  VS-based

Chen & Tsai [18] item-based act+pass(item)  VS-based, ant system heuristics
Ledlie € Seltzer [32] item-based act+pass(node)  VS-based

Godfrey & Stoica [20] address-based  passive (node)  VS-based

Byers et al. [14] item-based passive (item)  uses replication

Xu & Bhuyan [/4] item-based active replication, file access history
Pitoura et al. [35] item-based active uses replication

Table 2.1.: Overview of the presented load balancing algorithms.
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Comparing the algorithms’ performance with each other is however not that simple.
At first, several metrics for performance exist. Some use the ratio between the highest
and the average load of the system, some the ratio between the highest and lowest load.
Others measure the variance of the fraction of address-space the nodes are responsible for
or the deviation from the average load. Secondly values are sometimes given in Landau
notation thus hiding constant factors that matter when comparing otherwise equally
well performing algorithms. Additionally the costs of achieving a certain performance,
e.g. item movements or the number of interchanged messages, are often not mentioned
either or are not comparable.

Further impairing the lack of comparisons is the fact that no common test scenarios
have been agreed upon which each algorithm can be tested with and that resemble the
different use cases of DHTs. For example some papers evaluate their algorithm(s) by
simulating them in a static setting, i.e. an initial load is distributed among a fixed
number of nodes and neither new resources nor nodes are added or deleted. Those
simulations mostly use load distributions that follow a certain probability distribution,
e.g. normal or exponential distributions. Other algorithms, especially passive ones, need
dynamic simulations as they only act when nodes or items are inserted or deleted. This
provides even more flexibility in setting up a test scenario. Furthermore most algorithms
also allow some fine-tuning by setting their parameters according to the scenario and

the needs of the user.
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3. Improving load balancing algorithms
with global information

This chapter will present the general concepts of adding estimates of global information
to existing load balance algorithms in order to improve their performance. It will start
introducing the underlying system model that describes the DHT the algorithms can
work on, the operations it supports and any further assumptions. It will then present
the (original) algorithms that have been chosen to exemplify how such information is
integrated and which affect it has. The final section will cover the changes that were made
to those algorithms and the ideas behind them. Detailed descriptions of all mentioned

algorithms in pseudo-code can be found in appendix A.

3.1. System Model

Let d be an arbitrary DHT that operates in the identifier space I = [0,m) C N that
wraps around at the end and forms a ring. On this ring a clockwise direction is defined
as going towards increasing keys possibly wrapping around at m — 0. An interval (a, b]
of this ring includes all keys that are encountered when traversing the ring clockwise
starting at (but excluding) a and stopping at b (inclusive). Note that it is possible that
a > b in which case (a, b] covers all keys greater than a and less than or equal to b.

Let d consist of n homogeneous nodes (peers) p € P, each being responsible for an

interval (ap, by] C I so that exactly one peer is responsible for any identifier id € I:

Vpiapj € P7 Di 7é Dbyt (apiabpi] N (appbpj} = (Z)
U (ap, bp] I
peP

The successor of peer p; is the peer p; which is responsible for the following interval, i.e.
ap; = bp,. A predecessor is defined analogously. From the previous definitions follows
that there is exactly one successor and predecessor for each peer. Connections between
those are maintained so that predecessor and successor pointers form a double-linked
list. Additional connections to further peers exist in order to allow efficient routing from

any peer of the network to any other.
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The DHT stores (arbitrary) resources, i.e. items, that are mapped to I using an order-
preserving hash function and stored at the peer which is responsible for their identifier.
Each peer has a load [(p) equal to the number of items it stores. The imbalance of the
DHT is defined as the standard deviation of its nodes’ loads, i.e.

imbalance

(d) = o
) \/zpep () -1 Tyepl)

B \/zpepup)? ] <zpepz<p>>2

= Vavg(?) — avg(l)?

The first goal of a load balancing scheme is to reduce this imbalance. For this, two
types of operations are supported: slide and jump, previously described in Section 2.4.
They effectively adjust some nodes’ responsibilities which implies item movements. The
second goal of a balance algorithm is thus to reduce the number of moved items in order
to reach a certain imbalance. There is a trade-off between these two goals because a
smaller imbalance can generally only be reached by moving more items.

Further operations include the retrieval of a node’s successor and predecessor and the
ability to get a random node of the whole system. The latter might be natively supported
by the DHT or can be implemented by using random walks (suggested in [12]) or gossip
algorithms [23] or by generating a random ID and returning the node responsible for
it (assuming uniform node responsibilities). Balance algorithms heavily rely on those
methods. Some also need to retrieve the node that is responsible for a given key but
this is not the case for the algorithms in this section.

Every node also runs a gossiping algorithm that continuously calculates estimates of
certain global information such as the system’s size, average load and standard deviation
(ref. Section 2.3). It is assumed that those estimates are within a certain error rate (in
percent) of the exact values and that they are re-calculated every once in a while in
order to stay within this bound.

During the following sections it will also be assumed that the system is static, i.e.
the total number of items and nodes in the system stays constant. Algorithms will thus
start their operation on a DHT whose nodes’ responsibilities are uniformly distributed
among the identifier space. Stored resources follow a certain distribution the algorithms
don’t know about. The static nature of the system requires that the algorithms actively

probe for other nodes to balance with and cannot operate passively.
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3.2. Algorithms

In order to analyse the effect of adding estimated global information to existing load
balancing schemes, two novel active item-based balance algorithms were chosen and
equipped with this knowledge. Those algorithms include the item-balancing scheme
introduced by Karger and Ruhl [30] (from here on referred to as “karger”) and the
algorithm used in Mercury [12] (“mercury®), both described in Section 2.4.2.

At each execution and for each node, both sample one :
random node and then decide whether to balance with Sampling

it and how many items to transfer between the nodes. Sample k nodes that should be
involved in a balance operation.

At most three nodes are involved in such a decision and

only they can change their load: the two neighbouring #

nodes in case of a slide operation and in case of a jump Matchmaking

the moved node, its (original) successor and the node _
Perform a dry run with each of the k

jumped to. Karger and Ruhl also suggest to perform  nodes and choose the best match.

multiple random samples and balance with the best node %

among them but do not describe how to decide for the .
) ) ) Execution
best. Here, algorithms with multiple randomly sampled

Perform the load transfer agreed on

nodes will operate in three phases as presented in the ! :
in the previous phase.

figure to the right. The first step involves sampling a
given number of (unique) nodes uniformly at random. With each such candidate node,
the balance algorithm is simulated and the best among them (or none) is chosen. It
follows the execution of the algorithm with this node (if there is one). Listing 3.1
shows the modified karger algorithm and the changes compared to the original scheme
described by Karger and Ruhl. Detailed algorithm descriptions in pseudo-code are given
in appendix A.

The way the best match among the candidates is chosen is crucial for the algorithm.
Here it is defined as the node that improves the standard deviation of the system’s load
the most. If no such node exists, i.e. no balance operation would decrease the standard
deviation, no operation is performed. Note that this method will also be used if only
one random sample is requested. Also note that only local knowledge is required to take

that decision. This can be easily deduced from the following observations.
2

I(p)? l
First recall that o; = \/ Ep er () — (Zp il (p)> and that the sum of the loads as
n

n
well as the number of nodes, n, is not changed by performing either slide or jump. Thus

only the first sum needs to be examined. The candidate node that reduces this sum the
most will reduce the standard deviation the most. If, for example, the involved nodes’
loads I(p;),(pj) change to I'(p;),!'(p;), then the change of the sum can be determined
as I'(pi)? +1'(p;)* — U(pi)? — U(p;)? (similarly with three nodes).
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karger_item (DHT d, double €, int samples) {
foreach (Node n; € d) {
// get k unique random nodes that are not equal to n;:
Nodes candidates = d.getUniqueRandomNodes(n;, samples);
// get best candidate by simulating the algorithm:
Node n; = getBest(d, ¢, n;, candidates);
if (d.exists(n;)) {
if (load(n;) < € - load(n;)) A
karger_balance (nj, n;);
} else if (load(n;) < € - load(n;)) {
karger_balance (n;, n;j);
}
}
}
}
karger_balance (Node n;, Node n;) { // load(n;) > load(n;)
if (n; == nyy1) {
slide(n;, n;); // equalise load of n;, n;
} else {
if (load(njt1) > load(n;)) |
slide(nj, n;y1); // equalise load of nj, Mjii
} else { // load(nji1) < load(n;) -> move n;, balance with n;
jump(n;, n;); // move n; to take half of n;’s resources
}
}
3

Listing 3.1: karger with multiple samples, changes to the original algorithm in red

3.3. Adding global information

The two previously introduced algorithms are now equipped with additional knowledge
about estimated global information. The accurateness of it is unknown to them though.
The following sections will introduce each single estimate that is added, how it is used
and the ideas behind. A final section will describe how several of those estimates can be

used together and will present the idea of self-tuning algorithms.

3.3.1. Average load

The key to reducing the number of moved items is to understand which of them do at
least have to be moved in order to reach a state with minimal imbalance. In such a
state every node has the same load as the average load among all nodes (only then is

o; = 0). This ideal state however does sometimes not exist for a given total amount
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of load and a number of nodes, e.g. if the total load is not divisible by the number of
nodes. If it exists and arbitrary item movements are possible, an optimal number of
load transfers can be reached by moving items only from overloaded nodes (those with
a load higher than the average) to underloaded nodes (less load than the average) and
never make them overloaded. Also overloaded nodes would only move so many items in
order to become balanced. Figure 3.1 shows the load that would get moved in such case.
However, it is not possible to apply this algorithm to DHTSs following the given model

since, for example, items can not be moved arbitrarily.

Load
o = N W Hh OO N © © O

avglLoad

Node

Figure 3.1.: Load that needs to be moved in order to reach a minimal imbalance (in red).

The following sections will present some ways, information about the average load can
be added to existing load balance algorithms. They try to incorporate some of the ideas

of the optimal item movement pictured above.

Variant avgl

As one of the first things, one might observe that existing load balancing schemes often
try to even out the balance of two neighbouring nodes. This moves load off of overloaded
nodes quickly but often results in unnecessary item movements, e.g. transferred items
would need to be moved again if the receiving node gets overloaded after the balance
operation. Those movements can be reduced if the amount of items that can be moved
is lower than or equal to the (estimated) average load.

This variant will thus hook into the algorithms to replace the decision about how
much load - and thus items - is to be moved from one node to another. It will never
move more than the (estimated) average load from the heavier loaded node to the lighter
one. Algorithms with this implementation will have _avgl appended to their name. It
is the hope that this will reduce the number of item movements while not changing
the algorithm’s operations too much and thus keeping the balance results the original

algorithms expose.
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Variant avg2

A natural extension to avgl would further restrict item movements when balancing
neighbouring nodes and never make the light node heavy. Additionally this variant
will only move items from heavy nodes (those with a load higher than the average) to
light nodes (less load than the average) and limit the number of transferred items to the
minimum required in order to make the heavy node balanced (load equal to the average).
Algorithms with this implementation will have _avg2 appended to their name.

While less item movements can be expected from this variation, evaluations will show

whether those changes are too invasive in order to reach the same imbalance.

Variant avg3j

Both of the previous variations will not not have any influence on the decision whether
a node is jumping to another position or not. In avg2, for example, this results in some
light nodes becoming heavy nonetheless because a jumping node’s items are transferred
to them. This is not the case in an ideal item movement though.

A third implementation will thus restrict jumping so that this does not happen. If a
node makes its successor heavy by jumping or if the successor is already heavy, no balance
operations is performed. This variant can be combined with either of the previous
two variants (which are not already included!) and appends _avg3j to the algorithm’s
base name. It will reduce unnecessary item movements by restricting jumps. However
without jumping, reducing the system’s imbalance would take significantly longer and
is sometimes not possible when further restrictions apply. It is unclear whether the
same imbalance can be reached as with the original algorithm, especially since a jump

is normally doing more good than bad.

3.3.2. Standard deviation and system size

As the standard deviation measures the system’s imbalance, it can also be used to
quantify the quality of a single load balance operation. Assuming the average load does
not change and the current standard deviation o, the system’s size n and the load
changes of the current balance operation are known, the new standard deviation can be
calculated as follows. Let p; and p; be the peers that changed their load from I(p;), [(p;)
to I'(p;),1'(pj), then:

2

o = +
n n n

, \/Zpepx{pupj W v z'<pj>2_<2pepl<p>)

_ 02 (pz) l(p]) + l/(pz')2 + l,(pj)Q
! n n n n
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Variant stddev2

This variation will hook into the algorithms to replace the decision about which node
from a list of candidates is the best and thus also decides whether to balance or not.
Aside from the original algorithm implementations mentioned above, an estimate of the
standard deviation of the nodes’ loads as well as the system’s size is retrieved and used
to calculate an estimate of the new standard deviation. Additionally, the algorithms
are equipped with one more parameter, s, and the best node among some candidates
is then determined as the node that, if used in a balance operation, would improve
the standard deviation the most and by at least a factor s/n. If no such candidate is
available, no balance operation is performed. Algorithms with this implementation will
have _stddev2 appended to their name.

This rationale behind this idea is to omit balance operations that do not improve the
overall balance enough compared to the big picture. It will thus tolerate a small skew as
balance algorithms mostly already do. This way the algorithm can concentrate on bigger
improvements and will (maybe) handle the smaller ones at a later time when they are
responsible for the imbalance. With this restriction it can be expected that almost the
same balance can be reached while moving fewer items. However special care has to be
taken on the decision of the value of s which needs to be adapted to the algorithm this
variant is applied to (and possibly also to the load distribution in the DHT, in particular
the overall total load). If the algorithm generally only moves a few items, the affect on
the imbalance can’t be as high as an algorithm moving more items and thus s needs to

be lower in order not to block too many operations. This will be evaluated as well.

3.3.3. Combined variants

Several of the ideas pictured above can be combined to form new variants of an algorithm.
This new variant is then expected to show even better results since two different meas-
ures of improving the imbalance and/or reducing the number of moved items are applied
together. One of those combinations has already been suggested above: applying avgl
and avg2 to avg3j. Both resemble the ideal item movement more than a single method
alone while avg3j_avg2 resembles it the most. Less item movements can thus be ex-
pected and the simulation will show the influence on the imbalance reached at the end.
Additionally to this combination, stddev2 can be applied. It is expected to improve
every aforementioned variant by setting an appropriate s and thus only executing the
most useful balance operations.

The following combinations are possible and will be evaluated:

avgl_stddev2 avg3j_avgl avg3j_avgl_stddev2 avg3j_stddev2
avg2_stddev2 avg3j_avg2 avg3j_avg2_stddev2
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3.3.4. Self-tuning algorithms

Most algorithms can be fine-tuned by adjusting certain parameters, i.e. € in karger and
a in mercury. Different values for those parameters will result in different performances
in each scenario as can be seen in Figure 3.2 showing plots of moved items vs. imbalance
data points of the karger and mercury algorithms with different parameters. This allows
the analysis of the progression of the algorithms during the whole simulation and shows
which imbalance can be reached by moving a certain amount of items. They have been

taken from Section 4.4 and will be analysed in more detail there.

=0.01 = 1.42

450 450

coooo0o0
wown oo
ENEEEN
[
woun oo
ENEEEER

standard deviation
standard deviation

0 . .
0 500000 1e+06 1.5e+06 2e+06 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06

moved load moved load

(a) karger (b) mercury

Figure 3.2.: Balance results for karger and mercury with different parameters,
scenario: Wikipedia page titles (en), error rate: 25%.

It can be seen that algorithms with parameters tolerating a bigger skew in the load
distribution, i.e. larger epsilon and smaller alpha respectively, start off better than the
others. Every imbalance they reach, they reach by moving less items. This might be
exploited for self-tuning algorithms in a way that the algorithm starts off tolerating a
bigger skew and sets its parameter(s) for better imbalance results during its execution
and according to the current distribution of load among the nodes. Estimates of global
information will be used to gain knowledge about this distribution. This change will
hopefully result in the algorithm starting off with the good results of parameters tol-
erating a bigger skew and continue the way the others do, finally arriving at the best
imbalance the original algorithm can achieve but by moving less items.

This idea has been applied to the karger and mercury algorithms and results in the

following calculations that set the algorithm’s parameters for each node during their
1

execution :
epsilon = bound(0.01, lgyg / max(gg * 01, lmax - 01), 0.24);
alpha = bound (1.42, gy + 01) / lawg, 10.00);

'bound sets the value to the first argument if it is smaller and to the last if it is larger
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The idea behind both is that if the standard deviation is high only those nodes should be
balanced that are responsible for this high value, i.e. those nodes that have the highest
loads in the system. The trick is not to set this bound too restrictively since then too few
nodes could be matched with each other. This is why for karger a node should only be
balanced with an other if their load differs by at least a factor of fi = lgyg/(lmaz —01), i-€.
the average load divided by the maximal load minus the standard deviation. The first
idea was to use a factor of fo = lgyg/(lavg + 07) but this did not achieve the anticipated
results so a more restrictive approach was taken by using fi; which is usually smaller
than fy. Using the maximum of the two in the calculation above is purely technical and
covers the case if fi > fs.

The same idea could unfortunately not be applied to mercury since it operates differ-
ently. At first, balancing is coupled to the average load and occurs only between heavy
and light nodes, i.e. nodes with their local load being greater than « or lower than 1/ re-
spectively. Thus setting alpha influences both bounds instead of a (more flexible) factor
as in karger. It therefore needs to be set with more care. Additionally the meaning is
different which is why it has been set to (lgug + 01)/lavg-

In contrast to the other variants above, a self-tuning variant needs to be adjusted to
the way its algorithm operates and the parameters it uses. It can thus not be formalised
independently of the algorithm which is why the different implementations will probably
show different behaviours. The achievements of one self-tuning algorithm can therefore
not necessarily be transferred to another. However it may be evaluated whether the idea

behind is good. Self-tuning algorithms will have _self added to their names.
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The following sections will evaluate the performance of the proposed algorithms from
the previous chapter. The evaluation has been carried out by implementing a simulator
and running these algorithms on different scenarios which will be introduced below.
The metrics used for this are explained alongside with a brief overview of the simulator
program itself. Finally the collected data will be analysed and further simulations will

show how robust the algorithms are in regard to several aspects of the simulations.

4.1. Simulation scenarios

In order to evaluate the proposed algorithms, several scenarios were set up for the al-
gorithms to balance. Real-life applications often store data with keys made of words
and numbers, e.g. titles of articles or names of files. Those alphanumeric keys therefore
usually follow the distribution of the words of a certain language. Scenarios resembling
real-life applications have thus been set up by taking the list of page titles of the English,
German and French Wikipedia (page title dumps from 16/08/2009 (en), 10/08,/2009 (de)
and 19/08/2009 (fr) [4]). Note though that the English Wikipedia (as well as the German
and French one) does not only have English page titles but instead describes topics of all
languages using English. Nonetheless all three exhibit different distributions as the scen-
arios’ plots in Figure 4.1 show. Additional scenarios include key-distributions following
a normal distribution with different parameters as well as an exponential distribution.
Each of the mentioned key distributions was included into a scenario with 5, 10, 20 or
40 thousand nodes which was set up with an initial load of 0.5, 1, 2 or 4 million items.
Every node was given an identifier in the circular ID space I = [0,2% — 1) uniformly
at random. In case of alphabetical distributions, page titles were then hashed to an
identifier using an order-preserving hash function and from that list of unique keys the
requested number of items was drawn uniformly at random. Scenarios following a normal
or exponential probability distribution create keys by drawing them randomly according
to their distribution and create items accordingly. Those items are finally inserted at
the nodes responsible for them. It might happen that a key is drawn multiple times,
in which case a neighbouring key is tried or a new key is re-drawn until no conflicts

occur. Figure 4.1 shows the resulting load distributions among the nodes in key order
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for scenarios with 10000 nodes and a total load of 1000 000.

4.2. Metrics

The performance of the different algorithms was measured using three different metrics.
The first metric is the standard deviation, o;, of the nodes’ loads which measures the
degree of imbalance among them, as defined by the system model. The higher its value,
the more imbalanced the nodes are in regard to their loads (ref. Section 3.1). An optimal
state (o0; = 0) is reached when each node stores the system’s average number of items.

The second metric is the amount of moved load, i.e. moved items. Assuming the
cost of transferring a set of items from one arbitrary node to another is proportional
to the number of items, the moved load determines the overall transfer cost of the
algorithm. Improving an algorithm’s performance could therefore either mean reaching
the same balance, i.e. standard deviation, by moving less load or reaching a better
(lower) standard deviation while moving the same amount of load.

For the sake of comparability the ratio d,,, between the system’s maximal and average
load is included as well since this, along with the ratio between the system’s maximal
and minimal load, has been used by several algorithms introduced in Section 2.4. The
latter though has been omitted here because it is not well-defined if the minimal load
is 0. Compared to the standard deviation as a metric for imbalance though, the ratio
Omal has certain disadvantages. For example, a small number of highly loaded nodes
could create a very high ratio. Continuing to balance the system and further improving
its balance might not decrease this ratio though if at least one of those nodes keeps
its load. In a system where this single overloaded node would have a severe impact on
the overall availability it makes sense to say that its balance has not really improved.
However, this should typically not be the case for DHTSs storing items and so this metric

is disregarded in further discussions.

4.3. Simulator program

In order to evaluate the algorithms’ activities on a DHT with the different scenarios, a
simulator program was implemented that emulates such a DHT. It is based on Qt [40]
and consists of a common library, a command line client running simulations specified
by JavaScript files and a graphical user interface that supports immediate evaluation of
a simulation’s results with several integrated plots of the metrics described above and
their relations. A screenshot of the GUI can be found in Figure 4.2, a sample simulation
script in Figure 4.1. Both interfaces offer means of exporting collected simulation results

to gnuplot data files and creating appropriate gnuplot scripts that generate such plots.
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Figure 4.1.: Simulation scenarios based on alphabetical, exponential and normal item distribu-
tions showing the load (number of items) of each of the 10000 nodes in key order
(1000000 items in total).
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Figure 4.2.: Snapshot of the Simulator GUL

Algorithms and simulation scenarios (“Load Distributions”) are implemented as plug-
ins and thus new variations can be easily deployed. Load distributions have one para-
meter: the error rate that influences the exactness of the estimates of global information
as described above. Algorithms can have several parameters that can all be set in either
application interface and are included in the results’ data files.

Each simulation has a name and a description and consists of a load distribution
and an algorithm. Due to the random nature of most algorithms, a simulation can be
specified to run several times (each such test run starts with the same initial parameters).
The results of each such simulation will be aggregated to averages over all test runs also
storing the minimal and maximal values reached. When an algorithm is invoked by the
simulation, it will iterate over all the nodes in the system and will perform its operations
for each encountered node. The number of algorithm executions can be specified at the
start of a simulation.

Three containers store simulation results: The first container stores the different values
of each test run’s state at the end of its life-time including the aggregates of the amount of
moved load, standard deviation, moved nodes, load among the nodes, number of balance
operations and the ratios between the maximal and minimal as well as maximal and
average load. Another container stores such values each time the amount of moved load
changes and can thus for example be used to plot the moved load against the standard
deviation to show which balance state was reached at which costs. Plots showing the
standard deviation and the number of moved items for each balance operation, i.e. each

operation in which the algorithm signals nodes to perform a jump or slide, can be
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4.3. Simulator program

var ldists = simulation.getLoadDistributions("n10k_11000k");

var algName = "karger";

var simDesc = "Find best parameters for each scenario.";

var testRuns = 100; // number of test runs of each simulation

var maxTime = 200;// number of algorithm executions in each test Tun

var collectMI = true; // data by moved items

var collectOp true; // data by balance operations

var errorRate = 0;

var e_test = new Array(0.01, 0.10, 0.20); // epsilons to test
var k = 1; // number of samples

for (var i = 0; i < ldists.length; ++i) {
var ldistName = 1ldists[i];
var gnuplotPath = "data/" + algName + "--" + ldistName;
if (simulation.resultsExist (gnuplotPath)) {
print ("skipping " + gnuplotPath);
} else {
print ("starting " + gnuplotPath);
simulation.startAutoExportToGnuplot (gnuplotPath, 100);
for (var i_e = 0; i_e < e_test.length; ++i_e) {
var algPars { e: e_test[i_el, k: k 7};
var simName = gnuplotPath + "-k" + k + "-e" + algPars.e;
simulation.addSim(simName, simDesc, ldistName, testRuns,
errorRate, algName, algPars, collectMI, collectOp);
}
simulation.runSims () ;
}
}

Listing 4.1: Ezample simulation script for the Simulator CLI.

created from the data stored in the third container. It creates such snapshots each time
the number of balance operations changes. Since the latter two generate quite much

data, they can optionally be turned off.

Much effort has been put into parallelising the core components of the Simulator. As
such it uses multiple threads to run the simulations, process the results and export them.
At first, each simulation creates two worker threads for the latter two containers. Each
test run, which is executed in a separate thread, has a local cache of such snapshots for
itself which is piped to a job-queue of the appropriate worker at the end of its life-time.
This worker combines the different snapshots one after another. The integration of the
snapshot of a simulation’s final state into the other container is however done by itself.
The number of threads used for concurrent test runs can be limited by providing the

4

command line parameter “-j <number>” to the program. By default, the number of
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available CPU cores is used. If the simulation scripts enable results to be automatically
exported, there will be one more thread which performs those exports similarly to the
worker threads mentioned above.

The simulator is available under the GPL version 3 or later [20] and can found on
the enclosed DVD as binary packages for Windows and Linux. Source code, license
information and documentation is included as well. The latter could be generated at

any time by running the Doxygen tool [42] with the supplied Doxyfile.
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4.4. Simulation results

The following sections will evaluate all simulations that have been run in order to ana-
lyse the algorithms themselves and under different aspects of the simulations. As only
summarised information may be provided here, all simulations’ detailed results are avail-
able on the enclosed DVD and can also be re-generated using the provided scripts or
the simulator GUI. At first, every introduced variant will be analysed on the karger
algorithm. This evaluation will go into great detail and try to cover most aspects of
the simulation in order to assess the robustness of the algorithms as well. Afterwards
the same variations will be applied to the mercury algorithm that will show whether
the same effects can be observed with another algorithm, too. The basic algorithms
themselves will always serve as a reference for the algorithm variations. Also note that
this should not be a comparison between karger and mercury and only the effects of

the variants compared to their basic algorithm are evaluated.

4.4.1. Karger item balancing
Without added global information

Figure 4.3 shows the standard deviation that the original karger algorithm reached
after each load movement in each test scenario. It presents the algorithm’s performance
during its execution and shows which balance can be reached at which cost. Plotted
are the collected data points of all simulations with different values of the € parameter,
100 test runs, 200 algorithm executions and one sampled node. Since Karger and Ruhl
state that e should be greater than 0 and less than 1/4, the following values have been
chosen: 0.01, 0.05, 0.10, 0.15, 0.20 and 0.24. The number of algorithm executions was
originally set to 100 which turned out to be too low for some of the karger variants that
in turn exhibited results varying too much from the average of all test runs. Those that
still show these variations will be discussed in their respective sections below. Also the
effect of setting this number even higher will be evaluated for all algorithm variations.

As can be seen from figures 4.3 (a)-(c), for each single value of €, the alphabetical
scenarios show similar behaviour. Evaluating an algorithm’s variation will therefore
at first concentrate on the scenario created from the English Wikipedia’s page titles.
Similarly the two exponential distributions will be assessed in favour of the normal
distributions which, when compared, show only slightly different results. The variant
that performs best on these three scenarios (“Wikipedia (en)”, “Ezp(A = 6-1071?)” and
“Bap(A = 2-1071%)”) will finally be simulated on all of them in order to make sure it
does not show any different behaviour on the other three scenarios.

The plots of Figure 4.3 also show that no matter which scenario, smaller e values
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Figure 4.3.: Balance results for karger with different € and for each of the scenarios.
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will always reach a given standard deviation by moving fewer load. To understand that
effect, recall that karger only balances two nodes with each other if their load differs by
at least a factor e. Thus small values will make the algorithm only balance nodes with
big load differences and since balancing the most loaded nodes affects the imbalance
the most, this will lead to a better imbalance with the same number of moved items
compared to greater e. However, higher values will reach a better imbalance at the end,
which can be seen, too. For the following simulations, a fixed € of 0.24 is used which

resulted in the best imbalance at the end.

With added global information

In order to assess the improvements of a karger variant, it has been simulated with
the “Wikipedia (en)”, “Exp(A = 2-107)” and “Exp(\ = 6 - 1071?)” scenarios using
e = 0.24 as mentioned above. For those simulations a 25% inaccurateness of global
information was set in order to resemble the estimate of gossiping. This percentage is
supported by experiments conducted by Jelasity et al. [28] evaluating the quality of a
gossip algorithm that estimates the system size in a dynamic system. It is thus also a
reasonable value for the static simulations presented here. Further discussions about the
influence of this error rate on the simulation results will however be held at the end of
this section.

It follows a detailed performance analysis of the different karger variants previously
introduced. The evaluations will concentrate on showing the imbalance that can be
reached by moving a certain amount of load, i.e. items, and the imbalance as well as the
number of moved items at the end of each simulation.

The results of the algorithm variants pictured in Figure 4.4 show that avg3j needs to
move more items to reach the same imbalance most of the time during its execution'.
Only at the end it comes around and falls below the data points of the original karger
without however achieving the same imbalance. The algorithm is probably refusing some
jumps that would have been useful nonetheless, i.e. the potential improvements by the
jump would be greater than the prevented light node getting heavy. A possible reason
for this might be the error of the estimate being too high but simulations with the exact
value of the average load show no better results. In fact, simulations with an error of
25% produce even lower imbalances. Also as Table 4.1 shows, these jumps are traded
for slide operations: karger_avg3j performs up to 12% fewer jumps than karger and
increases the number of slides by up to 26%, depending on the scenario. An additional
effect that can especially be seen in Figure 4.4a is that the variance of the data points

is quite high among different test runs. This also affects the final imbalance at the end

1,. .
time and number of moved items correlate
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Figure 4.4.: Balance results for the karger variants with one variation, error rate 25%.

of each test run that varies by up to 35% (ref. Table 4.2 on page 66). Since the final
Omal With karger_avg3j is also higher than with karger, heavier nodes in the system
still exist. It seems that those nodes have not been balanced because they have been
matched with nodes for which a jump was not possible. In that case avg3j suggests
no alternative operation so the heavy node’s load is left unchanged and more attempts
- and thus time - are needed in order to either find a node that is able to jump or to
balance with one of its neighbours. It turns out that by further increasing the number
of algorithm executions, the variance of the final imbalance of karger_avg3j can be

greatly reduced (see the respective section below).

The avgl and avg2 variants perform better, although a significant time of the sim-
ulation they expose worse results than the original algorithm, which is understandable
because the item movements they carry out do not have such a great impact on the
balance as the original ones. However towards the simulation’s end, they significantly
increase their performance in both imbalance and number of moved items and outper-
form karger. This is because towards the end fewer and fewer nodes are responsible for
the bad imbalance (most of the previously heavy nodes have already been balanced) and
thus balance operations on the few heavy nodes quickly improve the standard deviation

without many item movements. Additionally these two variants achieve a better overall

62 DHT Load Balancing with Estimated Global Information



4.4. Simulation results

Algorithm Wikipedia (en) Exp(A=2-10""") Eaxp(A=6-10""%)
name slides jumps slides Jumps slides jumps
karger (err = 0%) 1101.49  12709.44 598.17 6435.19 444.10 12681.83
..;avgl 1132.43 16517.17  605.74 7600.33  529.43 16079.09
.._.avg2 1625.72  15140.70 767.75 7835.22  1178.19 14316.18
...avg3j 1158.86 12018.87  752.07 5661.78  484.59 12199.47
..stddev2 432.06 7451.13  334.98 4936.37 124.93 7548.05
.._self 577.39 9384.95 219.64 5756.06 133.95 11304.61
...avgl_stddev2 403.59 8317.22 312.57 5414.44 222.31 8494.17
...avg2_stddev2 229.39 8532.15 255.44 5592.58 96.49 8861.53
.._,avgdj_avgl 124592 13521.21 792.10 6040.37 681.64 13694.82
..,avg3j_avg2 2589.08 10609.35 1226.50 5539.62  2106.98 10522.54
...avg3j_stddev2 528.08 6958.42  472.35 4192.76 184.06 7064.11
...avg3dj-avgl_stddev2 396.56 6633.99 412.44 4273.73 297.52 6986.91
.._avgdj_avg2_stddev2 396.56 6633.99 412.44 4273.73 297.52 6986.91
.._self_avg2_stddev2 122.36 7635.50 128.22 5043.02 42.91 7617.31

Table 4.1.: Average number of slide and jump operations of the different karger variants
(error rate = 25% unless otherwise stated, ¢ = 0.24, s = 1.5 where appropriate).

balance at the end of the simulation which is owed to the fact that balancing two nodes
in the original karger could result in both of them being in the bounds of ¢ and thus
not being considered for balancing anymore. Here on the other side the receiving node’s
load would at least be nearer to the average load which results in a better imbalance. In
avg2 this node would be even better balanced than in avgl so the standard deviation
is expected to be lower at the end with probably fewer item movements. This effect
has been confirmed by the simulations as the plots and the results at the end of the

simulations in Table 4.2 show.

Algorithms using the stddev2 variation need a further parameter, s, that influences
the decision on whether to perform a balance operation or not. Initial simulations using
karger_stddev2 have shown that s = 1.5 is a good value for all scenarios which will
thus be used for every variant of Karger and Ruhl’s algorithm that incorporates stddev2.
Figure 4.4 clearly supports that limiting balance operations to those that are really worth
it is a good choice. In all three scenarios the resulting imbalance is comparable to the one
of the avgl variant and better than the result of the original algorithm but in contrast
to these two, throughout the whole simulation any given standard deviation is reached

by moving far less items.

The self-tuning algorithm starts off similar to the original karger in the first and
third scenario but then quickly gets to the same imbalance of the other algorithms by
moving far less items. In the second scenario it first operates similarly to avg2 but
then outperforms it as well. Surprisingly, in the first two scenarios most of the time

karger_self reaches the same imbalance by even moving far less items than karger
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with € = 0.01, e.g. in the alphabetically distributed scenario an imbalance of 100 is
reached by moving nearly half the number of items (680 000 versus 1200000). The € set
by the self-tuning variant is however never below 0.01. The only possible reason for this
would be the (slightly) fluctuating value of € due to the error rate. This might allow
some balance operations which quickly propagate items from heavily loaded nodes to
lightly loaded ones and are otherwise not performed. It can not be an effect due to the
randomness of the algorithm since all 100 simulations exhibit similar behaviour which
can be seen by the thinness of the algorithm’s scatter plot, especially in the first two
scenarios. The resulting imbalance at the end of the simulations is also around 10 — 15%
better than the original algorithm. Overall, it can be said that the self-tuning algorithm
did perform even better than anticipated and is the best among the algorithm variants

using a single variation.
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Figure 4.5.: Balance results of the combined karger variants, error rate 25%. Indistinguishable
curves have been merged, i.e. avg[1,2] is short hand for “avgl or avg2”.

Further simulations, shown in Figure 4.5, have been run in order to analyse the effect of
the combination of several of the above evaluated variants incorporated into the karger
algorithm. The plots show that although the avg3j_avgl and avg3j_avg2 variants
resemble the ideal item movement the most, they don’t seem to perform well in any

of the three simulations and especially in the alphabetically distributed scenario. This
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is probably due to the restricted jump capabilities of the avg3j component as argued
above. However, if this variant is combined to avg3j_stddev2, it performs similar to
stddev2 alone and does not seem to be affected by the limited jumps as much as the
original algorithm. Table 4.1 shows an increased number of slide operations of up to
47% and jumps being reduced by less than 15% when adding avg3j to stddev2. The
restrictions added by stddev2 however seem to compensate for the restricted jumps and
only allow such operations that are useful. Since there is no real improvement to this

variant alone though, avg3j_stddev2 could be dropped.

Figure 4.5 also shows that in general variants using the stddev2 component perform
quite well. In particular combinations with avgl and avg2 seem to profit from that.
Both exhibit very similar behaviour and can sometimes be indistinguishable in the plots
which is why their data points have been merged to a single scatter plot. In those
algorithms, restricting balance operations to the ones that significantly reduce the im-
balance greatly improves their performance so that any given imbalance is achieved by
moving less items than the original algorithm and less items than those variants alone.
The omitted operations have thus prevented nodes from taking part in future balance
decisions with greater impact due to the restrictions of € (recall that stddev2 only re-
fuses balance operations and does not influence them in any other way). Additionally,
the good imbalance reached at the end of the simulations is maintained (ref. Table 4.2).
The latter could have been expected since all participating variants alone exhibit quite
similar results. The small impact of choosing either avgl or avg2 though was surprising
but seems to be owed to the greater influence of stddev2. Table 4.1 shows another
interesting effect: adding stddev2 to any other algorithm reduces its number of slide
operations more than the number of jumps in terms of percentages. Thus the majority
of the slides in algorithms without stddev2 does not significantly change the overall

imbalance and hence most balance improvements can be achieved by moving nodes.

Further combining stddev2 with avg3j and one of avgl or avg2 looks quite prom-
ising at the start, regarding the number of items moved in order to achieve a certain
imbalance. It is also surprising that avg3j further improves the algorithms that way al-
though previous combinations with it have not shown this behaviour. At the end though
they do not reach the imbalance that can be reached by avg2_stddev2 which is probably
owed to the restrictions avg3j imposes on jumps. Additionally a large variance of the

resulting imbalance can be observed as before with avg3j variants.

Substitutional for variants combined with the self-tuning facilities implemented for
karger, the karger_avg2_stddev2 variant which showed the best results among the
previously evaluated algorithms has been equipped with a self-tuning e. The plots
in Figure 4.5 show the superiority of this variant over all others since it reaches any

imbalance by moving far less items. Additionally Table 4.2 shows that the resulting
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Scenario Algorithm Simulation results (avg)
name name moved load stddev Omal
Wikipedia (en) karger (err = 0%) 2101882.19 £1:00% 30,17 £ 245% 2.07
.._avgl 1734141.30 £099% 99 7 * 2:26% 2.13
.._avg2 1582001.44 £117% 9940 * 298% 2.15
.._avg3j 1934212.76 £0-05% 39 99 F3527% 18]
.._stddev2 1738616.51 £0-04% 9998 * 2.16% 2.12
..self 935499.20 T133% 95 89 £ 2:59% 2.20
.._.avgl_stddev?2 1113145.43 £1-61% 99 g2 * 3:58% 2.15
.._avg2_stddev?2 1109117.52 £1-56% 9099 * 1.91% 1.88
.._avg3j_avgl 1209741.98 £0-86% 906,97 £ 0-45% 13382
.._avg3j_avg2 945844.46 =117 214.48 £ 209% 13638
.._avg3j_stddev2 1661461.88 £0-36% 31 97 * 3.05% 3.62

.._avg3j_avgl_stddev?  816453.40 TH17% 8173 F1597% 75 59
.._avg3javg2_stddev2  816453.40 F317% 81,73 F1597% 75 59

.._self_avg2_stddev2 835771.74 T115% 91 43 * 2:08% 1.99
Exp(A=6-10""") karger (err = 0%) 1807032.79 £*%*% 3070 £ 227% 902
.._avgl 1591271.05 £1-17% 98 9g * 2:82% 2.10
.._avg2 1430089.78 £1:93% 91 89 * 2:31% 2.09
.._avg3j 1654011.51 £0-06% 35 g £18-35% 7.40
.._stddev2 1462922.39 £0-86% 3030 * 1.04% 2.12
..self 1018445.93 £1-98% 95 gg + 3-40% 2.09
.._avgl_stddev?2 1036543.22 £1:65% 96,89 * 3:29% 2.18
.._avg2_stddev2 1041755.81 £122% 9079 * 1.96% 1.93
.._avg3j_avgl 1171385.61 £1:96% 9358 £8:39% 3055
.._avg3j_avg2 900437.51 £114% 103,84 F10:00% 39 76
.._avg3j_stddev2 1380104.63 £0-28% 3178 * 2.22% 3.33

.._avg3javgl_stddev2  781607.82 T0:66% 4733 F1349% 9y g7
.._avg3javg2_stddev2  781607.82 F0:66% 4733 F1349% 91 g7

..self_avg2_stddev2 804922.24 T162% 97 g £ 20°% 1.90
Exp(A=2-10""")  karger (err = 0%) 1003902.63 1% 3059 £ 170 903
.._avgl 937143.51 £143%  9g.gg * 2:36% 2.10
.._avg2 880638.66 T141% 2445 * 192% 1.99
._avg3] 880305.73 T0-89% 35 55 £11.68% 5.81
.._stddev2 860193.57 £106%  9g 76 * 1-84% 2.06
..self 667771.88 £3:05% 9753 + 2.00% 2.09
.._avgl_stddev2 713955.21 F145% 9686 * 244% 2.13
.._avg2_stddev2 706704.75 1557 24 65 * 205% 1.96
.._avg3j_avgl 711236.50 T137%  50.87 £ 9% 1509
.._avg3j_avg2 590921.06 T*%%  60.80 £ >2*%  16.66
.._avg3j_stddev2 765143.97 TO96% 39 17 * 3.49% 3.75

.._avg3javgl_stddev2  560023.34 £09% 37,13 F1010% 19 05
.._avg3j.avg2_stddev?  560023.34 T0-9% 3713 £1010% 19 o5
..self_avg2_stddev2 585624.70 T215% 95 40 * 202% 1.93

Table 4.2.: Results of the different karger variants, best variants for each scenario marked in
yellow (error rate = 25% unless otherwise stated, e = 0.24, s = 1.5 where appropriate,
100 test runs with 200 algorithm executions each).
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imbalance at the simulations’ end is only slightly worse than karger_avg2 stddev?2
without self-tuning. It looks like the idea of an e that varies depending on the system’s
state is also applicable to the introduced variants and can thus achieve even better results

by combining the advantages of all of them.

Best karger variants

Thus karger_avg2_stddev2 with and without self-tuning are considered the best vari-
ations of the original karger algorithm. Both however can still be influenced by their
s parameter that defines the minimal imbalance reduction a balance operation should
have in order to be considered for execution. They have thus been simulated with dif-
ferent values for s to find the one with the best performance. The plots in Figure 4.6
show the results of these simulations with the three main scenarios. They show that the
karger_avg2_stddev2 variant without self-tuning relies quite much on the correct value
being set. Higher s result in a slightly better imbalance at the simulations’ end up to a
certain bound. Higher values also reach a given imbalance by moving less items which
can be clearly seen. If s is increased too much though, the algorithm will not reach a
good imbalance at all which can even happen with small increments as the first two plots
show (scenarios “Wikipedia (en)” and Exp(A = 6-1071?)). In both scenarios, s = 3.5
still shows a good result but s = 4.0 already is quite bad and the result of s = 4.5 is even
unacceptable. The Exp(\ = 2-107'%) scenario however does not show this behaviour
with the simulated values although a slightly worse final imbalance can already be seen
with s = 4.5. The effect will probably start with higher values.

When the stddev2 variant was developed, its new parameter was integrated in such
a way that suggested that its best performance can be reached by a single s for any
scenario, i.e. the value of s does not influence (much) the algorithm’s performance on any
scenario. s thus needs to be set depending on the number of items an algorithm moves
in a single balance operation and the resulting change the operation has on the overall
balance. If an algorithm only ever moves very few items those moves will probably not
have a great impact on the overall imbalance and thus a too high value for s will omit too
many balance operations for the algorithm to work. In the case of karger_avg2_stddev?2
however, the number of items the algorithm moves depends on the system’s average load,
so s needs to be set with care in order not to block too many operations.

The effect of the different performances of the karger_avg2 stddev2 variant with
s > 4.0 in the three scenarios can however not be explained with a different average load
because all scenarios share a common average load of 100. It might instead result from
the different imbalances of the scenarios: A single balance operation may not have a
big enough affect on the system’s imbalance in terms of percentages in scenarios with a

greater imbalance. Especially since the number of moved items is limited by the average
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load. This suggests that a weighted bound based on the current imbalance is more useful
than statically dropping all operations that do not increase the imbalance by a factor of
at least s/n as suggested by stddev2. It will probably also be beneficial for this algorithm

variant when applied to arbitrary scenarios.
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Figure 4.6.: Balance results of the best karger variants with different error rates. (scenario:
Wikipedia (en), e = 0.24 where appropriate, 100 test runs, 200 algorithm executions)

From those simulations alone, the optimal s might be chosen as 3.0 but simulations
later carried out to evaluate the influence of the error rate revealed that this value was
not performing good with low error rates. This is why a safer value of 2.0 was chosen

instead (ref. Figure 4.7c on page 73).
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Different values of s seem to affect the self-tuning variant karger_self avg2 stddev?2
in another way than the same algorithm without self-tuning. Results of the self-tuning
algorithm shown in figures 4.6 b, d and f show the same behaviour as before with s > 4.0
in the first two scenarios. Also in the third, it can not be observed. In contrast to the
variant without self-tuning though their final imbalances only vary insignificantly and

do not necessarily improve with higher s.

Scenario Algorithm Simulation results (avg)
name name moved load stddev Omal
Wikipedia (en) karger (err = 0%) 2101882.19 100% 30,17 £245% 9 o7
karger_avg2_stddev2 1090815.91 £2:45% 9097 £1:53% 1 g7
karger_self_avg2_stddev2 ~ 831745.79 £0-92% 91 38 £1.95% 1 95
Wikipedia (de) karger (err = 0%) 2150263.47 £0-94% 30,73 £272% 903
karger_avg2_stddev2 1121778.42 F195% 90,65 F199% 188
karger_self avg2_stddev2  842240.22 T101% 90 95 +1.93% 1 g1
Wikipedia (fr) karger (err = 0%) 2223748.31 £0-82% 31 17 £185% 9 06
karger_avg2_stddev?2 1166642.63 £1-91% 90 44 £213% 1 g1
karger_self avg2_stddev2  858124.86 T136% 9054 £2:96% 1 g2
Ezp(A=6-10""%) karger (err = 0%) 1807032.79 £0-%5% 30,70 £227% 902
karger_avg2_stddev?2 1000030.18 £128% 20,70 £1:62% 189
karger_self_avg2_ stddev2  809677.18 ¥246% 9087 ¥1.93% 1 g
Exzp(A=2-10"") karger (err = 0%) 1003902.63 £114%  30.59 7% 203
karger_avg2_stddev2 679464.20 T114% 9464 F1TT% 195
karger_self_avg2_stddev2 583767.38 T276% 9536 T196% 193
N(p=2%0%=1-10"") karger (err = 0%) 1858444.98 T109% 30,98 % 903
karger_avg2_stddev2 998929.11 ¥1:92% 90,03 £1°7% 186
karger_self_avg2_stddev2?  846733.68 T319% 1985 ¥214% 1 g7
N(u=2%06>=4-10") karger (err = 0%) 778226.73 T12% 30,49 1% 904
karger_avg2_stddev2 553003.90 T122% 2586 T209% 194
karger_self_avg2_stddev2  501005.91 ¥341% 2639 ¥202% 1 93

Table 4.3.: Results of the best karger variants for all scenarios (error rate = 25% unless other-
wise stated, € = 0.24, s = 2.0 where appropriate, 100 test runs with 200 algorithm
executions each).

Starting from a certain value of s, the number of moved items needed to get the final
imbalance is increasing instead of decreasing monotonously as in the variant without
self-tuning. This barrier at which this change is starting depends on the scenario but
all three scenarios show a decreasing number of moved items up to s = 2.0 which is
thus considered optimal for the self-tuning algorithm, too. The insignificant effect of
different s is probably due to the algorithm’s e being coupled to (an estimate of) the
system’s standard deviation and thus probably a higher value for that is being used

earlier than with lower s. This dampens the success of higher values and thus results in
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the performances shown.

Since the optimal values for parameters of the best karger variants have been set, they
can now be simulated on all scenarios previously introduced. Table 4.3 shows the final
results of such simulations using karger and the karger_avg2_stddev2 variant with and
without a self-tuning e parameter. Also given is the maximum deviation of this average
value to the minimal and maximal value among all 100 test runs. It shows that in the
alphabetical scenarios, the algorithm variants both achieve an imbalance that is around
30% better than the final imbalance using the original algorithm. Additionally, both
move far less items: karger_avg2 stddev2 without self-tuning moves only about 50%
of the amount karger moves which can be further reduced to 40% if self-tuning is used.
Results of the Ezp(A = 6-1071?) and N(u = 2!, 6% = 1-10'®) scenarios show similar
results (45% and 55% less item movements respectively with the same improvements of
the imbalance). In the other two scenarios, imbalance improvements are only at about
15% with 30 — 35% and 35 — 40% fewer item movements respectively. Variances from
those average results are negligible which indicates that the given results can be expected
for any simulation despite the algorithms having a random component. The results of
the latter two scenarios not being as good as the others can probably be explained by
the scenarios already having a better imbalance at the start of the simulations and e

limiting any further improvements.

Number of algorithm executions

As mentioned above, some algorithms, especially those with the avg3j variant, have
been limited by the number of algorithm executions the simulations were set up with.
Simulating them with a too low value will result in a large variance of their results at
the simulations’ final state. This can be observed in the results presented in Table 4.2
on page 66 with most variations of avg3j. In order to further analyse the effect of the
number of algorithm executions and see whether this is the limiting factor or inherent
in the algorithm, further simulations have been set up using 200, 400 and 800 algorithm
executions.

b

Results of those simulations on the “Wikipedia (en)” scenario are shown in Table 4.4
and indicate that the majority of the algorithms are not affected by the increased number
of executions. They mostly achieve insignificantly better imbalances by moving slightly
more items. This is good for real-world scenarios where the algorithms are not stopped
after an arbitrary number of executions but continue to operate.

All avg3j variants but avg3j_stddev2 however show significant improvements when
executed more often. karger_avg3j without any more changes for example achieves a
15% better imbalance when executed 800 times instead of 200. Additionally the results

of the different test runs then vary only by up to 6.60% instead of 35.27 which is a major
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improvement. These results are achieved by moving less than 1% more items. The
fact that the variance of the number of moved items with 200 executions is very little
supports the assumption that this variant is omitting too many of the potential balance
operations and is only waiting for a perfect match to occur which is left to chance. In
order to achieve comparable results, it would thus have to be called at least 4 times as
often as karger, but since the improvements compared to that are quite small, another

variant is a better choice.

Algorithm Number of algorithm executions
200 400 800
name moved load stddev moved load stddev moved load stddev
karger (err = 0%) 2101882.19 30.17  2103140.72 30.03 2103796.72 29.96
+1.00% +2.45% +0.99% +2.45% +0.99% +2.44%
..cavgl 1734141.30 29.07  1735693.54 28.87 1736382.82 28.79
+0.99% +2.26% +0.95% +2.21% +0.93% +2.25%
...avg2 1582001.44 22.40  1583620.65 22.11  1584258.24 22.00
+1.17% +2.98% +1.15% +2.76% +1.16% +2.92%
...avg3j 1934212.76 39.22  1945354.89 35.11 1951379.16 33.17
+0.65%  +35.27% +0.55%  +23.09% +0.54% +6.60%
...stddev2 1738616.51 29.28 1739724.63 29.14  1740337.26 29.06
+0.64% +2.16% +0.64% +2.36% +0.65% +2.35%
.._self 935499.20 25.82 938410.78 25.37 939270.53 25.24
+1.33% +2.59% +1.28% +3.44% +1.30% +3.14%
...avgl_stddev2 1113145.43 22.02 1114870.02 21.71  1115548.02 21.59
+1.61% +3.58% +1.60% +3.41% +1.61% +3.54%
...avg2_stddev2 1109117.52 20.92 1110666.33 20.71  1111222.90 20.63
+1.56% +1.91% +1.58% +1.89% +1.60% +2.15%
...avg3j_avgl 1209741.98 206.97  1244770.19 186.00 1271884.97 166.41
+0.86% +6.45% +0.72% +6.54% +1.11% +9.26%
...avg3j_avg2 945844.46 214.48 980313.28 193.18  1006870.52 173.92
+1.51% +5.60% +1.33% +5.60% +1.06% +8.54%
...avg3j_stddev2 1661461.88 31.27 1664858.96 30.55  1666627.45 30.21
+0.36% +3.05% +0.32% +2.95% +0.26% +3.13%
...avg3j_avgl_stddev2 816453.40 81.73 843764.96 68.15 856083.76 57.42
+3.17%  +15.97% +1.84%  +18.39% +1.17%  +19.66%
...avg3j_avg2_stddev2 816453.40 81.73 843764.96 68.15 856083.76 57.42
+3.17%  +15.97% +1.84%  +18.39% +1.17%  +19.66%
...self_avg2_stddev2 835771.74 21.43 839216.44 20.93 839990.51 20.83
+1.15% +2.08% +0.94% +1.54% +0.90% +1.61%

Table 4.4.: Average results of the karger variants with different number of algorithm executions,
most affected algorithms marked in yellow (Wikipedia (en), error rate 25% unless
otherwise stated, e = 0.24, s = 1.5 where appropriate, 100 test runs).

The imbalance results of the avg3j_avgl and avg3j_avg2 variants can be improved
by more executions, too. But unlike the pristine avg3j variant, the variance of these
results is even higher in terms of percentages. This leaves room for improvements and

it is unclear whether an even higher number of executions would solve this. At least
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the number of moved items with 800 executions increases by only 5 — 7% compared
to 200. avg3j_stddev2 behaves similarly to stddev2 alone as already observed above.
This continues with an increased number of executions.

The avg3j_avgl_stddev2 and avg3j_avgl_stddev2 variants - that looked quite prom-
ising at the start of the simulations (ref. Figure 4.5 on page 64) - continue to improve
their final imbalance with an increased number of executions. Simulating it four times
as often as originally though only achieves an imbalance of 57.42 at the end. Although
this is achieved by moving only about 5% more items, the results vary even more than
with 200 executions in terms of percentages. If the improvements can be continued by
increasing the number of executions even more, it might get near the avg2_stddev?2 vari-
ant but it would then probably need much more tries to find nodes that can be balanced

with each other.

Error rate

One of the major aspects of all algorithm variations introduced above is that they work
with estimated global information. Gossiping algorithms are used to retrieve any of such
values, e.g. average load, standard deviation, and will approximate them to a certain
degree which will be more exact the more often the gossip algorithm is executed. In
highly dynamic systems however they need some time to incorporate any changes and
thus provide worse approximations for a while. The quality of this information in the
given simulations can be influenced by setting an error rate (previously at 25%). Further
simulations with the best karger variants identified above should clarify how dependent
their performance is on the accurateness of the global information.

As such, simulations with error rates from 10 — 80% have been run whose results are
shown in Figure 4.7. It also includes results of simulations with karger_avg2 stddev?2
using s = 3 that has been mentioned above as a candidate for the best value of s. As
the result table shows, this parameter probably restricts too many balance operations
(moving up to lywg = 10% items in a single balance operation is more likely to hit this
barrier than ly, £ 20%).

The plots in Figure 4.7a,b show the results of the karger_avg2 stddev2 variant
without and with self-tuning and also plot the ordinary karger algorithm for com-
parison. Recall that the latter is independent from the error rate since it does not use
any global information. Furthermore, the variant without self-tuning seems to be influ-
enced by the error rate a bit more than the other. Its performance however does degrade
gracefully so that even with an error of up to 80% an imbalance that is comparable to
karger can be reached by moving about 25% more items than the same algorithm with
a 10% error and still about 40% less than karger. According to this the algorithm seems
pretty robust to erroneous global information. This is probably due to the fact that the
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bound that € imposes has a greater affect than an error rate that only determines how

many items are moved.
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(a) karger_avg2_stddev2 (e = 0.24, s = 2) (b) karger_self_avg2_stddev2 (s = 2)
Algorithm Error Simulation results (avg)

name parameters moved load stddev Omal

karger e=0.24 < 0% 2101882.19 £ 100% 30,17 £ 245% 907

.._avg2_stddev2 e=024, s=2 <10% 1041627.75 £ 208% 1679 * 302% 95

<20% 1078691.18 ¥ 2% 1919 ¥ 2:00% 1 93

<40% 1123017.37 £ 210% 2636 T 137% 188

< 80% 1291849.74 £ 191% 3338 £ 146% 1 97

e=024, s=3 <10%  416431.18 T30-26% 168,79 +26:22% g g3
<20% 1058711.34 ¥ 1:39% 1907 £ 2:09% 1 g7

< 40% 1102975.35 £ 17% o657 T 14% 187

<80% 1268950.19 * >2'% 3356 T 1674 197
..self_avg2_stddev2 s =2 <10%  830177.11 £080% 1779 £ 377% 917
<20%  830203.73 £ 080% 1985 F 247% 91

< 40%  836896.21 £ 092%  9g79 FLT% 1 g6

<80%  927569.14 T 1374 34900 F 15T% 197

(c) Results at the end of the simulations

Figure 4.7.: Results of the best karger wvariants with different error rates. (Wikipedia (en),
100 test runs, 200 algorithm executions each, plots cut off at 1.3m moved items)

Even more robust is the karger_self _avg2 stddev2 variant with self-tuning. Error
rates of 10 or 20% nearly differ at all from each other and increasing the error to 40%
not even moves 1% more items by still achieving a fair imbalance. A bigger difference
can be seen with 80% which offers almost the same imbalance of karger_avg2_stddev2
at 80% but still moving less than 1m items. The better result is probably owed to €
being adapted to the system’s state every time at each node independently from any
previous state. After all with an average load of 100 and several nodes with loads over
1000 (ref. Figure 4.1 on page 55), an 80% difference does not matter that much. This
might be different for simulations with higher loads though.
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Number of sampled nodes

Another aspect of the algorithms is their ability to sample multiple random nodes instead
of just one. In that case a node can decide with which of the sampled nodes it balances.
This should at least allow the algorithm to get to lower imbalances earlier than with
only one sample but introduces additional traffic on the network. The algorithms of the
following simulations were set up to sample k € {1,2, 4,8} different nodes uniformly at
random, dry-run the balance operations with each of them and choose the best among
them as described in Section 3.2. The results of such simulations using karger and the

two best variants from above are shown in Figure 4.8.
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(a) Results during the simulations (indistinguishable curves have been merged)

Algorithm Simulation results (avg)
name parameters moved load stddev Omal
karger e=024,k=1 2101882.19 T1:00% 30,17 F245% 9 o7
e=024,k=2 2050068.45 T0-68% 99 98 F237% 9 1
e=024,k=4 1988928.43 £081% 30,01 £212% 1,99
e=024,k=28 1917664.25 £0-87% 2883 ¥2:21% 1 g5
.._avg2_stddev2 e=024,s=2k=1 1090815.91 T>4% 9097 F1:55% 187
e=0.24,5=2 k=2 1047354.14 T299% 9q75 F1.™% 175
e=024,s=2k=4 1040849.12 2% 2067 2% 169
e=024,s=2 k=28 1051528.20 T191% 2065 F1-72% 167
..self avg2_stddev? s=2k=1 831745.79 £092% 9138 F1:98% 1 95
s=2,k=2 830804.58 £112% 21,03 F190% 1 76
s=2k=4 829238.02 T118%  20.96 1% 169
s=2k=8 827633.51 T093% 90,95 F218% 1 67

(b) Results at the end of the simulations

Figure 4.8.: Results of the best karger variants with different numbers of sampled nodes (k).
(Wikipedia (en), 100 test runs, 200 algorithm executions each, error rate 25% )
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The plots clearly show the expected effect with the karger algorithm: The more nodes
are sampled the more the scatter plot of the algorithm turns bottom left, i.e. the same
imbalance is reached by moving less items. Also the final results are slightly better with
higher k£ but as seen with k£ = 4 this is not always the case in contrast to the number of
moved items that decreases monotonously.

This effect however can not be observed with the avg2_stddev2 variants with or
without self-tuning. In the latter, a difference can only be found between either sampling
one node or more (algorithms with k& € {2,4, 8} perform nearly the same). The insig-
nificant differences of the standard deviation and the number of moved items at the
end of the simulations may be owed to the € preventing any further improvements. In
contrast to the standard deviation though, the ratio §,,, of the maximum load to the
average load always decreases with higher values of k. So higher values do at least show
some effect: the maximum load in the system decreases (recall that the average load is
constant throughout the whole simulation).

Finally, the self-tuning algorithm does not show any significant differences between
the simulations with a different number of sampled nodes, except for a decreasing d,q;-
This is probably due to the strong coupling of € to the current system’s state and the
fact that this variant without self-tuning was already not influenced much by different

numbers of sampled nodes.

Scalability

Up until now all simulations have always been carried out with 10000 nodes and a total
load of 1000000 items and parameters have been set according to such scenarios. In
this section the algorithms will show whether they also perform as expected in scenarios
with more nodes or greater loads.

As such karger and its best two variants have been run on the “Wikipedia (en)”
scenario with 10000 nodes and different total loads as shown in Table 4.5. This will,
substitutionally for all scenarios, clarify whether the algorithms work with different
average loads as well. At first it can be seen that the ordinary karger algorithm nearly
doubles both the number of moved items and the standard deviation at the end of the
scenarios when the total load is doubled. This effect is inherent in the increased total
load and can also be observed with the two karger variants. The variance among the two
values for all 100 test runs also stays within reasonable bounds and does not increase
with the increased load. These results indicate good scalability in terms of system load
for all three algorithms.

Furthermore scenarios with a different system size, i.e. number of nodes, can be set up
to evaluate whether the algorithm’s performance depends on the number of nodes in the

system. The stddev2 variant for example has already been developed with this in mind:
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Algorithm Total load
500 000 1000000 2000 000 4000000

moved l.  stddev  moved I. stddev  moved I.  stddev  moved .  stddev
karger 1048218 15.14 2101882 30.17 4205981 60.49 8414797 121.09
1+0.82% +2.15% +1.00% +2.45% +1.01% 1+2.84% +0.83% +2.58%
.._av2_st2 545453 10.46 1090815 20.97 2183785 41.93 4362201 83.90
+1.89% +1.97% +2.45% +1.53% +1.83% +1.58% +1.86% +1.52%
.._se_av2_st2 414751 10.66 831745 21.38 1666331 42.73 3336612 85.71
+0.75% +2.37% 1+0.92% +1.93% +0.83% +2.75% +1.14% +1.87%

Table 4.5.: Average results of the karger variants with different total loads (Wikipedia (en), error
rate 0% with karger, otherwise 25%, € = 0.24, s = 2.0 where appropriate, 100 test
runs, 200 algorithm executions each, 10000 nodes, moved load rounded down to the
nearest integral, abbreviated algorithm names).

it considers the fact that if more nodes share the same amount of load, a single balance
operation will probably affect the overall imbalance less than with fewer nodes. This
is why the system size has been integrated there as well. The same three algorithms
as above also had to complete the “Wikipedia (en)” scenario with a fixed amount of
1000000 items but different system sizes.

The results of these simulations, presented in Table 4.6, show that karger scales
linearly with an increasing number of nodes. Inversely to the simulations above, the
standard deviation decreases if more nodes share the same total load. It halves with
karger compared to scenarios with half as many nodes while the number of moved
items constantly increases by about 10%. The latter should ideally not change much

but such a small increase when doubling the system size is acceptable.

Algorithm Number of nodes
5000 10000 20000 40000

moved [.  stddev  moved l.  stddev  mowved . stddev moved 1. stddev
karger 1926994 60.64 2101882 30.17 2306485 15.32 2506472 7.57
+1.14% +4.15% +1.00% +2.45% + 0.58% + 1.41% +0.36% + 0.83%
.._av2_st2 1063600 42.53 1090815 20.97 1122572 10.58 902782 30.24
+2.48% +2.66% +2.45% +1.53% + 1.57% + 1.58% +7.76% +21.17%
.._se_av2_st2 823234 43.38 831745 21.38 756367 21.73 613656 35.88
+1.79% +3.57% +0.92% +1.93% +12.36% +69.05% +6.75% +18.32%

Table 4.6.: Average results of the karger variants with different system sizes (Wikipedia (en),
error rate 0% with karger, otherwise 25%, € = 0.24, s = 2.0 where appropriate, 100
test runs, 200 algorithm executions each, total load 1000000, moved load rounded
down to the nearest integral, abbreviated algorithm names).

The avg2_stddev2 variant without self-tuning however only halves the reached stand-
ard deviation up to a system size of 20000 nodes. With 40000 nodes it gets much
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worse and also shows a great variance among the 100 test runs. This indicates that the
number of algorithm executions is not high enough for the given scenario which might
especially hit stddev2 variants since they block balance operations and depend on a
possibility to find alternatives. The same restriction applies to the self-tuning algorithm
which already performs worse than karger with 20000 nodes and continues to do so
with more nodes. Further simulations with an increased number of algorithm execu-
tions to 400 support the previous assumption of this being the limiting factor. In those,
karger_self _avg2 stddev2 achieves an imbalance of about 5.22 with 40000 nodes by
moving about 882453 items. These values are the ones that could have been expected by
this algorithm and since in real-world scenarios the algorithm would operate indefinitely
and would not stop after an arbitrary number of executions, this variant is still a good

choice that does scale linearly with the system size as well.

Summary of Results

Most of the introduced variants that incorporate estimated global information into the
karger algorithm use it to their advantage. They provide much better final results in
terms of both number of moved items and the imbalance of the system. Especially
good performances are achieved by the avg2, stddev2 and self-tuning variants which
combined with each other provide even better results. An improvement of up to 60% less
item movements with a 30% better standard deviation can be achieved using an optimal
value for stddev2’s s parameter. These effects can be observed with the scenarios that
have a greater imbalance at the simulations’ start. Scenarios which already start with
smaller imbalances only show improvements of up to 40% less item movements and a
15% better imbalance at the simulations’ end.

Simulations have also shown that the best two algorithms, i.e. karger_avg2_stddev?2
and karger_self _avg2 stddev2, are pretty robust against fluctuations in the quality
of the estimated global information they use. They can however not provide the same
improvements on the final imbalance with too erroneous data but at least still show
major improvements in the number of moved items. With an error of 80% and in an
alphabetical scenario (high starting imbalance) still about 40% and 55% less items are
moved. Compared to the ordinary karger algorithm though, the final imbalance is
around 10% worse.

Better results by sampling multiple random nodes can only be observed with the ori-
ginal karger algorithm. Sampling more nodes in karger_avg2_stddev2 produces meas-
urable but insignificant improvements over one sampled node. Differences of sampling
either 2, 4 or 8 nodes are negligible though. If self-tuning is also applied to this al-
gorithm variant changes in the number of sampled nodes can nearly be observed and

can be buried in the variance of the results among the different test runs.
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Further simulations of an alphabetical scenario with different total loads or different
system sizes have also shown that these two variants scale linearly with those changes.
They also offer the same improvements over the original algorithm in terms of both,
moved items and imbalance at the end of the simulations. The only thing that can be
noticed though is that if the system size, i.e. number of nodes, increases more algorithm
executions are needed than with the ordinary karger algorithm. This is due to the fact
that these variants omit several balance operations and wait for better node matches.
It should be considered if these algorithms are applied to real-world scenarios since in
order to achieve the same imbalance in the same time they would need to be called
more often, e.g. 4 times as much (karger already achieves its results with 100 algorithm
executions). Further investigations on the aspect of time, that was previously ignored,

are needed in order to draw any further conclusions to applications on real systems.
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4.4.2. Mercury

All of the introduced algorithm variants have also been applied to a second algorithm,
mercury, in order to evaluate whether the effects observed with karger also apply to
other balance algorithms. The following sections will analyse those variations the same
way as the analysis has been done with karger above. In contrast to this though it will
not be as thorough as before and will concentrate only on proving the effectiveness of the
variants and will neither evaluate the influence of the number of algorithm executions
nor the effect of multiple sampled nodes. The evaluation will thus also only use the
three main scenarios that have been used with the karger variants. The other scenarios
exhibited very similar results, so the simulated scenarios can be restricted to those three

without loss of generality.
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Figure 4.9.: Balance results for mercury with different « for the three main scenarios
(error rate = 25% ).

Without added global information

At first the original mercury algorithm has been simulated with different values of the
o parameter in order to evaluate its influence. Since a > v/2, values starting from 1.42
have been chosen up to a value that still reaches a fair imbalance. Those values include
1.42, 1.75, 2.00, 2.25, 2.50, 3.00 and 5.00. The simulation results of mercury with those
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values are presented in Figure 4.9. The plot for each scenario shows the imbalance
reached after moving the given number of items and thus indicates the relation between
the two invariants quality, i.e. imbalance, and cost. As with karger it can be seen
that parameters that tolerate bigger skews, i.e. larger a’s, achieve the same standard
deviation by moving less items than those tolerating smaller skews. This behaviour is
important for the idea of self-tuning algorithms that will be analysed in the following
sections. In contrast to karger though, results of the 100 different test runs of the
simulation on the alphabetical scenario with a given « vary much more which is probably
due to the error rate being at 25% and the definition of local load in mercury.

A fixed « of 1.42 is used for the following simulations because it results in the best
imbalance at the end. The imbalance reached by this value and the number of moved

items at the end of each simulation has been included in Table 4.7 on page 84.

With added global information

The results of the different algorithm variations that implement one of the variants
introduced above are shown in Figure 4.10. In contrast to karger though the avg3j
variant alone does perform a bit better than the original algorithm by moving less items
and achieving only slightly worse imbalances at the end of the simulations in all three
scenarios. This is probably due to light nodes (according to the definition in mercury)
having lightly loaded neighbours with high probability and thus the additional restriction
of avg3j not being hit that often as in karger (recall that only light nodes jump).

The performances of the two avgl and avg2 variants are so similar when applied to
mercury, that they could not be distinguished in the plots which is why they have been
merged to a single scatter plot. Their results however are very similar to the ones they
exhibited with karger although they do not show such bad results at the start of a
simulation. The imbalance reached by these two variants at the end of the alphabetical
simulations however is disappointing (ref. Table 4.7). This can only be explained by
too many nodes getting a load that neither makes them [light nor heavy and thus does
not allow further balancing. Maybe not enough light nodes exist in order to balance the
remaining heavy nodes. This however does not occur in the other two scenarios which is
probably because there neighbouring nodes have a similar load with higher probability
than in the alphabetical scenario. Averaging the load of three neighbouring nodes to a
local load may thus lead to the node being neither heavy nor light although it is very
heavily or lightly loaded.

Results of the stddev2 variant are as expected: a slightly better imbalance at the
end of the simulations with less moved items than the original algorithm. In order to
achieve that though, its s parameter was set to 3.0 which seemed to be the best for

mercury_stddev2 during initial simulations. This will allow only such balance opera-
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Figure 4.10.: Balance results for the mercury variants with one variation, error rate 25%.

tions, that improve the standard deviation by at least a factor of 3.0/n which is more
selective than the 15/n used by the karger variants. In contrast to those however, the
difference in the number of moved items compared to the original algorithm is not that
high. Possibly most balance operations performed by mercury are already worth it and
are thus not prevented by this variation.

The self-tuning algorithm implemented for mercury looks quite superior to the other
variants in the given plots - similarly to the results of the self-tuning variant of the karger
algorithm. It moves a lot less items in all three scenarios and in the exponential scenarios
it achieves an imbalance that is comparable to the one of the ordinary algorithm. In the
alphabetical scenario however its final imbalance is disappointing. The huge variance
of this value among the 100 test runs however indicates that the number of algorithm
executions is not high enough for this variant which has been confirmed by additional
simulations that reach better imbalances with an increased number of executions, e.g.
an imbalance around 39 with a lower variance and around 830000 moved items can be
reached by doubling this number.

Results of algorithms with several variants combined are shown in Figure 4.11. Again
avgl and avg2 variants have been too similar to distinguish from each other and have

been merged. Apparently the balance operations of mercury and its definition of local
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load have a greater influence on the imbalance than the number of items moved during
such an operation which does not differ substantially in most cases with those two
variants. Combining either of them with avg3j though is - as with karger - not a good
idea since the resulting algorithm’s performance is not as good as the other combinations
and does not get close to the imbalance the original algorithm reaches at the end of the
simulations. Only the last scenario exhibits good results with that combination which is
probably due to its better imbalance at the simulation start. Adding avg3j to stddev2
does not show much difference compared to the results of stddev2 alone which has been

observed with the karger algorithm, too.

450

mercury
mercury_avg[1,2]_stddev2
mercury_avg3j_ava[1,2]
mercury_avg3j_stddev2
mercury_avg3j_avg[1,2L_stddev2
mercury_self_avg2_stddev2

400

350

300

250

200

standard deviation

150

100

50

0

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+0¢

moved load

(a) Wikipedia page titles (en)

mercury
300 mercury_avg[1,2]_stddev2
mercury_avg3j_avg[1,2]

mercury_avg3j_stddev2
250 mercury_avg3j_avg[1,2]_stddev2
mercury_self_avg2_stddev2

200

mercury
160 mercury_avg[1,2]_stddev2
mercury_avg3j_avg[1,2]
140 mercury_avg3j_stddev2
mercury_avg3j_avg[1,2]_stddev2

mercury_self_avg2_stddev2

120

100

150 80

standard deviation
standard deviation

60
100

40

50

20

0 0
0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 0 100000 200000 300000 400000 500000 600000 700000 800000 90000C

moved load moved load

(b) Exponential - Ezp(A = 6-10"'?)) (¢) Exponential - Exzp(A =2-10""9)

Figure 4.11.: Balance results for the combined mercury variants, error rate 25%. Indistinguish-
able curves have been merged.

The remaining algorithms are running shoulder to shoulder. Best final imbalances
are achieved by the avgl_stddev2 and avg2_stddev2 variants which can be traded
for a little worse imbalance by the advantage of moving slightly less items with the
avg3j_avgl stddev2 and avg3j_avg2_stddev2 variants. The self-tuning algorithm’s
performance is somewhere in between these two groups. In contrast to karger it does
not outperform the other variants and the good results of self-tuning alone compared
to other variants alone could unfortunately not be combined with the good results of

another variant as this was the case with karger. Maybe a > V/2 is the limiting factor
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here or the local load paradigm and its node classification in general. The fact that so
many algorithms perform almost identically in contrast to the observations with karger

would support that statement.

Error rate

Simulations carried out with different error rates as above show that the avg2_stddev2
variant applied to mercury performs similarly than the same variant on karger. The
only difference that should be noted here is that the performance of the algorithm with
an error of 10% is closer to the one with a 20% error than before. Also, the 10% scenario
shows a worse imbalance result at the end of the simulations which is probably due to
less items being transferred to another node than with 20% and heavy nodes thus not
getting “normal” and stealing light nodes that otherwise would have been matched with

more unbalanced nodes.
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(a) karger_avg2_stddev2 (e = 0.24, s = 2)
Algorithm Error Simulation results (avg)
name parameters moved load stddev Omal
[y
mercury a=1.42 < 0% 1594504.07 T043% 50,13 F001% 393

._avg2.stddev2 a=142,s=3 <10%  844367.93 T1:01% 35719 ¥292% 318
a=142,s=3 <20%  883390.55 T13% 30.48 ¥29% 30
a=142,s=3 <40%  907052.92 T1-07% 3401 ¥242% 98]
a=142,s=3 <80%  998260.86 ~1%°% 4236 *152% 305

(b) Results at the end of the simulations

Figure 4.12.: Results of the best mercury variant with different error rates. (Wikipedia (en),
100 test runs, 200 algorithm executions each, plot cut off at 1.05m mowved items)
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Algorithm Simulation results (avg)
name moved load stddev Omal
Wikipedia (en) mercury 1761353.09 £0-49% 34.43 * 2:36% 2.87
.._avgl 991167.62 1217 105.80 T1772% 9534
.._avg2 981093.10 F1°7%  105.99 F2078% 9504
.._avg3j 1658430.86 t0-43% 3545 * 2:31% 3.13
.._stddev2 1692875.04 £0-46% 3181 + 1.67% 2.52
.._self 720993.42 £589% 79 9o F288% 49 45
.._avgl_stddev?2 904086.45 £1:06%  30.37 £ 7:82% 3.58
.._avg2_stddev?2 887620.31 £1:92%  30.84 £ 472% 3.22
.._avg3j_avgl 804079.98 T0%% 17460 £ 897%  126.44
.._avg3j_avg2 791579.36 TO01% 17431 * 665% 126,61
.._avg3j_stddev2 1638856.48 £0-29% 3451 * 1:33% 2.86
.._avg3j_avgl_stddev?  819585.53 T0-83% 38 97 F28TH 16 g5
.._avg3javg2_stddev2  819585.53 £083% 3897 F28TH 1585
.._self_avg2_stddev2 841609.76 £1:99% 3463 £ 247% 3.80
Exp(A=6-10""") mercury 1436953.99 0% 3151 * 224% 2.48
.._avgl 868365.51 T0-9%8% g 1 F16.86% 9.22
.._avg2 863661.82 £127% 99 49 F1T-1T% 9.02
.._avg3j 1367239.74 £0-29% 39 45 + 1.54% 2.76
.._stddev2 1387009.40 £031% 99 54 * 1.55% 2.36
..self 751612.57 £070% 3139 + 18T 2.89
.._avgl_stddev?2 797138.00 0677 9g.47 * 246% 2.55
.._avg2_stddev2 790562.53 £0T9% 9673 £ 2.52% 2.53
.._avg3j_avgl 742164.69 0T 74,06 T1O3% 9745
.._avg3j_avg2 736134.58 TO3% 73,33 F1L8% o750
.._avg3j_stddev2 1355825.40 £0-24% 31 o7 £ 1.23% 2.44
.._avg3javgl_stddev2  749505.40 F047% 2848 * 2:03% 2.83
.._avg3javg2_stddev2  749505.40 F047% 2848 * 2:03% 2.83
.._self_avg2_stddev2 768556.88 T0-02% 9814 * 1.50% 2.70
Exp(A=2-10""") mercury 858594.53 T103% 3698 £ 150% 969
.._avgl 649470.11 £295% 3676 £ 1:64% 2.71
.._avg2 644264.44 T198% 3698 * 242% 2.72
._avg3] 737164.36 T103% 3915 * 1-43% 3.02
.._stddev2 795476.38 £0-88% 3511 + 152% 2.58
..self 570593.90 £1:26% 3980 * 1-86% 2.95
.._avgl_stddev2 590802.90 T162% 3588 £ 2:29% 2.64
.._avg2_stddev2 583538.73 T118% 36,10 £ 150% 2.65
.._avg3j_avgl 516676.43 £112%  41.81 * 8:50% 9.72
.._avg3j_avg2 510947.23 T1H% 41 87 £ T1% 9.21
.._avg3j_stddev2 720274.42 T102% 3880 * 1:09% 2.76
.._avg3javgl_stddev2  501536.74 F124% 4071 £ 199% 3.13
.._avg3javg2_stddev?  501536.74 T1-54% 4071 £ 199% 3.13
..self_avg2_stddev2 558778.87 T107% 3853 £ 1.51% 2.84

Table 4.7.: Results of the different mercury variants, best variants for each scenario marked in
yellow (error rate = 25% unless otherwise stated, o = 1.42, s = 3.0 where appropriate,
100 test runs with 200 algorithm executions each).
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Scalability

As can be seen from the results in Table 4.8, mercury does scale linearly with the overall
load as does its avg2_stddev?2 variant. It also continues to show the same improvements

in terms of percentages compared to the original algorithm.

Algorithm Total load
500000 1000 000 2000000 4 000 000

moved I.  stddev  moved l.  stddev  moved I.  stddev  moved l.  stddev

mercury 878334 17.28 1761353 34.43 3527486 68.83 7056172  137.71
+0.58%  +£1.79% +0.49%  +£2.36% +0.57%  £2.30% +0.63%  +1.76%
...av2_st2 443357 15.56 887620 30.84 1776176 61.52 3549476  123.04
+1.36%  +5.05% +1.02%  +4.72% +1.02%  +5.09% +1.34%  +£4.42%

Table 4.8.: Average results of the mercury variants with different total loads (Wikipedia (en),
error rate 0% with karger, otherwise 26%, a = 1.42, s = 3.0 where appropriate, 100
test runs, 200 algorithm executions each, 10000 nodes, moved load rounded down to
the nearest integral, abbreviated algorithm names).

Also these algorithm’s performances in scenarios with more number of nodes, shown
in Table 4.9, show similar results than what has been observed with karger. mercury
moves about 10% more items in scenarios with twice as many nodes just like karger
did and achieves nearly halved imbalances as well. The avg2_stddev2 variant however
moves only slightly more items comparing the simulations with 5000 and 10000 nodes
but already starts to show the effect of not being executed often enough with 20000
nodes which is supported by the variance that is shown by the results. This is similar to
the observations with karger although there this effect with the non-self-tuning variant

did start to occur with 40 000 nodes.

Algorithm Number of nodes
5000 10000 20000 40 000
moved I.  stddev moved 1. stddev  mowved l. stddev moved 1. stddev
mercury 1615172 69.68 1761353 34.43 1941249 17.05 2113715 8.31
+0.69% +2.99% +0.49% +2.36% +0.40% +1.57% +0.47% +1.33%
.._av2_st2 869918 62.97 887620.31 30.84 873597 24.80 724608 29.05
+1.27% +2.87% +1.02% +4.72% +3.39% +24.67% +17.11% +38.04%

Table 4.9.: Average results of the mercury variants with different system sizes (Wikipedia (en),
error rate 0% with karger, otherwise 25%, o = 1.42, s = 3.0 where appropriate, 100
test runs, 200 algorithm executions each, total load 1000000, moved load rounded
down to the nearest integral, abbreviated algorithm names).
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Summary of Results

Based on the simulations on the three main scenarios carried out and analysed above,
the best mercury variant is mercury_avg2 stddev2 without self-tuning. It achieves
an up to 15% lower imbalance at the end of the simulations by moving up to 50%
fewer items than the original algorithm (depending on the scenario). This confirms the
results that have been observed with this variant on the karger algorithm above and
indicates that the possible improvements are not limited to the presented algorithms.
Only the superiority of this variant being equipped with a self-tuning parameter could
not be confirmed. However the implementation of this on mercury is different to the
implementation on karger which is why the results can not necessarily be transferred.
There are however indications that mercury itself is limiting any more improvements
since several algorithms that have previously showed different results now almost perform
identically.

The robustness of the algorithm variants that has been observed with karger though
still exist here. mercury’s best variant mercury_avg2_stddev2 shows the same minor
influence to changed error rates as karger_avg2 _stddev2 does. The same can be said
about the scalability of this variant in regard to increased overall loads and increased
number of nodes. It seems that those effects can be transferred to another algorithm if

the algorithm itself already shows them (which mercury does).
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5.1. Achievements

At the beginning in Chapter 2 an overview of the field of research was given. It introduced
Distributed Hash Tables (DHTs) and some of their representatives, e.g. CAN, Pastry
and Chord. This general concept has then been extended to such DHTs that support
range queries among their stored data, i.e. they do not only allow the retrieval of the
value of a set of single keys but also support queries for ranges of them. Among several
implementations of such DHTs, Mercury and Scalaris have been introduced that show
only few or no overhead to ordinary DHT's without range queries. Additionally, gossiping
techniques have been presented that are able to aggregate global information of a DHT
with high confidence and low overhead. Among those estimated values is the system’s
minimum, average and maximum load, the standard deviation of the load among the
nodes as well as the number of nodes in the system.

The problem that arises by the way range-queriable DHTs store their data is the
increased variance of load among different nodes. They thus apply some sort of load
balancing scheme. Chapter 2 also introduced several novel load balancing algorithms
that have been developed in recent research. These algorithms have been arranged into
4 different categories since most of them make use of a common set of techniques and
only differ in details.

Two of the 18 presented algorithms have then been chosen and equipped with (ad-
ditional) estimates of global information with the objective of improving their perform-
ances. Chapter 3 introduced the system model that is used for the evaluation and
presents the two algorithms in more detail. It concludes by introducing five different
techniques of using information such as the average and maximum load, the standard
deviation of the load among the nodes and system size and describes the ideas behind.

These techniques have then been integrated into the algorithms and evaluated by
simulation. Chapter 4 described the simulator that has been set up for this evaluation
and defined the metrics that have been used in order to rate the different algorithms.
It further presented the simulation scenarios the algorithms should master and finally
evaluated their performances. During these evaluations an algorithm variant combining

several of the ideas introduced above has been found that significantly increases the
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performance of both original algorithms. When applied to any of the given scenarios, the
imbalance reached at the end of the simulations is about 15 —30% lower and the number
of moved items has even been decreased by about 30 — 50%. For this achievement three
global estimates are used: the average load, the standard deviation of the load among
the nodes and the number of nodes. Further simulations also verified that this variant
is quite robust regarding the accurateness of the estimates and also scales linearly to
scenarios with higher overall loads or increased number of nodes. With the algorithm
described by Karger and Ruhl, the number of moved items can even be further reduced
by using a so-called self-tuning variant that sets the algorithm’s e parameter according to
the system’s state. This variation then moved only 40 — 65% of the amount the original
algorithm moves by achieving a 15 — 30% lower imbalance. Unfortunately this success
was not observed with the self-tuning variant developed for the second algorithm.

This evaluation supports the thesis from the beginning that load balancing algorithms
can profit from added global information such that they show better performances. As

can also be seen, major improvements can be expected by such variations of an algorithm.

5.2. Future Work

As already mentioned in the evaluation above, some of the algorithm’s aspects need
further investigation. There is at first the concept of time which has been omitted in the
current system model but is needed for real-world applications. It needs to be evaluated
how much more often the new algorithm variants need to be executed in order to show
the improved results they exhibited here. It will then need to be evaluated whether the
additional operations performed by the omitted balance operations, e.g. getting random
nodes, are still negligible in terms of impact on the network.

Another aspect that still needs further attention is a different definition of load. The
system model used here assumes that the load of a node is proportional to the num-
ber of items it stores and so is the transfer cost. This equals a real-world scenario
where every item in the system has the same size and the storage on the nodes is to
be balanced. More often, another aspect of the stored items is crucial for the system’s
performance/availability: the popularity of the stored items and the resulting number
of item accesses. Other definitions of load may take into account the nodes’ (potentially
different) capacities of network bandwidth and latency towards other nodes. Systems
with heterogeneous nodes in general would also need to be further observed.

Finally different (additional) global estimates may further improve the algorithms
and deploying the introduced values in other way might potentially be useful as well.
Especially the concept of self-tuning parameters seems promising and may be further

extended to different algorithms, too, or be used to create a new algorithm from scratch.
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A. Implemented algorithms in Pseudo-Code

A.1. Generic helper functions

These are some of the generic helper functions that are used by every algorithm. They
make use of a calcBalancedLoad method which must be defined for each algorithm.

// slide between n; and its successor n;
// return the actual load changes this operation will have
slideHelper (DHT d, Node n;, Node n;, bool simulate) {
// calculate the amount of load that should be moved between the nodes:
LoadMove loadMove = calcBalancedLoad(d, n;, nj);

if (simulate) {

return d.simulateSlide(n;, nj, loadMove);

} else {

return d.slide(n;, nj, loadMove);

}
}

// move nj to support n;

// return the actual load changes this operation will have
jumpHelper (DHT d, Node n;, Node n;, bool simulate) {
// calculate the amount of load that should be moved from n;

// to the empty n; after it has been moved:

LoadMove loadMove = calcBalancedLoad(d, n;, emptyNode);
if (simulate) {

return d.simulateJump(n;, n;, loadMove);

} else {

return d.jump(n;, n;, loadMove);

}
}
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A. Implemented algorithms in Pseudo-Code

A.2. Variations of calcBalancedLoad

The following method can be used by algorithms which want to even out the load of two
nodes they decided to balance with each other. It will try give both nodes half of the
sum of their loads. The exact number of transferred items is dependent on their load
and will be determined by the slide and simulateSlide operations.

calcBalancedLoad_half (DHT d, Node first, Node second) A{
LoadMove loadToMove;
Node mnfq = NULL;
Node ngym = NULL;
if (load(first) > load(second)) {
N = first;
Nglim = second;
loadToMove.direction = FirstToSecond;
} else { // load(first) <= load(second)
Nfqt = second;
Nslim = Ifirst;
loadToMove.direction = SecondToFirst;
}
loadToMove.load = (load(nge) - load(ngm)) / 2;
return loadToMove;
}

Another implementation might want to try not to move more than the average load
for which an estimate is retrieved from the DHT. It will otherwise do the same as
calcBalancedLoad_half.

calcBalancedLoad_avgl (DHT d, Node first, Node second) {
LoadMove loadToMove;
Node mnfq = NULL;
Node ngpm = NULL;
if (load(first) > load(second)) {
Ngqe = first;
Nslim = Second;
loadToMove.direction = FirstToSecond;
} else { // load(first) <= load(second)
Nfqt = second;
Nglim = first;
loadToMove.direction = SecondToFirst;
}
double avg = d.getAvgLoad();
loadToMove.load = min(avg, (load(nfe) - load(ngm)) / 2);
return loadToMove;
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A.2. Variations of calcBalancedLoad

The third implementation only balances heavy nodes (those with a load higher than
the average) with light nodes (less load than the average) and never make a light node
heavy. It will also move no more items than are required to make the heavy node
balanced (load equal to the average).

calcBalancedLoad_avgl (DHT d, Node first, Node second) {
LoadMove loadToMove;
Node ngfq = NULL;
Node mngym = NULL;
if (load(first) > load(second)) {
Nggt = first;
Nglim = Second;
loadToMove.direction = FirstToSecond;
} else { // load(first) <= load(second)
Ngqt = second;
Nglim = first;
loadToMove.direction = SecondToFirst;
}
double avg = d.getAvgLoad();
if (load(ngq) > avg && load (ng,) < avg) {
loadToMove.load = min(load(nsy) - avg, avg - load (nNgim));
} else {
loadToMove.load = 0;
}
return loadToMove;
}
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A. Implemented algorithms in Pseudo-Code

A.3. Variations of getBest

The first way of finding a best node among a list of candidates uses only local knowledge
and decides for the node that improves the standard deviation the most (without knowing
its exact value). As pictured in Section 3.2 only the change of the sum of the square of
all loads needs to be examined which is done here.

getBest_stddevl (List<Node> candidates, Map<LoadChanges>
results) {
Node bestNode = none;
double minSumLi2_change = O0;
foreach(Node n; € candidates) {
double currentChange = O;
foreach(LoadChange 1lc € results[n;]) {
currentChange += lc.newLoad()? - 1lc.oldLoad ()%;
b
if (currentChange < minSumLi2_change) {
minSumLi2_change = currentChange;
bestNode = n;;
b
}
return bestNode;

}

A second implementation will get an estimate of the old value of the standard deviation
and an estimate of the size from the DHT and use them to calculate the new value. The
best candidate is at first the one that improves the standard deviation the most, but
additionally to the previous implementation, it is only used if by balancing this node
the standard deviation would increase by at least $/size. Otherwise nothing is done.

getBest_stddev2 (List<Node> candidates, Map<LoadChanges>
results, double s) {

Node bestCandidate = getBest_stddevl (candidates, results);
if (exists(bestCandidate)) {
int size = d.getSize(); double 0ldStddev = d.getStddev();
double variance = oldStddevZ;
foreach(LoadChange 1lc € results[n;]) {
variance += lc.newLoad()? / size - 1lc.oldLoad ()% / size;
+
double stddev = Vwariance;
if (stddev >= 0 && stddev < oldStddev * (1 - s / size)) {
return bestCandidate;
}
}
return none;
}
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A.4. Algorithms based on the item balancing scheme by Karger and Ruhl

A.4. Algorithms based on the item balancing scheme by
Karger and Ruhl

Basic algorithm

The following listing shows the basic algorithm as it is shared between most of the
variations. Each algorithm implementation has to provide an implementation of the
calcBalancedLoad and the getBest method and can override any of the given methods.

karger_item (DHT d, double e /*e¢*/, int k /*samples*/) {
foreach (Node n; € d) {
// get k unique random nodes that are not equal to m;:
List<Node> candidates = d.getUniqueRandomNodes(n;, k);
Map<LoadChanges> results;
foreach (Node n; € candidates) {
results[n;] = karger_helper(d, e, n;, n;, true);
}
Node n; = getBest (candidates, results);
if (exists(n;)) {
karger_helper(d, e, n;, n;, false);
}
}
}

karger_helper (DHT d, double e, int k, bool simulate) {

if (load(n;) < e * load(nj)) { // load(n;) > load(n;)
return karger_balance(d, N, Ny, simulate) ;
} else if (load(n;) < e * load(n;)) { // load(n;) > load(n;)
return karger_balance(d, n;, nj, simulate);
}
return []; // no changes
}
karger_balance (DHT d, Node n;, Node m;, bool simulate) {
if (n; == njp1) {
return slideHelper(n;, n;, simulate);
} else {
if (load(njt1) > load(n)) |
return slideHelper(n;, mjy1, simulate);
} else { // load(nji1) < load(n;) -> move nj, balance with n;
return jumpHelper (n;, n; simulate);
}
}
return []; // no changes
}
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A. Implemented algorithms in Pseudo-Code

Karger variations

The original karger algorithm uses calcBalancedLoad half and getBest_stddevl as
its implementations for calcBalancedLoad and getBest respectively. Variations of the
original algorithm include the names of the used implementations in their own name,
e.g. karger_avgl stddev2 uses calcBalancedLoad avgl and getBest_stddev2 and
thus has an additional parameter s. It follows the pseudo-code of variants that need to
be implemented inside karger’s main methods.

Variant avg3j

The implementation of avg3j only changes one method from the original algorithm:

karger_balance (DHT d, Node n;, Node nj, bool simulate) {
if (n; == njp1) {
return slideHelper(n;, n;, simulate);
} else {
if (load(njy1) > load(n;)) {
return slideHelper(n;, nj11, simulate);
} else if (load(n;) + load(n;i;) < d.getAvgLoad()) {
return jumpHelper (n;, m; simulate);
}
}
return []l; // no changes
+
Self-tuning

The self-tuning variants of the karger algorithm only set a different value of the epsilon
parameter for each node at each execution and then continue as the ordinary karger.
Its main method is thus changed to:

karger_item (DHT d, int k /*samples*/) |

foreach (Node n; € d) {

double avgL = d.getAvglLoad(); double maxL = d.getMaxLoad();

double stddev = d.getStddev();

double e = bound(0.01, avglL / max(avgL+stddev, maxL-stddev), 0.24);

// continue as before. ..

}

}
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A.5. Algorithms based on Mercury’s load balancing scheme

A.5. Algorithms based on Mercury’s load balancing scheme

Basic algorithm

As with Karger, the following listing presents Mercury’s basic algorithm shared between
most of its variations which need to provide implementations of the calcBalancedLoad
and the getBest methods and can override any other method.

mercury (DHT d, double a /*a*/, int k /*samplesx*/) {
foreach (Node n; € d) {
if (isLight(n;)) {
if (isHeavy (njy+1)) {
slideHelper(d, n;, n;+1, false);
} else if (isHeavy(n;—1)) {
slideHelper(d, n;—1, n;, false);
+
} else if (isHeavy(n;)) A
// get k unique random nodes that are not equal to n;:
List<Node> candidates = d.getUniqueRandomNodes (n;, k);
Map<LoadChanges> results;
foreach (Node n; € candidates) {
if (isLight(n;)) {

results[n;] = mercury_helper(d, a, n;, nj, true);
} else {
results[n;l = [1; // no changes (do not balance!)
}
+
Node n; = getBest (candidates, results);

if (exists(n;)) {
mercury_helper(d, a, n;, n;, false);
}
}
}
}

mercury_helper (DHT d, double a, int k, bool simulate) {
// n; may be lightly loaded = use most loaded mode of mn;,Mn;_1,Nit1
Node n; = getMostLoaded (n;, mi—1, Mit1);
if (nj.isNeighbour0f (n;)) {
return slideHelper (d, nb
} else if (n) # n;) {
return jumpHelper(d, nj, n%
}
}

n;, simulate);

simulate) ;
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A. Implemented algorithms in Pseudo-Code

Mercury variations

Similar to karger, the original mercury algorithm uses calcBalancedLoad half and
getBest_stddevl as its implementations for calcBalancedLoad and getBest respect-
ively. Variations of the original algorithm include the names of the used implementa-
tions in their own name, e.g. mercury_avgl_stddev2 uses calcBalancedLoad_avgl and
getBest_stddev2 and thus has an additional parameter s. It follows the pseudo-code
of variants that need to be implemented inside mercury’s main methods.

Variant avg3j

The implementation of avg3j only changes one method from the original algorithm:

mercury_helper (DHT d, double a, int k, bool simulate) {
// n; may be lightly loaded = wuse most loaded node of n;,n;—1,MNit+1
Node n; = getMostLoaded (n;, mj—1, Mi+1);
if (nj.isNeighbour0f (n;)) {
return slideHelper (d, n;, n;, simulate);
} else if (n, # n; && load(n;) + load(nji1) < d.getAvglLoad()) {
return jumpHelper (d, nj, n;, simulate) ;
}
}

Self-tuning

The self-tuning variants of the karger algorithm only set a different value of the alpha
parameter for each node at each execution. Its main method is thus changed to:

mercury (DHT d, int k /*samples*/) {
foreach (Node n; € d) {
double avgL = d.getAvgLoad();
double stddev = d.getStddev();
double alpha = bound(1.42, (avgL + stddev) / avgL, 10.00);
// continue as before...
}
}
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