TakustraBe 7
D-14195 Berlin-Dahlem
Germany

Konrad-Zuse-Zentrum
fur Informationstechnik Berlin

TiMO BERTHOLD'
AMBROS M. GLEIXNER'
STEFAN HEINZ'
STEFAN VIGERSKE?

ON THE COMPUTATIONAL IMPACT
OF MIQCP SOLVER COMPONENTS*

fZuse Institute Berlin, Department of Optimization, Takustr. 7, 14195 Berlin, Germany, {berthold,gleixner,heinz}0zib.de
#Humboldt-Universitéat zu Berlin, Unter den Linden 6, 10099 Berlin, Germany, stefan@nath.hu-berlin.de
*Supported by the DFG Research Center MATHEON Mathematics for key technologies in Berlin.

Z1B-Report 11-01 (January 2011)

stefan@math.hu-berlin.de

ON THE COMPUTATIONAL IMPACT OF MIQCP SOLVER COMPONENTS*

TIMO BERTHOLD', AMBROS M. GLEIXNER', STEFAN HEINZ', AND STEFAN VIGERSKE?

Abstract. We provide a computational study of the performance of a state-of-the-art solver for nonconvex
mixed-integer quadratically constrained programs (MIQCPs). Since successful general-purpose solvers for large
problem classes necessarily comprise a variety of algorithmic techniques, we focus especially on the impact of the
individual solver components. The solver SCIP used for the experiments implements a branch-and-cut algorithm
based on linear outer approximation to solve MIQCPs to global optimality. Our analysis is based on a set of
86 publicly available test instances.

1. Introduction. Recent years have seen a strong interest in algorithms for Mized-Integer
Nonlinear Programming (MINLP). Advances in research are also reflected by the development
and computational progress of several general-purpose solvers for MINLP or specific sub-classes,
such as convex MINLP or Mized-Integer Quadratically Constrained Programming (MIQCP) [1, 5,
9, 10, 11, 13, 16, 17, 21].

State-of-the-art solvers for MINLP comprise a variety of algorithmic techniques from several
related fields such as Nonlinear Programming, Mized-Integer Linear Programming (MILP), Global
Optimization (in case nonconvex functions are present), and Constraint Programming (CP). The
overall computational performance of a solver crucially depends on its single constituents and the
mutual interplay of these features. The aim of this paper is to provide a detailed computational
study that investigates the impact of single MINLP solver components.

In our study, we focus on the important subclass of MIQCPs, i.e. optimization problems of
the form

min z7Agx + by 'z + ¢

st. zTAjz+bj"r+¢; <0 forj=1,...,m,
xééxkgx,g fork=1,...,n,
TR €Z for all k € Z,

where Z C {1,...,n} is the index set of integer variables, A; € R™*" b; € R”, ¢; € R for
j=0,....,m, and 2t € RU{—oc} and z{ € R U {400} are the lower and upper bounds of
variable x; for K = 1,...,n, respectively. Note that we do not require the matrices A; to be
positive semidefinite, thus we allow for nonconvex constraints. If Z =), we have a Quadratically
Constrained Quadratic Programming problem (QCQP).

Recently, the Constraint Integer Programming framework SCIP [2, 4] has been extended
to solve nonconvex MIQCPs to global optimality [9]. Computational results have shown the
competitiveness of the solver with the current state-of-the-art. The plugin-based architecture of
SCIP is particularly suited to analyze the impact of individual components. We use this solver
for our computational experiments.

The remainder of this paper is organized as follows: In Section 2, we briefly outline the general
solution algorithm of SCIP and the specific algorithmic techniques used for MIQCPs. Section 3
describes our selection of publicly available test problems and the results of our experiments. In
Section 4, we summarize and discuss the computational results.

2. Algorithm. SCIP employs a branch-and-bound algorithm to solve MIQCPs to global
optimality. The problem is recursively split into smaller subproblems, thereby creating a branching
tree. At each subproblem, domain propagation is applied to exclude further values from the
variables’” domains and a linear outer approximation is solved to achieve a local lower bound
(assuming minimization problems). The relaxation may be strengthened by adding further valid
inequalities. In case of an infeasible subproblem, conflict analysis is performed to learn no-goods,

*Supported by the DFG Research Center MATHEON Mathematics for key technologies in Berlin.
Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, {berthold, gleixner,heinz}@zib.de
THumboldt-Universitit zu Berlin, Unter den Linden 6, 10099 Berlin, Germany, stefan@math.hu-berlin.de

1

{berthold,gleixner,heinz}@zib.de
stefan@math.hu-berlin.de

see, e.g., [?]. Primal heuristics are used as supplementary methods to improve the upper bound.
Figure 1 provides a flowchart of the main solving loop of SCIP. In the following, we present a brief
overview over the SCIP plugins essential for solving MIQCPs. For further details see [2, 6, 9, 24].

’ Start }—>’ Init }—>’ Presolving ‘

~>{ Domain Propagation ‘

Solve Relax. }—J

Pricing

Select Subproblem

|
i
i

MIQCP

feasible

Conflict Analysis

Solve Subproblem

relax. infeas.

Primal Heuristics relax. feas.
Branching

FIGURE 1. Flowchart of the main solving loop of SCIP

%;‘ Enforce Constraints }7%
N\

J

Presolving. During the presolving phase, a set of reformulations and simplifications are tried.
Further, the domain propagation routines are used to tighten the bounds on the variables.

MILP presolving. Many MIQCPs contain a large linear and discrete part, for which SCIP’s
default MILP presolving routines [2] are applied.

Products containing binary variables. Products of a binary variable with a linear term, i.e.
fo:l a;Y;, where x is a binary variable, y; are variables with finite bounds, and a; € R, i =
1,...,k, are replaced by new variables z € R and linear inequalities guaranteeing z = x Zle a;Y;
for x € {0, 1}.

Second-order cone (SOC) constraints. Constraints of the form ~ + Zle(ai(xi + B8i))? <
(ao(y + Bo))? with k > 2, a;,8; € Rfor i =0,...,k, v € Ry, and y* > —f, are automatically
recognized during presolving and handled by a specialized SOC constraint handler.

Convexity check. After the presolving phase, each quadratic function is checked for convexity
by computing the sign of the minimum eigenvalue of the coefficient matrix A. For instances with
bilinear terms, this information is essential for separation.

Separation. If the current solution & of the LP outer approximation violates a constraint,
we may add valid cutting planes in order to strengthen the formulation.

MILP cutting planes. To cut off fractional LP solutions, SCIP’s standard MILP separators
are used at the root node. They comprise general techniques like Gomory cuts and problem specific
separation routines like knapsack cover cuts, for an overview and a computational study see [24].

Separation of quadratic and SOC constraints. If a violated constraint is known to be convex,
it is always possible to linearize the constraint function at . In SCIP, a quadratic constraint is
recognized as convex if it is either a SOC constraint or its coefficient matrix is positive semidefinite.
For a violated nonconvex quadratic constraint, each term of a quadratic function Zl ; Qi jTiT; 1S
individually underestimated by a linearization for a; ;z? with a;; > 0, a secant for a; ;27 with
a;; < 0, and a McCormick underestimator [18] for a bilinear term, respectively. If a linear
inequality generated by this method does not cut off the current LP solution Z, the infeasibility
is resolved by branching.

Domain propagation. In domain propagation, deductions of the variables’ local domains
are inferred. These can yield stronger linear underestimators in the separation procedures, they
may cut off nodes due to infeasibility of a constraint, and can result in further domain deductions
on other constraints. For quadratic constraints, we implemented an interval-arithmetic based
method similar to [14]. Domain propagation for linear constraints, special cases like knapsack
constraints, and global MILP propagators are described in [2].

2

Conflict Analysis. If domain propagation routines or the LP solver detect infeasibility of
a subproblem, a (preferably small) set of domain reductions is determined which are sufficient to
prove the infeasibility. This gives rise to globally valid no-goods, which may help to prune the
tree in the remaining search. In the current implementation of SCIP, quadratic constraints do
not take part in conflict analysis. Analysis of the linear core of an MIQCP might, however, still
generate short no-goods.

Branching. If an integer-infeasible LP relaxation solution Z cannot be cut off by separation
or domain propagation, an integer variable with fractional value is selected for branching. SCIP’s
default branching variable selection rule is “hybrid branching” [3], which combines pseudo cost
based reliability branching with VSIDS and inference/impact based branching.

Only if z is integer feasible but violates a nonconvex quadratic constraint, we perform a spatial
branching operation. Therefore, we use a pseudo-cost based branching rule as suggested in [5] to
select the branching variable. Note that feasibility of a convex quadratic constraint can always be
enforced by separation.

Primal heuristics. When solving MIQCPs, we still make use of all default MILP primal
heuristics of SCIP [6]. Even if solutions suggested by MILP heuristics are infeasible for the
quadratic part of the problem, they might serve as starting points for nonlinear repair and im-
provement heuristics. Additionally, three large neighborhood search heuristics specific to MIQCPs
are implemented in SCIP, a QCQP based local search [9], an extended form of the RENS heuris-
tic [7], and the novel Undercover heuristic [8].

3. Computational experiments. For our experiments, we compiled a test set of 86 publicly
available MIQCP instances from different sources: constrained layout problems (clay*) and safety
layout problems (SLay#) from [20], Hans Mittelmann’s MIQP benchmark instances (i) [19],
portfolio optimization problems (classical*, robust*, shortfall*) from [22], truss structure
design problems (¥bar*) from [25], uncapacitated facility location problems (uflquadx) from [15],
and selected instances from the MINLPLib [12]. Problem statistics for the original instances and
after default presolving are given in the Appendix (Table 2).

Initially, we ran all instances with default settings as outlined in Section 2. To measure the
impact of individual components, we compare the default run to the performance with a feature
disabled or switched to a simpler strategy. Since many MIQCP instances contain a considerable
linear and discrete part, we also investigate the effect of the classical MILP components. All in
all, we compared 11 alternative settings against the SCIP default: we disabled linear presolving,
binary reformulations, the detection of SOC constraints, convexity checks, domain propagation,
cutting plane separation, usage of a linear outer approximation, and primal heuristics; we further
altered the variable selection strategy to random and the node selection to depth first search.

Our experiments were conducted on a 2.66 GHz Intel® Xeon® 5150 with 4 MB cache and
8 GB RAM. We used SCIP 1.2.1.1 with CPLEX 12.1.0 [16] as LP solver, IropT 3.8.1 [23] as
QCQP solver for the heuristics, and LAPACK 3.1.0 to compute eigenvalues. The optimality
tolerance was set to zero, the relative feasibility tolerance to 107%. We imposed a time limit of
one hour and a memory limit of 4 GB for SCIP and 4 GB for the underlying solvers.

With default settings, SCIP could solve 55 of the 86 instances within the time limit of one
hour. For 4 of the unsolved instances, no feasible solution was found. Table 1 shows the impact if
a particular component of SCIP is switched off or changed to a simpler mode. Obviously, some of
the features may only have an effect on a certain subset of the test set, e.g., disabling upgrading
of SOC constraints is only applied if such constraints are present in the model. For those tests,
we split the test set in a “relevant” and a “control” group, expecting no change in performance
for the control group. Column “size” gives the number of instances in the respective test group.

All performance measures are w.r.t. the default settings of SCIP. We count the absolute
number of instances for which a particular setting was more than 10% faster or slower, reported
in columns “better” and “worse”, respectively; for instances that could not be solved within the
time limit, we compare the bounds at termination. Further, we compare the shifted geometric
mean of the overall running time, the number of branch-and-bound nodes, and the time until the

3

TABLE 1
Impact of implemented MIQCP methods. Column “size” gives the number of instances in the test group.
Performance measures are absolute/relative differences compared to SCIP with default settings.

primal bound dual bound running time
disabled feature size solved better worse better worse better worse mean to first sol. to opt sol. nodes
linear presolving 86 -1 3 4 5 9 15 19 +3% +14% +12% —1%
binary var. reform. 86 0 2 6 1 6 4 16 +4% +28% +7% —9%
relevant 27 0 1 5 0 5 2 11 +11% +75% +37% —-31%
control 59 0 1 1 1 1 2 5 +1% +7% —9% +2%
SOC upgrades 86 -9 1 3 1 13 3 13 +41% +28% —1% +48%
relevant 12 —8 0 2 0 9 0 9 +1098% +316% 0% +2048%
control 74 -1 1 1 1 4 3 4 —-1% +2% —-1% —4%
convexity check 86 —4 3 3 2 8 5 7 +29% —-3% 0% +59%
relevant 13 -3 2 2 1 4 2 6 +478% —18% —6% +3005%
control 73 -1 1 1 1 4 3 1 —1% +1% —2% —4%
domain propagation 86 -2 4 4 4 13 18 14 +7% +31% +36% +34%
MIP cuts 86 -1 3 2 5 6 15 19 +3% +1% +14% +12%
nonlin. separation 86 —19 2 15 0 33 3 30 +140% +26% +60% +680%
relevant 68 —-19 2 14 0 33 1 30 +202% +31% +189% +1300%
control 18 0 0 1 0 0 2 0 —-3% +5% —6% —15%
hybrid branching 86 -8 1 5 1 21 5 29 +62% +10% +37% +106%
relevant 82 —8 1 5 1 20 5 29 +67% +10% +41% +112%
control 4 0 0 0 0 1 0 0 +1% 0% 0% 0%
best est. nodesel. 86 —2 2 12 2 18 13 18 +3% +25% +48% +5%
relevant 82 -2 2 12 2 18 13 18 +3% +26% +53% +5%
control 4 0 0 0 0 0 0 0 0% —-1% 0% 0%
primal heuristics 86 -3 0 19 4 11 17 13 +2% +347% +9% +16%
conflict analysis 86 —2 4 4 3 7 8 10 +5% +1% —2% +5%
relevant 82 -2 4 4 3 7 8 10 +5% +1% —2% +5%
control 4 0 0 0 0 0 0 0 0% —-1% +1% 0%

first and the optimal solution were found.

Table 1 shows that disabling a feature always leads to an increase in overall computation time
and, except for linear presolving and binary variable reformulation, the number of branch-and-
bound nodes. Even more importantly, except for binary variable reformulation, there is always at
least one instance which could not be solved after disabling a certain component. We further see
that the features specific to nonlinear optimization, like using an outer approximation, specialized
algorithms for SOCs, or convexity detection, have by far the biggest impact. Using a sophisticated
branching rule also reduces the computational effort tremendously. MILP specific features like
linear presolving, cuts, and conflict analysis on the linear part are less successful than in pure
MILP, but still slightly reduce the running time and the number of branch-and-bound nodes.
The results for domain propagation surprised us. It gives a clear benefit w.r.t. the number of
branching nodes and the dual bounds at termination, but this is not reflected by the computation
time. Primal heuristics slightly improve the overall computation time, but very much help to find
a first feasible solution and to obtain a good primal bound if a run has to be terminated due to a
time limit.

4. Conclusion and Outlook. In this paper, we gave a brief overview over different algo-
rithmic parts of the branch-and-cut framework SCIP and discussed their relevance for solving
MIQCPs. The main focus was the last section, which presented and discussed computational
results on the individual impact of those components. All 11 features proved to be beneficial for
the overall performance. The parts specific to nonlinear optimization clearly made the biggest
difference, but they often only operate on a small subset of instances.

4

The results for the MILP and CP components suggest that these techniques do not unfold

their full potential for MINLP, yet. For some techniques like conflict analysis, this is probably
due to a theoretical gap between MILP/CP and MINLP.

Finally, our experiments were only performed for one specific solver, which employs an LP-

based branch-and-cut approach. It would be interesting to see the outcome of similar experiments
for other solvers and algorithms.

REFERENCES

K. ABHISHEK, S. LEYFFER, AND J. T. LINDEROTH, FilMINT: An outer-approximation-based solver for mon-
linear mized integer programs, Tech. Rep. ANL/MCS-P1374-0906, Argonne National Laboratory, Math-
ematics and Computer Science Division, 2006.

. ACHTERBERG, Constraint Integer Programming, PhD thesis, Technische Universitat Berlin, 2007.

. ACHTERBERG AND T. BERTHOLD, Hybrid branching, in Proc. of CPAIOR 2009, W. J. van Hoeve and J. N.
Hooker, eds., vol. 5547 of LNCS, Springer, May 2009, pp. 309-311.

. ACHTERBERG, T. BERTHOLD, T. KOCH, AND K. WOLTER, Constraint integer programming: A new approach
to integrate CP and MIP, in Proc. of CPAIOR 2008, L. Perron and M. Trick, eds., vol. 5015 of LNCS,
Springer, 2008, pp. 6-20.

. BELOTTI, J. LEE, L. L1BERTI, F. MARGOT, AND A. WACHTER, Branching and bounds tightening techniques
for non-convexr MINLP, Optimization Methods and Software, 24 (2009), pp. 597-634.

T. BERTHOLD, Primal heuristics for mized integer programs, Master’s thesis, Technische Universitéat Berlin,

2006.

, RENS — relaxation enforced neighborhood search, ZIB-Report 07-28, Zuse Institute Berlin, 2007.

T. BERTHOLD AND A. M. GLEIXNER, Undercover — a primal heuristic for MINLP based on sub-MIPs generated
by set covering, ZIB-Report 09-40, Zuse Institute Berlin, 2009.

T. BERTHOLD, S. HEINZ, AND S. VIGERSKE, Extending a CIP framework to solve MIQCPs, ZIB-Report 09-23,
Zuse Institute Berlin, 2009.

P. Bonawmi, L. T. BIEGLER, A. R. ConN, G. CORNUEJOLS, I. E. GROSSMANN, C. D. LAIRD, J. LEE, A. Lobi,
F. MARGOT, N. W. SAWAYA, AND A. WACHTER, An algorithmic framework for convex mized integer
nonlinear programs, Discrete Optim., 5 (2008), pp. 186-204.

P. Bonami, M. KILING, AND J. LINDEROTH, Algorithms and software for conver mized integer nonlinear
programs. available at Optimization Online, http://www.optimization-online.org/DB_HTML/2009/10/
2429.html, 2009.

M. R. Bussieck, A. S. DRUD, AND A. MEERAUS, MINLPLib - a collection of test models for mized-integer
nonlinear programming, INFORMS J. Comput., 15 (2003), pp. 114-119.

M. R. BUSSIECK AND S. VIGERSKE, MINLP solver software, Tech. Rep. 691, Matheon, 2010. http://www.
matheon.de.

F. DoMES AND A. NEUMAIER, Constraint propagation on quadratic constraints, Constraints, to appear (2010).
available online at http://www.mat.univie.ac.at/~dferi/publications.html.

O. GUNLUK, J. LEE, AND R. WEISMANTEL, Minlp strengthening for separable convex quadratic transportation-
cost ufl, IBM Research Report RC23771, 2007.

IBM, CPLEX. http://ibm.com/software/integration/optimization/cplex.

Y. LIN AND L. SCHRAGE, The global solver in the LINDO API, Optimization Methods and Software, 24
(2009), pp. 657—668.

G. P. McCorMICK, Computability of global solutions to factorable nonconvex programs: Part I-Conver Un-
derestimating Problems, Math. Program., 10 (1976), pp. 147-175.

H. MITTELMANN, MIQP test instances. http://plato.asu.edu/ftp/migp.html.

N. SAWAYA, Reformulations, relaxations and cutting planes for generalized disjunctive programming, PhD
thesis, Carnegie Mellon University, 2006.

M. TAWARMALANI AND N. V. SAHINIDIS, Convezification and Global Optimization in Continuous and Mized-
Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer Academic
Publishers, 2002.

J. P. VIELMA, S. AHMED, AND G. L. NEMHAUSER, A lifted linear programming branch-and-bound algorithm
for mized integer conic quadratic programs, INFORMS J. Comput., 20 (2008), pp. 438—-450.

A. WACHTER AND L. T. BIEGLER, On the implementation of a primal-dual interior point filter line search
algorithm for large-scale nonlinear programming, Math. Program., 106 (2006), pp. 25-57.

K. WOLTER, Implementation of cutting plane separators for mized integer programs, Master’s thesis, Tech-
nische Universitat Berlin, 2006.

T. YunEgs, I. D. ARON, AND J. N. HOOKER, An integrated solver for optimization problems, tech. rep.,
University of Miami, 2008.

S 88

-

http://www.optimization-online.org/DB_HTML/2009/10/2429.html
http://www.optimization-online.org/DB_HTML/2009/10/2429.html
http://www.matheon.de
http://www.matheon.de
http://www.mat.univie.ac.at/~dferi/publications.html
http://ibm.com/software/integration/optimization/cplex
http://plato.asu.edu/ftp/miqp.html

APPENDIX

Table 2 presents statistics on the size and structure of the 86 MIQCP instances in our test set.
We show each instance before and after the default presolving of SCIP. Columns “bin”, “int”,
and “vars” give the number of binary variables, general integers, and the total number (including
continuous) of variables, respectively. Columns “soc”, “quad”, and “linear” show the number
of second order cone, general quadratic, and linear constraints, respectively. If all quadratic
constraints of an instance were recognized as convex or concave, a checkmark is set in column
“conv”. Note that this is different from the test set relevant for the convexity check in Table 1,
which consists of all instances that have convex constraints with bilinear terms.

TABLE 2
Problem statistics before and after default presolving

original problem presolved problem

instance vars int bin linear quad soc conv vars int bin linear quad soc conv
108bar 1872 0 1188 1500 216 0 939 0 263 484 216 0
10bar2 176 0 110 56 20 0 154 0 110 34 20 0
200bar 7850 0 6000 4570 600 0 4532 0 2880 1175 600 0
SLayO5H 231 0 40 290 1 0 v 231 0 40 290 1 0 v
SLayO5M 71 0 40 90 1 0 v 71 0 40 90 1 0 v
SLayO07M 141 0 84 189 1 0 v 141 0 84 189 1 0 v
SLay10M 291 0 180 405 1 0 v 291 0 180 405 1 0 v
classical_200_0 601 0 200 403 1 0 v 600 0 200 402 1 0 v
classical_200_1 601 0 200 403 1 0 v 600 0 200 402 1 0 v
classical_20_0 61 0 20 43 1 0 v 60 0 20 42 1 0 v
classical_20_1 61 0 20 43 1 0 v 60 0 20 42 1 0 v
classical_50_0 151 0 50 103 1 0 v 150 0 50 102 1 0 v
classical_50_1 151 0 50 103 1 0 v 150 0 50 102 1 0 v
clay0205m 81 0 50 96 40 0 v 75 0 45 90 40 0 v
clay0305m 86 0 55 96 60 0 v 81 0 51 93 60 0 v
du-opt 21 13 0 9 1 0 v 21 13 0 5 1 0 v
ex1263 93 0 72 52 4 0 91 0 71 47 4 0
ex1264 89 0 68 52 4 0 82 0 62 47 4 0
ex1265 131 0 100 70 5 0 122 0 92 65 5 0
ex1266 181 0 138 90 6 0 168 0 126 81 6 0

fac3 67 0 12 33 1 0 v 67 0 12 33 1 0 v
feedtray2 88 0 36 137 147 0 300 0 12 1001 147 0
iair04 8905 0 8904 823 1 0 12858 0 7363 17483 0 0 v
iair05 7196 0 7195 426 1 0 10571 0 6117 14202 0 0 v
ibcl 1752 0 252 1913 1 0 865 0 252 1436 0 0 v
ibell3a 123 29 31 104 1 0 v 130 29 31 164 1 0 v
ibienstl 506 0 28 576 1 0 v 473 0 28 592 0 0 v
icap6000 6001 0 6000 2171 1 0 v 7301 0 5865 6307 0 0 v
icvxgpl 10001 10000 0 5000 1 0 v 10003 9998 2 5006 1 0 v
ieilD76 1899 0 1898 75 1 0 2686 0 1898 3170 0 0 v
ilaser0Q 1003 151 0 1000 1 0 v 1003 151 0 1000 1 0 v
imas284 152 0 150 68 1 0 228 0 150 299 0 0 v
imisc07 261 0 259 212 1 0 360 0 238 583 0 0 v
imod011 10958 1 96 4480 1 0 v 8962 1 96 2727 1 0 v
inug08 1633 0 1632 912 1 0 v 2223 0 1632 3096 0 0 v
iportfolio 1201 192 775 201 1 0 v 1201 192 775 201 1 0 v
iqiu 841 0 48 1192 1 0 v 871 0 48 1285 0 0 v
iran13x13 339 0 169 195 1 0 469 0 169 588 0 0 v
iran8x32 513 0 256 296 1 0 649 0 256 707 0 0 v
isqp 1001 50 0 249 1 0 v 1001 50 0 249 1 0 v
iswath2 6405 0 2213 483 1 0 8007 0 2213 5632 0 0 v
itointqgor 51 50 0 0 1 0 v 51 50 0 0 1 0 v
ivalues 203 202 0 1 1 0 203 202 0 1 1 0
lop97ic 1754 831 831 52 40 0 5228 708 708 11521 0 0 v
lop97icx 987 831 68 48 40 0 488 68 68 1138 0 0 v
meanvarx 36 0 14 44 1 0 v 30 0 12 36 1 0 v
netmod_doll 1999 0 462 3137 1 0 v 1993 0 462 3131 1 0 v
netmod_dol2 1999 0 462 3080 1 0 v 1592 0 454 2637 1 0 v
netmod_karil 457 0 136 666 1 0 v 453 0 136 662 1 0 v

continued on next page

continued from previous page

original problem

presolved problem

instance vars int bin linear quad soc conv vars int bin linear quad soc conv
netmod_kar2 457 0 136 666 1 0 v 453 0 136 662 1 0 v
nous1 51 0 2 15 29 0 47 0 2 11 29 0

nous2 51 0 2 15 29 0 47 0 2 11 29 0
nuclearida 993 0 600 50 584 0 1568 0 600 2377 560 0
nuclear14b 1569 0 600 1226 560 0 1568 0 600 1225 560 0

nvs19 9 8 0 0 9 0 9 8 0 0 9 0

nvs23 10 9 0 0 10 0 10 9 0 0 10 0
pb351535 526 0 525 50 1 0 1049 0 525 1622 0 0 v
product 1554 0 107 1794 132 0 446 0 92 450 82 0
product2 2843 0 128 2598 528 0 480 0 128 338 128 0

qap 226 0 225 30 1 0 448 0 225 699 0 0 v
qapw 451 0 225 255 1 0 675 0 225 930 0 0 v
robust_100_0 404 0 101 305 2 0 403 0 101 304 1 1 v
robust_100_1 404 0 101 305 2 0 403 0 101 304 1 1 v
robust_200_0 804 0 201 605 2 0 803 0 201 604 1 1 v
robust_20_0 84 0 21 65 2 0 83 0 21 64 1 1 v
robust_50_0 204 0 51 155 2 0 203 0 51 154 1 1 v
robust_50_1 204 0 51 155 2 0 203 0 51 154 1 1 v
sepl 30 0 2 26 6 0 19 0 2 15 6 0
shortfall_100_0 405 0 101 306 2 0 404 0 101 305 0 2 v
shortfall_100_1 405 0 101 306 2 0 404 0 101 305 0 2 v
shortfall_200_0 805 0 201 606 2 0 804 0 201 605 0 2 v
shortfall_20_0 85 0 21 66 2 0 84 0 21 65 0 2 v
shortfall_50_0 205 0 51 156 2 0 204 0 51 155 0 2 v
shortfall_50_1 205 0 51 156 2 0 204 0 51 155 0 2 v
space25 894 0 750 211 25 0 767 0 716 118 25 0
spectra2 70 0 30 65 8 0 68 0 30 30 8 0

tlnl2 169 156 12 61 12 0 180 144 24 85 11 0

t1lnb 36 30 5 26 5 0 35 30 5 20 5 0

t1n6 49 42 6 31 6 0 48 42 6 24 6 0

t1ln7 64 56 7 36 7 0 63 56 7 28 7 0

tltr 49 36 12 52 3 0 56 27 20 73 2 0
uflquad-15-60 916 0 15 960 1 0 v 916 0 15 960 1 0 v
uflquad-20-50 1021 0 20 1050 1 0 v 1021 0 20 1050 1 0 v
uflquad-30-100 3031 0 30 3100 1 0 v 3031 0 30 3100 1 0 v
uflquad-40-80 3241 0 40 3280 1 0 v 3241 0 40 3280 1 0 v
waste 2485 0 400 624 1368 0 1238 0 400 516 1230 0

