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Affine recourse for the robust network design problem:

between static and dynamic routing
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Abstract

Affinely-Adjustable Robust Counterparts provide tractable alternatives to (two-stage) ro-
bust programs with arbitrary recourse. We apply them to robust network design with poly-
hedral demand uncertainty, introducing the affine routing principle. We compare the affine
routing to the well-studied static and dynamic routing schemes for robust network design.
All three schemes are embedded into the general framework of two-stage network design with
recourse. It is shown that affine routing can be seen as a generalization of the widely used
static routing still being tractable and providing cheaper solutions. We investigate properties
on the demand polytope under which affine routings reduce to static routings and also develop
conditions on the uncertainty set leading to dynamic routings being affine. We show however
that affine routings suffer from the drawback that (even totally) dominated demand vectors
are not necessarily supported by affine solutions. Uncertainty sets have to be designed ac-
cordingly. Finally, we present computational results on networks from SNDlib. We conclude
that for these instances the optimal solutions based on affine routings tend to be as cheap as
optimal network designs for dynamic routings. In this respect the affine routing principle can
be used to approximate the cost for two-stage solutions with free recourse which are hard to
compute.
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1 Introduction

In the classical deterministic network design problem, a set of point-to point commodities with
known demand values is given, and capacities have to be installed on the network links at minimum
cost such that the resulting capacitated network is able to accommodate all demands simultane-
ously by a multi-commodity flow. When demands are known with precision, this problem has been
studied extensively in the literature, involving decompositions algorithms, extended formulations
and strong cutting planes, see [5, 18, 22, 23, 25, 41], among others.

In practice however, exact demand values are usually not known at the time the design decisions
must be made. In telecommunications, demands are estimated which can be done for instance by
using traffic measurements (see [45], among others) or population statistics, see [19, 24]. These
estimations allow the problem to be formulated and solved using classical tools of deterministic
mathematical programming. However, the actual traffic forecast is strongly overestimated in order
to yield robust networks capable of routing potential traffic peaks. Such overestimation results
in overprovisioned networks wasting capital as well as operational expenditures such as energy
resources.

Robust optimization overcomes this problem by explicitly taking into account the uncertainty
of the data already in the modeling introducing so-called uncertainty sets. A solution is said to
be feasible if it is feasible for all realizations of the data in a predetermined uncertainty set D,
see [10, 11, 17, 44]. The original framework of Soyster [44] assumes that all decisions must be
identical for all values of the uncertain parameters. Introducing more flexibility, two-stage robust
optimization allows to adjust a subset of the problem variables only after observing the actual
realization of the data, see [12]. In fact, it is natural to apply this two-stage approach to network
design since very often first stage capacity design decisions are made in the long term while the
actual routing is adjusted based on observed user demands. This second stage adjusting procedure
is called recourse which in the context of (telecommunications) network design relates to what is
known as traffic engineering. Unrestricted second stage recourse in robust network design is called
dynamic routing, see [20, 28], and [34]. Given a fixed design, the commodity routing can be
changed arbitrarily for every realization of the demands. Chekuri et al. [20] and Gupta et al.
[28] show that allowing for dynamic routing makes robust network design intractable. Already
deciding whether or not a fixed capacity design allows for a dynamic routing of demands in a given
polytope is NP-complete (on directed graphs).

Even more general, Ben-Tal et al. [12] observe that two-stage robust linear programming with
free recourse is computationally intractable and suggest to limit the flexibility in the second stage
by affine functions which makes the problem tractable. Chen and Zhang [21] extend this idea by
using extended formulations of uncertainty sets and by applying affine recourse in the resulting
higher-dimensional variable spaces.

Interestingly, this limitation in the flexibility of the second stage recourse has been used earlier
in robust network design without relating it to two-stage optimization. Ben-Ameur and Kerivin
[8, 9] introduce the concept of static routing (or oblivious routing).After fixing the design, the
routing of a commodity is allowed to change but the actual flow has to be a linear function
of the observed demand of the same commodity. Static routing results in a fixed set of paths
for every commodity and also a fixed percental splitting of flow among these paths independent
of the realization of the commodity demand. In this context we speak of a routing template
used by all demand realizations. Robust network design with static routing can be handled as
a single-stage problem introducing template variables, see the next section. Static routing has
been used extensively since then. Ordóñez and Zhao [37] study structural properties of the robust
network design problem when cost and demand values belong to conic uncertainty sets. Altin
et al. [1] develop a compact integer linear programming model for virtual private network design
with continuous capacities and single path routing using. Altin et al. [2, 3] and Koster et al.
[32] study the network design problem assuming splittable flow and integer capacities. Polyhedral
investigations and computational evaluations of the models are carried out.

The restriction of routing templates for every commodity makes the problem tractable but it is
of course very conservative in terms of capacity cost compared to dynamic routing. Recently there
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have been several attempts to handle less restrictive routing principles. These could be shown to be
intractable just like the dynamic case. Ben-Ameur [7] partitions the demand uncertainty set into
two (or more) subsets using hyperplanes and devises specific routings for each subset. The resulting
optimization problem is NP-hard when no assumptions is made on the hyperplanes. Ben-Ameur
thus discusses simplifications where either the entire hyperplane or its direction is given. Scutellà
[42] allows for two (or more) routing templates to be used conjointly. These routing templates
are devised iteratively, that is, given a routing template and a capacity allocation, Scutellà [42]
allows some commodities to use a second routing template in order to reduce the overall capacity
allocation. The procedure is proved to be NP-hard in [43]. Mattia [34] provides a branch-and-
cut algorithm for robust network design with dynamic routing together with a computational
comparison to the static version.

As an alternative to these NP-hard approaches, Ouorou and Vial [40] and Babonneau et al.
[6] only recently apply directly the affine recourse from [12] to network design problems using
particular uncertainty sets. The resulting restrictive routing scheme is refereed to as affine routing
in the following. We will introduce affine routing as a generalization of static routing. In this
context affine routing provides an alternative in between static and dynamic routing yielding
tractable robust counterparts in contrast to the schemes used in [7, 43].

The contributions of this paper consists of a theoretical and empirical study of network design
under the affine routing principle for general polyhedral demand uncertainty sets D. We embed
affine routing into the context of two-stage network design with recourse and compare it to its
natural counterparts, static and dynamic routings. Section 2 introduces the mathematical models
and defines formally static, affine and dynamic routings. In Section 3 we show that, when D is full-
dimensional, affine routings decompose into a combination of cycles and paths, that is, a routing
template for every commodity can be affinely adjusted using a set of cycles, whenever a different
commodity is perturbed within the feasible demand region. We describe then necessary and
sufficient conditions on D under which affine routing is equivalent to static or dynamic routing. As
a bi-product, we obtain that static and dynamic routings are equivalent under certain assumptions
on D. We show that dominated demand vectors are not automatically supported by affine solutions
in contrast to static and dynamic solutions. In particular very small demand scenarios have to
be included in the uncertainty set. Finally, Section 4 presents numerical comparisons of dynamic,
affine and static routings carried out on instances from SNDlib, see [39]. It turns out that for
these instances the affine routing principle is numerically very close to the dynamic second stage
recourse rule. In fact, it provides enough flexibility to approximate the cost for optimal two-stage
solutions with full flexibility.

2 Robust network design with recourse

We are given a directed graph G = (V,A) and a set of commodities K. A commodity k ∈ K has
source s(k) ∈ V , destination t(k) ∈ V , and demand value dk ≥ 0. A flow for k is a vector fk ∈ RA+
satisfying: ∑

a∈δ+(v)

fka −
∑

a∈δ−(v)

fka = dkψvk for all v ∈ V, (1)

where δ+(v) and δ−(v) denote the set of outgoing arcs and incoming arcs at node v, respectively.
For node v ∈ V and commodity k ∈ K we set ψvk := 1 if v = s(k), ψvk := −1 if v = t(k), and
ψvk := 0 else. Flows are non-negative. A multi-commodity flow is a collection of flows, one for
each commodity in K. A circulation (or cycle-flow) is a vector g ∈ RA satisfying∑

a∈δ+(v)

ga −
∑

a∈δ−(v)

ga = 0 for all v ∈ V. (2)

A circulation is not necessarily non-negative. A value ga < 0 can be seen as a flow from the head
of arc a to its tail. We call a circulation g non-negative if g ≥ 0 and positive if additionally g 6= 0.
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Notice that any two flows f̂k, fk for k only differ by a circulation, that is, there always exists a

circulation g such that f̂k = fk + g.
In many practical situations, the demand vector d ∈ RK+ is uncertain. In the sequel we assume

that d ∈ D ⊂ RK where D is a bounded convex set. We often call D the uncertainty set. Any
d ∈ D is said to be a realization of the demand. A routing is a function f : D → RA×K+ that assigns
a multi-commodity flow to every realization of the demand. We say that f serves D and call f
a dynamic routing if there is no further restriction on the routing. A capacity allocation x ∈ RA+
is said to support the set D if there exists a routing f serving D such that for every d ∈ D the
corresponding multi-commodity flow f(d) is not exceeding the arc-capacities given by x. Robust
network design now aims at providing the cost minimal capacity allocation supporting D. In this
respect, robust network design is a two-stage robust program with recourse, following the more
general framework described by [12]. The capacity design has to be fixed in the first stage, and,
observing a demand realization d ∈ D, we are allowed to adjust the routing f(d) in the second
stage. The problem can be written as the following (infinite) linear program denoted by (RND)
in the following:

min
∑
a∈A

κaxa (3)

(RND) s.t.
∑

a∈δ+(v)

fka (d)−
∑

a∈δ−(v)

fka (d) = dkψvk, v ∈ V, k ∈ K, d ∈ D (4)

∑
k∈K

fka (d) ≤ xa, a ∈ A, d ∈ D (5)

fka (d) ≥ 0, a ∈ A, k ∈ K, d ∈ D (6)

xa ≥ 0, a ∈ A,

where κa ∈ R+ is the cost for installing one unit of capacity on arc a ∈ A. Ben-Tal et al.
[12] point out that allowing for arbitrary recourse very often makes robust optimization problems
intractable. In fact, this is true for two-stage robust network design with free recourse. It is known
that already deciding whether a given capacity vector x supports D is NP-complete for general
polytopes D, see [20, 28]. It follows from this NP-completeness result that it is impossible (unless
P = NP) to derive a compact formulation for (RND) given a general uncertainty polytope D
if there is no restriction on the second stage routing decision, contrasting with the reformulation
discussed in Section 3.1. Using a branch-and-cut approach to solve (RND) based on Benders
decomposition ([14]), Mattia [34] shows how to solve the NP-hard separation problem for robust
metric inequalities ([30, 36]) using bilevel and mixed integer programs.

Most authors ([2, 4, 9, 32, 35, 37], among others) use a simpler version of (RND) introducing
a restriction on the second stage recourse known as static routing (also called oblivious routing).
Each component fk : D → RA+ is forced to be a linear function of dk:

fka (d) := ykad
k a ∈ A, k ∈ K, d ∈ D. (7)

Notice that by (7) the flow for k is not changing if we perturb the demand for h 6= k. By combining
(4) and (7) it follows that the multipliers y ∈ RA×K+ define a multi-commodity (percentage) flow.
For every k ∈ K, the vector yk ∈ RA+ satisfies (1) setting dk = 1. The flow y is called a routing
template since it decides, for every commodity, which paths are used to route the demand and
what is the percental splitting among these paths. The routing template has to be used by all
demand scenarios d ∈ D under the static routing scheme.

Ben-Tal et al. [12] introduce Affine Adjustable Robust Counterparts restricting the recourse to
be an affine function of the uncertainties. Applying this framework to (RND) means restricting
fk to be an affine function of all components of d giving

fka (d) := f0k
a +

∑
h∈K

ykha dh ≥ 0, a ∈ A, k ∈ K, d ∈ D, (8)
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where f0k
a , ykha ∈ R for all a ∈ A, k, h ∈ K, see also [40]. In what follows, a routing f serving D

and satisfying (8) for some vectors f0 and y is called an affine routing.
The following lemma formalizes the relation between optimal solutions of robust network design

using dynamic, affine, or static routings. Affine routing generalizes static routing allowing for more
flexibility in reacting to demand fluctuations, but it is not as flexible as dynamic routing.

Lemma 1. Given an arbitrary demand uncertainty set D, let optdyn, optaff , and optstat be the cost
of the optimal solution to (RND) where f is allowed to be dynamic, affine, or static, respectively.
It holds that

optdyn ≤ optaff ≤ optstat.

Proof. Trivially any routing f is a dynamic routing. The number of possible routings serving D
is restricted by imposing (8) hence optdyn ≤ optaff . Moreover, we see immediately that static
routing can be obtained from (8) by setting f0k

a = 0 and ykha = 0 for each a ∈ A and all k, h ∈ K
with k 6= h yielding optaff ≤ optstat.

Note that there is a proven (tight) worst-case optimality gap of O(log|V |) between the dynamic
and static routing principle, see [27]. For special graphs it can be shown that optdyn ∈ O(|V |)
while optstat ∈ Ω(|V | log|V |). In this paper we do not establish optimality gaps between the
three routing principles. We rather focus on studying properties of the demand scenarios D that
either yield optstat = optaff or optaff = optdyn. These properties are independent of the actual
graph. Our computational experiments in Section 4 suggest that for realistic networks and demand
scenarios the static/dynamic optimality gap is small in practice (also see [34]), and if there is a
gap, the cost for affine solutions tends to be very close to the cost for dynamic solutions. In fact
in most cases optaff ≈ optdyn.

Given a demand polytope D, a static routing f is completely described by the vector y ∈
RA×K+ . Similarly, an affine routing is completely described by fixing the vectors f0 ∈ RA×K and

y ∈ RA×K×K . Extending the previous definitions, any routing template y ∈ RA×K+ is said to
serve D if it yields a (static) routing f serving D. Similarly, any pair of vectors f0 ∈ RA×K and
y ∈ RA×K×K that satisfies (4) and (8) are said to serve D. Given a capacity allocation x ∈ RA+,
the pair (x, y) with y serving D, or the triplet (x, f0, y) with (f0, y) serving D are said to support
D if the corresponding routings satisfy (5).

When D is not finite, model (RND) contains an infinite number of variables and inequalities.
However, when D is convex, we can replace D by the set of its extreme points, which is finite
whenever D is a polytope.

Lemma 2. Let D ⊂ RK be a bounded set and x be a capacity allocation x ∈ RA.

(a) x supports D if and only if x supports conv(D).

(b) (x, y) supports D if and only if (x, y) supports conv(D).

(c) (x, f0, y) supports D if and only if (x, f0, y) supports conv(D).

Proof. (c)⇐: Trivial.
⇒: Consider (x, f0, y) that satisfies (4), (5) and (8) for each d ∈ D. Any d∗ ∈ conv(D) can be
defined as follows: let di ∈ D and λi ≥ 0, i = 1, . . . , n, such that

∑n
i=1 λi = 1 and d∗ =

∑n
i=1 λidi.

In order to satisfy (8), f(d∗) must be defined by

fka (d∗) = f0k
a +

∑
h∈K

ykha dh∗ =

n∑
i=1

λi(f
0k
a +

∑
h∈K

ykha dhi ), a ∈ A, k ∈ K, d ∈ D.

It is easy to see that fka (d∗) defined above together with x satisfy (4) and (5). (a) and (b) can
be proved similarly.
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When D is a polytope, Lemma 2 implies that (RND) can be discretized by restricting the
model to the extreme demand scenarios that correspond to vertices of D. This yields a linear
programming reformulation of (RND) with potentially an exponential number of variables and
constraints. However, not all extreme points must be considered. For instance, if 0 ∈ D, it is an
extreme point of D that any capacity allocation supports. This intuitive idea can be formalized
using the domination concepts introduced by Oriolo [38]. Given two demands vectors d1 and
d2, we say that d1 dominates d2 if any capacity allocation x ∈ RA+ supporting d1 also supports
d2. Moreover, d1 totally dominates d2 if any pair (x, y) supporting d1 also supports d2. Thus,
the optimal solution to (RND) with dynamic routing (resp. static routing) for a polytope D =
conv{d1, . . . , dn} stays unchanged if we solve the problem without considering the dominated
(resp. totally dominated) extreme points of D. We refer to [38] for interesting characterizations of
domination. We point out that the situation is different for affine routing, that is, it is impossible
to define d1 and d2 such that any triplet (x, f0, y) supporting d1 also supports d2, see Proposition 6.

In what follows, we always consider that D is either a polytope or a finite set of demand vectors,
which is equivalent in view of Lemma 2. The large linear program coming from the discretization
of D can be sensibly simplified for affine and static routings. Namely, given a polytope D defined
by a polynomial number of inequalities, Soyster [44] shows how to use the linear programming
duality to obtain a formulation that contains the deterministic variables and constraints plus an
additional polynomial number of variables and constraints, and that is equivalent to the robust
infinite program. Altin et al. [4] extend this idea to (RND) with static routing and we show in
Proposition 4 how this can be done for (RND) with affine routing.

We close this section by pointing out some very trivial cases for which optstat = optaff = optdyn.
First, if D is a singleton (or even more general if D contains a demand vector that totally dominates
all d ∈ D) then optstat = optaff = optdyn since given any dynamic solution, the routing for the
single (dominating) demand vector defines a static routing template at the same cost. Moreover,
in this case every routing corresponding to an optimal solution is a shortest path routing, that is,
the flow for commodity k is sent on a shortest path between s(k) and t(k) with respect to the arc
capacity cost κa. To see this, observe that (RND) decomposes into |K| shortest path problems,
one for every commodity, if D is a singleton. In such a case we speak of a shortest path template
for K.

Secondly, in the single commodity case, that is |K| = 1, we get that optstat = optdyn since in
this case polytope D ⊂ R+ is an interval, and we can solve the problem for the maximum single
demand instead. Also observe that (8) reduces to (7).

Finally, note that if there exists only one path from s(k) to t(k) for a commodity k ∈ K, then
static, affine and dynamic routings coincide for that commodity. In the sequel we assume that for
all k ∈ K there exist at least two distinct paths p1, p2 in G from s(k) to t(k), that is, two paths
that differ by one arc at least.

3 Affine Routings

In this section, we study properties and consequences of the affine routing principle. First, we
remark that when D is full-dimensional, then affine routing can be expressed as a routing template
(just like in the static case) plus a set of circulations.

Lemma 3. Let D be a demand polytope and let (f0, y) ∈ RA×K × RA×K×K be an affine routing
serving D. If D is full-dimensional, then ykk ∈ RA is a routing template for k ∈ K and f0k ∈
RA, ykh ∈ RA are circulations for every k, h ∈ K with k 6= h.
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Figure 1: Optimal solutions for static, dynamic, and affine recourse, also see Example 1

Proof. Plugging (8) into (4) and grouping together coefficients of each dh, we obtain

∑
a∈δ+(v)

f0k
a −

∑
a∈δ−(v)

f0k
a + dk

 ∑
a∈δ+(v)

ykka −
∑

a∈δ−(v)

ykka


+
∑

h∈K\k

dh

 ∑
a∈δ+(v)

ykha −
∑

a∈δ−(v)

ykha

 = dkψvk (9)

for each v ∈ V, k ∈ K. Let eh denote the unit vector in RK corresponding to commodity h. Since
D is full-dimensional there exists a vector d0 ∈ D and ε > 0 such that d0 + εeh ∈ D for all h ∈ K.
Subtracting (9) written for d0 + εeh from (9) written for d0 gives

ε

 ∑
a∈δ+(v)

ykka −
∑

a∈δ−(v)

ykka

 = εψvk (10)

for h = k and similarly

ε

 ∑
a∈δ+(v)

ykha −
∑

a∈δ−(v)

ykha

 = 0 (11)

for h 6= k. Hence ykk ∈ RA is a routing template for k ∈ K and ykh ∈ RA is a circulation if k 6= h.
Plugging (10) and (11) into (9) also shows that f0k ∈ RA is a circulation for all k ∈ K.

Just like in the static case, the flow for commodity k changes linearly with dk on the paths
described by the template ykka . However, the flow for commodity k may change also if the demand
for h 6= k changes which is described by circulations ykh. In addition there is a constant circulation
shift described by variables f0k.

As already mentioned, a dynamic routing for commodity k could also be described by one
(representative) routing and circulations depending on the demand fluctuations. In the dynamic
case however, the circulations can be chosen arbitrarily while in the affine case the actual flow
changes according to (8). We illustrate this concept in Example 1 and Figure 1 which shows that
affine routing can be as good as dynamic routing in terms of the cost for capacity allocation and
that f0 and ykh may not describe circulations when D is not full-dimensional

Example 1. Consider the network design problem for the graph depicted in Figure 1(a) with
two commodities k1 : a → b and k2 : a → c. The uncertainty set D is defined by the extreme
points d1 = (2, 1), d2 = (1, 2), and d3 = (1, 1), and the capacity unitary costs are the edge labels
of Figure 1(a). Edge labels from Figure 1(b) and 1(c) represent optimal capacity allocations
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with static and dynamic routing, respectively. They have costs of 10 and 9, respectively. Then,
Figure 1(d)-1(f) describes coefficients ykh for an affine routing feasible for the capacity allocation
1(c). If we remove d3 = (1, 1) from the set of extreme points, the dimension of the uncertainty
set reduces to 1. The affine routing prescribed by yk2k2ac = 1, f0k1

ab = 3 and yk1k2ab = −1 serves all
demands in the convex hull of d1 = (2, 1) and d2 = (1, 2) but f0k1 and yk1k2 do not describe a
circulation.

3.1 A compact reformulation

Because of Lemma 2, a compact linear formulation for the robust network design problem with
affine routing can be prescribed whenever the number vertices of D is polynomial in the number
of nodes, arcs, and commodities. This is achieved by writing (RND) with (8) for the vertices
of D. In the following we provide a compact linear reformulation for the case that D has a
compact inequality description, that is, the polytope D has a linear description in RK where the
number of defining inequalities is polynomial in the number of node, arcs, and commodities. The
reformulation extends the one from Altin et al. [4] for static routing. Let D be given by

D := {d ∈ RK : Ad ≤ b, d ≥ 0},

where A = (αik) ∈ Rm×K and b ∈ Rm, m ≥ 1 and let D be full-dimensional.

Proposition 4. The robust network design problem (RND) (3)-(6) under the affine routing prin-
ciple (8) respecting the uncertainty polytope D is equivalent to the following linear program denoted
by (AARND) in the following:

min
∑
a∈A

κaxa

(AARND) s.t.
∑

a∈δ+(v)

ykka −
∑

a∈δ−(v)

ykka = ψvk v ∈ V, k ∈ K (12)

∑
a∈δ+(v)

ykha −
∑

a∈δ−(v)

ykha = 0 v ∈ V, k 6= h ∈ K (13)

∑
a∈δ+(v)

f0k
a −

∑
a∈δ−(v)

f0k
a = 0 v ∈ V, k ∈ K (14)

∑
k∈K

f0k
a +

m∑
i=1

biµ
i
a ≤ xa, a ∈ A (15)

m∑
i=1

αihµia ≥
∑
k∈K

ykha , a ∈ A , h ∈ K (16)

m∑
i=1

biλ
ik
a ≤ f0k

a , a ∈ A , k ∈ K (17)

m∑
i=1

αihλika ≥ −ykha , a ∈ A, k ∈ K,h ∈ K

(18)

x, f0, y, µ, λ ≥ 0

Proof. It has been shown in Lemma 3 that the flow balance constraints (4) reduce to (12)-(14)
using (8). The capacity constraint (5) can be rewritten as∑

k∈K

f0k
a + max

d∈D

∑
k∈K

∑
h∈K

dhykha ≤ xa.
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Figure 2: Example of affine routing feasible for d1 but not for d2.

Dualizing this constraint for every a ∈ A using the inequality description of D gives (15) and (16),
where µia is the dual variable of the i − th inequality in Ad ≤ b. The non-negativity constraints
(8) can be rewritten as

−f0k
a + max

d∈D

∑
h∈K

−ykha dh ≤ 0. (19)

Dualizing this constraint for every a ∈ A and every k ∈ K gives (17) and (18), where this time
λika corresponds to the dual variable of the i− th inequality in the description of D.

We note that reformulating by dualizing constraints is a standard technique in robust opti-
mization, see for instance [11]. Formulation (AARND) generalizes the formulation of Ouorou
and Vial [40] which considers affine routing for a specific polyhedral demand polytope D. It also
generalizes the model in [4] for general polytopes D but static routing. The model is obviously
compact if m is a polynomial function of (|A|, |V |, |K|), that is, the description of D is compact.
We remark that D being compact is not necessary to obtain a compact robust counterpart of
(RND). It suffices to provide a compact extended formulation of D as shown in Section 4.

Since static routing is a special case of affine routing, formulation (12)–(18) generalizes the
reformulation for static routing given in [4]. The latter is obtained from (12)–(18) by withdrawing
(13), (14) and (17) and fixing to zero the vectors f0, λ as well as the vectors ykh for all k 6= h.

Corollary 5. If D is a full-dimensional polytope and either the number of its vertices or the
number of its facets is polynomial in (|A|, |V |, |K|), then (RND) with the affine recourse (8) can
be solved in polynomial time in (|A|, |V |, |K|).

Corollary 5 implies that given a capacity allocation x, the existence of an affine routing can be
answered in polynomial time for every demand polytopes with either polynomial many vertices
or polynomial many facets contrasting with the NP-complete results using dynamic routing, see
[20, 28].

3.2 Domination of demand vectors

Next result shows that it is not possible to define an “affine domination” between two demands
vectors, in opposition to the domination and total domination defined by Oriolo [38] for dynamic
and static routings, respectively.

Proposition 6. Let d1, d2 ∈ RK+ , d1 6= d2. There exists (x, f0, y) that supports d1 but not d2.

Proof. Any (x, y) that supports d1 also supports d2 if and only if dk1 ≥ dk2 for each k ∈ K [38,
Theorem 2.5]. Since static routings are special cases of affine routing we can assume that dk1 ≥ dk2
for each k ∈ K.

Since d1 6= d2, there exists h ∈ K such that dh1 > dh2 . We describe next a capacity allocation
and an affine routing that support d1 but do not support d2. Let xa = M for each a ∈ A and
M large enough; for each k ∈ K, let pk be a path between s(k) and t(k) and let ykka = 1 for
each a ∈ pk, 0 otherwise. Then, let yk1k2 = 0 for each k1, k2 ∈ K and k1 6= k2, and f0k = 0 for
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each k ∈ K\{h}. The construction for h is illustrated in Figure 2. Let ph = p1 and p2 be a path
from s(h) to t(h) different from p1, see Figure 2(a). Finally, set f0h

a = −dh1 for each a ∈ p1\p2,
f0h
a = dh1 for each a ∈ p2\p1, and 0 otherwise. The triplet (x, f0, y) just defined supports d1 with

the flow depicted in Figure 2(b) but prescribes a negative flow on arcs a ∈ p1\p2 for d2 as depicted
in Figure 2(c).

Given a demand polytope D for problem (RND) with static (resp. dynamic) routing, domina-
tion (resp. total domination) among demands vectors enables to withdraw the dominated extreme
points from D, obtaining a smaller uncertainty set possibly easier to describe. For instance, 0
never needs to be considered. Proposition 6 shows that such simplification is not possible with
affine routings.

Remark 1. Notice that it is possible to introduce an “affine domination” if G is such that some
commodities can use only one path. Namely, if for each k ∈ Q ⊆ K, there exists only one path
from s(k) to t(k), then any triplet (x, f0, y) that supports d1 also supports d2 if and only if dk1 = dk2
for k ∈ K\Q and dk1 ≥ dk2 otherwise.

3.3 Relation to static routing

Proposition 6 implies that all extreme points of D must be considered when using affine routing,
in particular very small demand realization. Also 0 ∈ D, if required, cannot be removed from the
uncertainty set. This comes from the non-negativity constraints (19), which impose important
restrictions on the circulation variables f0k and ykh. Proposition 6 is a negative result since in
the following we will show that whenever D contains very small demand realization affine routings
reduce to static routings. In what follows let ek be the k-th unit vector in RK+ .

Lemma 7. Let D be full-dimensional. If 0 ∈ D then f0k ∈ RA+ describes a non-negative circulation
in G. If εeh ∈ D for some ε > 0 and h ∈ K and f0k = 0 for h 6= k ∈ K then ykh ∈ RA+ describes
a non-negative circulation in G.

Proof. Writing (8) for 0 ∈ D gives f0k
a ≥ 0 for all a ∈ A and k ∈ K and hence by Lemma 3 f0k is

a non-negative circulation. Similarly, writing (8) for εeh ∈ D we get f0k
a + εykha ≥ 0 for all a ∈ A

and k ∈ K. If f0k = 0 for k 6= h we get that ykha is a non-negative circulation by Lemma 3.

It is clear that the non-negative circulations mentioned in Lemmas 7 do not yield useful affine
routings because they increase the capacity requirement without providing additional flexibility.
If a flow fk for k contains a positive circulation, that is, there exists a positive circulation g such
that fk − g is a flow for k then fk can be reduced to fk − g without changing the flow balance at
s(k) and t(k). In this spirit we call any routing f cycle-free if for all d ∈ D and all commodities
k ∈ K the commodity flows do not contain positive circulations. Of course every optimal capacity
allocation has a cycle-free (static, affine, or dynamic) routing.

In the case of cycle-free affine routings, Lemma 7 provides conditions under which f0k = 0 for
k ∈ K and ykh = 0 for all k, h ∈ K, k 6= h and thus, the corresponding affine routing is static:

Proposition 8. Let D be a demand polytope. If 0 ∈ D and for each k ∈ K there is εk > 0 such
that εke

k ∈ D, then all cycle-free affine routings serving D are static and hence optaff = optstat.

Proposition 8 also highlights that affine routing suffers from a drawback related to Proposi-
tion 6. Adding dominated or totally dominated vectors to D might restrict the set of feasible affine
routings. The condition in Proposition 8 can be weakened yielding a necessary and sufficient con-
dition for acyclic graphs and a necessary condition for general graphs. Sufficiency and Necessity
are shown in Proposition 9 and Theorem 10, respectively. In the rest of this section, let Dk0 denote
the set obtained from D by removing d ∈ D with dk > 0, that is, Dk0 := {d ∈ D : dk = 0}.

Proposition 9. Let D be a demand polytope and let G be acyclic. If dim(Dk0 ) = |K| − 1 for all
k ∈ K, then all cycle-free affine routings serving D are static and hence optaff = optstat.
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Proof. Let k ∈ K be a given commodity. For all d ∈ Dk0 , any flow fk(d) must either be equal to 0
or describe a positive circulation. The latter is impossible because G is acyclic, so that fk(d) = 0
for all d ∈ Dk0 . Let {d1, . . . , d|K|} be a set of affinely independent vectors spanning Dk0 . Any affine
flow for k must satisfy

f0k
a +

∑
h∈K\{k}

ykha dhi = 0, 1 ≤ i ≤ |K|, (20)

which is a system of |K| independent linear equations with |K| variables. Therefore, its unique
solution is 0 and the affine routing must be static.

In the following we show that for general graphs the condition dim(Dk0 ) = |K|−1 for all k ∈ K
is also necessary for all cycle-free affine routing to be static. This means that in all other cases
there exists cycle-free affine routings that are not static. But notice that from the latter does not
follow optaff < optstat, see Example 3 in the next section.

Theorem 10. Let D be a demand polytope. If all cycle-free affine routings serving D are static
then dim(Dk0 ) = |K| − 1 for all k ∈ K.

Proof. Let k ∈ K such that dim(Dk0 ) < |K| − 1. We construct an affine routing for commodity k
(all other commodities are routed arbitrarily). Consider two distinct paths p1 and p2 in G from
s(k) to t(k). Let ykk be the routing template that splits the flow equally between p1 and p2,
that is, ykka is equal to 0.5 for a ∈ p1 ∪ p2\(p1 ∩ p2), 1 for a ∈ p1 ∩ p2, and 0 otherwise. We
will construct an affine perturbation for k using the cycles formed by p2\p1 and p1\p2 where arcs
in p1\p2 are taken in the reverse direction. If Dk0 is non-empty, let p − 1 be its dimension, with
1 ≤ p ≤ |K| − 1, and let {d1, . . . , dp} be a set of affinely independent vectors spanning Dk0 . It
follows that the system of equations

λ0 +
∑

h∈K\k

dhi λ
h = 0, 1 ≤ i ≤ p (21)

has a solution λ 6= 0. In case Dk0 is empty we chose the vector λ 6= 0 arbitrarily. We construct
next an affine perturbation for the flow of commodity k based on λ.

Given ε > 0, let f0k
a = ελ

0
for a ∈ p2\p1, f0k

a = −ελ0
for a ∈ p1\p2, and f0k

a = 0 otherwise.

Similarly, given h 6= k, we set ykha = ελ
h

for all arcs a in p2\p1, ykha = ελ
h

for a ∈ p2\p1 and
ykha = 0 otherwise. Combining these cycle variables with the routing template ykk defined above
yields a cycle-free affine routing fk serving D.

It remains to show that ε > 0 can be chosen such that the flow fk(d) is non-negative on all arcs
for all d ∈ D. Because of Lemma 2 we can restrict ourselves to the finite set E of extreme points of
D. Consider first d ∈ E with dk = 0. By definition, fka (d) = 0 for each a ∈ A\(p1 ∪ p2)∪ (p1 ∩ p2).
Assume a ∈ p2\p1. The vector d can be written as an affine combination of the vectors in
{d1, . . . , dp}, that is, d =

∑p
i=1 µidi for some multipliers µi ∈ R with

∑p
i=1 µi = 1. Hence the flow

on arc a ∈ p2\p1 for demand d satisfies

fka (d) = ε

λ0
+
∑

h∈K\k

dhλ
h

 = ε

p∑
i=1

µi

λ0
+
∑

h∈K\k

dhi λ
h

 = 0,

where the last equation follows from (21). Similarly, the flow can be shown to be zero for a ∈ p1\p2.
Now let d ∈ E such that dk > 0. Again fka (d) = 0 for a ∈ A\(p1 ∪ p2)∪ (p1 ∩ p2) by definition.

For a ∈ p2\p1 and a ∈ p1\p2 it holds that fka (d) = 0.5dk + εg(d) and fka (d) = 0.5dk − εg(d),

respectively, where g(d) = λ
0

+
∑
h∈K\k d

hλ
h
. These flows are obviously positive if either g(d) = 0

or ε < dk/|2g(d)| for all d ∈ E with g(d) 6= 0. Such an ε exists since E is finite.
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Combining Proposition 9 with Theorem 10, we have complectly described polytopes for which
cycle-free affine routings and static routings are equivalent, assuming that G is acyclic. However,
Proposition 9 is wrong for general graphs because fk(d) for d ∈ Dk0 is not necessarily equal to 0, it
can also be a positive circulation. Then, one can check that, when G has the required structure,
a positive circulation can be decomposed into circulations that are not positive, thus yielding a
cycle-free affine routing and a counter-example to Proposition 9.

3.4 Relation to dynamic routing

Proposition 8 identifies demand polytopes for which affine routing is no better than static routing.
However, we saw in Example 1 that affine routing may also perform as well as dynamic routing
does, yielding strictly cheaper capacity allocations. For general robust optimization problems, [13]
and [15] show that affine recourse is equivalent to dynamic recourse when D is a simplex. Here
we show that in the context of robust network design this condition is also necessary.

Proposition 11. Given a demand polytope D, all dynamic routings serving D are affine routings
if and only if D is a simplex.

Proof. Let {di, i = 1, . . . , n}, 1 ≤ n ≤ |K|+ 1, be the extreme points of D.
Sufficiency (see also [13, 15]). Since D is a simplex, its vertices are affinely independent. It

is enough to prove that for any routing f there exists f0 ∈ RA×K and y ∈ RA×K×K such that
fka (di) = f0k

a +
∑
h∈K d

h
i y
kh
a , for each k ∈ K, a ∈ A and i = 1, . . . , n. This is done by showing that

the following system of linear equations has a solution for each k = h1 ∈ K and a ∈ A:
1 dh1

1 · · · d
h|K|
1

...
...

. . .
...

1 dh1
n · · · d

h|K|
n




f0h1
a

yh1h1
a
...

y
h1h|K|
a

 =

 fh1
a (d1)

...
fh1
a (dn)

 . (22)

The solution set of system (22) is non-empty for any right-hand side if and only if the rows of the
matrix are linearly independent. Furthermore, these rows are linearly independent if and only if
vectors in {di, i = 1, . . . , n} are affinely independent.

Necessity. Consider k ∈ K. Assume first that D is full-dimensional. Let S be an arbitrary

subset of |K|+1 affinely independent vectors in {di, i = 1, . . . , n}. Choose arbitrary routings f̃k(di)

for i ∈ S. The system (22) for vectors in S and right-hand side given by f̃k has a unique solution,

yielding an affine routing (f0k, yk). Notice that any affine routing for S can be constructed this
way. Choose 1 ≤ j ≤ n such that dj /∈ S. Since there exists at least two paths between s(k) and

t(k) we may construct a dynamic routing such that f̃k(dj) 6= f0k +
∑
h∈K y

khdhj .
If dim(D) = m < K, any d ∈ D satisfies a set of K −m independent linear equations. We can

use these equations to substitute K −m variables so that the affine recourse becomes an affine
function of m variables. Therefore, let S be an arbitrary subset of m + 1 affinely independent
vectors in {di, i = 1, . . . , n} and the rest of the proof is similar.

Example 2 shows that when D is not a simplex and does not contain the origin, capacity
allocation costs required by static, affine, and dynamic routings can be strictly different.

Example 2. Consider the network design problem from Example 1 with the uncertainty set D
defined by the extreme points d1 = (3, 0), d2 = (0, 3), d3 = (2, 2) and d4 = (0.5, 0.5). The optimal
capacity allocation costs with static, affine, and dynamic routings are, respectively, 13 + 1

2 , 13 + 1
3 ,

and 13. Notice that moving d4 along the segment (0, 0)− (1, 1) leaves static and dynamic optimal
capacity allocations unchanged while the affine solution cost moves between 13 and 13 + 1

2 . In
particular, if d4 is set to (0, 0), the affine and static costs are the same, which we knew already
from Proposition 8. If d4 is in conv{d1, d2, d3, (1, 1)}, the affine and dynamic cots are the same.
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Propositions 8 and 11 relate theoretically affine routing to the well-known static and dynamic
routings. Combining these results we obtain conditions on the demand set D which yield that
dynamic routings are static and which establish that optstat = optdyn.

Corollary 12. Let the demand polytope D be the convex hull of {0} ∪ {εheh, h ∈ K} with εh > 0
for all h ∈ K. Then, all dynamic routings serving D are static routings.

Corollary 13. Let the demand polytope D ⊂ RK+ contain {εheh, h ∈ K} and be such that any
d ∈ D is totally dominated by some vector in conv{εheh, h ∈ K}. The following are equivalent:

• x supports D.
• there exists y ∈ RA×K+ such that (x, y) supports D.

Corollary 13 generalizes Theorem 3 from [26]. Note that there exists other situations in which
dynamic routing is not better than static routing, see Example 3. These situations depend on the
topology of G and the design cost function κ.

Example 3. Consider the network design problem from Example 1 with the uncertainty set D
defined by the extreme points d1 = (2, 1), d2 = (0, 2) and d3 = (1, 1). Although D does not satisfy
the hypothesis from Corollary 13, we can see that the optimal solutions to this problem using
static and dynamic routing have a cost of 9.

4 Computational experiments

In this section we investigate the objective gaps between optimal networks designs using static,
affine, and dynamic routings, respectively, facing network topologies from the SNDlib ([39]). We
start by defining the demand uncertainty polytope D our computations rely on.

4.1 Uncertainty sets and data

We use a variation of the well-known interval uncertainty set introduced by [16, 17], which we
refer to as the Γ-model, also see [2, 3, 32, 40]. We assume that the traffic dk for commodity k

varies around a mean-demand d̄k > 0 with a maximal possible deviation of 0 ≤ d̂k ≤ d̄k, that is,

dk ∈ [d̄k − d̂k, d̄k + d̂k] for all k ∈ K. (23)

The Γ-model now limits the number of simultaneously deviations from the mean by the value
Γ ∈ {0, . . . , |K|}, that is, ∑

k∈K

|dk − d̄k|/d̂k ≤ Γ. (24)

The corresponding uncertainty polytope D can be described in RK directly using exponential
many linear inequalities or alternatively using a compact extended formulation. For the latter, we
rewrite dk = d̄k + (σk+ − σk−)d̂k for all k ∈ K and let (σ+, σ−) ∈ Dσ, where

Dσ := {(σ+, σ−) ∈ R2|K|
+ :

∑
k∈K

(σk+ + σk−) ≤ Γ and σk+ + σk− ≤ 1 for all k ∈ K}. (25)

The set Dσ corresponds to all possible deviation scenarios from the nominal vector d̄. The number
of simultaneous deviations is restricted independent of being downward or upward deviations.

For the static and the dynamic routing principle, by exploiting domination, respectively total
domination (see Section 2 and [38]), it is possible to withdraw all vertices from Dσ that correspond
to downward deviations and to consider uncertainty in the space σ+ only, see [2, 32]. In this case

dk = d̄k + σk+d̂
k for all k ∈ K and we consider uncertain upward deviations σ+ ∈ Dσ+, where

Dσ+ := {σ+ ∈ RK+ :
∑
k∈K

σk+ ≤ Γ and σk+ ≤ 1 for all k ∈ K}.
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Of course Dσ+ is a projection of Dσ. It follows that for the static and dynamic routing principle
it is equivalent to optimize against Dσ or Dσ+. Static and also dynamic solution supporting Dσ+
will automatically support Dσ. Moreover, static and dynamic routings might even cover demand-
scenarios outside the actual deviation polytope Dσ as long as these are (totally) dominated, e.g.,
demand vectors with dk = ε for all k ∈ K and ε > 0 small enough. By Proposition 6, this
is not true for the affine routing principle. It can not be said a priori whether or not affine
solutions supporting Dσ+ will support deviations in Dσ. All possible downward variations have
to be included in the uncertainty definition since the feasibility of an affine routing can only be
ensured if demand-deviations never leave the used uncertainty set. In the sequel we will use the
set Dσ+ for static and dynamic scenarios. But in the case of affine recourse we will study optimal
solutions for both the uncertainty set Dσ+ and Dσ. Notice that for Γ ≥ 1 both Dσ+ and Dσ are
full-dimensional since they contain all unit-vectors and the origin.

Remark 2. A simple (also compact) alternative to the above Γ-uncertainty model is to use (23)
plus a relaxation of (24): ∑

k∈K

dk − d̄k

d̂k
≤ Γ.

In this case there might be more than Γ many upward deviations if compensated by an appropriate
number of downward deviations and vice versa. Obviously, this results in a relaxed version of the
Γ-model potentially giving more conservative solutions.

We selected the three instances janos-us, sun, and giul39 from SNDlib [39] which are feasible
for a directed formulation as considered in this paper. These networks have 26/27/39 nodes
and 84/102/172 arcs, respectively. More characteristics and statistics can be found on the SNDlib
website [39]. All instances contain directed node-to-node demand values which we used as nominal
demands d̄k. To reduce the size of the formulations and to be able to do a series of runs we
considered the largest 10 to 50 commodities k with respect to the value d̄k, that is, |K| takes

values in {10, 20, 30, 50}. We fixed the maximum deviation d̂k := 0.4d̄k and considered all values
Γ in {1, . . . , 7}.

4.2 Robust counterparts

The demand uncertainty polytope Dσ described by (25) has 2|K| variables and |K|+1 constraints
(not counting nonnegativity constraints). For Dσ+ the number of variables reduces to |K|. Con-
sequently, the corresponding static and affine robust counterparts are compact, as shown in [4]
(static routing) and in Section 3.1 (affine routing).

For the static case a compact reformulation using the Γ-model can be found for instance in
[2, 32]. It includes flow template conditions (12) and a dualization of the capacity constraints
which results in 2|A||K|+ 2|A| variables and |K|(|V | − 1) + (|K|+ 1)|A| constraints. Notice that
always one flow conservation constraint per commodity can be omitted.

To set up the affine robust counterpart we dualized the capacity constraints and the flow
nonnegativity constraints following model (AARND) described in Section 3. Notice that Dσ is
described in dimension 2|K| which increases the number of rows of the dualization and hence the
number of rows of the model (AARND). The resulting affinely adjustable robust network design
formulation (AARND) for the Γ-model with uncertainty set Dσ has 2|A||K|2 + 3|A||K| + 2|A|
variables and (|K|2 + |K|)(|V | − 1) + 2|A||K|2 + 3|A||K|+ |A| constraints. If the set Dσ+ is used
instead, the number of constraints reduces to (|K|2 + |K|)(|V |−1)+ |A||K|2 +2|A||K|+ |A|. Again
we can omit one flow conservation per commodity in the routing template (12). Also one flow
conservation constraint per commodity of the flow cycle conditions (13) and (14) is redundant.

To calculate dynamic optimal solutions we used (RND) introduced in Section 2 restricted to
those d ∈ D that correspond to the vertices of the demand uncertainty polytope. As explained
above it suffices to consider non-dominated vertices corresponding to extreme upward deviations
scenarios. These are the demand-vectors where Γ out of |K| commodities are at their peak values

d̄k + d̂k and the remaining |K| − Γ commodities are at their nominal values d̄k. More precisely,
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model rows columns

static Dσ |K|(|V | − 1) + (|K|+ 1)|A| 2|A||K|+ 2|A|
affine Dσ (|K|2 + |K|)(|V | − 1) + 2|A||K|2 + 3|A||K|+ |A| 2|A||K|2 + 3|A||K|+ 2|A|
affine Dσ+ (|K|2 + |K|)(|V | − 1) + |A||K|2 + 2|A||K|+ |A| 2|A||K|2 + 3|A||K|+ 2|A|

dynamic Dσ
(|K|

Γ

)
(|K|(|V | − 1) + |A|)

(|K|
Γ

)
|A||K|+ |A|

Table 1: Model sizes with respect to the number of nodes |V |, arcs |A|, and commodities |K| and
the value Γ.

in terms of deviation scenarios, for every subset Q ⊆ K with |Q| = Γ we have to consider the

vertex σ+ ∈ Dσ+ with σk+ = 1 for k ∈ Q and σk+ = 0 for k ∈ K\Q, which results in
(|K|

Γ

)
many

vertices (totally dominating all other vertices of Dσ+). Consequently, the resulting exponential

model to solve the dynamic robust network design problem has
(|K|

Γ

)
|A||K| + |A| variables and(|K|

Γ

)
(|K|(|V | − 1) + |A|) constraints. Notice that we can sensibly reduce the problem size for the

dynamic case, by aggregating commodities with a common source (or a common destination) node
[18, 33]. For our instances |K| could be reduced from 50 to 18 (resp. 10 and 6) for janos-us (resp.
giul39 and sun). It is however easy to show that such aggregation is not compatible with static
and affine routing principles.

For comparison purposes we summarize the size of the three different models in Table 1.

4.3 Results

Our numerical results are summarized in Table 2 and Table 3. For our computations we used the
interior point (barrier) solver of Cplex 12.1 [29] on a 64bit 3.0GHz Quad-Core CPU with 8GB
of memory allowing for 4 threads and 8 hours of CPU time for every individual run. Since we
are only interested in the objective value of the optimal solution we switched off the crossover of
Cplex. LP models have been set up using the modeling language Zimpl [31].

The first three columns of Table 2 state the instance name followed by the number of commodi-
ties |K| and the size of Γ. The value Φ in column 4 indicating the largest number of commodities
using the same arc in the optimal static solution is discussed below, see Lemma 14. Column 5 gives
the static optimal objective value optstat(K,Γ). The last three columns state the percentage affine
gap 100(1 − optaff (K,Γ)/optstat(K,Γ)), where optaff (K,Γ) corresponds to the optimal solution
using the uncertainty set Dσ, the percentage upward affine gap 100(1−opt+aff (K,Γ)/optstat(K,Γ))
using Dσ+, and the percentage dynamic gap 100(1−optdyn(K,Γ)/optstat(K,Γ)), respectively. Time
and memory hits are indicated by the letters T and M. Table 2 clearly shows the relation

optdyn(K,Γ) ≤ opt+aff (K,Γ) ≤ optaff (K,Γ) ≤ optstat(K,Γ).

In general we observe that the dynamic gap is relatively small. It is below 11% for all scenarios.
It seems that for practical networks with a modest number of demands the cost of static solutions
is fairly close to the optimal (dynamic) design cost. In particular for small |K| and larger Γ
the dynamic gap is extremely small and is even 0% in many cases. Notice that it always holds
that optstat(K, |K|) = optdyn(K, |K|) since for Γ = |K| there is only one non-dominated vertex
of the uncertainty polytope Dσ. In this case we solve the nominal problem for the single worst-
case demand-matrix having all demands at their peak. However, it can also be clearly seen that
the dynamic gap increases with the number of considered demands. Notice that Mattia [34],
studying robust network design with dynamic routings, shows that also for larger commodity sets
the dynamic gap is extremely small if discrete capacities are considered.
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static affine Dσ affine Dσ
+ dynamic

instance |K| Γ Φ optstat gap in % gap in % gap in %

janos-us

10 1 2 3.149202e+05 4.9 5.7 5.7
10 2 1 3.323827e+05 0.0 0.0 0.0
20 1 3 4.657367e+05 6.4 7.2 7.2
20 2 2 5.125317e+05 5.1 6.2 6.5
20 3 2 5.125317e+05 0.1 0.9 2.5
20 4 2 5.125317e+05 0.0 0.0 0.0
20 5 2 5.125317e+05 0.0 0.0 M
30 1 4 6.127240e+05 6.8 7.5 7.5
30 2 5 6.722822e+05 7.5 8.3 8.7
30 3 5 6.988964e+05 5.7 6.6 7.0
30 4 3 6.992080e+05 1.4 2.4 M
30 5 3 6.992080e+05 0.0 0.0 M
40 1 5 6.729093e+05 7.5 8.2 8.2
40 2 5 7.324675e+05 7.5 8.4 8.8
40 3 5 7.631223e+05 5.6 6.7 M
40 4 4 7.659107e+05 1.9 2.9 M
40 5 4 7.659107e+05 0.0 0.2 M
40 6 4 7.659107e+05 0.0 0.0 M
50 1 5 7.311094e+05 7.7 8.4 8.4
50 2 5 7.925296e+05 7.8 8.7 9.1
50 3 5 8.266402e+05 6.3 7.4 M
50 4 5 8.369683e+05 3.7 4.8 M
50 5 4 8.386076e+05 1.1 2.1 M
50 6 4 8.386076e+05 0.0 0.0 M

sun

10 1 3 2.616416e+02 7.5 9.8 9.8
10 2 3 2.740441e+02 0.6 2.7 3.0
10 3 2 2.753181e+02 0.0 0.0 0.4
10 4 2 2.753181e+02 0.0 0.0 0.0
10 5 2 2.753181e+02 0.0 0.0 0.0
10 6 2 2.753181e+02 0.0 0.0 0.0
10 7 2 2.753181e+02 0.0 0.0 0.0
20 1 5 4.314919e+02 8.1 9.9 9.9
20 2 5 4.666696e+02 6.1 8.9 9.2
20 3 5 4.821624e+02 3.2 5.5 6.4
20 4 5 4.867587e+02 0.8 2.0 3.5
20 5 4 4.878762e+02 0.3 0.7 M
20 6 4 4.878762e+02 0.0 0.2 M
20 7 4 4.878762e+02 0.0 0.0 M
30 1 7 5.563141e+02 8.0 9.2 9.2
30 2 7 6.029896e+02 8.1 10.1 10.5
30 3 8 6.303494e+02 6.6 8.8 9.6
30 4 7 6.400667e+02 3.6 5.6 M
30 5 7 6.465764e+02 1.8 3.1 M
30 6 7 6.491593e+02 0.9 1.8 M
30 7 6 6.500533e+02 0.4 0.8 M
40 1 9 6.688681e+02 7.4 8.5 8.5
40 2 10 7.230139e+02 8.6 10.3 10.6
40 3 11 7.578679e+02 8.1 10.1 10.8
40 4 9 7.783114e+02 6.7 8.8 M
40 5 9 7.906376e+02 5.1 7.1 M
40 6 9 7.964860e+02 3.5 5.5 M
40 7 9 7.989951e+02 2.0 4.1 M
50 1 10 7.342829e+02 T 8.0 8.0
50 2 12 7.916815e+02 T 10.1 10.4
50 3 12 8.299185e+02 T 10.4 M
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50 4 12 8.533162e+02 T 9.6 M
50 5 12 8.704549e+02 T 8.6 M
50 6 13 8.809769e+02 T 7.3 M
50 7 10 8.862691e+02 T 6.2 M

giul39

10 1 3 2.682375e+01 2.6 2.6 2.6
10 2 3 3.046875e+01 0.9 2.3 2.3
10 3 3 3.063375e+01 0.0 0.0 0.5
10 4 3 3.063375e+01 0.0 0.0 0.0
20 1 5 4.996563e+01 4.3 4.7 4.7
20 2 5 5.529969e+01 5.3 6.1 6.1
20 3 5 5.787094e+01 3.6 4.4 5.1
20 4 5 5.970656e+01 1.5 2.2 3.1
20 5 5 6.052813e+01 0.0 0.2 M
20 6 5 6.052813e+01 0.0 0.0 M
30 1 7 7.894656e+01 5.6 6.0 6.0
30 2 7 8.494313e+01 6.6 7.3 7.3
30 3 7 8.976938e+01 6.5 7.6 7.8
30 4 7 9.350938e+01 5.5 7.1 M
30 5 7 9.565781e+01 3.1 5.0 M
30 6 7 9.633750e+01 0.3 2.3 M
30 7 7 9.668750e+01 0.0 0.0 M
40 1 9 1.059966e+02 T 6.8 6.8
40 2 10 1.136150e+02 T 8.2 8.3
40 3 9 1.195538e+02 T 8.5 M
40 4 9 1.235375e+02 T 8.0 M
40 5 9 1.267484e+02 T 7.1 M
40 6 8 1.283469e+02 T 5.2 M
40 7 8 1.291969e+02 T 3.4 M
50 1 10 1.233091e+02 M 7.9 7.9
50 2 10 1.325416e+02 M 9.8 10.2
50 3 10 1.385434e+02 M 9.7 M
50 4 10 1.432656e+02 M 9.7 M
50 5 10 1.468328e+02 M 9.0 M
50 6 9 1.493625e+02 M 7.8 M
50 7 9 1.502844e+02 M 5.8 M

Table 2: Comparing static, affine, and dynamic routing in terms of op-
timality gap. Γ-model with Γ ∈ {1, . . . , 7} and |K| ∈ {10, 20, 30, 40, 50}.
We removed rows whenever objective values and gaps did not differ from
the previous row.

Even more interesting, Table 2 shows that all affine solutions are almost optimal, i.e., the
corresponding cost is very close to the dynamic cost. In particular the upward affine gap (con-
sidering Dσ+) in many cases even coincides with the dynamic gap. For Γ = 1 the uncertainty set
Dσ+ is a simplex with |K|+ 1 vertices, hence opt+aff (K, 1) = optdyn(K, 1) by Proposition 11. But

also for Γ > 1 it holds that opt+aff (K,Γ) ≈ optdyn(K,Γ). As mentioned above the corresponding
affine routing does not necessarily support demands in Dσ\Dσ+. But even considering downward
deviations by using the uncertainty set Dσ for affine recourse does not remarkably decrease the
corresponding gap. Affine solutions for Dσ are still very close to the dynamic solutions and clearly
improve on the static solutions in terms of capacity cost.

This result shows that the affine routing principle allows enough flexibility to almost capture
dynamic routings. It also suggest the following general approach. Given a general uncertainty
polytope D, in order to calculate a cheap network together with a feasible dynamic routing, one
may compute the cost-minimal affine solution (capacity and routing) for D instead. For an even
cheaper still (dynamically) feasible capacity allocation one might remove all vertices from D that

16



are (totally) dominated and then compute the cost-minimal affine solution. In the latter case
the resulting affine routing is not necessarily feasible for D but there exists a dynamic routing
for the computed capacity allocation, and this capacity allocation can be considered being almost
optimal. In fact, if only the capacity allocation and its cost are of interest, affine recourse with
such a reduced uncertainty set can be used to approximate the cost for free recourse. Notice that
in our case, using the Γ-model, the affine robust counterpart (AARND) for the reduced set Dσ+
was much easier to solve than (AARND) for the original set Dσ, see Table 3.

In the following we will prove special properties of the Γ-model which can be observed in
Table 2. For this we have to introduce some notation. We define the numbers Φ(K,Γ),Γ?(K) ∈ Z+

which depend on the structure of the network and commodities. For a scenario pair (K,Γ) and
an optimal static solution S = (x, y) with objective value optstat(K,Γ) let Φ(K,Γ, S) denote
the largest number of commodities using the same arc in the solution S. We set Φ(K,Γ) :=
min{Φ(K,Γ, S) : S static optimal}, that is, Φ(K,Γ) gives the smallest value Φ(K,Γ, S) among all
optimal static solutions S. With this definition the value Φ in column 5 of Table 2 is an upper
bound on Φ(K,Γ). For commodity set K we define Γ?(K) := min{Γ : Γ ≥ Φ(K,Γ)}. Obviously,
Γ?(K) ≤ |K| and also Γ?(K) ≥ 1 as long as K is not empty. The value Φ(K,Γ) is non-decreasing
if we fix Γ and increase the size of the commodity set (keeping the old commodities) since every
solution for the smaller set of commodities can be extended to a solution of the larger set by
keeping the old routing and arbitrarily route the new commodities. As a consequence Γ?(K) is
non-decreasing with K.

Lemma 14. For a given network G, a commodity set K 6= ∅ and Γ ≥ Γ?(K) it holds

• Φ(K,Γ) = Φ(K,Γ?(K)) ≤ Γ,

• optstat(K,Γ) = optstat(K,Γ
?(K)), and

• every optimal static solution to scenario (K,Γ) admits a shortest path template.

Proof. Let S be an optimal static solution for scenario (K,Γ?(K)) such that Φ(K,Γ?(K), S) =
Φ(K,Γ?(K)). It follows that solution S is also optimal for scenario (K,Γ?(K) + 1) with the same
objective since at most Φ(K,Γ?(K)) commodities can be at their peak simultaneously for every
individual arc. Hence optstat(K,Γ

?(K)) = optstat(K,Γ
?(K) + 1) (otherwise S was not optimal

for scenario (K,Γ?(K))) and also Φ(K,Γ?(K)+1) = Φ(K,Γ?(K)) (otherwise Φ(K,Γ?(K), S) was
not minimal for scenario (K,Γ?(K))). By induction we get that optstat(K,Γ) = optstat(K,Γ

?(K))
and Γ ≥ Φ(K,Γ) = Φ(K,Γ?(K)) for all Γ ≥ Γ?(K). To prove the third claim observe that
optstat(K, |K|) = optstat(K,Γ

?(K)). But every optimal static solution S = (x, y) to scenario
(K, |K|) admits a shortest path template y. Hence every optimal static solution for scenario
(K,Γ) with Γ ≥ Γ?(K) is a shortest path solution.

Comparing the value Γ and the value Φ in columns 3 and 4 of Table 2 we get that Γ?(K) =
2, 2, 4, 4, 5 for network janos-us and |K| = 10, 20, 30, 40, 50, respectively. For network sun and
giul39 it holds that Γ?(K) = 3, 5, 7 if |K| = 10, 20, 30, respectively. For all networks the val-
ues Γ?(K) are very small but increasing with the number of commodities. Notice that since
optstat(K,Γ

?(K)) = optstat(K, |K|) the worst-case objective for the Γ-model (together with a
shortest path solution) is obtained already early (for small Γ) with static recourse. Affine and
dynamic solutions tend to admit the worst case later (for larger Γ).

Table 3 reports on the computational complexity of the solved models. The first three columns
of Table 2 again indicate the instance followed by the number of commodities |K| and the size
of Γ. Additionally, there are columns for every considered routing principle stating the number
of nonzeroes (nonz) in the linear programming model and the time in seconds (time) to solve the
problem. Since we were only interested in objective values we tried to solve all problems using
the barrier method without crossover. It can be seen that all static models can be solved within
1 second of CPU time. The number of nonzeroes for the static and affine models is independent
of the value Γ and increases polynomially with the number of considered commodities. The affine
models however are very large already for small values of |K| with a huge number of nonzeroes
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(in the order of 106 already for |K| = 30, 40, 50). We could still solve all affine counterparts
corresponding to Dσ+ in less than one hour for janos-us and sun and in less than two hours for
giul39 . In contrast, we observed time and memory hits when solving (AARND) for Dσ when
|K| ≥ 40 (giul39 ) and |K| ≥ 50 (sun). As expected the affine robust counterpart for the reduced
set Dσ+ is much easier to solve because of a smaller LP, also see Table 1.

As long as the number of nonzeroes is modest the dynamic models seem to be easier to solve
than their affine counterparts. However, the number of nonzeroes is exponential both in the
number of commodities and in the size of Γ. It exceeds to 109, 1010, 1011 for Γ = 7 and |K| =
30, 40, 50, respectively such that we can provide dynamic solutions only for very small values of Γ
or small values of |K|. In all other cases the memory limit was hit either already when setting up
the LPs using Zimpl or later in the barrier algorithm.

static affine Dσ affine Dσ
+ dynamic

instance |K| Γ nonz time nonz time nonz time nonz time

janos-us

10 1 5978 1 116998 27 81718 5 15540 1
10 2 5978 1 116998 15 81718 5 69930 1
10 3 5978 1 116998 16 81718 2 186480 1
10 4 5978 1 116998 4 81718 4 326340 2
10 5 5978 1 116998 3 81718 3 391608 2
10 6 5978 1 116998 3 81718 5 326340 2
10 7 5978 1 116998 2 81718 12 186480 1
20 1 11786 1 450786 240 313026 32 45800 1
20 2 11786 1 450786 336 313026 153 435100 4
20 3 11786 1 450786 279 313026 79 2610600 38
20 4 11786 1 450786 238 313026 22 11095050 111
20 5 11786 1 450786 248 313026 163 35504160 M
20 6 11786 1 450786 247 313026 180 88760400 M
20 7 11786 1 450786 261 313026 192 177520800 M
30 1 17594 1 1001534 1389 694094 88 76140 3
30 2 17594 1 1001534 1847 694094 153 1104030 13
30 3 17594 1 1001534 2161 694094 191 10304280 213
30 4 17594 1 1001534 2490 694094 255 69553890 M
30 5 17594 1 1001534 1802 694094 135 361680228 M
30 6 17594 1 1001534 1693 694094 157 1507000950 M
30 7 17594 1 1001534 1557 694094 141 5166860400 M
40 1 23410 1 1769570 3021 1225250 265 150640 7
40 2 23410 1 1769570 5362 1225250 407 2937480 49
40 3 23410 1 1769570 7823 1225250 672 37208080 M
40 4 23410 1 1769570 13192 1225250 802 344174740 M
40 5 23410 1 1769570 6657 1225250 672 2478058128 M
40 6 23410 1 1769570 6051 1225250 476 14455339080 M
40 7 23410 1 1769570 5282 1225250 467 70211646960 M
50 1 29220 1 2754420 6316 1906020 1031 225100 14
50 2 29220 1 2754420 13331 1906020 1818 5514950 98
50 3 29220 1 2754420 15007 1906020 2848 88239200 M
50 4 29220 1 2754420 17181 1906020 3225 1036810600 M
50 5 29220 1 2754420 19075 1906020 3413 9538657520 M
50 6 29220 1 2754420 12814 1906020 2867 71539931400 M
50 7 29220 1 2754420 11557 1906020 2333 449679568800 M

sun

10 1 7278 1 142278 5 99438 3 13020 1
10 2 7278 1 142278 5 99438 3 58590 5
10 3 7278 1 142278 4 99438 4 156240 1
10 4 7278 1 142278 4 99438 2 273420 2
10 5 7278 1 142278 3 99438 2 328104 2
10 6 7278 1 142278 4 99438 3 273420 2
10 7 7278 1 142278 3 99438 2 156240 1
20 1 14338 1 547938 99 380658 33 32040 1
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20 2 14338 1 547938 100 380658 68 304380 5
20 3 14338 1 547938 134 380658 61 1826280 47
20 4 14338 1 547938 80 380658 59 7761690 292
20 5 14338 1 547938 59 380658 67 24837408 M
20 6 14338 1 547938 83 380658 38 62093520 M
20 7 14338 1 547938 59 380658 50 124187040 M
30 1 21404 1 1217384 627 844064 147 57000 4
30 2 21404 1 1217384 677 844064 173 826500 14
30 3 21404 1 1217384 722 844064 192 7714000 229
30 4 21404 1 1217384 777 844064 175 52069500 M
30 5 21404 1 1217384 741 844064 286 270761400 M
30 6 21404 1 1217384 603 844064 205 1128172500 M
30 7 21404 1 1217384 493 844064 153 3868020000 M
40 1 28474 1 2150714 2480 1489754 470 76000 1
40 2 28474 1 2150714 2796 1489754 512 1482000 31
40 3 28474 1 2150714 2613 1489754 612 18772000 762
40 4 28474 1 2150714 2866 1489754 591 173641000 M
40 5 28474 1 2150714 3251 1489754 588 1250215200 M
40 6 28474 1 2150714 3187 1489754 757 7292922000 M
40 7 28474 1 2150714 2594 1489754 885 35422764000 M
50 1 35550 1 3348150 28000 2317950 1212 95000 1
50 2 35550 1 3348150 28000 2317950 1381 2327500 56
50 3 35550 1 3348150 28000 2317950 1525 37240000 M
50 4 35550 1 3348150 28000 2317950 1711 437570000 M
50 5 35550 1 3348150 28000 2317950 1796 4025644000 M
50 6 35550 1 3348150 28000 2317950 2133 30192330000 M
50 7 35550 1 3348150 28000 2317950 2369 189780360000 M

giul39

10 1 12640 1 240520 9 168280 7 30500 1
10 2 12640 1 240520 9 168280 6 137250 12
10 3 12640 1 240520 6 168280 6 366000 3
10 4 12640 1 240520 6 168280 7 640500 6
10 5 12640 1 240520 5 168280 6 768600 5
10 6 12640 1 240520 5 168280 6 640500 4
10 7 12640 1 240520 4 168280 8 366000 2
20 1 24594 1 925834 144 643754 91 71200 3
20 2 24594 1 925834 185 643754 84 676400 6
20 3 24594 1 925834 157 643754 111 4058400 98
20 4 24594 1 925834 182 643754 147 17248200 717
20 5 24594 1 925834 183 643754 95 55194240 M
20 6 24594 1 925834 161 643754 118 137985600 M
20 7 24594 1 925834 145 643754 87 275971200 M
30 1 36564 1 2057124 1987 1427604 574 152520 15
30 2 36564 1 2057124 1910 1427604 504 2211540 36
30 3 36564 1 2057124 2160 1427604 539 20641040 942
30 4 36564 1 2057124 1649 1427604 513 139327020 M
30 5 36564 1 2057124 2619 1427604 463 724500504 M
30 6 36564 1 2057124 1845 1427604 630 3018752100 M
30 7 36564 1 2057124 1076 1427604 652 10350007200 M
40 1 48524 1 3633804 28000 2519244 1791 203360 36
40 2 48524 1 3633804 28000 2519244 1961 3965520 82
40 3 48524 1 3633804 28000 2519244 2254 50229920 M
40 4 48524 1 3633804 28000 2519244 2441 464626760 M
40 5 48524 1 3633804 28000 2519244 2054 3345312672 M
40 6 48524 1 3633804 28000 2519244 2657 19514323920 M
40 7 48524 1 3633804 28000 2519244 2155 94783859040 M
50 1 60478 1 5655778 M 3918578 4536 279500 61
50 2 60478 1 5655778 M 3918578 5188 6847750 217
50 3 60478 1 5655778 M 3918578 5360 109564000 M
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50 4 60478 1 5655778 M 3918578 6858 1287377000 M
50 5 60478 1 5655778 M 3918578 4959 11843868400 M
50 6 60478 1 5655778 M 3918578 5044 88829013000 M
50 7 60478 1 5655778 M 3918578 4992 558353796000 M

Table 3: Comparing static, affine, and dynamic routing in terms of com-
putational complexity

5 Concluding Remarks

In this paper we study two-stage robust network design problems with affine recourse for flow. We
show that the resulting affine routing provides a reasonable alternative to the well-studied static
and dynamic routing schemes. Similar to the static case, the corresponding robust counterpart is
tractable but it turns out to provide solutions as cheap as the dynamic models.

All three routing principles are investigated with respect to their flexibility depending on the
structure of the given demand uncertainty set D. Fixing the demand polytope D, the cost of
optimal affine solutions is between the cost for optimal static and optimal dynamic solutions. In
this work we develop necessary and sufficient conditions on D under which affine routings reduce
to static routings and also develop properties of uncertainty sets leading to dynamic routings being
affine.

We also consider the well-known concept of domination between demand-vectors and show
that in contrast to the static and dynamic case there is no affine domination, that is, given two
demand-vectors there is always an affine solution feasible for one but not for the other. In this
respect affine routings suffer from the drawback that even totally dominated demand vectors are
not necessarily supported by affine solutions. Uncertainty sets have to be designed accordingly in
practice.

Finally, we compute the cost gap between static, affine, and dynamic solutions based on net-
works from SNDlib and the Bertsimas and Sim Γ-uncertainty-model. We conclude that for these
instances the solutions based on affine routings tend to be as cheap as two-stage solutions with
dynamic recourse. In this respect the affine routing principle allows enough flexibility to almost
capture dynamic routings. Since it is in general NP-hard to compute an optimal network design
with dynamic routing, the affine principle can hence be used to approximate free recourse using
tractable robust counterparts.

Affine models turn out to be attractive since polynomial reformulations are available. These
formulations however tend to be very large such that they become hard to solve for large instances.
For practical purposes one has to work on the formulations and methods to solve affine problems.
In this context it might be wise to restrict the number of commodities in the affine recourse or
apply decomposition methods (e.g. introducing cycle variables, see [6]).

We are grateful to Dan Iancu for very helpful comments on an earlier version of this paper.
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