


On the Impact of Communication Latencies

on Distributed Sparse LU Factorization

R. Wunderling, H. Ch. Hege and M. Grammel

Konrad Zuse-Zentrum für Informationstechnik Berlin (ZIB)

Heilbronner Str. 10

E-Mail: {wunderling,hege,grammel}@zib-berlin.de

Abstract

Sparse LU factorization offers some potential for parallelism, but at a
level of very fine granularity. However, most current distributed memory
MIMD architectures have too high communication latencies for exploiting
all parallelism available. To cope with this, latencies must be avoided by
coarsening the granularity and by message fusion. However, both techni-
ques limit the concurrency, thereby reducing the scalability. In this paper,
an implementation of a parallel LU decomposition algorithm for linear
programming bases is presented for distributed memory parallel compu-
ters with noticable communication latencies. Several design decisions due
to latencies, including data distribution and load balancing techniques, are
discussed. An approximate performance model is set up for the algorithm,
which allows to quantify the impact of latencies on its performance. Fi-
nally, experimental results for an Intel iPSC/860 parallel computer are
reported and discussed.

2



1 Introduction

We consider the solution of linear systems of equations

Ax = b, (1)

where A is an unsymmetric, nonsingular sparse n × n matrix with no particular
nonzero pattern. In this paper we deal with matrices coming from linear pro-
gramming bases. Matrices that are routinely solved today have 1 − 20 nonzeros
per row or column, possibly with a few exceptions, and their dimension range up
to 104 − 106 for current problems.

In simplex based linear programming methods, equation (??) is usually solved
through LU factorization [?]. This requires five steps:

1. Factorization: Find permutations π, ρ and lower and upper triangular ma-
trices L and U respectively, such that

Aπiρj = (LU)ij ∀(i, j), 1 ≤ i, j ≤ n. (2)

2. Permute vector b to di = bπi ∀i, 1 ≤ i ≤ n.

3. Forward substitution: Solve Ly = d.

4. Backward substitution: Solve Uz = y.

5. Permute vector z to the solution of (??) xρj = zj ∀i, 1 ≤ i ≤ n.

In this paper, only the factorization step is considered. Our target architecture
is a local memory MIMD parallel computer with significant communication la-
tencies.

Parallel LU factorization algorithms for unsymmetric matrices have been de-
veloped and implemented for shared memory architectures [?]. More recently,
van der Stappen, Bisseling and van de Vorst presented a distributed
algorithm for a mesh network of transputers [?]. This architecture has communi-
cation latencies that may easily be hidden through asynchronous message passing
(see section ??). The amount of communicated data for various data distribution
schemes, has been investigated in [?]. To the knowledge of the authors, the im-
pact of communication latencies has not been studied in detail yet. However, for
many current architectures, communication latencies are in the range of 103−104

floating point operations and have a significant impact on the performance. The
aim of this work was to develop, implement and analyze a factorization algorithm
suitable for such parallel architectures.

The outline of this paper is as follows. Section ?? describes the basic factoriza-
tion algorithm and how the issues of numerical stability and sparsity are handled
in the pivot selection algorithm. From this, a parallel algorithm is derived (sec-
tion ??). The amount of available parallelism is shown and our implementation

3



is described with special emphasis on the design decisions due to communication
latencies. Using an approximate performance model the impact of latencies on
our algorithm is discussed in section ??. In section ?? experimental results are
reported and discussed for an Intel iPSC/860, leading to some conclusions in
section ??.

2 The Basic LU Decomposition Algorithm

The general factorization algorithm is given in figure ??. It consists of a sequence
of n− 1 rank-1-updates of A, referred to as pivot elimination steps:

A = A1 → A2 → . . . → An.

In each elimination step a nonzero matrix element, called the pivot element, is
selected. Starting with the index sets I1 = {1, . . . , n} = J1 the factorization
algorithm recursively defines sets I s and J s by removing the row and column
index of the pivot element, respectively. The matrix As

IsJs , consisting of rows Is

and columns J s of As, is called the active submatrix at stage s. Pivot elements
are selected from the active submatrix and permuted to its upper left corner.
Then, the L-loop and update-loop are processed.

Pivot-loop:

Permutation:

L-loop:

Update-loop:

Termination:

Pivot selection:

For s := 1 to n − 1:

Lij := L′
πiρj

, Uij := An
πiρj

.

Select pivot element, i.e., choose
is ∈ Is, js ∈ J s, such that As

isjs �= 0.

Set πis := ρjs := s.

For i ∈ Is:

For i ∈ Is+1, j ∈ J s+1:

Set L′
ijs := As

ijs/A
s
isjs .

Set As+1
ij := As

ij − L′
ijs · As

isj.

Set Is+1 := Is \ {is}, J s+1 := J s \ {js}.

Figure 1: A generic LU factorization algorithm.

In order to obtain accurate solutions from the LU factors, numerical stability
must be maintained during the factorization. One approach is threshold pivoting
[?]. Matrix elements As

ij are accepted as pivot elements only, if they satisfy the
threshold condition

|As
ij| ≥ u ·max

l∈Is
|As

lj| , (3)

where 0 ≤ u ≤ 1 is an adjustable threshold parameter. For linear program-
ming bases a good default value for u is 0.01. Usually this is increased to 0.1

4



or min(2u,1) when instability is detected [?]. In the sequel, matrix elements
satisfying equation ?? are referred to as eligible.

Sparsity is exploited by restricting the L-loop and update-loop in figure ?? to
indices with nonzero matrix elements. This can be done efficiently, if appropriate
storage schemes are employed for the sparse matrix [?]. However, new nonzero
matrix elementsmay be created in the update-loop. Such elements are referred to
as fill-ins. In order to further take advantage of sparsity fill-ins must be avoided
during the factorization.

It is well known, that the pivot selection strategy has a dramatical impact
on the amount of fill and hence the performance of the factorization [?]. Since
the problem of finding a sequence of pivot elements with minimum fill is NP-
complete [?], a number of heuristics have been developed [?]. In state of the art
simplex based LP solvers the Markowitz pivot selection scheme proved to be very
efficient [?, ?]. Pivot elements with low Markowitz number

Ms
ij = (rsi − 1)(csj − 1) (4)

are chosen, where rsi and csj denote the number of nonzeros in row i and column
j of the active submatrix As

IsJs , respectively. It can easily be seen, that Ms
ij

provides an upper bound to the fill occurring in the next elimination step, when
choosing As

ij as pivot element.
Following [?] our pivot selection algorithm relies on a combination of both,

threshold pivoting for stability and Markowitz pivot selection for fill reduction
(cf. figure ??). For fast access to rows and columns with few nonzeros, we keep
2n double linked lists labeled R1, . . . , Rn and C1, . . . , Cn. Each row index i and
column index j of the active submatrix is stored in the list Rrs

i
and Ccs

j
, respec-

tively.
Rows or columns with only one matrix element are referred to as singletons.

If singletons exist, they are taken as pivot elements right away. Otherwise, eli-
gible matrix elements with low Markowitz number are searched. Since this is
expensive, the search is restricted to p columns or rows with minimal number
of nonzeros, where p is a program parameter. If during this search an eligible
element with minimal Markowitz number is found, the search is stopped and the
element selected as pivot element.

Since inequality (??) is a rowwise condition, some columns may contain no
eligible element. Hence, after checking p columns no eligible element may be
found. If this happens, the search is continued until an eligible element is found.
Columns with no eligible element are marked to not search them again for eligible
elements.

For checking the threshold condition (??) the largest absolute value in a row
must be computed. We save this value in an array max. If row i is modified
during the factorization, max[i] is set to -1 to indicate, that this value is out of
date.

5



Does a singleton exist?
yes

Select column or row with minimal nonzero count.
For Aij �= 0 in this column or row:

Is Aij eligible?

no

no yes

yes

no

no

Set n := n+ 1.

Select best.singleton.
Select

Mbest > Mij?

Set best := Aij.

Set Mbest := Mij .

Set n := 1 and best to undefined.

Until (n > p and best defined).

Select Aij.

no

yes

yes
Is Mij minimal?

Is best defined?

Figure 2: Selection of pivot elements using threshold pivoting and Markowitz
numbers.

3 Parallel Algorithm

In this section our parallel algorithm is presented. First, the concurrency ge-
nerally offered by the LU factorization is shown. In the second subsection, the
distribution of data is discussed as the first decision, where communication la-
tencies are considered. Subsection 3 sketches the four phases of our parallel
algorithm, that are described in detail in the following subsections.

3.1 Parallelization Opportunities

Figure ?? reveals, that both inner loops, the L-loop and the update-loop, may
be parallelized. Further, the loops in the pivot selection algorithm (figure ??)
may be parallelized, as well as the determination of values max[j], needed for
checking the threshold condition (??).

In general, the instances of the pivot-loop cannot be executed concurrently,
since active submatrices depend on previous iterations. However, for sparse ma-
trices this is not strictly true. It is indeed possible to perform several pivot
steps in parallel, if compatible pivot elements are selected [?]. Nonzero elements

6



As
i1j1

. . .As
imjm

are called compatible or independent, if they satisfy

Aikjl = 0, ∀1 ≤ k �= l ≤ m, (5)

i.e., if As
i1...im,j1...jm

forms a diagonal submatrix of As
IsJs . However, determination

of compatible pivot elements requires additional computation and — for the
distributed case — communication.

There are two general approaches to exploit this parallelism due to sparsity.
One operates on the symmetrized nonzero pattern of the matrix A+AT or ATA
[?, ?], whereas the other approach works directly on the unsymmetricmatrix. The
first approach allows to take advantage of the techniques developed for symmetric
sparse matrices such as elimination trees [?, ?, ?]. However, as shown in [?], this
may reduce the amount of parallelism for matrices with unsymmetric nonzero
pattern, since A + AT and ATA may be much denser than A itself. Therefore,
we decided to work directly on the unsymmetric matrix.

3.2 Distribution of Data

For MIMD multiprocessors with distributed memory, distribution of data is an
issue of major importance for the amount of exploitable parallelism. Generally,
there are two approaches to this problem. One is, to determine a distribution
at runtime by analyzing the sparsity pattern and distributing matrix rows or
columns to achieve a maximum of parallelism with local memory access [?]. The
other approach is a fixed assignment of rows, columns or both to processors [?, ?].
We chose the latter approach, because it can do without additional communica-
tion for data redistribution.

For maximum exploitation of parallelism, it has been suggested to distribute
both, rows and columns, using a grid distribution [?]. Such a distribution also
yields low communication complexity for LU decomposition of dense matrices.
However, it requires “many” communications in one parallel pivot elimination
step, leading to an accumulation of communication latencies. Indeed, a tentative
implementation using the grid distribution, yielded a decrease in performance
even for only 4 processors of an Intel iPSC/860.

This shows how important it is for this kind of problem to design algorithms
that minimize the impact of latencies. This can be achieved by avoiding latencies
as well as latency hiding. Our algorithm uses both. Latencies are hidden by using
assynchronous communication. Latencies are avoided by reducing the number
of messages per pivot elimination step. This is done with message fusion and
coarsening the granularity of the algorithm. However, both reduce the amount
of concurrency, yielding poor scaling properties.

To achieve coarser granularity, a rowwise or columnwise distribution can be
used instead of a grid distribution. We adopted a random assignment of matrix
rows to processing elements, that remains fixed during the factorization. This

7



distribution allows concurrency in both, the L-loop and the update-loop. Howe-
ver, it does not allow for parallelism within the rowwise part of the update-loop.
Further, the threshold condition may be checked locally on demand, i.e., without
requiring communication.

For load balancing, the rows should be evenly distributed among the proces-
sors, although the algorithm does not rely on that. We shall discuss the issue of
load balancing in section ??.

3.3 Outline of the Algorithm

Our algorithm is divided into four phases (cf. figure ??). Matrices occurring in
linear programming typically contain many singletons. Elimination of singletons
does not require the same amount of computation as general pivot elements.
Hence, it is advisable to handle them with a separate algorithm, that can do
without all the communication required for the general case.

For row singletons As
isj = 0, ∀j ∈ J s+1, only the L-loop must be computed,

while the update-loop has length 0. Note, that row singletons of any number
are always compatible and can, hence, be eliminated in parallel. This is done in
phase I of our parallel algorithm and will be described in section ??.

Phase II (see section ??) handles the elimination of column singletons, that
occur in LP basis matrices as well. In this case neither the L-loop nor the update-
loop require computation. Again, column singletons are always compatible and
may be processed in parallel.

Section ?? describes phase III, the actual parallel sparse LU factorization,
based on the concept of compatible pivot elements. Iteratively, a set of compatible
pivot elements with “small” Markowitz numbers is generated and eliminated
asynchronously, until the entire matrix is factorized or becomes “too dense”.

Finally, phase IV is a semi-dense parallel factorization and will be described
in ??. In this phase, only one pivot element at a time is eliminated.

3.4 Elimination of Row Singletons

The rowwise distribution of the matrix allows every processor to detect row single-
tons locally. Since row singletons are always compatible, all row singletons availa-
ble at one step may be eliminated in a single parallel iteration.

The algorithm for the elimination of row singletons is shown in figure ?? for
one processor out of P . First, all row singletons locally available are selected and
the (local) variable l is set to the number of row singletons. These row singletons
are broadcast to the other processors in only one message (message fusion). Then
the local part of the L-loop is done for these pivot elements.

In the loop over n, the row singletons selected by the other P − 1 processors
are handled asynchronously in the order the corresponding messages come in.
The number of row singletons received in a message is stored in l ′. Then, the

8



Phase I While (there are row singletons):

Eliminate row singletons.

Phase II While (there are column singletons):

Eliminate column singletons.

Phase III While (active submatrix is “sparse”):

Select set of compatible pivot elements

and eliminate them.

Phase IV While (matrix is not factorized):

Select one pivot element

and eliminate it.

Figure 3: The four phases of the parallel factorization algorithm.

local part of the L-loop is processed for the l′ pivot elements in this message
and l is incremented by l′. Hence, after the loop over n, l contains the total
number of row singletons that have been (concurrently) selected in this iteration.
This is iterated until l < 1, i.e., there are no more row singletons in the matrix.
Experiments showed, that it has no significant effect on the overall performance
to stop the outer loop, as soon as only “few” row singletons where found, i.e.,
lp <“few”.

Select all l (local) row singletons.
Broadcast l pivot elements.

For i := 1 to l:
Do local part of L-loop for singleton i.

For p := 2 to P :

Receive l′ row singletons.

For i′ := 1 to l′:
Do local part of L-loop for singleton i′.

Set l := l + l′.
Until (l < 1).

Figure 4: Parallel elimination of row singletons (for one processor out of P ).

Note, that it is correct to perform the loop over i at any time after the selection
of local row singletons. We decided to perform it right after broadcasting the
pivot elements in order to overlap communication and computation for hiding
latencies.

9



3.5 Elimination of Column Singletons

Since every column is distributed over all processors, determination of column
singletons may not happen locally. Instead, all processors must cooperate in
computing the nonzero numbers cj for all columns j. The structure of this task
is often referred to as gossiping: Information that is distributed among all pro-
cessors, must be merged with some operation and the result made accessible to
all processors [?].

Collective Information Exchange. The gossiping algorithm with fewest com-
munications depends on the topology of the underlying communication network.
It can easily be seen, that the diameter of the network graph is a lower bound
on the number of communication steps [?]. For a hypercube of dimension d, the
algorithm given in figure ?? takes d (bidirectional) communications and is, hence,
optimal in terms of number of messages.

For i := 1 to d:
Send data to processor pi.

Receive data from processor pi.
Merge received data.

Figure 5: “Gossiping” for processor p in a hypercube of dimension d.

In figure ??, pi denotes the processor with the same coordinates as processor
p, except for coordinate i, where i = 1, . . . , d. The algorithm can be viewed as
of P fan-in algorithms running in parallel, such that at the end every processor
has the merged information. Note, that the merging operation is performed in
parallel.

Elimination of Column Singletons. With the gossiping algorithm from fi-
gure ??, we are now able to describe the algorithm of phase II for eliminating
column singletons. It is sketched in figure ??. At the beginning, the number of
nonzeros per column, in the sequel refered to as column counts, are computed
with a gossiping algorithm. Then, all column singletons are eliminated without
further communication. For some columns the nonzero counts will have changed
and must be updated. To do this, every processor stores the local changes of
the column counts. These changes are distributed with a gossip, such that every
processor updates the column counts correctly.

10



Eliminate pivot column j.

no

Is pivot element on this
processor?

Eliminate pivot row.

Store column count changes.

Until (no column singletons found).

For all column singletons j:

Gossip: Compute column nonzero counts.

yes

Gossip: Update column counts.

Figure 6: Parallel elimination of column singletons.

3.6 Factorization of the Nucleus

The parallel factorization of the nucleus relies on the concept of compatible pivot
elements and is outlined in figure ??. In every (parallel) iteration, a set of e com-
patible pivot elements is selected and the corresponding pivot rows are broadcast
to all processors. Then, every processor computes the L-loop and update-loop
asynchronously in the order it receives the pivot rows. This is iterated until the
active submatrix becomes “too dense” or the matrix is completely factorized.

Select set of e compatible pivot elements.

Set s := s+ e.

Gossip: Update column counts.

For all pivots i:

Broadcast local pivot rows.

Do local part of L-loop for pivot i.
Do local part of update-loop for pivot i.

Until (density > MAX DENSITY or s ≥ n).

Figure 7: Outline of parallel sparse factorization of the nucleus.

For setting up the performance model in section ??, we determine the time
complexities for the various steps in one parallel iteration. Broadcasting the pivot
rows is O(zee), where ze denotes the average number of nonzeros in the e chosen
pivot rows or columns. The L-loop for one pivot element requires O(ze) and the
update-loop O(z2e ) time. Updating the column counts is O(zee). Adding O(1)
for communication latencies and code that must be processed independent of the
pivot element or candidate number yields a total time complexity of O(zee+z2ee+

11



1) for all steps of one iteration, except the selection of pivot elements, which will
be discussed in the following subsection.

3.6.1 Parallel Selection of Compatible Pivot Elements

Three goals must be pursued by the selection of pivot elements:

1. Numerical stability (by means of threshold pivoting).

2. Fill reduction (by means of low Markowitz numbers).

3. Large set of compatibles for maximal exploitable parallelism.

Fortunately, objective 2 favours 3, since matrix elements with low Markowitz
numbers have few nonzeros in their row and column and are, hence, likely to be
compatible to many other matrix elements. Therefore, matrix elements with low
Markowitz number should be good candidates for compatible pivot elements.

This is the idea of our algorithm for selecting compatible pivot elements,
which is sketched in figure ??: It is divided into three phases, denoted A, B and
C. In phase A a sorted list of pivot candidates is set up. Phase B detects all
incompatibilities, while in phase C, incompatible pivot elements are discarded in
a greedy fashion.

Phase A:

Phase B:

Phase C:

Gossip: Build global sorted list of c candidates.

For all local candidates l:
For all incompatibles (l, k):

yes

Add k to list of

Gossip: Build list of incompatibles.

no
k > l ?

Add l to list of
incompatibles of k.incompatibles of l.

For all candidates l in sorted list:

Discard k form candidates list.

For all k in list of incompatibles of l:

Insert Aij into sorted list.

Select local pivot element Aij.

For i := 1 to cp:

Figure 8: Parallel selection of compatible pivot elements.

12



Phase A: Selection of Pivot Candidates. In the first phase of the algo-
rithm, a list of pivot candidates is generated and sorted according to increasing
Markowitz numbers, in order to give preference to pivot candidates with low
Markowitz number in phase C. More specifically, we use the following sorting
criterion, which avoids ties:

1. Minimal Markowitz number,

2. Minimal column number,

3. Minimal processor number.

Initially, every processor p selects and sorts cp candidates from its local part
of the active submatrix. The selection algorithm for a single local pivot candidate
is displayed in figure ?? using p = 1. The local lists are then merged to a global
sorted list with a gossiping algorithm as described in figure ??.

The average time complexity for locally selecting one pivot candidate is O(zc),
where zc denotes the average number of nonzeros in the candidate rows or columns
(cf. figure ??). Inserting a candidate into the list, requires O(c) time. Adding
O(c+1) for the gossip and the latencies involved yields a total of O(c2+zcc+c+1)
for phase A.

Phase B: Detection of Incompatibilities. In phase B every processor de-
tects all pairs of incompatible pivot candidates, with one candidate being local to
the processor itself. When two incompatible candidates l and k, l > k, are found,
l is added to the list of incompatibles of candidate k, where “>” is defined by the
sorting criterion for pivot candidates. This allows for fast execution of phase C.
Finally, all local incompatible lists are merged to a global list on every processor
using the gossiping algorithm.

Every candidate is tested against every other candidate. Hence, including the
gossiping, the time complexity of phase B is O(c2 + 1).

Phase C: Selection of Compatible Elements. At the beginning of phase
C, every processor has exactly the same sorted list of pivot candidates and the
entire set of incompatible candidate pairs. Hence, applying the same selection
algorithm on every processor will yield the same set of compatible pivot elements.

The algorithm should extract a “good” subset of compatible pivot elements,
where “good” means, “many pivot elements with low Markowitz numbers”. This
may be modeled as a stable set problem. It is not neccessary to really solve
this stable set problem to optimality, since setting up the candidate set was
done heuristically in the first place. We chose the greedy heuristic, which gives
preference to pivot candidates with small Markowitz number. Starting with the
first candidate in the sorted list, all elements, incompatible to this, are discarded.
Then, the next (not yet discarded) candidate is selected and its incompatibles

13



are discarded. This is iterated until no more candidates are in the list. The time
complexity of the greedy algorithm is O(c). From our experiments we expect the
solutions from the greedy algorithm to be very close to optimality.

Discussion. This pivot selection scheme yields a different sequence of pivot
elements than the sequential code. In sequential code, the pivot selection always
relies on the actual Markowitz numbers. When selecting several pivot elements
at a time, the selection of all but the first element relies on Markowitz numbers
from some eliminations before. However, since the selected pivot elements are
compatible, their Markowitz numbers remain unchanged during the iteration.

On the other hand, searching more pivot candidates at a time, yields a larger
part of the matrix to be inspected. Hence, chances are good, that elements are
found with lower Markowitz number, than in the sequential case. Pivot elements
with high Markowitz numbers tend to be discarded by the greedy algorithm.
Which of the two effects dominates, depends on the number of pivot candidates
and on the matrix. We will see in section ??, that even for one processor, best
performance is achieved when selecting more than one pivot element at a time.
This might be exploited for further improvements of sequential algorithms.

Finally, we sum up all time complexities for one parallel factorization iteration
in figure ??. This yields the time

T (c) = αc2 + β1c+ β2zcc+ γ1zee+ γ2z
2
ee + λ, (6)

for c candidates, where the parameters α, β1, β2, γ1, γ2 and λ depend on the
target machine. Note, that the number of pivot elements e = e(c) depends on
the number of candidates c and the matrix to be factorized.

3.6.2 Load Balancing

Load balancing is an important issue for efficient execution of parallel algorithms.
In general, there are two types of load balancing [?]. Static load balancing may be
used, when there is enough a priori information to design a distributed algorithm,
that keeps all processors equally loaded. Otherwise, load must be balanced dy-
namically, relying on information that arises at runtime. This requires a measure
for processor load (and its imbalance) and a method for balancing the load.

In sparse LU decomposition static load balancing is not applicable: Pivot
elements might always be selected from the same processor, such that this pro-
cessor will have its part of the matrix almost eliminated, while other processors
still have a part of the matrix of the initial size. Hence, dynamic load balancing
should be applied.

A cheap estimate for the load of processor p at a given iteration s is its
number of rows or nonzeros in the active submatrix. A better estimate would
have to consider the sparsity pattern, since the amount of work to be done in one

14



iteration significantly depends on the nonzero distribution of the pivot columns.
For simplicity, we chose the number of rows rsp as load estimate, since these
numbers need not be computed.

One may distinguish “active” and “passive” methods for balancing the load.
The active technique would send matrix rows from loaded processors to unloa-
ded ones, at the beginning of each iteration. This increases the communication
volume. Instead, we adopted a passive approach. Every processor p selects a
number of pivot candidates cp proportional to its number of local rows rsp

cp = � r
s
p

ns
c	, (7)

where ns = n− s denotes the dimension of the active submatrix at stage s. This
increases the probability of finding pivot elements located on processing elements
with high row number rsp. Therefore, the number of rows will be reduced more on
such processors than on others, leading to a better balance in the next iteration.

Altough, this balancing strategy remains suboptimal in terms of the load esti-
mate, this needs not be a problem, if the load estimate is inaccurate already and
the imbalance is small enough (cf. section ??). Further, this approach does not
introduce any additional overhead, neither in computation nor in communication.
This makes it favorable in our context.

3.7 Semidense Factorization

As the active submatrix becomes denser due to fill-ins and elimination of the
sparse parts of the matrix, less compatible pivot elements will be found. Hence,
at some point it is advisable to select one pivot element at a time, for saving
most of the communication required for determining compatible pivot elements.
We found a density of 80% to be a reasonable value for switching.

Our semidense factorization algorithm is given in figure ??. It requires only
one broadcast per iteration, whereas phase III uses four gossips per parallel ite-
ration. We refer to it as semidense, since we use algorithm ?? for pivot selection.
Note, that we do not update the column nonzero numbers to avoid the latencies
involved with gossiping. Hence, the nonzero counts get more and more out of
date, but empirically, it turned out to have negligible impact on the amount of
fill.

Load balancing is easily achieved in this phase, since only one processor selects
a pivot element per iteration. We simply have the processors with the most rows
of the active submatrix select and broadcast a pivot row, where ties are broken
by the processor number. By that, after a startup period, the number of rows
per processor differ no more than by one.

15



Select local pivot element.

Broadcast pivot row.

Do local part of L-loop.

Do local part up update-loop.

While (matrix not factorized):

yes no
Processor with most rows?

Receive pivot row.

Do local part of L-loop.

Do local part up update-loop.

Figure 9: Semidense factorization.

4 The Impact of Latencies and the Number of

Pivot Candidates

Phase III of the factorization algorithm offers a tuning parameter, namely the
number of candidates c. Clearly, selecting more candidates will probably yield
more compatible pivot elements for parallel elimination. On the other hand, more
incompatible candidates are likely to be discarded as well, i.e., work will be done
without direct gain for the factorization. Hence, the aim should be to find the
optimal tradeoff between these two effects by selecting the appropriate number
of candidates. This could even be done dynamically during the factorization.

Let e(c) denote the average number of compatible pivot elements, when se-
lecting c candidates, and T (c) the time required for one parallel iteration. Then,
we define the factorization speed function for one parallel iteration as

S(c) =
e(c)

T (c)
. (8)

Optimal performance is achieved when selecting c such as to maximize the speed
function, which is determined by the zeros of the derivative

0 =
dS(c)

d c
=

e′(c)T (c)− T ′(c)e(c)
T 2(c)

. (9)

For solving this equation, both functions e(c) and T (c) are required. The
latter is given by equation (??). For the numbers of nonzeros per row zc and ze
a first approximation is

zc = ze =
zs

ns
, (10)

i.e., the average number of nonzeros per row or column for the active submatrix
at elimination step s. Due to the pivot selection algorithm given in figure ??, one
expects both, zc and ze, to have smaler values, though.

16



Inserting the time function T (c) = αc2 + βc+ γe(c) + λ, with β = β1 +
zs

nsβ2

and γ = zs

nsγ1 +
(
zs

ns

)2
γ2, into equation (??) yields an optimal candidate number

c as a zero of the function

Φ(c) = e′(c)(αc2 + βc+ λ) − e(c)(2αc+ β). (11)

Since Φ(c) does not depend on the parameters γ1 and γ2, the optimal candidate
number does not, as well. Note, that this is a consequence of approximation (??)
and does not apply to the general case, where the optimal number of candidates
depends on the matrix through β and e(c).

The function e(c) will generally depend on the input matrix. In the sequel,
we will discuss its first order approximation. Clearly, there is no constant term
in the expansion.

4.1 Linear approximation of e(c)

Consider the linear approximation for the function e(c)

e(c) = εc. (12)

We will see in section ??, that this approximation is quite accurate for a large
range of candidate numbers c. However, for c ≈ n this will no longer hold. The
factor ε may be interpreted as yield of compatible pivot elements.

Factorization Time. The time required for eliminating a single pivot element
in the linear approximation (??) is

S−1(c) =
α

ε
c+

λ

εc
+

β

ε
+ γ =

α

ε
c+

λ

e(c)
+

β

ε
+ γ. (13)

This should be proportional to the total factorization time. Equation (??) con-
sists of a proportional, an antiproportional and constant terms.

The parameter λ describes constant time occurring in one parallel iteration.
For more than one processor, this time is dominated by communication laten-
cies and so is the antiproportional term (see section ??). Hence, equation (??)
quantifies, that the problem of latencies may, indeed, be reduced by eliminating
multiple pivot elements concurrently. This is only true, if the latencies are in-
dependent on the number of pivot elements, which we achieve through message
fusion, by broadcasting all pivot rows with only one message per processor.

The proportional term has a factor α
ε
. Since α is related to compatibility

determination, it describes the penalty for selecting multiple pivot candidates.
This penalty increases with decreasing yield ε of compatible pivot elements.

There are two constant terms. γ is related to the L-loop and update-loop, i.e.,
the computation that we actually wanted to be done. This applies to β as well,

17



which is related to candidate selection. Since some candidates will be discarded
due to incompatibility, 1

ε
times more candidates must be selected than in the

sequential case.

Optimal Candidate Number. Inserting equation (??) to (??) yields the op-
timal candidate number

c =

√
λ

α
. (14)

This does not depend on the input matrix. Instead, c is solely determined by hard-
ware parameters. The parameter α is due to the sorting of pivot candidates and
the determination of incompatibles. It is not related to any communication and,
hence, reflects the computation performance of the processors. The parameter λ
describes constant time in one iteration, which is dominated by communication
latencies for more than one processor. Hence, in this approximation, the optimal
number of candidates is determined by the granularity of the parallel computer.

Dependence on Latencies. Inserting the optimal candidate number (??) into
the factorization time function (??) quantifies the impact of latencies on the
factorization performance:

S−1

⎛
⎝
√
λ

α

⎞
⎠ =

2

ε

√
αλ +

β

ε
+ γ. (15)

This states, that β
ε
+γ is a lower bound for the factorization time of our algorithm,

even when run on a parallel processor with no latencies. Note, that latencies λ = 0
are possible, since latencies may be hidden through asynchronous communication.

5 Experimental Results

5.1 Target Architecture: Intel iPSC/860

For testing the algorithm, we had an Intel iPSC/860 hypercube to our disposal.
We measured 85.5μs for sending one double precision floating point value (8
bytes) from one processor to its neighbour for an unloaded interconection network
and 120.5μs for 12 values. This corresponds to a communication bandwidth of
2.51 Bytes/μs and a latency of 82.5μs. Due to different protocols for “short”
and “long” messages the latencies for message sizes of more than 100 bytes are
increased to 179.5μs, whereas the bandwidth remains unchanged.

These values must be viewed in relation to the computing performance of an
i860 processor. We measured 0.5μs for one iteration of the following loop:

for(i = 0; i < MAX_ITERATION; ++i)

result[i] = factor1[i] * factor2[i] ;

18



Hence, the processor is able to do 165 double precision floating point operations in
such a loop during the latency for “short” messages and 359 for “long” messages.
As a comparision, 1.9μs for one double precision floating point operation and
4.8μs for the communicating latency are reported for a T800 transputer mesh
network [?, ?].

5.2 Test Matrices

For our test, we used a set of matrices from the optimal simplex bases of various
linear programming problems. Some of the problems come from the Netlib test
set1. Table ?? gives some statistics on a subset of five test matrices, varying in
size n and nonzero density ρ = z

n2 , where z denotes the number of nonzeros. The
last column contains the factorization time for the sequential code run on a single
processors of an Intel iPSC/860.

Nr n z ρ tseq

1 4248 54239 0.0030 2.66
2 2349 32655 0.0059 2.28
3 16675 51147 0.00018 1.27
4 2243 10641 0.0021 0.73
5 1503 17530 0.0078 0.50∑

7.44

Table 1: Statistics and sequential factorization time for five test matrices.

5.3 Load Balancing

Figure ?? shows the impact of the passive load balancing scheme when factorizing
test matrix 1 on 8 processors. Both, the maximum and minimum number of rows
per processor are displayed as function of the dimension d of the active submatrix.

Entering phase 3 at d ≈ 3700, there is a slight imbalance due to the distribu-
tion of singletons. While without load balancing, this imbalance increases up to
the point, where one processor runs out of rows (at about d = 500), passive load
balancing keeps the imbalance within acceptable bounds.

5.4 Factorization Times

Figure ?? displays the sum of the factorization times for the five test matrices as
a function of the number of candidates for several numbers of processors. Only

1The Netlib LP list has been compiled by David Gay and is available through anonymous
ftp at research.att.com (192.20.225.2).

19



0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000 3500 4000

"balanced"
"inbalanced"

optimal

Figure 10: Maximum and minumum number of rows per processor with and wi-
thout passive load balancing compared to optimal balance (for 8 processors).

a speedup of 1.6 is achieved with 16 processors in comparison to the parallel
code run on one processor. Comparing to the sequential code, the speedup is
only ≈1.3. The different times for the sequential code and the parallel algorithm
when run on one processor, are mainly due to message buffers the latter handles.

The plots are very well described by equation (??). This can be seen table
??, which gives the parameters of equation (??) fitted to the measured times.
Column Δ showes the average error of the fitted curve.

P α/ε λ/ε β/ε+ γ Δ ctheoopt cexpopt

1 0.0166 3.35 8.93 0.18 14 16
2 0.0083 19.74 6.56 0.18 49 64
4 0.0044 37.67 5.56 0.29 93 96
8 0.0024 56.36 5.22 0.33 153 192
16 0.0015 90.56 5.16 0.19 246 224

Table 2: Fitted values of the parameters of equation (12).

From the fitted values of parameters α
ε
and λ

ε
the optimal candidate number

can be computed using equation (??). The resulting values are given in column
ctheoopt . They compare very well to the experimental data in the last column. Note,
that factorization times have only been measured for candidate numbers 8, 16

20



5

6

7

8

9

10

11

12

13

0 100 200 300 400 500 600

"sum.16"
"sum.8"
"sum.4"
"sum.2"
"sum.1"

Figure 11: Factorization time as a function of the number of candidates displayed
for different numbers of processors (1, 2, 4, 8 and 16).

and multiples of 32.
The decrease of parameter α indicates, that the related computation, i.e.,

the determination of compatibility, parallelizes very well. Parameter λ
ε
shows a

logarithmic increase with the number of processors P . This logarithmic behaviour
corresponds to the communication structure of gossiping and the broadcasting.
Doubling the number of processors yields an increase of more than 16. These
numbers show, how essential it is to avoid communication whenever possible.

The last parameter β
ε
+ γ plays the most important role, since it is a lower

bound for the computation time of the algorithm, when run on a parallel computer
with no communication latencies. Hence, on such an architecture, the algorithm
would yield a speedup of 1.73 for 16 processors, or 1.44 compared to the sequential
algorithm. It should be noted, though, that linear programming bases generally
tend to be comparably bad suited for parallel processing [?].

6 Conclusion

Current parallel computer architectures have a ratio of communication latency
to time per floating point operation that is typically magnitudes larger than one.

21



We designed, implemented and analyzed a distributed LU factorization algorithm
for unsymmetric sparse matrices. It achieves some speedup even for such parallel
architectures and sparse matrices from linear programming.

In the algorithm design, communication latencies are taken into account by
hiding latency through asynchronous communication, and avoiding latencies by
reducing the number of required communications. The latter is achieved through

• exploition of parallelism of coarser granularity,

• the design of algorithms that require as few communications as possible
and

• a thorough implementation using message fusion.

Our algorithm uses a passive load balancing technique, that achieves an appro-
ximate load balance at almost no expense. This method controls local program
parameters, i.e., the number of local pivot candidates to be selected, according
to the actual processor load in order to achieve a better balance for the next
iteration. This technique may usefully be applied to other parallel alorithms as
well.

The algorithm has been tested on an Intel iPSC/860. It achieves speedups,
even for linear programming bases. However, the efficiency for such matrices is
rather low, because of the reduced exploitation of parallelism, that is necessary
to cope with the communication latencies.

Further, we developed a quantitative performance model for the algorithm.
It shows, that the consideration of latencies in the program design, leads to an
algorithm with poor scaling properties, even when run on a parallel computer
with low latencies.

Generally, we showed that avoiding latencies may indeed help in parallelizing
algorithms for parallel computers with rather high latency/computation ratio.
However, for the particular case of parallel sparse LU decomposition we showed
the limits of this technique, as it reduces the amount of concurrency in the pro-
gram. This is another example for the importance of low communication latencies
and strong latency hiding techniques for future parallel architectures.

It remains an open question up to which latency/computation ratio an algo-
rithm, that exploits more parallelism, runs more efficiently than ours. We plan
to investigate this using a lower latency architecture.

7 Acknowledgements

The authors are grateful to Prof. Martin Grötschel for his helpful comments
and to Prof. Robert E. Bixby for providing test matrices. Further, the authors
would like to thank the “Zentralinstitut für Angewandte Mathematik” of the
research center Jülich for providing computation time on the Intel iPSC/860 and

22



Dipl. Inf. Renate Knecht for her assistence in using it. This research is supported
in parts by Cray Research, Inc.

References

[1] R. H. Bisseling and L. D. J. C. Loyens, Towards peak parallel linpack
performance on 400 transputers, SUPERComputer 45 (1991) 20–27.

[2] ,. E. Bixby, private communications, 1993.

[3] T. A. Davis and P. Yew, A nondeterministic parallel algorithm for gerneral
unsymmetric sparse LU factorization, SIAM J. Matrix Anal. Appl. 11 (1990)
383–402.

[4] I. S. Duff, Parallel implementation of multifrontal schemes, Parallel Com-
puting 3 (1986) 193–204.

[5] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Ma-
trices, (Clarendon Press, 1986).

[6] I. S. Duff and J. K. Reid, The mulitfrontal solution of unsymmetric sets of
linear equations, SIAM J. Sci. Stat. Comput. 5 (1984) 633–641.

[7] A. George, M. T. Heath, J. Liu, and E. NG, Sparse cholesky factorization
on a local-memory multiprocessor, SIAM J. Sci. Stat. Comput. 9 (1988)
327–340.

[8] A. Goscinski, Distributed Operating Systems: The Logical Design, (Addison-
Wesley, 1991).

[9] M. Heath, E. NG, and B. Peyton, Parallel algorithms for sparse linear
systems, SIAM Review 33 (1991) 420–460.

[10] D. W. Krumme, G. Cybenko, and K. N. Venkataraman, Gossiping in mini-
mal time, SIAM J. Comput. 21 (1992) 111–139.

[11] P. Sadayappan and S. K. Rao, Communication reduction for distributed
sparse matrix factorization on a processor mesh, In Supercomputing ’89
(1989) 371–379.

[12] U. H. Suhl and L. M. Suhl, Computing sparse LU factorizations for large-
scale linear programming bases, ORSA Journal on Computing 2 (1990)
325–335.

[13] A. F. v. d. Stappen, R. H. Bisseling, and J. G. G. v. d. Vorst, Parallel sparse
LU decomposition on a mesh network of transputers, SIAM J. Matrix Anal.
Appl 14 (1993) 853–879.

23



[14] M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM J.
Algebraic Discrete Methods 1 (1981) 77–79.

24


