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Abstract. Energetic reasoning is one of the most powerful propagation
algorithms in cumulative scheduling. In practice, however, it is not com-
monly used because it has a high running time and its success highly
depends on the tightness of the variable bounds. In order to speed up
energetic reasoning, we provide an easy-to-check necessary condition for
energetic reasoning to detect infeasibilities.

We present an implementation of energetic reasoning that employs this
condition and that can be parametrically adjusted to handle the trade-off
between solving time and propagation overhead. Computational results
on instances from the PSPLIB are provided. These results show that
using this condition decreases the running time by more than a half,
although more search nodes need to be explored.

1 Introduction

Many real-world scheduling problems rely on cumulative restrictions.
In this paper, we consider a cumulative scheduling problem with non-
preemptable jobs and fix resource demands. Such a problem is determined
by earliest start and latest completion times to all jobs, the resource de-
mands, and a resource capacity for each resource. Besides that precedence
constraints between different jobs might be present. The goal is to find
start times for each job, a schedule, such that the cumulative demands
do not exceed the capacities and the precedence constraints are satisfied.
Computing such a schedule is known to be strongly NP-hard [1].
Several exact approaches were developed that solve the problem by
branch-and-bound, using techniques from constraint programming, inte-
ger programming, or satisfiability testing. In constraint programming, the

* Supported by the DFG Research Center MATHEON Mathematics for key technologies
in Berlin.
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main task is to design efficient propagation algorithms that adjust vari-
able bounds or detect infeasibility of a search node, in order to keep the
search tree small. Such algorithms are usually executed more than once
per search node. The most powerful and widely used algorithms in cumu-
lative scheduling are time-tabling, edge-finding, and energetic reasoning,
see [2].

This paper concentrates on the evaluation of the energetic reasoning
algorithm. Its merit lies in a drastic reduction of the number of search
nodes by detecting infeasible nodes early. It has, however, a cubic running
time in the number of jobs and is only capable to find variable bound
adjustments for rather tight variable bounds.

Related work. Baptiste et.al. [2] provide a detailed overview on the main
constraint programming techniques for cumulative scheduling. Therein,
several theoretical properties of energetic reasoning are proven. A more
general idea of interval capacity consistency tests is given by Dorndorf
et.al. [3]. In the same paper, unit-size intervals are considered as a spe-
cial case, which leads to the time-tabling algorithm [4]. Recently, Kooli
et.al. [5] used integer programming techniques in order to improve the
energetic reasoning algorithm. This approach extends the method pre-
sented by Hidri et.al. [6], where the parallel machine scheduling problem
has been considered. In both works only infeasibility of a subproblem is
checked; variable bound adjustments are not performed.

Contribution. We derive a necessary condition for energetic reasoning
to detect infeasibilities. The condition is based on a relative energy his-
togram, which can be computed efficiently. We show that this histogram
underestimates the true energy requirement of an interval by a factor of
at most 1/3. We embed this approximative result in a parametrically ad-
justable propagation algorithm which detects variable bound adjustments
and infeasibilities in the same run.

As our computational results reveal, the presented algorithm drasti-
cally reduces the total computation time for solving instances from the
PSPLIB [7] in contrast to the pure energetic reasoning algorithm.

Outline. We introduce the resource-constrained project scheduling prob-
lem (RCPSP) and the general idea of energetic reasoning in Section 2. In
Section 3 we derive a necessary condition for energetic reasoning to be
successful and embed it into a competitive propagation algorithm. Exper-
imental results on instances from PSPLIB [7] are presented in Section 4.
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2 Problem description and energetic reasoning

In resource-constrained project scheduling (RCPSP) we are given a set J
of non-preemptable jobs and a set R of renewable resources. Each re-
source k € R has bounded capacity Cy € N. Every job j € J has
a processing time p; € N and resource demands 7, € N for each re-
source k € R. The start time S; of job j is constrained by its prede-
cessors that are given by a precedence graph D = (V,A) with V = J.
An arc (i,7) € A represents a precedence relationship, i.e., job ¢ must be
finished before job j starts. The goal is to schedule all jobs with respect
to resource and precedence constraints, such that the makespan, i.e., the
latest completion time of all jobs, is minimized.
The RCPSP can be modeled as a constraint program:

min  maxS; + p;

JET
subject to  S; +p; < S for all(i,j) € A (1)
cumulative(S,p,r , Ck) VEeR (2)

The constraints (1) represent the precedence conditions. The cumulative
constraints (2) enforce that at each point in time ¢, the cumulated de-
mand of the set of jobs running at that point, does not exceed the given
capacities, i.e.,

> ik < Cg for all k € R.
JjeT t€[S},5+p;5)

Energetic reasoning is a technique to detect infeasibility or to adjust vari-
able bounds for one cumulative constraint £ € R, based on the amount
of work that must be executed in a specified time interval. The term
energetic reasoning has been defined for partially or fully elastic schedul-
ing problems [2]. This procedure is also known as Left-Shift/Right-Shift
technique in case of cumulative scheduling with non-interruptible jobs.

Due to the precedence constraints and an upper bound on the latest
completion time of all jobs, we obtain earliest start times est;, earli-
est completion times ect;, latest start times Istj, and latest completion
times lct; for each job j € J. Since the propagation algorithm is used
during branch-and-bound search, we usually refer to lower bounds (cor-
responding to est;) and upper bounds (corresponding to Ist;) of the start
time variable S;. The required energy E(a,b) of all jobs in interval [a, b)
is given by E(a,b) := > _,c 7 €j(a,b), with

ej(a,b) := max{0, min{b — a,pj;,ect; —a,b —Ist;}} - r;.
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Fig. 1. Problem setup of Example 1.

Hence, €j(a, b) is the non-negative minimum of (i) the available energy in
the interval [a, b), i.e., (b —a) - rj, (ii) the energy of job j, i.e., p; - r;, (iii)
the left shifted energy, i.e., (ect; —a)-7; and (iv) the right shifted energy,
i.e., (b —Ist;) - ;. Throughout the paper, we assume that intervals [a, b)
are non-empty, i.e., that a < b. With respect to e;(a,b), a problem is
infeasible if more energy is required than available. For a < b and a
resource capacity C' we can deduce:

Corollary 1 ([2]). If E(a,b) > (b—a)-C, then the problem is infeasible.

Ezxample 1. Consider a cumulative resource of capacity 2 and four jobs
each with a resource demand of 1, an earliest start time of 0 and a latest
completion time of 4. Three of these jobs have a processing time of 2.
The fourth job has a processing time of 3 instead. Figure 1 illustrates this
setup. For the interval [1,3), the available energy is (3 —1)-2 =4 . The
first three jobs contribute one unit each, whereas the fourth job adds two
units to the required energy. This sums up to E(1,3) = 5. This shows
that these jobs cannot be scheduled.

In order to detect infeasibility, O(n?) time-intervals need to be consid-
ered [2]. These intervals correspond to the start and completion times of
the jobs and are precisely determined in the following way:

Oy == | ({est;} U {est; +p;} U {let; —p;}),

02 = U ({ICtj} U {estj -|-pj} U {ICtj —pj}) and

J

O(t) == | J{est; +let; —t}.
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The relevant intervals to be checked for energetic tests are given by (a, b) €
O1 X Og, for a fixed a € Oy : (a,b) € O1 x O(a), and for a fixed b € Oy :
(a,b) € O(b) x Oq, with a < b. These are O(n?) such intervals.

Besides detecting infeasibilities, variable bounds can be adjusted by
energetic reasoning. Due to symmetry reasons, we just consider the ad-
justments of lower bounds (est;). Let

left

€j

(a,b) := max{0, min{b, ect;} — max{a,est;}} - r;

be the required energy in the interval [a,b) of job j if it is left-shifted,
i.e., it starts as early as possible. If [a,b) intersects with [est;,ect;) and
the required energy E(a,b) — ej(a,b) + e;-eft(a, b) exceeds the available
energy in [a,b), then j cannot start at its earliest start time and the
lower bound est; of S; can be updated according to Theorem 1 which
was proved in Baptiste et.al. [2].

Theorem 1 (Baptiste et.al. [2]). Let [a,b) with a < b and j € J
with [estj, ect;) N [a,b) # 0. If E(a,b) — e;(a,b) + e;eft(a, b) > (b—a)-C
holds, then the earliest start time of job j can be updated to

est; — a+ P(E(a, b) — e;(a,b) — (b—a) - (C — rj))w .

rj

In case of feasibility tests, we are able to restrict the set of intervals that
need to be considered. Whether such restrictions can also be made for
variable bound adjustments is an open problem. The currently fastest
energetic reasoning propagation algorithm runs in O(n?3).

3 Restricted energetic reasoning

Energetic reasoning compares the available energy to the requested energy
for certain intervals. Therefore, it is more likely to detect variable bound
adjustments if the bounds are tight, i.e., the interval [est;, Ist;], from which
to choose S, is small. If the bounds are loose and small intervals are
considered, a job may contribute almost no energy to that interval or in
case of large intervals not enough energy is required in order to derive any
adjustments. This is a clear drawback as we are faced with a very time-
consuming algorithm. In order to come up with a practical competitive
propagation algorithm, we identify intervals that seem promising to detect
infeasibilities and variable bound adjustments.
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3.1 Estimation of relevant intervals

Let us consider one resource with capacity C and cumulative demands r;
for each job j. The total energy requirement of job j is glven by e; = p;-rj.

. €j
We measure the relative energy consumption €; := Ict; — o5t

We define the relative energy histogram E : N = R and the relative
energy E(a,b) of an interval [a,b) by:

Ety= Y T and  Blab) =Y E).

] lct; —est;
JET :est; <t<lct;

This histogram approximates the required energy FE(a,b) computed by
energetic reasoning for each point in time, as we prove in Theorem 2.

Theorem 2. Let an arbitrary non-empty interval [a,b) be given. Then
o - E(a,b) < E(a,b)
with o > 1/3.

Proof. We show the approximation factor « for each job separately. By
linearity of summation, the theorem follows.

First, we show that we can restrict the study to the case
where est; < a < b <lct;. Therefore, let

éj(a,b) = lc?ﬁ (min{let;, b} — max{est;,a}).

If the energy is underestimated in [a,b), then it follows that est; < a
or lct; > b, since otherwise é;(a, b) = e;(a,b). Assume est; < a < lct; < b.
Then, e;(a,b) = ej(a,lct;) and €;(a,b) = €;j(a,lct;) holds. Applying a
symmetrical argument to a < est; < b < lct;, we can restrict the setting
to est; < a < b < lcty, such that é;(a,b) = p; - - (b — a)/(lct; — est;).
Note that in this case the energy gets underestimated, i.e., 0 < €;(a,b) <
ej(a,b).

Case 1. Consider the case ej(a,b) = p; - ;. That means the job is fully
contained in [a,b). This is a contradiction to the fact that é;(a,b) <
ej(a,b).

Case 2. Assume the following two properties:

(i) 1 < minfect; —a,b—Ist;} < min{b —a,p;}
(ii) ej(a,b) = min{ect; —a,b—lst;} - r;.



An Approximative Criterion for the Potential of Energetic Reasoning 7

Thus, o' := é;(a,b)/e;(a,b) yields:

;o pi(b—a) - max{p;,b—a}
(let; —est;) - min{ect; —a, b — Ist; } let; —est;

Minimizing o’ with respect to 1 < min{ect; —a,b —lIst;} yields b—a =k
and p; := k+ 1 for some k € N, such that o/ = max{k+1,k}/(3k) > 1/3.

Case 3. Finally, consider the case b — a < min{p;,ect; —a,b — Ist; }. Thus,
ej(a,b) = (b—a)-r;. That means, the job is completely executed in [a, b),
ie., [a,b) C [Istj,ect;). This yields the condition ect; > lIst; +(b— a),
which is equivalent to 2p; — (b — a) > lct; — est;. Thus,

5 Pj T Pi 1
(a,b) = b—a) > b—a) 1= b
6](a7 ) lctj —estj( a) = 2p] . (b _ CL)( a’) Ty bg.a 6](0’7 )
J
We obtain a := min{a/, "} > 1/3. 0

The proof shows that an underestimation of E(a,b) happens if the
core of a job, i.e., [Ist;, ect;), overlaps this interval or if a job is associated
with a large interval [est;,lct;) and intersects just slightly with [a,b).
The following corollary states the necessary condition that we use in our
propagation algorithm.

Corollary 2. Energetic reasoning cannot detect any infeasibility, if one
of the following conditions holds

(i) for all [a,b),a < b, E(a,b) < i(b—a)C
(i) for allt: E(t) < %C’.

The histogram E can be computed in O(nlogn) by first sorting the ear-
liest start times and latest completion times of all jobs and then creating
the histogram chronologically from earliest event to latest event. Since
there are O(n) event points (the start and completion times of the jobs)
only O(n) changes in the histogram need to be stored.

3.2 Restricted energetic reasoning propagation algorithm

We now present a restricted version of energetic reasoning which is based
on the results of the previous section. Due to Theorem 2, only inter-
vals [a, b) containing points in time ¢ with E(t) > 1/3C need to be checked.
Note that the cardinality of this set may still be cubic in the number of
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Algorithm 1: Restricted energetic reasoning propagation algorithm
for lower bounds.

Input: Resource capacity C, set J of jobs with earliest start times est;, and a
scaling factor a.
Output: Earliest start times est; for each job j or an infeasibility is detected.
Create relative energy histogram E.
Compute and sort event points and sets O1 and Oas.
forall jobs j do
| est] = est;.
forall event points t in increasing order do
if E(t) < a-C then
L continue.
tl = 1.
Let t2 be the first event point after ¢ with E(t1) < a - C.
10 forall (a,b) € O1 X Oz : [a,b) C [t1,t2) do

© 00 N0 Gtk W N

11 if E(a,b) > (b—a)-C then

12 L stop: infeasible.

13 forall jobs j with [a,b) N [est;,ect;) # 0 do

14 if E(a,b) — ej(a,b) + €™ (a,b) > (b—a) - C then
15 leftover := E(a,b) — ej(a,b) — (b—a) - (C — ;).
16 est; := max{est’;, a + [leftover /r;]}.

17 if est) > Ist; then

18 L stop: infeasible.

19 t:=1s.

jobs. We introduce an approach, in which we only execute the energetic
reasoning algorithm on interval [t1,to) if

VtE[tl,tg): E(t)>Oé'C

holds. For given E, this condition can be checked in O(n). If it holds, we
check each pair (a,b) € O1 x Oz with [a,b) C [t1,t2) in order to detect
infeasibility or to find variable bound adjustments.

The procedure is captured in Algorithm 1. Here only the propagation
of lower bounds is shown, upper bound adjustments work analogously.

As mentioned before, the relative energy histogram E (t) can be com-
puted in O(nlogn) and needs O(n) space. The sets O; and Oz also
need O(n) space and are sorted in O(nlogn). Loops 5 and 10 together con-
sider at most all O(n?) intervals O1 x Os. Loop 13 runs over at most O(n)
jobs. The computed value for E(a,b) in line 11 can be used in the remain-
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ing inner loops and all other calculations can be done in constant time,
such that we are able to bound the total running time.

Corollary 3. Algorithm 1 can be implemented in O(n?).

Asymptotically, it has the same running time as pure energetic reason-
ing, but the constants are much smaller. Compared to the pure energetic
reasoning algorithm we only consider large intervals if the relative energy
consumption is huge over a long period. The savings in running time and
further influences on the solving process will be discussed in the following
section.

4 Computational results

We performed our computational experiments on the RCPSP test sets J30
and J60 from the PSPLIB [7]. Each test set contains 480 instances with 30
and 60 jobs per instance, respectively. The implementation was done in
scrIp version 1.2.1.5, which integrates CPLEX release version 12.1.0 as un-
derlying LP solver. We used the implementation of the cumulative con-
straint presented in [8].

The only scheduling specific propagation algorithm used was energetic
reasoning and its parametric variants, using the necessary condition from
Corollary 2. A time limit of one hour was enforced for each instance. All
computations were obtained on Dual QuadCore Xeon X5550 2.67 GHz
computers (in 64 bit mode), 24 GB of main memory, running a Linux
System.

Parameter settings. According to Theorem 2, it suffices to consider
only a > 1/3. Choosing a value close to 1/3, however, results in check-
ing the vast majority of the intervals, similar to energetic reasoning.
To evaluate the impact of different values of «, we ran the algorithm
with o € {0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2}. For comparison, we further
show results for a = 0.0 which refers to pure energetic reasoning.

Evaluation of all instances. Table 1 shows aggregated computational re-
sults for all instances from the test sets J30 and J60 that were solved
by at least one algorithm. These were 473 and 397 for J30 and J60, re-
spectively. In both cases the pure energetic reasoning algorithm, which
corresponds to a = 0.0, serves as reference solver. For J30, pure ener-
getic reasoning failed to compute a proven optimal solution on eight out
of the 473 instances. This is shown in the column “outs” while column
“solved” displays the number of instances solved to proven optimality.
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Table 1. Overview for 473 instances from J30 and 397 instances from J60. Only those
instances are considered that are solved by at least one solver.

J30 J60
« solved outs better worse bobj wobj solved outs better worse bobj wobj
0.0 465 8 — - — — 393 4 — - — —
0.5 467 6 69 77 3 1 387 10 43 45 1 6
0.6 471 2 81 64 3 0 388 9 45 43 1 5
0.7 472 1 89 53 3 0 388 9 49 37 1 4
0.8 473 0 94 51 3 0 391 6 55 34 1 3
0.9 473 0 105 40 3 0 392 5 59 30 1 4
1.0 472 1 102 40 3 1 392 5 57 31 1 3
1.1 465 8 72 84 3 4 375 22 45 39 1 19
1.2 443 30 52 110 3 13 358 39 38 56 1 35

Choosing o = 0.8 or 0.9 solved all 473 instances, whereas a smaller or
larger value decreased the number of solved instances. Column “better”
tells how many instances were solved more than 10% faster than the ref-
erence solver (pure energetic reasoning). Accordingly, “worse” expresses
how often a solver was more than 10% slower than the reference setting
«a = 0.0. Here, choosing o = 0.9 performed best. Since some instances
timed out, we show how often better (“bobj”) or worse (“wobj”) primal
bounds were found. Using the weak propagation factor a = 1.2 yielded
worst results. In this case, 30 instances could not be solved, 110 were more
than 10% slower, and 13 instances had a worse primal bound compared
to the reference solver.

For the test set J60, the results are similar, except that pure energetic
reasoning performs best w.r.t. the number of solved instances. In con-
trast, for all settings with a between 0.6 and 1.1, the number of “better”
instances is greater than the number of “worse” instances.

FEvaluation of all optimal solved instances. Since many instances are either
trivial or could not be solved, Table 2 presents the results only for those
instances that

(i) could be solved to optimality by all solvers,
(ii) at least one solver needed more than one search node, and
(iii) at least one solver needed more that one second of computational
running time.

That means, we exclude all extremely easy instances and those which
at least one of the solver was not able to solve. There are 112 and 32
instances remaining for the test sets J30 and J60, respectively.

Columns “better” and “worse” (which have the same meaning as in
Table 1) reveal that values o € {0.9,1.0} are dominating all other settings
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Table 2. Overview on those instances (i) which are solved with all settings, (ii) where
at least one solver needed more than one search node, and (iii) at least one solver
needed more than one second. This results in 112 instances for the J30 test set and 32
for the J60 test set.

J30 J60
o better ~ worse shnodes shtime [sec] better worse shnodes  shtime [sec]
0.0 - - 314 12.7 - - 171 8.5
0.5 49 54 1664 16.1 8 17 1098 16.4
0.6 54 45 1676 10.8 10 15 1005 11.0
0.7 59 33 1679 7.6 11 13 1102 9.0
0.8 60 35 1883 6.3 14 11 1237 6.8
0.9 66 28 2174 5.1 17 9 1240 4.9
1.0 66 24 2895 5.3 16 9 1274 3.4
1.1 47 56 10336 14.4 15 9 2271 6.6
1.2 34 74 52194 54.4 10 20 18050 30.9

w.r.t. the running time, independently of the test set. This behavior can
be seen in more detail in the columns “shnodes” and “shtime” which
state the shifted geometric mean® of all nodes and of the running time,
respectively. These columns show that pure energetic reasoning needs
by far the fewest number of nodes. For each instance of the parametric
algorithm the number of nodes increases by at least a factor of 5. The
more we relax the value of «, the more nodes are needed. Besides that,
the weak propagation factor o = 1.2 performs worst for all criteria. The
best running times are gained with values 0.9 and 1.0 for «. In these cases
the restricted energetic reasoning was more than twice as fast as the pure
energetic reasoning algorithm. Finally, the development of the running
times in shifted geometric mean are illustrated in Figure 2.

5 Conclusions

We presented a necessary condition for energetic reasoning to detect in-
feasibilities or to derive variable bound adjustments. This result was in-
corporated into a parametrical adjustable version of energetic reasoning.
By checking this condition, we only apply this powerful but expensive
algorithm, when the estimated energy is above a certain threshold a.

Computational results revealed that choosing a close to 1.0 can speed
up the search by a factor of two though the number of nodes drastically
increases.

3 The shifted geometric mean of values ti,. .., t, is defined as (H(tz + 5)) n _ s with
shift s. We use a shift s = 10 for time and s = 100 for nodes in order to decrease
the strong influence of the very easy instances in the mean values.
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(a) Running times for test set J30. (b) Running times for test set J60.
Fig. 2. Comparison of the running times shown in Table 2.
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