
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

STEFAN HEINZ JENS SCHULZ??

Explanations for the Cumulative
Constraint: an Experimental Study?

? Supported by the DFG Research Center MATHEON Mathematics for key technologies in Berlin.
?? Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany

ZIB-Report 11-13 (May 2011)





Explanations for the Cumulative Constraint:
an Experimental Study?

Stefan Heinz1 and Jens Schulz2

1 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
heinz@zib.de

2 Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136,
10623 Berlin, Germany

jschulz@math.tu-berlin.de

Abstract. In cumulative scheduling, conflict analysis seems to be one
of the key ingredients to solve such problems efficiently. Thereby, the
computational complexity of explanation algorithms plays an important
role. Even more when we are faced with a backtracking system where
explanations need to be constructed on the fly.
In this paper we present extensive computational results to analyze the
impact of explanation algorithms for the cumulative constraint in a back-
ward checking system. The considered explanation algorithms differ in
their quality and computational complexity. We present results for the
domain propagation algorithms time-tabling, edge-finding, and energetic
reasoning.

1 Introduction

In cumulative scheduling we are given a set of jobs that require a certain amount
of different resources. In our case, the resources are renewable with a constant
capacity and each job is non-interruptible with a fixed processing time and de-
mand request for several resources. A resource can be, for example, a group of
worker with the same specialization, a set of machines, or entities like power
supply.

Cumulative scheduling problems have been tackled with techniques from con-
straint programming (CP), integer programming (IP), or satisfiability testing
(SAT). In recent years hybrid approaches are developed which combine methods
from these areas. Currently, the best results are reported by a hybrid solver which
uses CP and SAT techniques [13]. However, there are still instances with 60 jobs
and four cumulative constraints published in the PSPLib [12] that resist to be
solved to proven optimality.

Several exact approaches use a search tree to solve cumulative scheduling
problems. The idea is to successively divide the given problem instance into
smaller subproblems until the individual subproblems are easy to solve. The
? Supported by the DFG Research Center Matheon Mathematics for key technologies
in Berlin.



2 Stefan Heinz, Jens Schulz

best of all solutions found in the subproblems yields the global optimum. During
the course of the algorithm, a search tree is created with each node represent-
ing one of the subproblems. These subproblems are usually generated by adding
bound changes, called branching decisions, to the current problem. That means
the feasibility region gets restricted. At each subproblem, mathematically so-
phisticated techniques exclude further values from the variables’ domains. One
of them is domain propagation which infers bound changes on the variables.

Recently it was discovered that conflict analysis plays an import role to solve
cumulative scheduling problems efficiently [13, 7]. Conflict analysis is used to
analyze infeasible subproblems which arise during the search in order to generate
conflict clauses [10, 1] also known as no-goods. These conflict clauses are used
to detect similar infeasible subproblems later in the search. In order to perform
conflict analysis, a bound change which was performed during the search needs
to be explained. Such an explanation is a set of bounds which infer the performed
bound change. Note that bound changes which are branching decisions cannot
be explained. There are two common ways to collect an explanations. One is
to submit it directly with the bound change, called forward checking. The other
way is to reconstruct an explanation on demand which means only if it is needed.
This is known as backward checking. Both versions have their advantages and
disadvantages. A forward checking system always constructs an explanation even
if it is not needed, whereas the backward checking framework needs to be able to
reconstruct an explanation for a bound change at any point during the search. In
the latter case it can be computationally expensive to compute an explanation
lazily, since the same bound changes might be explained multiple times.

In this paper we present extensive experimental results which give evidence
that minimum-size explanations of bound changes are a crucial component for
solving cumulative scheduling instances efficiently. We analyze the impact of con-
structing explanations in a backward checking system. For our study we consider
the domain propagation algorithms time-tabling, edge-finding, and energetic rea-
soning, see [6]. In case of time-tabling, the complexity status of computing a min-
imum size explanation is still open. Thus, we evaluate three different heuristic
approaches to deliver an appropriate explanation of small size. As benchmark set
we use instances of the problem library PSPLib [12] and Pack instances from [4].

Related work. Scheduling problems have been widely studied in the literature.
For an overview we refer to [4, 8]. The cumulative constraint was introduced by
Aggoun and Beldicneau [3]. Current state-of-the-art propagation algorithms for
cumulative are surveyed in [6, 4]. Best results on the instances we are focusing
on are achieved by a solver combining CP and SAT techniques [13].

Learning from infeasible subproblems is one of the key ingredients in mod-
ern SAT solvers. This technique is called conflict analysis. The basic idea is to
conclude a conflict clause which helps to prune the search tree and enables the
solver to use non-chronological backtracking. For a detailed description see for
example [10]. There are two main differences of IP and SAT solving in the con-
text of conflict analysis. First, the variables of an IP do not need to be of binary
type. Therefore, we have to extend the concept of the conflict graph: it has to



Explanations for the cumulative constraint: an experimental study 3

represent bound changes instead of variable fixings, see [1] for details. Second,
infeasibility cannot only arise by propagation but also due to an infeasible linear
program relaxation [1]. To be able to perform a conflict analysis, it is essential
to explain bound changes. This means to state a set of bounds which lead to
the proposed bound change. From that a conflict graph is created, then a cut in
this graph is chosen, which produces a conflict clause that consists of the bound
changes along the frontier of this cut. For cumulative constraints, explanation
algorithms to some of the known propagation algorithms are given in [13, 7].

Outline. Section 2 introduces the notation of the considered scheduling problem.
In Section 3 we present the propagation and different explanation algorithms that
are used in our experimental study, presented in Section 4.

2 Cumulative Scheduling

In cumulative scheduling, an instance is given by a set J of n non-preemptable
jobs with processing times pj ∈ N for each job j ∈ J . Each job j requests a
certain demand rj of a cumulative resource with capacity C ∈ N. In a contraint
program, a cumulative constraint is given by cumulative(S,p, r, C), i.e., vectors
of start times, processing times and demands, and the capacity. The cumulative
constraint enforces that at each point in time t, the cumulated demand of the
jobs running at t, does not exceed the given capacity, i.e.,∑

j∈J :t∈[Sj ,Sj+pj)

rj ≤ C for all t.

Depending on the tightness of the earliest start times (estj), earliest completion
times (ectj), latest start times (lstj), and latest completion times (lctj) for each
job j ∈ J , propagation algorithms are able to update variable bounds. Since we
use start time variables Sj , the lower bound corresponds to estj and the upper
bound corresponds to lstj .

3 Propagation and Explanation Algorithms

Explanations tend to create stronger conflict clauses if they include only few
variables since we could expect that the constructed conflict graph has a smaller
width and size. Hence, one would like to search for minimum sized explanations.
On the other side, we are facing a backward checking system which implies that
bound changes have to be explained several times during the search. Therefore,
explanation algorithms should have a small complexity. In case of the cumula-
tive constraint, computing a minimum sized explanation stands in contrast to a
reasonable complexity. In this section we briefly introduce the three propagation
algorithms used for our experiments. For each algorithm we state three variants
to generate an explanation for a bound change. These constructions differ in
their quality (the size of the explanation) and their computational complexity.



4 Stefan Heinz, Jens Schulz

We only consider lower bound (estj) adjustments of the start variables Sj .
Upper bound (lstj) changes can be treated symmetrically. To keep the notation
simple, we assume for each interval [a, b) that the condition a < b holds even it
is not explicitly mentioned.

3.1 Energetic Reasoning

Energetic reasoning checks non-empty time intervals [a, b), with a < b, whether
the jobs contributing to that interval require more energy than available. That
is why, it has also been considered under the name interval consistency test.
There are O(n2) intervals to be checked, see [5]. The available energy of such an
interval is given by C ·(b−a). The energy of a job is the product of its processing
time and its demand. For a job j the required energy ej(a, b) for such an interval
is given by:

ej(a, b) := max{0,min{b− a, pj , ectj −a, b− lstj}} · rj .

Hence, ej(a, b) is the non-negative minimum of (i) the energy if it runs completely
in the interval [a, b), i.e., (b−a)·rj , (ii) the energy of job j, i.e., pj ·rj , (iii) the left-
shifted energy, i.e., (ectj −a)·rj , and (iv) the right-shifted energy, i.e., (b−lstj)·rj .

We can make the following deductions, see Baptiste et.al. [5] for further read-
ings. First, in case an interval is overloaded, i.e., the required energy E(a, b) :=∑
j ej(a, b) is larger than C · (b− a), the problem is infeasible. Second, the ear-

liest start time (lower bound) of a job j can be updated using any non-empty
interval [a, b) which intersects with job j according to the following equation:

est′j = a+

⌈
1

rj

(
E(a, b)− ej(a, b)− (b− a) · (C − rj)

)⌉
.

A proof is given in [5].
In the following lemmas we state conditions on a set of bounds to achieve

the deductions. In case both bounds of a job are responsible, we say, the job is
reported. Otherwise, we explicitly mention the bound of interest.

Lemma 1. An overload of interval [a, b), with a < b, can be explained by a
set Ω ⊆ J such that ∑

j∈Ω
ej(a, b) > C · (b− a). (1)

Lemma 2. A lower bound update of job j to est′j due to interval [a, b), with
a < b, intersecting with [estj , ectj) can be explained by the previous lower bound
of job j and a set Ω ⊆ J \ {j} such that∑

i∈Ω
ei(a, b) > (C − rj)(b− a) + (est′j −a) · rj − rj . (2)

To construct such a sub set of jobs Ω for a lower bound update we compare
in our experimental study three different algorithms:



Explanations for the cumulative constraint: an experimental study 5

Variant 1
Report all jobs i ∈ J \ {j} with ei(a, b) > 0.

Variant 2
Report jobs i ∈ J \ {j} with ei(a, b) > 0 until the Condition (2) is satisfied.

Variant 3
First, sort the jobs with respect to their energies ei(a, b) in non-increasing
order and report jobs until Condition (2) is satisfied.

If the interval [a, b), which inferred the lower bound change, is known, Vari-
ant 1 runs in linear time as Variant 2, which additionally needs a pre-computation
of the necessary energy. Because of the sorting, Variant 3 runs in O(n log n).
Observe that Variant 3 reports a minimum sized explanation with respect to
interval [a, b).

Note that in case of an overloaded interval (Lemma 1) the above explanation
algorithms can be easily adjusted by considering the complete set of jobs J as
basis and use Condition (1) as stopping criterion in Variants 2 and 3.

3.2 Edge-Finding

Edge-finding can be seen as a special variation of energetic reasoning. In that ver-
sion the energy requirement of a job is only considered if the job lies completely
in the interval [a, b), i.e., estj ≥ a and lctj ≤ b. This clearly leads to weaker
bound updates, but can be executed with a smaller computational complexity
using sophisticated data structures, see [14]. We use the same explanation algo-
rithms as for energetic reasoning. Note that besides the jobs which lie completely
in the interval [a, b), we can also consider jobs which partly intersect with [a, b).
In case of constructing a suitable set of jobs Ω this has no influence on the
computational complexity.

3.3 Time-Tabling

Time-tabling can be seen as a unit-interval capacity consistency test. For each
interval of size one, a test is performed as by energetic reasoning. Since this
attempts to be too time-consuming, implementations focus on a profile-based
view. This profile is constructed using the cores of each job, see [9]. For a job j
a core γj is given by the interval [lstj , ectj). This is the interval where parts of
the job j must be executed. Note that this interval might be empty.

We denote by peakt(J ) the height of the resource profile at time t which is
generated by the cores of jobs J . Obviously, if peakt(J ) > C holds for some t
then the corresponding cumulative constraint is infeasible. On the other hand,
variable bound adjustments can be made as follows. Consider a job j. First,
remove the core from job j out of the profile. Search in the interval [estj , lstj ],
starting from estj , the first time point such that job j can be scheduled without
creating a profile peak exceeding the capacity. That time point est′j defines a
lower bound on the start time for job j. The bounds that are responsible in
either case are stated in the following lemmas. Proofs are omitted.



6 Stefan Heinz, Jens Schulz

Lemma 3. An infeasibility due to peakt(J ) > C at a time point t can be ex-
plained by a set Ω ⊆ J such that ∑

j∈Ω:t∈γj

rj > C.

Lemma 4. A lower bound update of job j to est′j can be explained by the pre-
vious lower bound of j and a set Ω ⊆ J \ {j} such that for all intervals
I ∈ {[est′j −1, est′j)} ∪ {[a, b) ⊆ [estj , est

′
j) | b − a = pj} the following condi-

tion holds

∃ t ∈ I :
∑

i∈Ω:t∈γi

ri > C − rj . (3)

Note that even in the special case of jobs with unit processing times, it is an
open question whether it is NP-hard to find an explanation of minimum size. In
the following we describe three different techniques to derive an explanation for
a lower bound updated by the time-tabling algorithm. These approaches differ
in their computational effort. Consider the lower bound update of job j from
estj to est′j .

Variant 1
Report all variables whose core intersect with the interval [estj , est′j).

Variant 2
(i) Sort jobs in non-decreasing order w.r.t. their demands.
(ii) For each t ∈ [estj , est

′
j) with peakt(J \ {j}) > C − rj report jobs i ∈

J \ {j} with t ∈ γi until Condition (3) is satisfied.
Variant 3

(i) Sort jobs in non-decreasing order w.r.t. their demands.
(ii) Set t = est′j −1.
(iii) If t < estj stop.
(iv) Explain peakt(J \ {j}).
(v) Find smallest time point t′ ∈ [t−pj , t) such that peakt′(J \{j}) > C−dj

holds.
(vi) Set t = t′ and goto (iii).

Note that in Variants 2 and 3 we are starting with the largest time point, i.e.,
est′j −1, and report all cores until we satisfy Condition (3). For the remaining
peaks we first compute the contribution of previously stated jobs and only add
as many new jobs to the explanation until we fulfill Condition (3). Variant 1 runs
in linear time, Variant 2 explains each peak larger than C − dj , and Variant 3
tries to report only a few peaks. For the two latter once we need O(n log n) for
sorting the jobs in non-decreasing order w.r.t. their demands. The number of
time points that need to be considered is linear in the number of jobs.

4 Experimental Study

In this section we describe the computational environment, introduce the selected
test instances, and finally present and discuss the computational results.



Explanations for the cumulative constraint: an experimental study 7

4.1 Computational Environment

For performing our experimental study we used the non-commercial constraint
integer programming framework scip [2], version 2.0.1.1. We integrated cplex
release version 12.20 as underlying linear programming solver. All computations
reported were obtained using Intel Xeon 5150 core 2.66GHz computers (in 64 bit
mode) with 4MB cache, running Linux, and 8GB of main memory. A time limit
of one hour was always enforced.

scip has a SAT-like conflict analysis mechanism and is a backtracking system.
To avoid an overhead by constructing explanations for bound changes, it is
possible to store additional information for each bound change. Since the number
of stored bound changes is quite large during the search, the space for these
information are restricted to 32 bits each. In case of energetic reasoning and
edge finding we use these bits to store the responsible interval. Otherwise, we
would need to search in worst case over O(n2) interval candidates. Hence, we
can use the explanation algorithms stated in the previous section without any
additional effort.

The basic version of scip also supports solving cumulative scheduling prob-
lem. For this study, we enhanced the capability for cumulative constraints and
implemented the different explanation algorithms discussed in the previous sec-
tion. We additionally used a scheduling-specific series-generation scheme based
on α-points in order to generate primal solutions, see [11].

For our study we are interested in instances which are not trivial to solve
on the one side and solvable on the other side. For all test sets we used the
following criteria to restrict the test set to reasonable instances. We kept all
instances which:

(i) could be solved to optimality by at least one solver,
(ii) at least one solver needed more than one search node, and
(iii) at least one solver needed more that one second of computational running

time.

We collect resource-constrained project scheduling problem (RCPSP) instances
from the problem library PSPLib [12]. As bases we only choose test set J30 and
J60, which are RCPSP instances with 30 and 60 jobs, respectively. Each test
set has 480 instances. Applying the above criteria, we are left with 115 and 71
instances for the test sets J30 and J60. We omit the larger test sets J90 and J120
since for these cases the remaining set after filtering are too small. The collection
of RCPSP instances in the PSPLib is criticized for containing rather disjunctive
problems. Therefore, we additionally considered the 55 Pack instances which are
introduced by Artigues et.al [4]. The restricted set contains 28 instances.

4.2 Computational Results

In Section 3 we stated for the propagation algorithms time-tabling, edge-finding,
and energetic reasoning three different explanation algorithms. We additionally



8 Stefan Heinz, Jens Schulz

Table 1. Evaluation of time spend in conflict analysis for time-tabling on 115 instances
from J30 and 71 instances from J60 and for energetic reasoning and edge-finding on 28
Pack instances.

test set setting solved outs better worse totaltime expl. time allopt shnodes shtime

time-tabling

no conflict 111 4 – – 27329.3 – 105 2267 k 6.0
no explanation 105 10 28 29 41182.8 – 105 2477 k 6.4

J30 Variant 1 115 0 55 6 15739.5 0.7% 105 871 k 2.5
Variant 2 115 0 56 4 12328.1 0.9% 105 797 k 2.5
Variant 3 115 0 55 3 9998.9 1.02% 105 791 k 2.4

no conflict 69 2 – – 19334.3 – 60 3815 k 10.6
no explanation 60 11 8 38 55037.5 – 60 9212 k 25.6

J60 Variant 1 70 1 38 10 13420.4 1.3% 60 2008 k 7.1
Variant 2 70 1 42 5 10207.9 1.64% 60 1759 k 5.7
Variant 3 71 0 40 5 8800.0 1.76% 60 1510 k 5.6

energetic reasoning

no conflict 23 5 – – 21064.0 – 16 375 k 8.2
no explanation 21 7 9 6 29267.6 – 16 467 k 14.2

Pack Variant 1 21 7 3 9 30028.5 0.27% 16 641 k 18.0
Variant 2 19 9 4 9 39323.8 0.4% 16 677 k 18.9
Variant 3 24 4 11 3 16869.6 0.35% 16 106 k 4.3

edge-finding

no conflict 21 7 – – 35921.1 – 16 471 k 7.7
no explanation 17 11 3 8 41658.3 – 16 660 k 13.1

Pack Variant 1 19 9 7 4 35194.8 0.018% 16 388 k 5.9
Variant 2 19 9 6 5 36442.5 0.032% 16 378 k 5.8
Variant 3 19 9 6 4 37720.4 0.026% 16 385 k 5.5

consider two further settings. One in which the conflict analysis is globally dis-
abled (“no conflict”). That means no infeasible problem is analyzed. Second, the
cumulative constraint does not explain the bound changes such that all bound
changes made by the cumulative constraint are considered as branching decisions
(“no explanation”).

For each run we only used the propagation algorithm of interest for retrieving
domain reductions due to the cumulative constraints. All other scheduling spe-
cific techniques were disabled. The computational results showed that the effort
spent by edge-finding and energetic reasoning compared the amount of reduction
detected for the RCPSP instances are rather small. Most of the running time was
used within these propagation algorithms. As a result, the running time of these
propagation algorithms was dominating the time needed for constructing expla-
nation in such a way that no differences between the explanation algorithms
could be made. In contrast the time-tabling algorithm is too weak for the Pack
instances which ended up in similar behavior. Therefore, we only present the
results of the time-tabling explanation algorithms for the rather disjunctive in-
stances of the test set J30 and J60 and the results of the propagation algorithms
edge-finding and energetic reasoning for the Pack instances.

Table 1 presents the computational results for the three test sets. Column
“solved” shows how many instances were solved to proven optimality whereas
column “outs” states the number of instances which timed out. The next two



Explanations for the cumulative constraint: an experimental study 9

columns “better” and “worse” indicate how often a setting was 10% faster or
slower than the reference solver which is the one performing no conflict anal-
ysis at all. To evaluate how much time was spent by the various explanation
algorithms, column “totaltime” displays the total solving time in seconds and
column “expl. time” the percentage of the total solving time used for the consid-
ered explanation algorithm. The column “allopt” gives the number of instances
which were solved to proven optimality by all settings. These instances are used
to compute the shifted geometric mean3 of all nodes (“shnodes”) in thousands
and of the running time in seconds (“shtime”), respectively.

Treating domain reductions as branching decisions (“no explanation”) per-
forms worst in all cases. The number of solved instances decreases and the shifted
number of nodes and the computation times increase. This is an interesting re-
sult since overall, we experience that using conflict analysis usually helps to solve
instances faster. An explanation for this behavior is that the resulting conflict
clauses are large and in most case the solver discards them. This means the time
spent for constructing them was in these cases useless.

In case of time-tabling we observe that Variant 3 yields the best results on
instances from J30, and J60 as well. Considering only the 60 instances of the test
set J60 which are solved to optimality by all settings, Variant 1 of explanation
algorithms for time-tabling decreases the average running time in the shifted
geometric mean by 30% and Variant 3 even to 53%, the number of nodes are
decreased by 47% and 40%, respectively. Column “expl. time” reveals that the
more precise the explanation algorithm is, the more percentage of the total
running time is spent on explaining the bound changes. In total the time spent
on explaining the cumulative propagations, is negligible. For the test set J30 the
results are similar, again the strongest variant of explanations yields the best
results.

In case of energetic reasoning on the highly cumulative Pack instances, we
observe that only Variant 3 performs better than the “no conflict” setting. Vari-
ants 1 and 2 show that greedily explaining bound changes may mislead the search
and are worse than not using conflict analysis at all. For Variant 3 the shifted
solving time reduced to 50% and the shifted number of nodes decreased to 28%.

The edge-finding algorithm performs worse w.r.t. the number of solved in-
stances when using conflict analysis in any form compared to disabling it. Two
instances were not solved anymore. Recall that we explain edge-finding via the
demands as defined in energetic reasoning. One could expect this to be a good
counterpart, but it does not pay. There are less instances solved then by ener-
getic reasoning. Nevertheless, in case of the instances solved to optimality by
all settings, we experience that all variants need roughly the same amount of
shifted nodes and shifted time which decrease by 25% and 20%, respectively, in
contrast to turning conflict analysis off.

3 The shifted geometric mean of values t1, . . . , tn is defined as
(∏

(ti + s)
)1/n − s with

shift s. We use a shift s = 10 for time and s = 100 for nodes in order to decrease
the strong influence of the very easy instances in the mean values.



10 Stefan Heinz, Jens Schulz

5 Conclusions

We studied explanation algorithms for the cumulative constraint in a backward
checking system. We presented extensive computational results. These show,
that minimum sized explanations of bound changes are crucial in order to solve
hard scheduling problem instances efficiently. Future research should focus on
the complexity status of explanation algorithms for time-tabling or deliver ap-
proaches with reasonable computational complexity for at least some special
cases.

References

1. Achterberg, T.: Conflict analysis in mixed integer programming. Discrete Opti-
mization 4(1), 4–20 (2007), special issue: Mixed Integer Programming

2. Achterberg, T.: SCIP: Solving Constraint Integer Programs. Math. Programming
Computation 1(1), 1–41 (2009)

3. Aggoun, A., Beldiceanu, N.: Extending chip in order to solve complex scheduling
and placement problems. Mathematical and Computer Modelling 17(7), 57 – 73
(1993)

4. Artigues, C., Demassey, S., Neron, E.: Resource-Constrained Project Scheduling:
Models, Algorithms, Extensions and Applications. ISTE (2007)

5. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-based scheduling: applying con-
straint programming to scheduling problems. International Series in Operations
Research & Management Science, 39, Kluwer Academic Publishers, Boston, MA
(2001)

6. Baptiste, P., Pape, C.L.: Constraint propagation and decomposition techniques for
highly disjunctive and highly cumulative project scheduling problems. Constraints
5(1/2), 119–139 (2000)

7. Berthold, T., Heinz, S., Lübbecke, M.E., Möhring, R.H., Schulz, J.: A constraint in-
teger programming approach for resource-constrained project scheduling. In: Lodi,
A., Milano, M., Toth, P. (eds.) Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Problems, LNCS, vol. 6140,
pp. 313–317. Springer Berlin / Heidelberg (2010)

8. Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-
constrained project scheduling problem. Eur. J. Oper. Res. 207(1), 1–14 (2009)

9. Klein, R., Scholl, A.: Computing lower bounds by destructive improvement: An
application to resource-constrained project scheduling. European Journal of Oper-
ational Research 112(2), 322–346 (1999)

10. Marques-Silva, J.P., Sakallah, K.A.: Grasp: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers 48, 506–521 (1999)

11. Möhring, R.H., Schulz, A.S., Stork, F., Uetz, M.: Solving project scheduling prob-
lems by minimum cut computations. Manage. Sci. 49(3), 330–350 (2003)

12. PSPLib: Project Scheduling Problem LIBrary. http://129.187.106.231/psplib/
(last accessed 2011)

13. Schutt, A., Feydy, T., Stuckey, P., Wallace, M.: Explaining the cumulative propa-
gator. Constraints pp. 1–33 (2010)

14. Vilím, P.: Max energy filtering algorithm for discrete cumulative resources. In: van
Hoeve, W.J., Hooker, J. (eds.) Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, LNCS, vol. 5547, pp. 294–
308. Springer Berlin / Heidelberg (2009)


